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Quantum phase transition between hyperuniform density distributions
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We study an electron distribution under a quasiperiodic potential in light of hyperuniformity, aiming to
establish a classification and analysis method for aperiodic but orderly density distributions realized in, e.g.,
quasicrystals. Using the Aubry-André-Harper model, we first reveal that the electron-charge distribution changes
its character as the increased quasiperiodic potential alters the eigenstates from extended to localized ones. While
these changes of the charge distribution are characterized by neither multifractality nor translational-symmetry
breaking, they are characterized by hyperuniformity class and its order metric. We find a nontrivial relationship
between the density of states at the Fermi level, a charge-distribution histogram, and the hyperuniformity class.
The change to a different hyperuniformity class occurs as a first-order phase transition except for an electron-hole
symmetric point, where the transition is of the third order. Moreover, we generalize the hyperuniformity order
metric to a function, to capture more detailed features of the density distribution, in some analogy with a
generalization of the fractal dimension to a multifractal one.
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I. INTRODUCTION

Inhomogeneous but orderly electron states, realized in qua-
sicrystals [1–3], possess properties distinct from both periodic
and random systems. Early studies of tight-binding Fibonacci
models [4–8] showed that the density of states (DOS) is sin-
gular continuous and that the eigenstates are multifractal [9].
However, quasiperiodic electron states are not always multi-
fractal. For instance, the Aubry-André-Harper (AAH) model
[10,11], which has a quasiperiodic potential incommensurate
to the lattice periodicity, shows a multifractality only at a
special strength of the potential [12,13]. Moreover, besides
eigenfunctions, we can consider spatial distributions of var-
ious electron properties like the electron density [14–17],
magnetization in quasiperiodic magnets [18–26], and order
parameter in quasiperiodic superconductors [27–32]. These
distributions are not necessarily multifractal while they still
show interesting orderly but aperiodic patterns [16].

In Ref. [16], we showed that the electron-charge distri-
bution on the Penrose tiling, as well as of the AAH model,
is characterized by hyperuniformity. Hyperuniformity, coined
by Torquato and his collaborators [33,34], is a framework to
quantify the regularity of the spatial distribution of a point set
and has been generalized to a random scalar field [34–36]. It
measures a density fluctuation of a given point set or scalar
field distributed in a d-dimensional space and distinguishes
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different distributions according to the strength of the density
fluctuation at a large length scale. Periodic and quasiperiodic
point sets (i.e., lattice) are known to be hyperuniform. Namely,
they possess significantly small density fluctuations thanks to
the regularity of the lattices.

Various quasiperiodic lattices (as point sets) have then been
classified in terms of hyperuniformity classes and its order
metric [34,37,38], which quantify the degree of regularity
of a hyperuniform distribution. The relevance of the order
metric to a band-gap size of photonic quasicrystals has also
been suggested [39]. In contrast, the nature of hyperuniform
electron states or distributions (as scalar fields) realized on
quasiperiodic structures remains largely unexplored. In partic-
ular, unlike periodic systems, where the change of the charge
distribution occurs as a phase transition accompanied by the
translational-symmetry breaking, it is unclear if such a change
on quasiperiodic lattices occurs as a phase transition since the
translational symmetry is absent in the first place.

In this paper, we scrutinize the AAH model [10,11,40],
which is a prototypical quasiperiodic model in one dimension
and has been realized experimentally in ultracold atoms [41]
and photonic quasicrystals [42], in light of the hyperunifor-
mity. Because the AAH model exhibits extended, critical,
and localized eigenstates according to the strength of the
quasiperiodic potential,1 it has long been studied in the con-
text of quantum localization. Here, we utilize this property
to study the relationship between the electron-localization
strength and hyperuniformity, focusing on the charge

1This is distinct from the Fibonacci model, where the eigenstates
are always critical. We study the Fibonacci model in Appendix A.
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distributions rather than the eigenstates which have been well
studied in the literature.

We find that the charge distribution in the AAH model
is always hyperuniform but its class and the order metric
change according to the quasiperiodic potential and the Fermi
level. For a weak potential, where the eigenstates are ex-
tended, the charge distribution has no jump in its histogram,
exhibiting class-I hyperuniform behavior. At and above the
self-dual point [10,40], where the eigenstates are critical and
localized, respectively, the charge distribution has no jump
and class-I hyperuniform only when the DOS at the Fermi
level vanishes; otherwise, it has a vanishing point or a jump
in the histogram and belongs to class II. We thus reveal a
nontrivial relationship between the DOS, charge distribution,
and hyperuniformity class. We then clarify that the change
of the hyperuniformity class is the first-order phase transition
except for the electron-hole symmetric point where it is of
the third order. These results, in turn, uncover a significant
difference of the AAH model from random systems, where
the localized states do not constitute a hyperuniform charge
distribution.

Furthermore, we generalize the order metric to a func-
tion for a hyperuniform scalar-field distribution, in some
analogy with the generalization of the fractal dimension
to the multifractal one [9]. This generalization allows us
to quantify more detailed features of density distributions.
This “multihyperuniformity”2 would be useful to characterize
various density distributions, which are not multifractal but
hyperuniform.

The rest of the paper is organized as follows. In Sec. II, we
introduce the AAH Hamiltonian and the method to calculate
its electron distribution and hyperuniformity. In Secs. III A
and III B, we show the results of the DOS and charge dis-
tribution for various strengths of the quasiperiodic potential,
revealing a relation between them. In Sec. III C, we discuss
the results of hyperuniformity for the charge distributions and
find that its class changes with the DOS at the Fermi energy as
well as the continuity of the charge-distribution histogram. In
Sec. III D, we reveal that the abrupt change of the hyperunifor-
mity is indeed a phase transition. In Sec. III E, we introduce
the “multi-hyperuniformity” to characterize more details of
the density distribution. Section IV summarizes the paper. In
Appendix A, we compare the results with those obtained for
the Fibonacci models, to find a similarity to the critical case
of the AAH model. Appendix B is devoted to demonstrate
that the charge distribution under a random potential is not
hyperuniform. Appendix C shows the results for an integrated
intensity function, which gives an alternative way to calculate
the hyperuniformity class. In Appendix D, we demonstrate
that class-II hyperuniform distributions remain class II in our
definition of the “multihyperuniformity.” Appendix E presents
the results of a local variance.

