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Superresolution of two unbalanced point sources assisted by the entangled partner
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Sub-diffraction-limit resolution, or superresolution, has been successfully demonstrated in recent theoretical
and experimental studies for two equal-brightness and incoherent point sources. However, practical situations
of either nonequal brightness (i.e., unbalancedness) or partial coherence are shown to have fatal effects on such
superresolution. As a step towards resolving such issues, we consider the effects of both unbalancedness and a
form of partial coherence (i.e., quantum state coherence) together by including an entangled degree of freedom
of the two point sources. Unexpectedly, it is found that the two negative effects can counteraffect each other, thus
permitting credible superresolution, when the measurement is analyzed in the entangled partner’s rotated basis.
The least resolvable non-zero two-source separation is also identified analytically. Our result represents useful
guidance towards the realization of superresolution for practical point sources. The vector-structure analog of
quantum and classical light sources also suggests that our analysis applies to both contexts.
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I. INTRODUCTION

The resolution of two point sources is one of the most
crucial elements in the science of imaging and sensing. The
quality of fine resolution relies on two major factors: resolu-
tion capability (how small a separation can be discriminated)
and measurement estimation credibility (how much a mea-
surement can be trusted). For over a century, the empirical
Abbe-Rayleigh diffraction criterion [1–4], related to the ra-
tio of the light wavelength and aperture diameter, has been
regarded as a roadblock that limits resolution capability with
practically sensible parameters [5,6]. This is due to the fact
that when the two sources are getting closer, the blurred
overlapping signals are harder to discriminate through direct
intensity measurements. Moreover, the second factor, mea-
surement credibility (or measurement precision), will also
decrease as noise effects become relatively more prominent
when the separation of the two sources decreases. Studies
have shown that while statistical methods were able to im-
prove the resolution capability by determining the source
locations, the measurement precision vanishes as the sepa-
ration of the two sources goes beyond the diffraction limit,
approaching zero [7–10]. This phenomenon consolidates the
common wisdom of the Abbe-Rayleigh diffraction criterion
from a more rigorous foundation and is termed Rayleigh’s
curse by many authors (see, for example, [11–20]).

Recently, the pioneering works of Tsang and coworkers
[12,14,21,22] showed that it is possible, in principle, to im-
prove both factors by analyzing the signal in a different
spatial basis (e.g., the Hermite-Gaussian mode) instead of a
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direct intensity measurement. The new technique leaves the
Abbe-Rayleigh diffraction criterion irrelevant and at the same
time guarantees a finite desired estimation accuracy via the
Fisher information (FI) [23,24]. Experimental confirmation
has also been demonstrated (see, for example, [15,20]). While
working perfectly in ideal situations, this technique has two
constraints, requiring (1) incoherence and (2) balance (equal
brightness) of the two point sources. It was shown that re-
leasing either one of the two may lead to the resurgence of
Rayleigh’s curse, by Řehaček et al. with unbalanced incoher-
ent sources [16] and by Larson and Saleh [17,25] and De et al.,
[26] with balanced but partially coherent sources.

To address this issue, we consider both restrictions at the
same time by investigating the resolution of two unbalanced
and partially coherent (in terms of quantum state coherence)
point sources with the assistance of an entangled partner
(see the schematic illustration in Fig. 1). The effect of par-
tial coherence is analyzed by basis rotation of the entangled
partner, resulting in continuous variation of quantum state
coherence [27]. It is found that the effect of unbalancedness
on the two-source separation estimation parameter, i.e., Fisher
information, is equivalent to that of the basis-rotation-induced
partial quantum coherence. Unexpectedly, the joint effect of
the two restrictions by entanglement permits the realization of
superresolution with finite Fisher information even when the
separation of the two sources approaches zero. It is also deter-
mined analytically that a “least resolvable” (nonzero) distance
at which the Fisher information experiences a nonzero min-
imum exists that is determined by Lambert W functions
[28]. This provides guidance to employ optimum practical
parameters to achieve superresolution with a given accuracy
requirement.

II. MODEL AND METHODS

We consider two unbalanced sources located at x ± s/2
with a separation s. Through a shift-invariant imaging system,
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FIG. 1. The point spread functions, h2
+(x) and h2

−(x), of two
unbalanced point sources separated by s via a shift-invariant imag-
ing system. The coefficients a and b characterize a continuous
unbalancedness.

the spatial dependence of the two source amplitudes can be
expressed as h±(x) = h(x ± s/2). Here h2(x) describe the nor-
malized point spread functions, e.g., taking the Gaussian form
h2(x) = 1√

