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We discuss whether, and under which conditions, it is possible to realize a heat engine simply by dynamically
modulating the couplings between the quantum working medium and thermal reservoirs. For that purpose, we
consider the paradigmatic model of a quantum harmonic oscillator, exposed to a minimal modulation, that is,
a monochromatic driving of the coupling to only one of the thermal baths. We demonstrate, at any order in the
system/bath coupling strength, that in this setup non-Markovianity of the bath is a necessary condition to obtain
a heat engine. In addition, we identify suitable structured environments for the engine to approach the ideal
Carnot efficiency. Our results open up new possibilities for the use of non-Markovian open quantum systems for
the construction and optimization of quantum thermal machines.
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I. INTRODUCTION

The trend toward miniaturization is pushing heat engines
up to the level where the working medium is a small system,
which requires quantum mechanics for an accurate descrip-
tion [1–12]. This opened several fundamental and applicative
issues in the growing field of quantum thermodynamics
[13–27] in recent years. As for any other quantum machine,
the interaction of the quantum system with the external world
requires special care [2,4,12,22,23,28–32]. On the one hand,
it would be desirable to maintain the system isolated from
the environment, to preserve any quantum advantage [5,33–
40] provided by coherent dynamics. On the other hand, a
thermal engine delivering finite power requires that work is
extracted and heat is exchanged with reservoirs at finite rates.
A rigorous treatment of energy exchanges and heat flows is
thus required to properly model quantum thermal machines
working out of equilibrium. For instance, the coupling, pos-
sibly strong [25,41–43], between quantum working medium
and baths, can quite naturally induce non-Markovian effects
[44–52], which are often either not captured or discarded by
common approximation schemes [2–4,15,21,46,53,54]. The
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question then arises, whether non-Markovianity may consti-
tute a useful thermodynamic resource.

In this work, we address this question for a minimal dis-
turbance of the quantum system, that is, a monochromatic
modulation of the coupling to one thermal bath. The same
achievement of a heat engine in such a setup, without directly
driving the system, is a non trivial result. Indeed, modulation
of the couplings is intuitively associated with dissipation,
akin to friction induced by moving parts in strokes of a
macroscopic heat engine. Non-Markovianity, associated to
the spectral properties of the bath, is here investigated in the
paradigmatic model of a quantum harmonic oscillator (QHO)
[51,55,56], coupled to two bosonic thermal (hot and cold)
baths. Such approach is quite versatile, since it is possible
to study the QHO dynamics and thermodynamics, without
resorting to any approximations, both in the quantum and in
the classical regime, and for arbitrary spectral features of the
environment.

We show that, as counterintuitive as it might seem, a
dynamical heat engine can be obtained in the above con-
figuration. To achieve such a result we demonstrate that
non-Markovianity inherited from the reservoir that feels the
driven contact is a necessary but not sufficient condition.
Furthermore, we show that by taking advantage of a suitable
structured environment, the engine can even approach the
Carnot efficiency.

The paper is organized as follows: in Sec. II we introduce
the model and outline the methods employed to evaluate the
average power and heat currents. The connections between
non-Markovianity and a working heat engine are discussed
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in Sec. III. Subsequently, exploiting the prototypical non-
Markovian bath with a Lorentzian spectral density we discuss
in Sec. IV the performances of the ensuing heat engine, both in
the weak and in the strong coupling regime. An interpretation
of the weak coupling limit in terms of quantum Otto cycles is
also provided. Conclusions are finally drawn in Sec. V.

II. GENERAL FRAMEWORK

A. Model

The working medium of the thermal machine is a QHO
whose Hamiltonian reads (h̄ = kB = 1)

HQHO = p2

2m
+ 1

2
mω2

0x2, (1)

where m and ω0 are its mass and characteristic frequency,
respectively. The QHO is linearly coupled to two reservoirs,
with the total Hamiltonian

H (t ) = HQHO +
2∑

ν=1

(
Hν + H (t )

int,ν

)
. (2)

Each bath (ν = 1, 2) is modeled as an ensemble of harmonic
oscillators in the usual Caldeira-Leggett [28–30,57,58] frame-
work with Hamiltonians

Hν =
∞∑

k=1

(
P2

k,ν

2mk,ν

+ mk,νω
2
k,νX 2

k,ν

2

)
. (3)

We assume that the system/baths couplings can be varied in
time [23,47,59], described by the interaction contribution