2The term “multihyperuniformity” has been used in Refs. [57,58]
for point patterns that their multiple distinct subsets are hyperuni-
form. In this paper, we define “multihyperuniformity” for density
distributions.

II. MODEL AND METHOD

A. Aubry-André-Harper model

The AAH Hamiltonian [10,11] reads

H = − t
∑

i

(e−iφ ĉ†
i+1ĉi + H.c.)

+
∑

i

[
λ cos

(2π i

τ
+ φ

)
− μ

]
ĉ†

i ĉi, (1)

where ĉi (ĉ†
i ) annihilates (creates) a spinless fermion (which

we call electron in this paper) at a site i on a one-dimensional
chain with the lattice constant a = 1. t represents the hopping
integral to the neighboring sites and λ does the strength of
the quasiperiodic potential, where τ =

√
5+1
2 is the golden

ratio. We set t = 1 and use it as the unit of energy. We have
added the chemical potential (μ) term to the original Hamil-
tonian, to discuss the relation between the spectrum and the
charge distribution. Considering zero temperature, we define
n̄ ≡ 1

N

∑
i ni with the number of sites N and

ni ≡ 〈ĉ†
i ĉi〉 =

∑
Eα<0

〈ψα|ĉ†
i ĉi|ψα〉, (2)

where ψα and Eα are the eigenstates and eigenenergies of the
Hamiltonian (1), respectively. As is clear from Eq. (2), the
charge distribution can have a spatial distribution distinct from
that of the eigenstates which have long been studied in the
literature.

This model is known to be self-dual at λ = 2t . Namely,
the form of the Hamiltonian does not change after the Fourier
transformation to momentum space with exchanging λ and 2t .
As a consequence, the eigenfunctions are extended (localized)
in real space for λ < 2t (λ > 2t) and critical at λ = 2t [see
Figs. 1(d)–1(f)].

We numerically diagonalize a one-dimensional chain of
N = Fn sites, where Fn is the nth Fibonacci number. Based on
the property limn→∞ Fn

Fn−1
= τ , we approximate τ in Eq. (1)

with Fn
Fn−1

, which is compatible with the periodic boundary
condition for N = Fn. In this paper, we use N = F24 = 75025,
for which |τ − F24

F23
| � 2 × 10−10. Under the periodic bound-

ary condition, the phase shift φ does not play a significant role
in the eigenvalues, unlike the topological surface states ob-
served for the open-boundary condition [43]. We therefore set
φ = 0 in the following. By comparing the results with those
obtained with other sizes, we have confirmed that N = F24 is
sufficiently large to infer the infinite-size limit.

B. Hyperuniformity

Hyperuniformity is a framework to distinguish and quan-
tify various spatial distributions. It was invented by Torquato
and Stillinger [33] originally for point patterns distributed in
space and has been generalized to various types of distribution
including a random scalar field [34–36].

In one dimension, we consider a window of a range
[−R, R] and count the number of points (or sum up the scalar-
field value) contained in the window. Namely, denoting the
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FIG. 1. [(a)–(c)] Density of states, [(d)–(f)] the amplitude of the lowest-energy eigenfunction, and [(g)–(i)] the charge distribution for
λ = 1, 2, and 3, respectively, at μ = 0.

center position of the window as rc, we calculate the quantity,

N (R) =
∑

i

ni�(R − |ri − rc|) (3)

with the Heaviside step function �(r). Then, its variance is
given by

σ 2(R) = N (R)2 − [N (R)]2, (4)

where Q represents the average of Q with respect to the
center position rc over the system. While σ 2(R) is propor-
tional to Rd (with d = 1 in the present case) for a random
distribution of ni, the distribution with σ 2(R) < O(Rd ) is
called hyperuniform, which means that a bulk contribution to
the variance vanishes. Hyperuniform distributions are further
classified into several classes: In one dimension, a distribution
is called class-I and class-II hyperuniform, respectively, when
the large-R behavior of σ 2(R) is constant and proportional to
log R [34]. Point distributions (i.e., ni ≡ 1) on periodic and
quasiperiodic lattices are known to be hyperuniform [33,34].

To judge if a one-dimensional distribution is hyperuniform
from a finite-size calculation, we consider the following func-
tion,

A(R) = σ 2(R)/R. (5)

If A(R) goes to zero as R increases, the distribution is hyper-
uniform. In particular, when it is class I, i.e., σ 2(R) = const.
for a large R, we define [34]

B̄(R) ≡ 1

n̄2R

∫ R

0
σ 2(R′)dR′. (6)

Namely, we average over [0, R] to infer the order metric B̄(∞)
because σ 2(R) typically oscillates with R around its mean
value. The factor 1/n̄2 is just to eliminate a trivial contribution
from n̄ to σ 2(R).

III. RESULTS AND DISCUSSIONS

A. Density of states and eigenfunctions

We first review known results for the density of states
(DOS) and the eigenfunctions of the AAH model, showing
calculated results. As shown in Figs. 1(a) and 1(d), when the
quasiperiodic potential is weak (λ < 2), the electron state is
extended in real space and the DOS has a continuous spectrum
(though it is separated by gaps). At λ = 2, eigenfunctions
exhibit self-similar distributions and the DOS is singular con-
tinuous [Figs. 1(b) and 1(e)]. For λ > 2, eigenfunctions are
localized and the DOS is a dense set of δ functions. Note that
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FIG. 2. [(a)–(c)] Average density n̄ plotted against the chemical potential μ and [(d)–(f)] the histogram of ni for λ = 1, 2, and 3,
respectively.

the maximum (minimum) eigenvalue of the Hamiltonian (1)
at μ = 0 is Emax (−Emax) with Emax = 2.1441, 2.5975, and
3.3862 for λ = 1, 2, and 3, respectively. We hence vary μ only
within [−Emax, Emax] in the following.