2πσ 2
exp[− x2

2σ 2 ], with σ being the width (see the il-
lustration in Fig. 1). We include the partial coherence property
of the two sources by introducing an entangled partner of the
spatial degree of freedom. The optical field in the image plane
can then be described as

|�ent〉 = a |h+〉 |φ1〉 + beiϕ |h−〉 |φ2〉, (1)

where |h±〉 represent the two normalized but nonorthogo-
nal functions (vectors) of the spatial degree of freedom,
with 〈x |h±〉 = h±(x) and 〈h+|h−〉 = δ; |φ1〉 and |φ2〉 are
two generic states describing the remaining degrees of free-
dom (including polarization, temporal domain, etc.); a and
b are real normalized coefficients, with a2 + b2 = 1; and ϕ

is an arbitrary phase. The spatial functions h±(x) can rep-
resent the probability amplitude distributions for a quantum
wave function or the field amplitudes of a classical light.
Since the spatial functions are normalized over the entire
space, the degree of unbalancedness of the two sources can
be simply quantified by the ratio r = |b/a|, where r = 0
means completely unbalanced and r = 1 indicates balanced.
Due to symmetry, we analyze the case in which that ratio
is r � 1 without loss of generality. Here the spatial state
space {|h+〉 , |h−〉} is entangled with the remaining state space
{|φ1〉 , |φ2〉}. The entangled state (1) can be either a quantum
state of single photons or a macroscopic classical optical field
[29–38].

For the convenience of the following discussion, we take
the two states |φ1〉 and |φ2〉 to be orthogonal and analyze the
two-source separation measurements (detections) through the
two possible outcomes, i.e., |φ1〉 and |φ2〉, of the nonspatial
degree of freedom. Then the degree of coherence with respect
to the spatial vectors is taken to be the off-diagonal element of
the reduced density matrix (see Ref. [27]),

ρspatial =
(

a2 + b2|δ|2 b2δ
√

1 − |δ|2
b2δ∗√1 − |δ|2 b2(1 − |δ|2)

)
, (2)

in the basis {|h+〉 , |h⊥
+〉}, with |h−〉 = δ|h+〉 +

√
1 − |δ|2|h⊥

+〉
and 〈h+|h⊥

+〉 = 0.

For generality, we further consider the generalized situa-
tion in which the measurements are analyzed in the rotated
basis of |φ1〉 and |φ2〉, i.e., |φα

1 〉 = cos α|φ1〉 − sin α|φ2〉 and
|φα

2 〉 = sin α|φ1〉 + cos α|φ2〉. The optical field can then be
rewritten in the new basis as

|�ent〉 = |h1〉
∣∣φα

1

〉 + |h2〉
∣∣φα

2

〉
, (3)

where |h1〉 = a cos α |h+〉 − b sin αeiϕ |h−〉 and |h2〉 =
a sin α |h+〉 + b cos αeiϕ |h−〉 are two new spatial functions
that are, in general, non-normalized and nonorthogonal
〈h1|h2〉 = δ′. This is an equivalent way of introducing
coherence change due to its basis-dependent nature
[27,33,34,38], as the off-diagonal elements of the reduced
density matrix for the new spatial states |h1〉 and |h2〉 will
be dependent on the rotation angle α through δ′; a detailed
analysis is given in Appendix A 1.

To quantify the likelihood of the estimation being accurate
(or the degree to which measurements can be trusted) for
the two-source separation s, the conventional FI [23,39,40] is
employed. Its definition is based on the Cramér-Rao bound
[41–43] Var(s) � 1/F . The optimal estimation of the un-
known parameter s corresponds to the maximization of the
Fisher information F , which corresponds to a minimum of
the estimator variance Var(s). Here the estimator is unbiased,
which is a condition of the Cramér-Rao bound.

A recent debate about the nonphysical divergence of Fisher
information [17,18,22,25] suggests that the Fisher informa-
tion for analyzing two-source superresolution needs to be
appropriately normalized. Here we adopt the approach pro-
posed by Hradil et al. [18] to account for the total FI as a sum
of weighted components for all probabilistic events. For the
general entangled state (3), the FI is defined as

Ftot = 〈h1|h1〉Fρ1 + 〈h2|h2〉Fρ2 , (4)

where ρ1 = |h1〉〈h1|/N1 and ρ2 = |h2〉〈h2|/N2 are two cor-
responding normalized states, by factors N1 and N2, of
the spatial domain with corresponding weights 〈h1|h1〉 and
〈h2|h2〉. Here the Fisher information takes the form Fρ =
2Tr{[∂sρ(s)]2} for an arbitrary pure state ρ(s) = |h〉〈h|. This
measure is based on the conditional outcome of a measure-
ment in the rotated basis {|φα

1 〉, |φα
2 〉} of the entangled partner.

It is important to note that here we treat the measurement
of the signal as a single repetition (e.g., an independent single-
photon detection event, detecting a bunch of identical photons
within the coherence time, or a single measurement of light
intensity). For a given number (e.g., N) of multiple repetitions
of measurement, our results will remain the same up to the
constant factor N . Our analysis does not cover environment-
induced loss cases where the photon numbers are unknown.