H (t )
int,ν =

∞∑
k=1

{
−xgν (t )ck,νXk,ν +x2g2

ν (t )
c2

k,ν

2mk,νω
2
k,ν

}
. (4)

The interaction strengths are described by the parameter ck,ν ,
and the time-dependence of the couplings is in the dimen-
sionless periodic functions gν (t ) satisfying gν (t ) = gν (t + T )
with Fourier decomposition

gν (t ) =
∞∑

n=−∞
gn,ν e−in�t ; � = 2π

T . (5)

In this paper we consider the minimum modulation needed
for the couplings in the search for a heat engine, that is a
monochromatic drive at frequency � for the first contact while
the second is kept constant:

g1(t ) = cos(�t ), g2(t ) = 1, (6)

see the sketch in Fig. 1. To model the bath properties we
introduce their spectral densities [29]

Jν (ω) = π

2

∞∑
k=1

c2
k,ν

mk,νωk,ν

δ(ω − ωk,ν ), (7)

whose precise forms will be specified later.
At the initial time t0→ −∞ the baths are assumed in their

thermal equilibrium at temperatures Tν , with the total den-
sity matrix, written in a factorized form ρ(t0) = ρQHO(t0) ⊗
ρ1(t0) ⊗ ρ2(t0), where ρQHO(t0) is the initial system density
matrix.

FIG. 1. Sketch of the setup: Jν represents the energy current
flowing between the QHO and the νth contact. The two reservoirs are
in equilibrium at a temperature Tν and described by a spectral density
Jν (ω) with ν = 1, 2. The coupling of the bath ν = 1 is modulated by
a monochromatic driving with frequency �, while the coupling to the
bath ν = 2 is static.

The out of equilibrium dynamic of the QHO obeys the
generalized quantum Langevin equation [47,60,61]

ẍ(t ) + ω2
0x(t ) +

∫ +∞

t0

ds
2∑

ν=1

gν (t )γν (t − s)

× [ġν (s)x(s) + ẋ(s)gν (s)] = 1

m

2∑
ν=1

gν (t )ξν (t ), (8)

where overdots denote time derivatives and the damping ker-
nels γν (t ) are linked to the spectral function by

γν (t ) = 2

πm
θ (t )

∫ ∞

0
dω

Jν (ω)

ω
cos(ωt ), (9)

with θ (t ) the Heaviside step function. The fluctuating force
operators ξν (t ) to the right hand side of Eq. (8) explicitly
depend on the initial values of the bath operators Xk,ν (t0) and
Pk,ν (t0). Their expression is

ξν (t ) =
∞∑

k=1

ck,ν

[
Xk,ν (t0) cos ωk,ν (t − t0)

+ Pk,ν (t0)

mk,νωk,ν

sin ωk,ν (t − t0)
]
. (10)

We recall that these operators have zero quantum aver-
age 〈ξν (t )〉 ≡ Tr[ξν (t )ρ(t0)] = 0 and their time correlators are
given by 〈ξν (t )ξν ′ (t ′)〉 = δν,ν ′Lν (t − t ′), with

Lν (t ) =
∫ ∞

0

dω

π
Jν (ω)

[
coth

( ω

2Tν

)
cos(ωt ) − i sin(ωt )

]
.

(11)
To solve the Langevin Eq. (8) one needs the retarded

Green’s function G(t, t ′), which obeys the integrodifferential
equation

G̈(t, t ′) + ω2
0G(t, t ′) +

∫ +∞

t0

ds
2∑

ν=1

gν (t )γν (t − s)

× [ġν (s)G(s, t ′) + gν (s)Ġ(s, t ′)] = δ(t − t ′). (12)

At long times t , when the memory of the initial state for the
QHO is lost, the time evolution of the position operator x(t )
is directly expressed as a time integral of the retarded Green
function as

x(t ) = 1

m
lim

t0→−∞

∫ +∞

t0

dt ′G(t, t ′)
2∑

ν=1

gν (t ′)ξν (t ′). (13)
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As we will see shortly, the key relation Eq. (13) will allow
us to evaluate all quantum correlation averages, associated to
thermodynamic observables. Notice that at long times G(t, t ′)
acquires the following peculiar form:

G(t, t ′) =
+∞∑

μ=−∞

∫ +∞

−∞

dω

2π
e−iω(t−t ′ )G̃μ(ω)e−iμ�t , (14)

where G̃μ(ω) are the so-called Floquet coefficients obeying
the following set of algebraic equations [47]:

G̃μ(ω) = χ (ω)δμ,0 − χ (ω + μ�)

×
∑

n=±2

k̃n(ω + (μ − n)�)G̃μ−n(ω). (15)

Here we have introduced

χ (ω) = − 1

ω2 − ω2
0 − k̃0(ω)

, (16)

and

k̃n(ω) = −i
2∑

ν=1

+∞∑
μ=−∞

gμ,νgn−μ,ν (ω + μ�)γ̃ν (ω + μ�),

(17)
with γ̃ν (ω) the Fourier transform of γν (t ).