B. Charge distribution

We find that the charge distribution {ni}, which is a sum
over eigenstates below the Fermi energy [i.e., Eq. (2)], also
changes its character with λ. Figures 1(g)–1(i) show the re-
sults for μ = 0. At λ = 1, ni continuously distributes from
its minimum to the maximum [Fig. 1(g)]. At λ = 2, however,
the population of ni decreases around the center of the dis-
tribution [Fig. 1(h)]. At λ = 3, the distribution bifurcates into
roughly two values and shows a gap between them [Fig. 1(i)].
Note that these (and following) results at λ = 1 (λ = 3) are
representative of the results for λ < 2 (λ > 2) as we have
obtained essentially the same results for various values of
λ < 2 (λ > 2) though not explicitly shown.

As μ increases, the average filling n̄ increases unless
it is in the gap of the DOS, where n̄ does not change
[Figs. 2(a)–2(c)]. Figures 2(d)–2(f) show the histogram of ni

at several values of μ denoted in Figs. 2(a)–2(c), respectively.
At λ = 1, the distribution has no jump in the histogram, ir-
respective of whether μ is located inside a spectral gap or
not [Fig. 2(d)]. When μ is located in a gap, the distribution
has no jump even for λ � 2 [Figs. 2(e) and 2(f) left panel].
However, when μ is located at a support of the DOS, the
distribution changes: At λ = 2, the population of ni becomes
vanishingly small at a value, nc (= 0.5 for μ = 0 for instance),
and shows a power-law decay like |ni − nc|γ (γ > 0) around
it [Fig. 2(e) middle and right panels]. In Fig. 3(a), we fit the
fraction for λ = 2 and μ = 0 plotted against |ni − 0.5|, to
obtain γ � 2.35.

At λ = 3, the histogram shows a clear jump and bifurcates
when μ is located at a support of the DOS [Fig. 2(f) middle
and right panels]. To quantify the jump, we sort {ni} for each μ

in the ascending order and define the maximum difference be-
tween neighboring two values as �max. When this procedure is
applied to the case of λ � 2, �max is always negligibly small
as expected from the continuous distributions in Figs. 2(d) and
2(e). For λ = 2, even when μ is located at a support of the
DOS, the distribution continuously decreases and vanishes at
a single point [Fig. 2(e) middle and right panels], so that �max

vanishes. However, for λ = 3, when μ is located at a support
of the DOS, the distribution has a jump [Fig. 2(f) middle and
right panels], so that �max is finite as plotted in Fig. 3(b).
Remarkably, the support of �max completely agrees with that
of the DOS shown in Fig. 1(c). Namely, we find a nontrivial
relationship between the spectrum and the charge-distribution
histogram.

FIG. 3. (a) Fraction of the ni plotted against |ni − nc| for μ = 0
and λ = 2 [corresponding to the middle histogram of Fig. 2(e)]. The
green line shows a linear fitting in the logarithmic scale. (b) Jump
�max in the ni distribution for λ = 3.
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FIG. 4. [(a)-(c)] ([(d)-(f)]) A(R) calculated at μ = −1 (μ = 0)
for λ = 1, 2, and 3, respectively.

C. Hyperuniformity

We analyze these charge distributions in terms of hyper-
uniformity. We first plot in Fig. 4 A(R) of Eq. (5) for various
values of λ and μ. Irrespective of the potential strength λ and
whether μ is in a gap of the DOS, A(R) always decreases in
a power law and goes to zero in the large-R limit. Therefore
the charge distribution of the AAH model is always hyperuni-
form. We point out here that this fact discriminates the AAH
model from random systems, where the charge distribution is
not hyperuniform (see Appendix B).

We then calculate B̄(R) of Eq. (6) for the same parameters
and plot them in Fig. 5. In panels (a)–(d), B̄(R) converges
to a constant value at a large R, which means that these
distributions are class-I hyperuniform [34]. As we have seen
in Fig. 2, all these distributions have a histogram without a
jump.

On the other hand, in Figs. 5(e) and 5(f), B̄(R) increases
logarithmically with R, which means that these distribu-
tions are class-II hyperuniform [34]. We have confirmed this
point with another calculation in momentum space, too (see
Appendix C). As we have seen in Figs. 2 and 3, these dis-
tributions have a point or a region where the fraction in the
histogram becomes zero. For λ = 2 and μ = 0, the fraction
vanishes at nc = 0.5 while for λ = 3 and μ = 0 the distribu-
tion has a finite jump in the histogram.

To quantify the above argument, we calculate the differ-
ence of B̄(R)’s calculated at R = 1000 and 2000. For λ < 2,
this quantity is virtually zero while for λ � 2 it can be finite

FIG. 5. [(a)–(c)] ([(d)-(f)]) B̄(R) calculated at μ = −1 (μ = 0)
for λ = 1, 2, and 3, respectively.

FIG. 6. Difference between B̄ evaluated at R = 1000 and 2000
(normalized by the latter value) for (a) λ = 2 and (b) 3.

depending on μ. Figures 6(a) and 6(b) show the results at
λ = 2 and 3, respectively. For λ = 3, the μ values giving a
finite difference of B̄(R) completely agree with the μ values
of a finite �max in Fig. 3(b), as well as with the support of
the DOS in Fig. 1(c). For λ = 2, corresponding to the singular
continuous spectrum in Fig. 1(b), the difference of B̄(R) shows
peaks of measure zero at the support of the DOS.

Thus, we obtain (i) class-I hyperuniformity for λ < 2 and
(ii) class-I or II hyperuniformity for λ � 2, depending on the
location of μ in the DOS. For the class-I hyperuniformity, the
order metric B̄ = B̄(∞) represents the degree of regularity.
Generally speaking, B̄ is smaller for a simpler distribution
[34].