III. RESULTS

In our consideration, the unbalancedness of the two sources
r = |b/a| is also an unknown parameter. However, it will be
shown later that measurement in the rotated basis {|φα

1 〉, |φα
2 〉}

is always able to cancel the unbalancedness effect. Therefore,
one needs to consider only the single unknown parameter
s for the calculation of the Fisher information. Then the
Fisher information for the entangled field (3) can be explicitly
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FIG. 2. Dependence of the FI on the displacement s for ϕ = 0
with σ = 1. Different colors represent different values of r. The red
line is for the balanced case (r = 1), and the blue and green lines
corresponds to r = 1

2 , and r = 1
4 , respectively. r = 0 is represented

by the black line. (a) FI for the state |�ent〉 in the case α = π

6 . (b) FI
is for the state |� ′〉.

obtained as

Ftot (s)

= 1

4σ 2
− (r sin 2α cos ϕ)2s2

16
[
(cos2 α + r2 sin2 α)es2/8σ 2 − r sin 2α cos ϕ

]
× 1

(r2 cos2 α + sin2 α)es2/8σ 2 + r sin 2α cos ϕ
, (5)

which depends on the two-source separation s, the entangled
partner’s measurement basis characterized by rotation angle
α, the two-source unbalancedness through the amplitude ratio
r, and the relative phase ϕ. Figure 2(a) illustrates the specific
behaviors of the Fisher information on s for a fixed partial
coherence (rotation angle α = π/6) and relative phase ϕ = 0
but for different unbalancedness r = 0, 1/4, 1/2, 1. Qualita-
tive behaviors for other degrees of partial coherence (i.e., other
rotation angles) are similar to those in Fig. 2(a) except for
some special cases which will be discussed later. The detailed
derivation of (5) is provided in Appendix A 2.

Three important conclusions can be drawn from the ob-
tained Fisher information (5) for the entangled source.

The first major conclusion from result (5) is that super-
resolution is achievable for various practical unbalancedness
settings as the value of the Fisher information remains finite
even when the separation s goes to zero, as shown in Fig. 2(a).
This unexpected behavior is a result of the existence of the
entangled partner. To have a clearer picture of the effects of the
entangled partner, we also analyze the Fisher information of

two unentangled point sources with the same unbalancedness
characterized by r = |b/a| and relative phase ϕ, i.e.,

|� ′〉 = (a |h+〉 + beiϕ |h−〉)|φ〉, (6)

where |φ〉 is a generic state of the remaining degrees of free-
dom. In this nonentangled case, the measurement basis of |φ〉
is irrelevant to the spatial domain. Therefore, the Fisher infor-
mation can be directly computed as Fρ ′ = 2Tr[(∂sρ

′)2], where
ρ ′ = |� ′〉〈� ′|/N ′, with N ′ being the normalization factor. It
can be obtained straightforwardly as

Fρ ′ (s) =
1

4σ 2 − ab cos ϕe− s2

8σ2 (−s2+4σ 2 )
8σ 4

1 + 2ab cos ϕe−s2/8σ 2

− 1

4

(
ab cos ϕe− s2

8σ2 s
)2

(1 + 2ab cos ϕe−s2/8σ 2 )2
. (7)

Figure 2(b) illustrates the specific behaviors of Fρ ′ for the
nonentangled field with the same unbalancedness values and
fixed phase ϕ. A detailed derivation of the above result is also
provided in Appendix A 3.

By comparing the Fisher information of the two cases
illustrated in Figs. 2(a) and 2(b), one notes clearly that
the entangled field has a significant enhanced FI for all
unbalancedness values in the small separation s regime. Par-
ticularly, for the frequently studied balanced source case
(r = 1), the nonentangled field Fisher information vanishes
at zero separation, while the entangled field one achieves its
maximum finite value. It is also interesting to note that for
the entangled field case, the Fisher information of various
different unbalances simply converges to the same finite value
when the source separation decreases to zero.

The second major conclusion from result (5) lies in the
underlying competing mechanism between coherence and
unbalancedness in affecting the Fisher information. As con-
cluded in previous studies, neither partial coherence nor
unbalancedness is able to achieve superresolution [16,17].
Surprisingly, as is shown here, the combination of the two
works! This is due to the fact that coherence (measured in
terms of the quantum state off-diagonal element) and unbal-
ancedness have countereffects against each other on the Fisher
information.

To understand this point better, we perform a detailed
analysis of the effects from both properties to explore the
analogous behavior of the two. We first analyze the coherence
effect by fixing at the two-source balanced case, i.e., setting
the unbalancedness parameter to r = 1. Then the Fisher infor-
mation simply reduces to

Ftot (s, r = 1) = 1

4σ 2
− 1

16

sin2 2α cos2 ϕs2

es2/4σ 2 − sin2 2α cos2 ϕ
, (8)

which depends on the coherence controlling angle α and two-
source separation s. Figure 3(a) illustrates its behavior for
different coherence parameter values for α.