B. Average thermodynamic quantities

We study thermodynamic quantities in the long time limit,
when a periodic steady state has been reached. Notice that the
study of instantaneous quantities and their time dependence
should be considered with care, especially at finite coupling
strength [23–25,42]: this however is a problem outside the
scope of our paper. We are in particular interested in quantities
averaged over one period of the cycle, that are well defined
both in the weak and in the strong coupling regime [23–26].

We start by considering the operatorial time evolution of
the total Hamiltonian (2) in the Heisenberg representation:

d

dt

[
2∑

ν=1

Hν (t ) + HQHO(t ) + H (t )
int (t )

]
= ∂

∂t
H (t )

int (t ), (18)

where H (t )
int (t ) = ∑2

ν=1 H (t )
int,ν (t )—see Eq. (4).

Taking the quantum ensemble average, and performing the
average over one period of the cycle, we obtain

P +
2∑

ν=1

Jν + A = 0, (19)

where we have introduced

P = 1

T

∫ t+T

t
dt ′

2∑
ν=1

Tr
[∂H (t ′ )

int,ν (t ′)
∂t ′ ρ(t0)

]

= 1

T

∫ t+T

t
dt ′

2∑
ν=1

Tr
[∂H (t ′ )

int,ν

∂t ′ ρ(t ′)
]
, (20)

Jν = − 1

T

∫ t+T

t
dt ′ Tr

[ d

dt ′ Hν (t ′)ρ(t0)
]

= − 1

T

∫ t+T

t
dt ′ Tr

[
Hν

d

dt ′ ρ(t ′)
]
, (21)

A = 1

T

∫ t+T

t
dt ′ Tr

[
d

dt ′
(
HQHO(t ′) + H (t ′ )

int (t ′)
)
ρ(t0)

]
. (22)

Here, P is the total power associated to the time evolution of
the system/bath couplings, Jν is the current energy flow from
the νth reservoir, and A represents the remaining contribu-
tions stemming from the QHO and the interaction term. It has
been argued that, in general, the term A can be nonzero [25].
However, in our case we can show—see Appendix A—that
A = 0. This important result implies that in the long time
limit and after the cycling average the total power due to
the coupling drives is totally balanced by the reservoir heat
currents and fulfills the relation

P +
2∑

ν=1

Jν = 0, (23)

which can be interpreted as a manifestation of the first law
of thermodynamics. To actually evaluate the average power
P and heat currents Jν at periodic steady state, we resort
to a nonequilibrium Green function formalism [47,60–63].
Deferring all details to Appendix B, here we quote the final
results for the power and the heat current via bath ν = 2 (recall
that J1 = −P − J2):

P = �

4πm

+∞∑
μ=−∞

∫ +∞

−∞
dω

(J2(ω)

2m
coth

( ω

2T2

)
|G̃μ(ω)|2{J1[ω + (μ + 1)�] − J1[ω + (μ − 1)�]}

+J1(ω) coth
( ω

2T1

){J1(ω − μ�)

4m
|G̃μ(−ω + �) + G̃μ+2(−ω − �)|2 − 	[G̃0(ω − �)]δμ,0

})
, (24)

J2 = 1

2πm

+∞∑
μ=−∞

∫ +∞

−∞
dω

(
J2(ω) coth

(
ω

2T2

){
ω	[G̃0(ω)]δμ,0 − J2(ω − μ�)

m
(ω − μ�)|G̃μ(ω)|2

}

− J1(ω)

4m
coth

( ω

2T1

)
(ω − μ�)J2(ω − μ�)|G̃μ−1(−ω + �) + G̃μ+1(−ω − �)|2

)
, (25)

where the influence kernels have the form

k̃0(ω) = −iωγ̃2(ω) +
∑

n=±2

k̃n(ω) ; k̃±2(ω) = − i

4
ω±γ̃1(ω±),

induced by the specific driving scheme considered in this
work—see Eq. (6). We close noting that the Floquet co-
efficients possess only even μ components and have the
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following symmetry properties: G̃∗
μ(ω) = G̃−μ(−ω) and

G̃μ(ω − μ

2 �) = G̃−μ(ω + μ

2 �)—see Appendix C for the
latter.