We evaluate B̄ at R = 2000 and plot it for λ = 1, 2, and 3
in Fig. 7. For λ = 1, B̄ is always defined and relatively small.
Since ni ≡ 1 for μ � Emax, B̄ at μ = Emax agrees with that of
the point distribution of the integer lattice, 1/6 [34]. On the
other hand, as μ approaches −Emax, B̄ goes to ∼0.31, which
is consistent with the value obtained for the lowest-energy
eigenstate in Ref. [16]. B̄ changes significantly when μ moves
within the support of the DOS, while it is constant for μ

moving within a gap. As we see in Fig. 1(a), the DOS has
a sharp (δ-functional) peak at the gap edges. A general trend
is that the inclusion of the states around the upper edge of a
gap reduces B̄ significantly while the states around the lower
edge of a gap increase B̄ relatively less significantly.

For λ = 2, the distribution is class-II hyperuniform when
μ is located on the support of the singular continuous DOS.
However, as μ crosses it, B̄ changes significantly, while
B̄ is constant for μ inside a gap. For μ = Emax, B̄ = 1/6
for the same reason as above. On the other hand, B̄ be-
comes extremely large for μ → −Emax. This is because the
lowest-energy eigenstate at λ = 2 is multifractal and is not hy-
peruniform. Although other eigenstates are also multifractal,
the charge distribution, which is a sum over many eigenstates
below the Fermi level, is hyperuniform. As μ increases, more
states contribute to ni, making B̄ tend to decrease.

For λ = 3, the region of class-II hyperuniformity expands,
corresponding to the DOS in Fig. 1(c). In the class-II region,
the histogram of ni has a jump, as we have seen in Figs. 2(f)
and 3(b). In other regions, the histogram has no jump and B̄ is
well defined. It tends to decrease as μ increases across the sup-
port of the DOS, except for the region around μ = 0. While
B̄ = 1/6 at μ = Emax, the region slightly above μ = −Emax is
class-II hyperuniform. However, in the limit of μ → −Emax,
it is not hyperuniform [16] since the lowest-energy eigenstate
is localized.
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FIG. 7. [(a)–(c)] B̄(R = 2000) calculated for λ = 1, 2, and 3, respectively, in the range [−Emax, Emax]. Black region represents the class-II
hyperuniformity, where B̄(R) is not well defined. In (a), ±Emax are denoted by blue dashed lines.

Performing similar calculations for various values of μ and
λ, we summarize the results of B̄ and hyperuniformity class
in Fig. 8. The black region shows class II while the color
in other regions represents the order metric B̄ of class I. A
general trend is that B̄ is larger for a smaller μ and larger λ. In
Appendix A, we show that the Fibonacci models, where the
eigenstates are always critical, show a behavior similar to the
λ = 2 case of the AAH model.

D. Phase transitions and criticality

As we have found in Fig. 8, the hyperuniformity class
and order metric change with μ and λ. In particular, abrupt
changes occur at the border of the class I and II regions.
In this section, we examine whether these changes manifest
themselves as a phase transition. We numerically calculate the
total energy per site,

Etot ≡ 1

N

∑
Eα<0

Eα (7)

and its derivative (evaluated by a difference between neigh-
boring two data points) with respect to λ for fixed μ’s at zero
temperature. Since the distribution of {Eα} is electron-hole

FIG. 8. λ-μ diagram of the hyperuniformity classes and the order
metric [B̄(2000)] of the charge distribution in the AAH model. Black
region represents the class-II hyperuniformity. Colored region is
class-I hyperuniform and the color scale represents the order metric.
The calculation was done for −Emax < μ < Emax.

symmetric, we concentrate only on the μ � 0 side. We have
confirmed that Etot obtained for N = 75025 in the following is
virtually the same as that for N = F23 = 46368, i.e., a finite-
size effect is negligible.

First, for λ < 2, the order metric in Fig. 7(a) shows abrupt
changes when μ crosses the gap edge. Since the eigenstates
are extended, this is a metal-insulator transition. As a function
of λ, too, Etot shows a kink and its first derivative shows a
jump, as shown in Figs. 9(a) and 9(b). Here, we have chosen
several μ values which show a singularity around λ = 1.5.
The first derivative shows a rapid increase around the critical
point presumably because of the large DOS at the gap edges
in one dimension. Aside from these singularities, Etot and
dEtot/dλ curves are smooth, showing no phase transition,
even though B̄ changes.

For λ > 2, on the other hand, all the eigenstates are
localized, so that no metal-insulator transition occurs. Nev-
ertheless, Etot plotted against λ still shows a kink, as shown
in Fig. 9(e), where we have chosen several μ values crossing
the border of class I and II regions in Fig. 8. Notice that the
relatively flat side corresponds to class I. The presence of the
kink is evidenced in the plots of dEtot/dλ in Fig. 9(f). This
transition may be viewed as a transition from a band insulator
(in the sense that the DOS vanishes though a ‘band’ is not well
defined) to an Anderson insulator (where the DOS is finite but
the mobility vanishes though the potential is not random but
quasiperiodic).

Around λ = 2, we need a more careful analysis because the
DOS is singular continuous. We have fine-tuned the μ values
to several eigenenergies at λ = 2 and plotted Etot and dEtot/dλ

in Figs. 9(c) and 9(d), respectively. We find kinks in Etot and
jumps in dEtot/dλ at λ ∼ 2 for all the μ values except μ = 0.
We see several additional kinks for λ � 2, which are due to
the crossing of the eigenenergies with a very small measure in
this region.

All the above results except for μ = 0 show the first-
order transition between the gapped and ungapped regions.
On the other hand, at μ = 0, where the hyperuniformity
class changes at λ = 2, no jump is observed in dEtot/dλ

[Fig. 10(a)]. In fact, μ = 0 is special because the DOS at
the Fermi level does never vanish for any λ due to the
electron-hole symmetry and the self-duality. We then calculate
d2Etot/dλ2 and d3Etot/dλ3 (by a difference between neigh-
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FIG. 9. Total energy and its first derivative calculated around the phase boundaries; [(a) and (b)] λ ∼ 1.5, [(c) and (d)] λ ∼ 2, and [(e) and
(f)] λ ∼ 2.8. Insets to (b), (d), and (f) are enlarged views of the smallest μ data.

boring two data points), plotting them in Fig. 10(b). We find
that d2Etot/dλ2 is still continuous but has a kink whereas
d3Etot/dλ3 shows a jump. This weak singularity may be at-
tributed to the singular continuous DOS at λ = 2. We have
thus revealed a third-order criticality at λ = 2 and μ = 0.