Next, we analyze the unbalancedness effect by fixing the
coherence rotation angle α = π/4. To make the compari-
son we define the unbalancedness parameter as r = |b/a| =
tan η, where a = cos η and b = sin η to satisfy the normal-
ization condition a2 + b2 = 1. Then the Fisher information
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FIG. 3. Total FI versus the displacement s for ϕ = 0 when σ = 1.
(a) Rotating basis angle α effect on FI in the balanced case. The
minimum of the FI corresponds to sleast in expression (11). (b) Un-
balancedness intensity effect in the case of α = π

4 .

reduces to

Ftot

(
s, α = π

4

)
= 1

4σ 2
− 1

16

sin2 2η cos2 ϕs2

es2/4σ 2 − sin2 2η cos2 ϕ
, (9)

which depends on the unbalancedness angle η and two-source
separation s. Figure 3(b) illustrates the behavior for different
unbalancedness values of r or, equivalently, η.

By comparing expressions (8) and (9), one immediately
notes that they are equivalent except for the change from
parameter α to η. This shows that unbalancedness and the
rotation-controlled coherence affect the Fisher information
with the same mechanism. Therefore, the opposite variations
of the two parameters are able to cancel each other’s negative
effects on the Fisher information, thus permitting a super-
resolution. Figures 3(a) and 3(b) illustrate specifically the
equivalence of the two Fisher information behaviors. When
the parameters are chosen appropriately, the two effects be-
have exactly the same, as shown by lines with the same color
in the two plots. In addition, using the fact that angle α is
controllable by the analyzer, one can always achieve finite FI
for an arbitrary unknown parameter r, as shown in Fig. 3. This
justifies that in the calculation of the Fisher information (5), it
is not necessary to estimate the unknown parameter r.

Also, we observe that in the limit s → 0, Fisher infor-
mation Ftot (s, r) will never vanish for any unbalanced (i.e.,
r 	= 1) sources; a detailed proof is given in Appendix A 4.
From the equivalence of the coherence and unbalancedness
effect, it can therefore be concluded that by adjusting the
coherence rotation angle α one can always avoid the balanced
situation and thus avoid the vanishing Fisher information at
zero separation.

The third major conclusion from the Fisher information
(5) is its counterintuitive decreasing behavior within the small
separation regime [see illustrations in Figs. 2(a) and 3]. Nor-
mally, one would expect that as the separation s of the two
sources increases, the Fisher information would also increase
because it is natural to assume that a larger separation means
less relative error in measurements. However, as shown in
Figs. 2(a) and 3, the Fisher information experiences a decrease
and then an increase as the separation s increases from zero.
This behavior is due to the competing natures of coherence α

and unbalancedness r in affecting the Fisher information for
any fixed relative phase ϕ.

This interesting behavior suggests the existence of a least
resolvable separation sleast that leads to minimum Fisher infor-
mation F min

tot . All practical situations should avoid analyzing
distances in the vicinity of this critical separation sleast. To
achieve this separation quantitatively, we analyze the deriva-
tive of the Fisher information (5). The vanishing derivative of
Ftot leads to the solutions of the following equation:

�(s)es2/4σ 2 + (s)es2/8σ 2 + � = 0, (10)

where �(s) = (a2 cos2 α + b2 sin2 α)(b2 cos2 α + a2 sin2 α)
(1 − 2s2

8σ 2 ), (s) = [2(a2 cos2 α + b2 sin2 α) − 1](1 − s2

8σ 2 )
ab sin 2α cos ϕ, and � = −(ab sin 2α cos ϕ)2. There are two
trivial solutions, s = 0 and s → ∞, as shown in Figs. 2(a) and
3. The nontrivial solution can, in general, always be achieved
numerically. For the commonly studied balanced case in
which r = 1, the nontrivial solution of (10) can be obtained
analytically as (see the detailed analysis in Appendix A 5)

sleast = σ

√
4 + 4W

[
− sin2 2α cos2 ϕ

e

]
, (11)

where W[·] is a special function known as the Lambert W
function which is an increasing function with a minimum at
W[−1

e ] = −1. When sin2 2α cos2 ϕ = 1, sleast = 0, which is
exactly the case analyzed in [18] for ϕ = 0, π and α = π/4.

Due to the equivalence of the coherence effect and un-
balancedness effect as analyzed earlier, the least resolvable
distance with respect to different values of the parameter r
can be obtained in exactly the same way as (11); see the
illustrations of sleast for different curves in Figs. 3(a) and 3(b).
Since the detection basis (in terms of α) can be controlled by
the observer, all unbalanced cases can be treated equivalently
to balanced cases but with a corresponding coherence angle
α. The least resolvable distance analysis provides important
guidance for avoiding resolution of the two-source separation
in the vicinity of sleast in various practical situations.