III. DYNAMICAL HEAT ENGINE VERSUS
MARKOVIANITY

In general, a structured environment can induce mem-
ory effects and non-Markovian dynamics. To assess non-
Markovianity, several estimators have been introduced re-
cently [50,64–66]. As suggested in Refs. [65,67], a proper
criterion to quantify non-Markovianity in the asymptotic
regime is the violation of divisibility property of the dynam-
ical map. Moreover, a direct link between the nondivisibility
notion of non-Markovianity and the form of the bath spec-
tral density has been given. In particular, it is possible to
show [65,67] that only a strictly Ohmic [68] spectral density
J (ω) = mγω in the classic (high temperature) regime leads
to a separable map, hence to a Markovian dynamics—see
Appendix D for details.

We now inspect general and necessary conditions to reach
a heat engine regime, that is P < 0. By studying Eq. (24), as
discussed in Appendix B, one can realize that J1(ω), i.e. the
bath spectral density linked to the driven contact, dictates the
sign of the different contributions of the average power.

We begin considering a strictly Ohmic spectral function

J1(ω) = mγ1ω (26)

in the high temperature regime. We now show that this choice,
which represents a Markovian dynamics at high temperature,
cannot support a heat engine at any order in the system/bath
interaction in the high temperature regime. As shown in
Appendix B, the average power P can be decomposed as

P = P(a) + P(b), where P(b) = P(b,1) + P(b,2). (27)

Inserting Eq. (26) into Eqs. (B9), (B12), and (B14) an explicit
expression for the above three quantities is obtained. We thus
arrive at

P(a) = −�γ1

4π

∫ +∞

−∞
dωω coth

( ω

2T1

)
	[G̃0(ω − �)], (28)

P(b,1) = �γ 2
1

16π

∫ +∞

−∞
dωω coth

( ω

2T1

)

×
+∞∑

μ=−∞
(ω− μ�)|G̃μ(−ω + �) + G̃μ+2(−ω − �)|2,

(29)

and

P(b,2) = �2γ1

4πm

∫ +∞

−∞
dωJ2(ω) coth

( ω

2T2

) +∞∑
μ=−∞

|G̃μ(ω)|2.
(30)

It is now easy to see that P(b,2) � 0. It is also possible to show
that P(b,1) � 0. Indeed, by using Eq. (B7) we first note that∫ +∞

−∞
dωω coth

( ω

2T1

)

×
+∞∑

μ=−∞
ω|G̃μ(−ω + �) + G̃μ+2(−ω − �)|2 = 0. (31)

The remaining part of P(b,1) can then be rewritten, after some
algebra, as

P(b,1) = �2γ 2
1

16π

∫ +∞

−∞
dωω coth

( ω

2T1

)

×
+∞∑

μ=−∞
|G̃μ(−ω + �) + G̃μ+2(−ω − �)|2, (32)

which is also manifestly positive. This implies that P(b) � 0,
and that the possibility to have a heat engine only depends on
the sign of P(a). Let us now consider the Markovian limit of
high temperatures T1 → ∞. Here coth( ω

2T1
)→ 2T1

ω
, then using

also the odd parity property of 	[G̃0(ω)] we find P(a) = 0.
This finally proves that in the Markovian regime P > 0 to

every order in the system/bath coupling strength, demonstrat-
ing that in this case it is not possible to obtain a working
heat engine (P < 0). Thus, non-Markovianity is a necessary
condition to achieve a working heat engine.

It is worth to stress that the above argument holds true
independently from the shape of J2(ω), related to the static
bath.