These results clarify whether and where a phase transition
occurs between electronic states with different inhomoge-
neous but orderly charge patterns. For λ < 2, while the
observed phase transition is attributed to the metal-insulator
one and is not so surprising, an important observation here is
the absence of the phase transition in other regions where B̄
(and hence the charge distribution) smoothly changes. For λ >

2, the phase transition occurs between two different insulating
phases characterized by different hyperuniformity classes; no
phase transition occurs within the same hyperuniformity class.
These results in turn prove an essential role of hyperunifor-
mity analysis, which allows us to detect the phase transition
in aperiodic systems independently of the total-energy calcu-

FIG. 10. Total energy and its derivatives calculated at μ = 0
around λ = 2. (a) Etot and its first derivative. (b) The second and
third derivatives.

lation, like the role played by the order parameter in periodic
systems.

E. Multihyperuniformity

1. Straightforward extension

So far the class-I hyperuniform distributions have been
characterized by just one scalar B̄. Here, with a simple ex-
tension of the definition (3) of N (R), we generalize the order
metric to a function that should capture more detailed infor-
mation on the density distribution. Namely, we define

Nq(R) ≡
N∑

i=1

nq
i �(R − |ri − rc|), (8)

and then σ 2
q (R) in the same way as Eq. (4). In analogy with

the multifractal dimension [9], the exponent q works as a filter
to emphasize the contribution from a large (small) ni for q >

0(< 0). Corresponding to Eqs. (5) and (6), we define

Aq(R) ≡ σ 2
q (R)/R, (9)

B̄q(R) ≡ 1

(n̄q)2R

∫ R

0
σ 2

q (R′)dR′ (10)

with n̄q ≡ 1
N

∑
i nq

i . By definition, B̄q=0(R) agrees with the
order metric of the point distribution and B̄q=1(R) agrees with
B̄(R) of Eq. (6).

While Eq. (8) is a simple generalization, it would not
be so obvious whether Eq. (8) of {nq

i } gives a class-I hy-
peruniformity (for which the order metric is well-defined)
even when Eq. (3) of {ni} does. We examine this point in
Figs. 11(a)–11(c) and 12(a)–12(c). First, the former shows
that Aq(R) always goes to zero as R increases, i.e., {nq

i } is also
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FIG. 11. [(a)–(c)] Aq(R) calculated for various q’s for μ = −1
and λ = 1, 2, and 3, respectively. [(d)–(f)] The same for Asym

q (R).

hyperuniform. Then, the latter shows that B̄q(R) converges to
finite values for all q’s in the large-R limit. Namely, {nq

i } is
class-I hyperuniform for all q’s. We have obtained the same
conclusion for other values of μ as far as {ni} belongs to
class I, as one may infer from the moderate values of B̄q in
Fig. 13 below. Note that when {ni} is class-II hyperuniform,
{nq

i }(q �= 0) remains class II for all the parameters we studied
(Appendix D).

In Figs. 13(a)–13(c), we plot B̄q (measured at R = 1000)
against q for various λ and μ. We find that B̄q takes the
minimum at q = 0, where B̄q agrees with the value (1/6) for
a point distribution, and is convex downward around q = 0.
As |q| increases, B̄q monotonically increases on each side of
q > 0 and q < 0. This reflects the larger spatial fluctuation for
a larger |q|.

At λ = 1, B̄q is larger on the q < 0 (q > 0) side for μ > 0
(μ < 0). This is reasonable because for μ > 0 (μ < 0) small
(large) values of nq

i can be further away from n̄q (and hence
more irregular) and q < 0 (q > 0) emphasizes these contri-
butions. For q > 0, B̄q tends to decrease as μ increases, as is
expected from the behavior at q = 1 displayed in Fig. 7(a); at
μ = 2, all the sites are almost completely filled, so that B̄q is
nearly flat for q > 0. For q < 0, on the other hand, B̄q shows

FIG. 12. [(a)–(c)] B̄q plotted against R for various q’s for μ = −1
and λ = 1, 2, and 3, respectively. [(d)–(f)] The same for B̄sym

q .

a complicated dependence on μ though it should approach
1/6 eventually for μ → Emax. In particular, the large B̄q for
μ = 1 is interesting because this means that the charge distri-
bution is significantly inhomogeneous even for this relatively
large value of μ. In fact, as we see in Fig. 22(a) in Appen-
dix E, the fluctuation measured by the local variance is maxi-
mized around μ = 1.

As λ increases, B̄q tends to increase, reflecting the larger
fluctuation and consequent irregularity, in particular on the
q < 0 side. On the q > 0 side, B̄q tends to decrease with μ

in accord with Figs. 7(b) and 7(c) for q = 1. B̄q shows a
more complicated dependence on μ on the q < 0 side. It is
interesting that B̄q at λ = 3 is always larger for q < 0 than
for q > 0. For μ < 0, this is opposite to what we have seen
at λ = 1. This is presumably because {ni} for μ < 0 reflects
more directly the structure of localized eigenfunctions, which
have vanishingly small amplitudes at most sites.

2. Symmetric definition

In Fig. 13(a), we see that B̄q at μ = 0 (black curve) is
asymmetric with respect to q = 0. However, as the charge
distribution at μ = 0 is symmetric with respect to nc = 0.5
[see Figs. 1(g) and 2(d)], it may be preferable to define an
order metric to reflect this symmetry. The asymmetry of B̄q

defined by Eq. (10) comes from the fact that (0.5 + δ)q does
not agree with (0.5 − δ)−q, where δ represents a deviation
from the average value 0.5. Hence, to remedy this asymmetry,
we define si ≡ √

ni/(1 − ni ) and

N sym
q (R) ≡

N∑
i=1

si
q�(R − |ri − rc|). (11)

Notice that si at ni = 0.5 + δ equals s−1
i at ni = 0.5 − δ. Then,

we define σ
sym
q

2(R) in the same way as Eq. (4) and

Asym
q (R) ≡ σ sym

q
2(R)/R, (12)

B̄sym
q (R) ≡ 1

(s̄q)2R

∫ R

0
σ sym

q
2(R′)dR′ (13)

with s̄q ≡ 1
N

∑
i sq

i . B̄sym
q=0(R) agrees with the order metric of

the point distribution and B̄sym
q (R) is symmetric with respect

to the transformation (μ, q) ↔ (−μ,−q) as far as the DOS
for μ = 0 is symmetric with respect to ω = 0.