Finally, we would like to mention that our model described
in state (1) has direct practical implications. The Gaussian
point spread function is a practically feasible fitting of the po-
sition of most fluorescent emitters in localization microscopy,
which justifies the spatial functions |h+〉 and |h−〉. The re-
maining degrees of freedom in many cases can be taken as just
the polarization properties of the sources, e.g., |φ1〉 = |H〉 and
|φ2〉 = |V 〉. Then it is straightforward to perform rotations and
detections of the signal, thus realizing superresolution.
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IV. CONCLUSION AND DISCUSSION

To summarize, we have investigated sub-diffraction-limit
resolution of two point sources in two practical situations:
arbitrary two-source unbalancedness and partial quantum co-
herence. By including an entangled partner of the spatial
property of the two sources to account for the partial co-
herence, it was found that superresolution can be achieved
with high measurement estimation credibility (quantified by
the maximum Fisher information) even when the two-source
separation is reduced to zero. It was revealed that such an
achievement is due to the fact that the effect on Fisher in-
formation from partial coherence is equivalent to that of the
two-source unbalancedness. Appropriate control of the rotated
basis (i.e., adjustment of quantum state coherence) by the ana-
lyzer is able to counter the effect of arbitrary unbalancedness.
Such a capability indicates that the realization of superresolu-
tion is independent of whether the unbalancedness and partial
coherence are known or not. This justifies the exclusion of the
unknown unbalancedness and partial coherence parameters in
analyzing Fisher information.

We also carried out a detailed analysis of the counterin-
tuitive decreasing behavior of the Fisher information as the
two-source separation increases. This allowed the discovery
of a characteristic equation to determine the least resolvable
distance. Analytical solutions in terms of the Lambert W
function were also achieved. Our results provide important
guidance for practical optical designs and engineering in the
realization of optimum fine resolution.
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APPENDIX

1. Degree of coherence in a rotated basis

Coherence is an important parameter in the analysis of
superresolution. Here we adopt the measure for coherence
from the quantum state analysis [27]. The optical field in the
image plane of the two point sources analyzed in the main text
is described as

|�ent〉 = a |h+〉 |φ1〉 + beiϕ |h−〉 |φ2〉, (A1)

where |h+〉 and |h−〉 describe the (vector) functions of the
spatial degree of freedom and |φ1〉 and |φ2〉 in general are two
(vector) functions of the rest of the degrees of freedom and
are taken to be orthogonal. As described in the main text, the
degree of coherence with respect to the spatial vectors is taken
to be the off-diagonal element |(ρspatial )12| = |b2δ

√
1 − |δ|2|

of the reduced density matrix (see Ref. [27]),

ρspatial =
(

a2 + b2|δ|2 b2δ
√

1 − |δ|2
b2δ∗√1 − |δ|2 b2(1 − |δ|2)

)
, (A2)

expressed in the basis {|h+〉 , |h⊥
+〉}, with |h−〉 = δ|h+〉 +√

1 − |δ|2|h⊥
+〉 and 〈h+|h⊥

+〉 = 0.

The existence of the entangled partner {|φ1〉 , |φ2〉} allows
the measurement of the two sources in its rotated basis,∣∣φα

1

〉 = − sin α |φ2〉 + cos α |φ1〉, (A3)∣∣φα
2

〉 = cos α |φ2〉 + sin α |φ1〉. (A4)

This will lead to the optical field being analyzed in a
different basis, i.e.,

|�ent〉 = |h1〉
∣∣φα

1

〉 + |h2〉
∣∣φα

2

〉
, (A5)

where
|h1〉 = a cos α |h+〉 − b sin αeiϕ |h−〉, (A6)

|h2〉 = a sin α |h+〉 + b cos αeiϕ |h−〉, (A7)

and 〈h1|h2〉 = δ′ = (a2 − b2) sin α cos α + abδeiϕ cos2 α −
abe−iϕ sin2 αδ∗.

Due to this rotated detection, the reduced density matrix of
the spatial states needs to be analyzed in the new basis, |h1〉,
|h⊥

1 〉 (where |h2〉 = δ′|h1〉 +
√

1 − |δ′|2|h⊥
1 〉 and 〈h1|h⊥

1 〉 = 0),
and becomes

ρ ′
spatial =

(
(1 + |δ′|2)/2 δ′√1 − |δ′|2
δ′∗√1 − |δ′|2 (1 − |δ′|2)/2

)
. (A8)

As a result, the off-diagonal element will change accordingly
depending on the rotation angle α through δ′. This ensures
that analyzing the two sources in a different basis will effec-
tively produce a different partial coherence. In other words,
partial coherence, due to its basis-dependent nature [27], can
be introduced through rotations of the entangled partner for
analysis.

2. Fisher information of the entangled field

Here we derive the expression for Fisher information (FI)
in (5) of the main text. When the optical field is analyzed in
the rotated basis |φα

1 〉 , |φα
1 〉 of the entangled partner, it can be

expressed in the form of (A5). Then FI is calculated based on
the conditional measurement on |φα

1 〉 or on |φα
2 〉. Information

will be stored in two subsystems considering the weights for
each of |h1〉 and |h2〉, i.e.,

Ftot = 〈h1|h1〉Fρ1 + 〈h2|h2〉Fρ2 , (A9)

where Fρ1 and Fρ2 are FI for ρ1 = |h1〉 〈h1| and ρ2 = |h2〉 〈h2|,
respectively.