It is now natural to wonder if this is also a sufficient
condition. However, this is not the case, as we now argue by
providing a counterexample. To this end, we consider the case
in which the system/bath coupling strength of the modulated
in time reservoir (ν = 1) is weak. In this perturbative regime,
simpler closed expressions are obtained, from which one can
also get useful physical intuitions. Up to linear order in J1(ω)
the average heat power can be written as [see Appendix E for
details, in particular Eq. (E5)]

P = −�

∫ +∞

0

dω

2πm
	χ0(ω) f (ω,�). (33)

Here, we introduced χ0(ω) = −[ω2 − ω2
0 + iωγ̃2(ω)]−1 the

bare susceptivity and

f (ω,�) = J1(ω+)nB

(ω+
T1

)
− J1(ω−)nB

(ω−
T1

)
+ [J1(ω−) − J1(ω+)]nB

( ω

T2

)
, (34)

where we recall that ω± = ω ± � and where nB(x) = (ex −
1)−1 is the Bose distribution function. Note that J2(ω) only
enters into the expression of χ0(ω) through γ̃2(ω) [69].
Recalling that J2(ω) = mω�[γ̃2(ω)], one can realize that
	[χ0(ω)] is positive for ω > 0. Therefore, the regions of a
working heat engine are given by

f (ω,�) > 0. (35)

To look for a counterexample, for the modulated bath we
consider a monotonically increasing spectral density of the
form J1(ω) = mγ1ω|ω

ω̄
|s−1, which describes a large class of

spectral function: Ohmic behavior for s = 1, sub-Ohmic for
0 < s < 1, and super-Ohmic for s > 1 [29,68]. In this case,
the last sum that appears in square brackets on the second
line of Eq. (34) is always negative, then the most favor-
able requirement for a working heat engine is in the T2 → 0
limit, where the second line vanishes. Then, taking advan-
tage of the relation L̃1(−ω) = 2J1(ω)nB(ω/T1), with L̃1(ω)
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FIG. 2. Heat engine with a structured environment as pictorially
depicted in panel (a). Panels (b) and (c) respectively show the engine
average power (in unit of γ 2

2 ) and efficiency normalized to the Carnot
limit η/ηC in the weak coupling regime κ = 0.001 as a function
of the driving frequency � and the frequency of the peak ω1 (in
units of ω0). Temperatures are set to T1 = 0.2ω0 and T2 = 2ω0, while
γ1 = γ2 = 0.02ω0. The dashed line in panel (b) shows the resonance
condition ω1 = ω0 − �.

Fourier transform of the fluctuating force correlator L1(t ),
the condition for a working heat engine reads L̃1(−ω − �) >

L̃1(−ω + �). In passing, this confirm the necessary condition
of non-Markovianity, since a Markovian bath has L1(t ) ∝
δ(t ), and it never satisfies the above constraint [70]. More
importantly, this relation can be used to obtain the coun-
terexample we are looking for: Indeed, after some lengthy
calculations reported in Appendix F, it is possible to demon-
strate that in the non-Markovian case of sub-Ohmic spectral
density no heat engine can be achieved. Therefore, we con-
clude that non-Markovianity is a necessary but not sufficient
condition to obtain a heat engine.

IV. NON-MARKOVIAN ENGINE
WITH A LORENTZIAN BATH

Having established the importance of non-Markovianity
for a dynamical heat engine, we now characterize its perfor-
mance. To this end, hereafter we choose a strictly Ohmic [68]
spectral density J2(ω) = mγ2ω for the ν = 2 static bath. For
the modulated bath of interest, we focus on a paradigmatic
example of structured non-Markovian environment, i.e., a
Lorentzian spectral function [31,32,71–73]

J1(ω) = d1mγ1ω(
ω2 − ω2

1

)2 + γ 2
1 ω2

, (36)

with a peak centered at ω1, an amplitude governed by d1, and
a width determined by γ1 (parameter linked to the damping).
Such environment can be physically realized with cavity ar-
chitectures [74–77] [see the sketch in Fig. 2(a)]. For instance,
in cavity optomechanics [74] a mechanical oscillator (the
QHO of frequency ω0) is embedded in a optical cavity. Then,
a laser detuning is imposed on the bare cavity, in order to
adjust the resulting frequency resonance ω1 close to ω0, like

in sideband-resolved cooling experiments [78]. A possible
way to implement a temporal modulation of the system/bath
coupling g1(t ) is to superimpose a modulation (by optical
pulse or mechanical vibration) to one of the cavity mirrors of
characteristic frequency �. For clarity we now introduce the
dimensionless parameter κ ≡ d1/(ω2

0ω
2
1 ), which governs the

coupling strength.