As was done above, we first check the large-R behavior
of Asym

q (R) in Figs. 11(d)–11(f). The results show that {sq
i }

is hyperuniform for all the q values studied. We then plot in
Figs. 12(d)–12(f) the corresponding B̄sym

q (R) against R. We
find that {sq

i } belongs to class I for all the parameters for
which {ni} belongs to class I. We have obtained the same
conclusion for all other choices of μ that we study though not
shown. Note that, when {ni} belongs to class II, {sq

i }(q �= 0)
also shows class-II behavior (Appendix D).

We plot B̄sym
q measured at R = 1000 in Figs. 13(d)–13(f).

First, for λ = 1 and μ = 0 (black curve), we see that the
curve is symmetric with respect to q ↔ −q, as expected. B̄sym

q

takes the minimum of 1/6 at q = 0. Second, all the curves
are symmetric against the simultaneous sign reversal of μ and
q, i.e., (μ, q) ↔ (−μ,−q). Therefore the asymmetry of the
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FIG. 13. [(a)–(c)] B̄q calculated at R = 1000 and μ = −1 for λ = 1, 2, and 3, respectively. [(d)–(f)] The same for B̄sym
q .

B̄sym
q curves for μ �= 0 correctly represents the asymmetric

distribution of {ni} around n̄.
Another notable difference from the B̄q curves is that the

B̄sym
q curves do not approach a flat curve for μ → Emax (see

blue curves). This is due to the denominator of
√

ni/(1 − ni ),
which amplifies more the sites closer to ni = 1. Namely,
B̄sym

q for μ → Emax reflects the structure of the highest-
energy eigenfunction, just as B̄q for μ → −Emax does for the
lowest-energy eigenfunction. Note that B̄sym

q for μ → −Emax

still reflects the structure of the lowest-energy eigenfunction
though its contribution to B̄sym

q differs from that to B̄q due
to the difference between ni [in Eq. (8)] and si ∼ √

ni [in
Eq. (11)] in this region.

At λ = 1, B̄sym
q is larger for q < 0 (q > 0) for μ > 0 (μ <

0) for the same reason described above for B̄q. The same oc-
curs for λ = 2 and even for λ = 3 and μ = ±1. For λ = 3 and
μ = ±2.8, while the same occurs for |q| � 3, it is reversed for
|q| � 3. This is likely because the structure of the highest- or
lowest-energy eigenstates (rather than the filling controlled by
μ) becomes more relevant for μ close to ±Emax as mentioned
above.

In Appendix A, we calculate B̄sym
q for the Fibonacci mod-

els. The convex-down behavior around q = 0 and a monotonic
increase with |q|, as well as a large enhancement at μ’s close
to ±Emax, are common to the Fibonacci models.

3. Application to the critical regions

Here, we apply the multihyperuniformity analysis to a
critical behavior around the phase transition discussed in
Sec. III D. Our aim is to clarify how the inhomogeneous
charge distribution changes around the critical point, by quan-
tifying it through the generalized order metric.

In Fig. 14(a), we focus on the continuous transition point at
λ = 2 and μ = 0. Since the order metric is defined only in the

class-I hyperuniform region, we calculate B̄sym
q only for λ < 2.

We find a rapid increase of B̄sym
q for large |q|’s as λ approaches

the critical point. This behavior means an increasing irregu-
larity of the sites with a particularly large or small electron
density. Notice that B̄ [Eq. (6)] alone cannot distinguish such
a behavior from an overall increase of irregularity. In the inset,
we plot B̄sym

q against 2 − λ in a logarithmic scale for several
values of q. For each q, B̄sym

q increases in a power law as λ

approaches the critical point, 2. The power seems to weakly
depend on q, e.g., −0.166 at q = 1 and −0.248 at q = 4 for
2 − λ < 0.005.

By contrast, Fig. 14(b) shows that B̄sym
q does not change

on the class-I side of the first-order phase transition at λ �
2.866 and μ = 2.5. The three curves are almost completely
overlapping here. This of course means no significant change
in the charge distribution up to the transition point and a jump
there.

Our generalization thus offers a useful tool to analyze in-
homogeneous density distributions, which are not multifractal
but hyperuniform, and their changes by quantifying the irreg-
ularity of each contribution.

IV. SUMMARY AND PERSPECTIVES

We have studied the charge distribution in the Aubry-
André-Harper model in light of hyperuniformity. According
to the strength λ of the quasiperiodic potential, the model
is known to exhibit extended, critical, and localized electron
states. In this paper, we have revealed that the inhomogeneous
distribution of electron charge ni, which is neither periodic nor
multifractal but still orderly, also changes its character with λ.
The character is quantified in the framework of hyperunifor-
mity generalized to density distributions.

First, we have found a nontrivial relationship between λ,
the DOS at the Fermi level, {ni}, and the hyperuniformity
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FIG. 14. B̄sym
q calculated around the phase transitions. (a) Around

the third-order phase transition at λ = 2 and μ = 0. Inset shows a
plot against 2 − λ in a logarithmic scale. (b) Around the first-order
phase transition at λ � 2.866 and μ = 2.5. The three curves are
almost completely overlapping. Note that the distribution is class-II
hyperuniform for λ � 2.866.

class, as summarized in Table I. For λ < 2, where eigenstates
are extended, the charge distribution has no jump and is class-I
hyperuniform. There is no phase transition as far as the order
metric changes smoothly while a first-order metal-insulator
transition occurs in concomitance with an abrupt change of the
order metric when the Fermi level μ crosses the gap edge. For
λ > 2, where eigenstates are localized, the charge distribution
has no jump and class-I hyperuniform only when μ resides

TABLE I. Summary of the results obtained in Secs. III A–III C.