We start with the calculation of a general state in the form
|�〉 = a′ |h+〉 + b′eiϕ |h−〉, where a′2 + b′2 is not necessarily
normalized. The point spread functions |h±〉 can be described
as a displacement of a function |h〉 at the center, i.e., |h±〉 =
exp(±iPs/2) |h〉 and | 〈x|h〉 |2 = 1√

2πσ 2
exp[− x2

2σ 2 ]. Here P is
the displacement operator, and s is the separation of the two
sources.

The Fisher information of such a state |�〉 can be computed
as

F|�〉(s) = 4

N
〈∂s�|∂s�〉 − 4

N2
|〈�|∂s�〉|2, (A10)

where the first term on the right-hand side (RHS) of the
equation is given as

〈∂s�|∂s�〉 = 〈h| iP 1
2 (a′e−iϕeiP s

2 − b′e−iP s
2 )

× iP 1
2 (a′eiP s

2 − b′eiϕe−iP s
2 ) |h〉

033244-5
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= −1/4〈a′b′e−iϕeiPsP2 − a′2P2

−b′2P2 + a′b′eiϕe−iPsP2〉
= 1/4 〈(a′2 + b′2)P2 − 2a′b′ cos ϕP2eiPs〉
= 1/4[(a′2 + b′2) 〈P2〉

−2a′b′ 〈cos ϕP2 cos Ps〉]. (A11)

The second term on the RHS of (A10) is obtained as

〈�|∂s�〉 = i

2
[〈h| (a′e−iP s

2 − b′e−iϕeiP s
2 )

× P(a′eiP s
2 + b′eiϕe−iP s

2 ) |h〉]

= i

2
[〈−a′b′e−iϕeiPsP + a′b′eiϕe−iPsP〉]

= iIm 〈e−iϕeiPsP〉 a′b′. (A12)

The normalization factor N is achieved as

N = 〈�|�〉 = a′2 + b′2 + 2a′b′Re(e−iϕ 〈eiPs〉). (A13)

Then the Fisher information of the state |�〉 can be derived
as

F|�〉(s) = (a′2 + b′2) 〈P2〉 − 2a′b′Re(e−iϕ〈P2eisP〉)

1 + 2a′b′Re(e−iϕ 〈eiPs〉)

− 4
(Im 〈e−iϕeiPsP〉 a′b′)2

[1 + 2a′b′Re(e−iϕ 〈eiPs〉)]2
. (A14)

This allows us to compute the quantity 〈�|�〉 F|�〉(s) as

(a′2 + b′2) 〈P2〉 − 2a′b′Re(e−iϕ 〈P2eisP〉)

− 4
Im2[e−iϕ 〈PeisP〉](a′b′)2

(a′2 + b′2) + 2a′b′Re(e−iϕ 〈eiPs〉)
. (A15)

With the above general result, we can then calculate
〈h1|h1〉 Fρ1 by simply replacing a′ and b′ with a cos α and
b sin α, respectively:

〈h1|h1〉 Fρ1 = [(a cos α)2 + (b sin α)2] 〈P2〉 + 2ab cos α sin αRe(e−iϕ 〈P2eisP〉)

− 4
Im2[e−iϕ 〈PeisP〉](ab cos α sin α)2

(a cos α)2 + (b sin α)2 − 2ab cos α sin αRe(e−iϕ 〈eiPs〉)
. (A16)

Similarly, we can calculate 〈h2|h2〉 Fρ2 by replacing a′ and b′ with a sin α and b cos α, respectively:

〈h2|h2〉 Fρ2 = [(a sin α)2 + (b cos α)2] 〈P2〉 − 2ab cos α sin αRe(e−iϕ 〈P2eisP〉)

− 4
Im2[e−iϕ 〈PeisP〉](ab cos α sin α)2

(a sin α)2 + (b cos α)2 + 2ab cos α sin αRe(e−iϕ 〈eiPs〉)
. (A17)

Then the total Fisher information (A9) can be obtained by
combining the two terms, i.e.,

Ftot (s) = 〈P2〉 − 4Im2[e−iϕ 〈PeisP〉]

× (ab cos α sin α)2

(
1

N1
+ 1

N2

)
, (A18)

where N1 and N2 are given as

N1 = 〈h1|h1〉 = (a cos α)2 + (b sin α)2

− 2ab cos α sin αRe(e−iϕ 〈eiPs〉), (A19)

N2 = 〈h2|h2〉 = (a sin α)2 + (b cos α)2

+ 2ab cos α sin αRe(e−iϕ 〈eiPs〉). (A20)

Here we analyze each of the expectation values,

〈eiPs〉 = 〈h| eiPs |h〉 = e−s2/8σ 2
, (A21)

〈PeiPs〉 = 〈h| PeiPs |h〉 = −i

4σ
e− s2

8σ2 s, (A22)

〈P2eiPs〉 = 〈h| P2eiPs |h〉 = e− s2

8σ2 (−s2 + 4σ 2)

16σ 4
. (A23)

With the above results, the total Fisher information Ftot can
finally be achieved as

Ftot (s)= 1

4σ 2
− (r sin α cos α cos ϕ)2s2

16
[
(cos2 α + r2 sin2 α) exp

(
s2

8σ 2

) − 2r cos α sin α cos ϕ
] 1[

(r2 cos2 α + sin2 α) exp
(

s2

8σ 2

) + 2r cos α sin α cos ϕ
] ,

(A24)

where r = b/a is the unbalancedness ratio.