A. Performance in the weak coupling regime (κ � 1)

In the weak coupling regime (κ 
 1), one always finds the
possibility for a heat engine. Indeed, under the assumption of
a sufficiently sharp peak around ω1 and looking at Eq. (34),
one can argue that the dominant contributions are for either
ω+ � ω1 or ω− � ω1. In the former case, when one can drop
the off-resonance contribution due to J1(ω−), to have P < 0
one needs

nB

(ω1

T1

)
> nB

(
ω1 − �

T2

)
⇒ T1 >

ω1

ω1 − �
T2, (37)

while when ω− ≈ ω1 with analogous reasonings one obtains
the condition

nB

(
ω1 + �

T2

)
> nB

(ω1

T1

)
⇒ T1 <

ω1

ω1 + �
T2. (38)

Figures 2(b) and 2(c) show the corresponding power and
the efficiency η ≡ −P/J1 for a representative temperature ar-
rangement, T1/T2 = 0.1. We note that, having chosen γ2 

ω0, one finds 	χ0(ω) peaked around the QHO frequency ω0.
The behavior of the average power in panel (b) well agrees
with the resonance condition ω1 � ω0 − �, along which the
maximum power occurs (see the dashed line in the plots)
[79]. With regard to engine efficiency, using the results shown
in Appendix F [see Eqs. (F2)–(F4)] along this resonance
one has that P ≈ P(−1) and Jν ≈ J (−1)

ν so that η = −P/J1 ≈
−P(−1)/J (−1)

1 and from the expressions quoted above one im-
mediately finds

η = 1 − ω1

ω1 + �
< ηC,

where ηC = 1 − T1/T2 is the efficiency of the Carnot ma-
chine. Indeed, from Eq. (38) one finds ω1

ω1+�
> T1

T2
, showing

that the efficiency is upper bound by the Carnot limit which
can therefore be approached in a realistic parameter window.
Note, however, that maximum power and maximum efficiency
are reached at different values of ω1. In particular, inspecting
Eq. (F2) one immediately sees that when ω1

ω1+�
= T1

T2
the power

vanishes.
Within the model of a cavity of Fig. 2(a), one can intu-

itively interpret the produced power as the unbalance between
the energy flux flowing from the contact at temperature T2 >

T1 and the energy flux that can be absorbed by the red-shifted
cavity (ω1 = ω0 − �) at the colder temperature T1.

Similar results are found for the resonance condition ω+ �
ω1 for T1 > T2. Following steps perfectly analogous to the
ones outlined above, one finds the efficiency to be

η = 1 − ω1 − �

ω1
< ηC,
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FIG. 3. Schematic representation of the Otto cycle C+ in the N −
ω plane, where N is the average occupation number of the QHO.

where now ηC = 1 − T2/T1. Also in this case the Carnot limit
is achieved when P → 0, when ω1−�

ω1
= T2

T1
.

B. Effective model in terms of quantum Otto engines

The above results can be interpreted in terms of an effective
model in which the QHO is regarded as a thermodynamic
substance performing a quantum Otto cycle [80,81]. To il-
lustrate this fact observe that, in the weak coupling regime,
the expressions for the power and heat currents are sums over
two independent “channels” labeled by p = ±1—see the last
identifications in Eqs. (F2)–(F4). For a sharp Lorentzian spec-
tral density, the resonance condition ω1 = ω0 + p� implies
J1(ω0 − p�) 
 J1(ω1), which allows to focus only the pth
channel ignoring the negligible contribution of the channel
−p, i.e., to treat the two channels separately.

Let us consider now the channel p = +1, i.e., the reso-
nance ω1 = ω0 + � with T1 > T2. We can build an effective
model in terms of a Otto engine cycle C+ represented schemat-
ically in Fig. 3 and composed as follows:

(1) an isochoric transformation A → B along which the
QHO is kept at frequency ω0 + � and allowed to exchange
heat with the hot bath at temperature T1 over a characteristic
time τ1;

(2) an isentropic expansion B → C, where the oscillator is
decoupled from the baths and its frequency evolves adiabati-
cally from ω0 + � to ω0;

(3) an isochoric transformation C → D at frequency ω0

exchanging heat with the cold bath at temperature T2 over a
characteristic time τ2;

(4) an isentropic compression D → A, where the fre-
quency adiabatically turns back from ω0 to ω0 + �.

The characteristic time spent along each isentropic branch
is τis > ω−1

0 , which we assume large enough so that average
occupation number of the QHO (denoted here as N) is con-
served [80]: NB = NC and ND = NA. Also, we assume that at
the end of each isochor the QHO has thermalized to the cor-
responding bath: NB = nB( ω0+�

T1
) = NC and ND = nB( ω0

T2
) =

NA. Thermalization along the isochors takes finite character-
istic times τ1,2 which, to lowest order, can be identified with
the inverse rates [28] τ1 ≈ 4mω0

J1(ω0+�) and τ2 ≈ 4mω0
J2(ω0 ) .