DOS at ω = 0 Distribution of ni

Hyperuniformity
class

λ < 2 0 No jump I
�= 0 No jump I

λ = 2 0 No jump I
�= 0 |ni − nc|γ (γ > 0) II

λ > 2 0 No jump I
�= 0 Bifurcated by a jump II

in the gap of the DOS; otherwise, the charge distribution has
a jump in its histogram and belongs to class II. While all the
electron states are insulating in this region, the change from
class I to II manifests itself as a first-order phase transition. At
λ = 2, where eigenstates are critical, the charge distribution
has no jump and class-I hyperuniform only when μ is in the
gap of the DOS; otherwise, it shows a behavior vanishing at
a single point in the histogram and belongs to class II. The
transition is of the third order at μ = 0 and the first order
otherwise. For the class-I hyperuniform distributions, we have
also revealed the dependence of the order metric on λ and μ.

The hyperuniform charge distributions for λ > 2 discrim-
inate the AAH model from random systems, where the
eigenstates are localized but the charge distribution is not
hyperuniform (Appendix B). In addition to this, the eigen-
states for λ < 2 are also hyperuniform in the AAH model
[16]. These facts may make a significant difference between
the localization-delocalization transition at λ = 2 in the AAH
model and the Anderson transition discussed in random sys-
tems in higher dimensions.

Since various extensions [13,44–53] have been proposed
for the AAH model, it is intriguing to explore these mod-
els in light of hyperuniformity. Of particular interest is the
coexistence of localized and extended states at the same
quasiperiodic potential observed in several models preserving
a self-duality. The hyperuniformity analysis of the charge
distribution in these models constitutes an important future
issue.

Although the order metric seems to represent well a regu-
larity of the aperiodic density distributions, it is obvious that
much information about the distribution is lost in this quan-
tification. We therefore extend the order metric to a function,
in analogy with the extension of the fractal dimension to the
multifractal one [9]. In both the straightforward extension and
a symmetric definition, we first confirm that the order-metric
function is well defined, i.e., {nq

i } and {sq
i } belong to class I

when {ni} belongs to class I. Thanks to the filtering effect
of the power q, the order-metric function, B̄q or B̄sym

q , rep-
resents the regularity of differently weighted subsets of {ni}.
In particular, B̄sym

q can correctly capture the asymmetry of the
distribution.

This generalization applies to any density distribution
ranging from 0 to 1 (i.e., probability distribution). As
mentioned in the introduction, there are various density
distributions, which are known to be neither random nor mul-
tifractal, on quasicrystalline structures. Some of them may
be hyperuniform. For instance, when an electron property on
a quasiperiodic lattice is determined by short-range physics,
it is likely hyperuniform. To analyze such distributions, the
generalized order-metric function will be a useful tool.
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APPENDIX A: COMPARISON WITH FIBONACCI MODELS

The Fibonacci models are known to exhibit critical eigen-
states for any finite strength of quasiperiodic modulations
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FIG. 15. Density of states of the Fibonacci model. (a) Diagonal
model with V = t = 1 and μ = 0. (b) Off-diagonal model with
tS = 2tL = 1 and μ = 0. Blue dashed lines indicate the chemical
potentials used in Fig. 16 below.

[4–8]. This behavior of the eigenstates corresponds to λ = 2
in the AAH model. One may therefore expect that the charge
distribution in the Fibonacci models is class-I hyperuniform
when the chemical potential resides in a gap of the DOS, and
class-II hyperuniform otherwise.

We examine the above expectation for the following two
types of the Fibonacci model.

Diagonal model:

Hdiag. = −t
∑

i

(ĉ†
i+1ĉi + H.c.) +

∑
i

(Vi − μ)ĉ†
i ĉi, (A1)

where Vi = +V or −V according to the Fibonacci sequence.
Off-diagonal model:

Hoffdiag. = −
∑

i

ti(ĉ
†
i+1ĉi + H.c.) − μ

∑
i

ĉ†
i ĉi, (A2)

where ti = tL or tS according to the Fibonacci sequence.
We numerically diagonalize the Hamiltonian for N =

F24 = 75025 sites under periodic boundary conditions.
For μ = 0, these models show the DOS of Figs. 15(a) and

15(b), respectively. We see that the DOS at the Fermi level
(ω = 0) is zero for μ = 0 in the diagonal model with V =
t = 1 and for μ = −0.5 in the off-diagonal model with tS =
2tL = 1. On the other hand, μ = −1.5 in the diagonal model
and μ = −1 in the off-diagonal model are very close to the
support of the DOS, whose measure is zero.

After confirming that A(R) of Eq. (5) goes to zero in the
large-R limit, we plot in Fig. 16 B̄ of Eq. (6) against R.
We find class-I hyperuniformity for μ = 0 in the diagonal
model [panel (a)] and μ = −0.5 in the off-diagonal model
[panel (c)]. The other two cases [panels (b) and (d)] show
class-II hyperuniformity. Note that a possible deviation from
the expected ln R behavior at large R is attributed to the slight
deviation of μ from the support of the DOS. These results
are fully consistent with those obtained for the AAH model at
λ = 2.

A recent study [15] of the Fibonacci model revealed that
the charge-density oscillation in the perpendicular space is
related to the topological property when μ resides in a gap.
Its relation with the class-I hyperuniformity in the physical
space is an interesting subject of future research.

In Fig. 17, we plot B̄sym
q of Eq. (13) for the (a) diagonal and

(b) off-diagonal models, where we select μ values residing
eight major gaps in the DOS of Fig. 15. All the curves take the
minimum at q = 0 and are convex downward around it, simi-

FIG. 16. [(a) and (b)] B̄ plotted against R for the diagonal Fi-
bonacci model with V = t = 1 and μ = 0 and −1.5, respectively.
[(c) and (d)] The same for the offdiagonal Fibonacci model with
tS = 2tL = 1 and μ = −0.5 and −1, respectively.

larly to the results for the AAH model [Figs. 13(d)–13(f)]. We
also see that B̄sym

q tends to be large for μ close to ±Emax. For
the diagonal model, B̄sym

q shows a complicated dependence on
μ. This would be at least partly due to the asymmetry in the
DOS.