3. Fisher information of the unentangled field

In this section we present the derivation of the expression
for FI in (7) in the main text. We consider two unentangled
point sources as the superposition of |h±〉 with correspond-

ing amplitudes a and b (where a2 + b2 = 1) and a relative
phase ϕ,

|� ′〉 = (a |h+〉 + beiϕ |h−〉)|φ〉, (A25)

where |φ〉 is a generic state of the remaining degrees of free-
dom. The Fisher information for the state ρ ′ = |� ′〉 〈� ′| is
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defined as

Fρ ′ (s) = 4

N ′ 〈∂s�
′|∂s�

′〉 − 4

N ′2 |〈� ′|∂s�
′〉|2, (A26)

with the normalization factor given as

N ′ = 〈� ′|� ′〉 = 1 + 2abRe(e−iϕ〈eiPs〉). (A27)

We can then calculate the Fisher information directly with
the general result (A15) by taking a = a′ and b = b′,

Fρ ′ (s) = (a2 + b2) 〈P2〉 − 2abRe(e−iϕ 〈�| P2eisP |�〉)

1 + 2abRe(e−iϕ 〈eiPs〉)

− 4
(Im 〈e−iϕeiPsP〉 ab)2

[1 + 2abRe(e−iϕ 〈eiPs〉)]2

=
1

4σ 2 − cos ϕabe− s2

8σ2 (−s2+4σ 2 )
8σ 4

1 + 2ab cos ϕe−s2/8σ 2

− 1

4

(ab cos ϕe− s2

8σ2 s)2

(1 + 2ab cos ϕe−s2/8σ 2 )2
. (A28)

4. Nonvanishing of the FI for unbalanced sources at s = 0

In this section, we show that Fisher information (5) or
(A24) will never vanish at s = 0 for the entangled unbalanced
sources. This is proved by demonstrating that the only case
where Ftot (s) → 0 (i.e., Rayleigh’s curse appears) is when the
two sources are balanced (r = 1) and at the same time the
entangled partner is analyzed in the angle α = π

4 or 3π
4 . To

simplify the calculation, let’s first define

A = r sin 2α cos ϕ, (A29)

B = cos2 α + r2 sin2 α, (A30)

C = r2 cos2 α + sin2 α. (A31)

Without loss of any generality, we then rewrite the expression
for FI (A24) as

Ftot (s) = 1

4
− A2s2

16(Bes2/8 − A)(Ces2/8 + A)
, (A32)

where we have taken σ = 1 for convenience. We remark that
ϕ will be taken to be zero, which can always be realized by
absorbing the additional phase in the rotated basis |φα

1 〉 , |φα
2 〉

of the entangled partner.
We notice that in the limit s → 0, the second term always

vanishes for (Bes2/8 − A)(Ces2/8 + A) 	= 0. This leaves the
Fisher information in its maximal value (Ftot = 1

4 ). Therefore,

Ftot = 0 can happen only when the denominator (Bes2/8 −
A)(Ces2/8 + A) = 0 and at the same time

lim
s→0

A2s2

16(Bes2/8 − A)(Ces2/8 + A)
= 1

4
. (A33)

There are three cases for the denominator to be zero: (i)
(Bes2/8 − A) = 0, (ii) (Ces2/8 + A) = 0, and (iii) both terms
equal zero. According to the L’Hôpital’s rule [44], for two
differentiable functions f (x) and g(x), if limx→x0 f (x) =
limx→x0 g(x) = 0, then limx→x0

f (x)
g(x) = limx→x0

f ′(x)
g′(x) . Then the

above limit (A33) can be converted to

lim
s→0

2A2s

16
[
B s

4 es2/8(Ces2/8 + A) + (Bes2/8 − A)C s
4 es2/8

] = 1

4
,

(A34)

or, simply,

A2

1
2 [B(C + A) + (B − A)C]

= 1. (A35)

For case (i) at the limit s → 0, (Bes2/8 − A) = 0 simply
means A = B. Then Eq. (A35) can be simplified to A = C.
With these two conditions, we immediately achieve

r sin 2α cos ϕ = r2 cos2 α + sin2 α = cos2 α + r2 sin2 α,

(A36)

where the last two terms will lead to the relation

cos 2α(r2 − 1) = 0. (A37)

From (A37), we see that Ftot = 0 can be true only when
r = 1 or α = (4k+1)π

4 , with k = 0, 1, 2, . . . being an integer.
Plugging these results back into the first two terms in (A36),
we can obviously reach the conclusion that both r = 1 and
α = kπ

4 are required for (A36) to hold.
For case (ii), we have C + A = 0 in the limit s → 0. Then

Eq. (A35) simply becomes

A = −B. (A38)

With an analysis similar to that for case (i), we are led to
the result that Ftot = 0 can be true only when r = 1 and
α = (4k+1)π

4 , with k = 0, 1, 2, . . . being an integer.
For case (iii), we have both C + A = 0 and B − A = 0,

which means B = −C. This will lead to the relation

cos2 α + r2 sin2 α = −r2 cos2 α − sin2 α, (A39)

which indicates the nonphysical condition r2 = b2/a2 = −1.
Therefore, case (iii) is not a physical solution.

Combining the three cases, we can conclude that the only
cases in which vanishing Fisher information (Ftot = 0) exists
are in the balanced situation (r = 1) and when α = k′π

4 , with
k′ = 1, 3, 5, . . . being an odd integer. This proves the fact
that the Fisher information (A24) will never vanish at s = 0
for any unbalanced entangled sources. In addition, for any
s > 0, our numerical result also shows that there is no cases of
Ftot (s) = 0 with the assistance of the entangled partner. This
can be helpful in providing practical guidance for specific
resolution problems.

5. The least resolvable distance

From Figs. 2 and 3 in the main text, we notice that the
FI first experiences a decrease and then experiences an in-
crease as the separation of the two sources increases from
zero to infinity. This illustrates the existence of minimum
Fisher information for a two-source separation that is the least
resolvable, which we denote as sleast. This section provides the
procedure to obtain this critical separation sleast.

To obtain the minimum Fisher information, we need to
analyze the vanishing of the derivative of FI in (5) or (A24),
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i.e., F ′(s) = 0. For the convenience of calculation we make
the following simplification definitions:

t = 1

8σ 2
, (A40)

X = a2 cos2 α + b2 sin2 α, (A41)

1 − X = b2 cos2 α + a2 sin2 α, (A42)

Y = ab sin 2α cos ϕ. (A43)

Then the Fisher information (A24) becomes FIG. 4. Principal branch of the W function.

Ftot (s) = 1

4σ 2
− Y 2s2

16σ 2[X exp(ts2) − Y ][(1 − X ) exp(ts2) + Y ]

= 1

4σ 2
− Y 2s2

16σ 2[(X − X 2) exp(2ts2) + Y (2X − 1) exp(ts2) − Y 2]
. (A44)

This allows the computation of the derivative as

∂Ftot (s)

∂s
= −2Y 2s[(X − X 2) exp(2ts2)(1 − 2ts2) + (2X − 1)(1 − ts2)Y exp(ts2) − Y 2]

16σ 2[(X − X 2) exp(2ts2) + Y (2X − 1) exp(ts2) − Y 2]2
, (A45)

with trivial solutions of the equation ∂Ftot (s)/∂s = 0 from the
above expression, i.e., s = 0 and s = ∞. The nontrivial solu-
tion of the equation requires solving the following modified
equation:

�(s) exp(2ts2) + (s) exp(ts2) + � = 0, (A46)

where

�(s) = (X − X 2)(1 − 2ts2), (A47)

(s) = (2X − 1)(1 − ts2)ab sin 2α cos ϕ, (A48)

� = −(ab sin 2α cos ϕ)2. (A49)

In general, this equation can be solved numerically for ar-
bitrary parameters. As an illustration, we provide an analytical
solution for the balanced two-source case, i.e., a = b = 1√

2
or

r = 1. In this case, we have

�(s, r = 1) = 1
4 (1 − 2ts2), (A50)

(s, r = 1) = 0, (A51)

�(r = 1) = −(sin 2α cos ϕ)2. (A52)

Then Eq. (A46) becomes

(1 − 2ts2) exp(2ts2) − (sin(2α) cos(ϕ))2 = 0, (A53)

which can be rewritten as

Z exp(Z ) = −(sin 2α cos ϕ)2

e
, (A54)

with Z = 2ts2 − 1. This is a special equation with the stan-
dard solution known as the Lambert W function [28], i.e.,
Z = W ( −(sin 2α cos ϕ)2

e ). Then the least resolvable distance can
be achieved as

sleast = σ

√
4 + 4W

[
− sin2 2α cos2 ϕ

e

]
. (A55)

In general, there are infinite number of branches (mostly com-
plex functions) of the Lambert W function that can be denoted
as Wk , with k being an integer. In our case, the solution is
purely real, and it corresponds to the case when k = 0, related
to the principal branch of the W function. The behavior of this
function is illustrated in Fig. 4. It is a monotonic increasing
function with a minimum at W[−1

e ] = −1.
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