For the off-diagonal model, on the other hand, B̄sym
q shows

a symmetry with respect to the exchange of (μ, q) and
(−μ,−q), due to the electron-hole symmetry of the DOS.
Interestingly, for μ > 0(< 0), B̄sym

q is larger on the q > 0(<
0) side, on the contrary to the behavior in the AAH model
at λ = 2 [Fig. 13(e)], suggesting a large irregularity of the
eigenstates. In addition, the μ = 0.1 and 0.5 curves show
a similar behavior to each other. This may be related to a
self-similarity of the model, because the gaps around these
two μ points are related by a self-similar transformation.

APPENDIX B: COMPARISON WITH A RANDOM SYSTEM

Here, we demonstrate that the charge distribution in the
localized phase in a random system is not hyperuniform. We
consider the following one-dimensional Anderson model [54],

Hrandom = −t
∑

i

(ĉ†
i+1ĉi + H.c.) +

∑
i

(Wi − μ)ĉ†
i ĉi, (B1)

FIG. 17. B̄sym
q calculated for (a) the diagonal Fibonacci model

with V = t = 1 and (b) the off-diagonal Fibonacci model with tS =
2tL = 1. The values of μ are chosen to be inside eight major gaps in
the DOS.
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FIG. 18. A(R) of Eq. (5) calculated for the Hamiltonian (B1) with
W = 1 and 2.

where Wi is a random potential independently and uniformly
distributed in the range [−W

2 , W
2 ] (W > 0). All the states are

localized for W �= 0 [55,56]. We numerically diagonalize the
above Hamiltonian for 50000 sites and calculate the charge
density at each site based on Eq. (2). We then calculate A(R)
of Eq. (5) for the charge distribution.

The results for W = 1 and 2 are plotted in Fig. 18. We
see that A(R) remains finite at a large R. This means that the
charge distribution of the model (B1) is not hyperuniform,
unlike that of the AAH model.

The above results show that even in the localized (λ > 2)
region of the AAH model, there is a significant difference
from the random system in light of the hyperuniformity of
the charge distribution. In the AAH model, it is either class-I
or II hyperuniform while it is not hyperuniform in a random
system. This difference may be used to distinguish a local-
ization in quasiperiodic systems from that in random systems
experimentally.

APPENDIX C: INTEGRATED INTENSITY FUNCTION

Here, we study the behavior of the structure factor,

S(k) =
∣∣∣∣∣

1

N

∑
j

n je
−ik j

∣∣∣∣∣
2

− n̄2δ(k), (C1)

at the long-wavelength limit (k → 0). The asymptotic be-
havior, S(k) ∼ kα for k ∼ 0, is characterized by α > 1 for a

FIG. 19. Zk calculated for (a) λ = 2 and (b) 3. Black dashed lines
correspond to the scaling of α = 1.

FIG. 20. (a) B̄q plotted against R for various q’s at the critical
point (λ = 2), where ni is class-II hyperuniform. (b) The same plot
for smaller q’s. [(c) and (d)] The same as (a) and (b) but for B̄sym

q .

class-I and α = 1 for a class-II hyperuniformity [37]. Because
this classification based on α does not rely on a window
used in Sec. II B, it gives an independent check for the de-
termination of the hyperuniformity classes. For quasiperiodic
systems, where S(k) consists of a dense set of Bragg peaks, an
integrated intensity function,

Z (k) = 2
∫ k

0
S(k)dk, (C2)

is smoother and hence more useful than S(k) [37]. Because
Z (k) behaves as kα+1 for k ∼ 0, we plot it for (a) λ = 2 and
μ = 0 and (b) λ = 3 and μ = 0 in a logarithmic scale in

FIG. 21. The same as Fig. 20 but for λ = 3.
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FIG. 22. [(a)–(c)] The local variance for λ = 1, 2, and 3, respectively. The red lines denote the values of μ presented in Fig. 2.

Fig. 19. We see that the results are consistent with α = 1 in
both cases, supporting that the charge distributions for these
parameters are class-II hyperuniform.

APPENDIX D: B̄q AND B̄sym
q FOR CLASS-II

HYPERUNIFORM DISTRIBUTIONS

In Sec. III E, we have shown that, when {ni} is class-I
hyperuniform, {nq

i } and {sq
i } also belong to class I. Here, we

examine whether {nq
i } and {sq

i } are class-II hyperuniform when
{ni} is class II. After confirming that Aq(R) and Asym

q (R) go to
zero for R → ∞, we plot B̄q(R) and B̄sym

q (R) in Figs. 20 (for
λ = 2) and Fig. 21 (for λ = 3). In both cases, we see that both
B̄q(R) and B̄sym

q (R) show class-II behavior for q �= 0. Here,
B̄sym

q (R) is plotted only for q � 0 because of the symmetry.
Note that for q = 0, both {nq

i } and {sq
i } are class-I hyperuni-

form, where limR→∞ B̄q(R) and limR→∞ B̄sym
q (R) agree with

the order metric of the point distribution (i.e., 1/6). As |q|
decreases, the gradient in the semilogarithmic plots decreases

while it seems that a finite positive gradient remains even for
|q| = 0.1.

APPENDIX E: LOCAL VARIANCE

One possible way to quantify the inhomogeneous charge
distribution is to calculate the local variance defined by
1
N

∑
i(ni − n̄)2. This quantifies a local density fluctuation

without looking at the spatial distribution, in contrast to the
hyperuniformity, which characterizes the long-range density
fluctuation.

Here, we study how this local variance changes with μ

and λ. Figure 22 shows the results for λ = 1, 2 and 3. An
overall trend is that the local variance is maximized around
μ = 0 and decreases as μ approaches ±Emax, as anticipated.
However, for λ = 1, the local variance shows a dip around
μ = 0, making a local minimum at μ = 0. While the local
variance increases monotonically with μ < 0 for λ = 2, it
shows a nonmonotonic dependence on μ < 0 for λ = 3. The
difference between λ � 2 and λ < 2 may be attributed to the
presence/absence of the jump in the ni histogram.
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