The heat exchanged with the contacts are given by
[80] Q1 = (ω0 + �)(NB − NA) and Q2 = ω0(ND − NC) ≡
−ω0(NB − NA) while the total work reads W = NB[ω0 −
(ω0 + �)] + NA[(ω0 + �) − ω0] ≡ −�(NB − NA).

To complete the mapping we remind that we deal with
a perturbative regime for the spectral density J1 and thus
τ1 � τ2, and that to obtain Eqs. (F2)–(F4) the regime γ2 
 ω0

has been considered—see Appendix E, in particular the argu-
ment leading to Eq. (F1)—so that τ2 � τis. Thus, the total
time spent on the cycle is ≈τ1 which allows to estimate the
average heat currents as Qν/τ1 ≡ J (+1)

ν and the average power
as W/τ1 ≡ P(+1)—see Eq. (F2).

For the cycle to operate as a heat engine one needs W < 0,
which implies

T1 >
ω0 + �

ω0
T2 → T1 >

ω1

ω1 − �
T2,

as also found previously. The efficiency η+ = −P(+1)

J (+1)
1

of C+ is

given by

η+ = 1 − ω0

ω1
≡ 1 − ω1 − �

ω1
,

is governed by the compression ratio of the QHO and is in
accordance with the physics of a Otto cycle and with the
results quoted in the previous section. If T1 < ω0+�

ω0
T2, then

one instead finds P(+1) > 0.
With similar arguments one can interpret the resonance

ω1 = ω0 − � (channel p = −1), where the cycle C− is domi-
nant. It is composed of two isentropes operating between the
frequencies ω0 and ω0 − � and two isochors where the QHO
is kept, with fixed frequency ω0 (or ω0 − �), in contact with
the hot bath at temperature T2 (or the cold bath at temperature
T1). Identifying the time spent in contact with the bath at T1

as τ ≈ 4mω0
J1(ω0−�) , which is also the longest time in the cycle,

allows to evaluate the heat currents and the power with rea-
sonings similar to those made for C+. The expressions again
coincide with J (−1)

ν and P(−1)—see Eqs. (F2) and (F3).
For C− to operate as an engine, one needs

T2 >
ω0

ω0 − �
T1 → T1 <

ω1

ω1 + �
T2,

in accordance to what discussed in the previous section. In the
heat engine regime, the efficiency η− = −P(−1)

J (−1)
2

is

η− = 1 − ω1

ω0
≡ 1 − ω1

ω1 + �
.

Also this result agrees with the ones reported in the previous
section.

An important remark must be made: the effective model
leading to C− breaks down when � → ω0: here the effec-
tive volume of the QHO and the cycle time diverge and
correspondingly P(−1) → 0. When � > ω0, one can see that
P(−1) > 0 and J (−1)

ν < 0: Now the p = −1 channel acts as
a “heater” absorbing work from the driving mechanism and
discharging it into both baths [82].

The analysis conducted above can also be applied to spec-
tral densities other than the Lorentzian one. However, when
J1(ω) is not sharply peaked the contributions of the two
channels p = ±1 cannot be clearly separated. In this case
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FIG. 4. Non-Markovian heat engine at strong coupling: panels
(a) and (b) show the average power (in unit of γ 2

2 ) and efficiency
normalized to the Carnot limit η/ηC for κ = 0.1 as a function of the
driving frequency � and the frequency of the peak ω1. Panels (c) and
(d) show the average power (units γ 2

2 ) and efficiency normalized to
the Carnot limit as a function of κ and � for ω1 = 0.4 ω0. The blue
point marks corresponding parameters between panels (a) and (c).
Here, T1 = 0.2ω0 and T2 = 2ω0, while γ1 = γ2 = 0.02ω0.

one can interpret the results as the action of two thermal
machines running in parallel: heat currents Jν through the
baths split/recombine into the two channels J (p)

ν and the total
power P is the net sum of the powers P(p) exchanged by
each machine. When � < ω0 the two machines perform the
Otto cycles C± discussed above, while for � > ω0 only the
channel p = +1 behaves as a Otto cycle, while p = −1 acts
as a heater. From the discussion above it is clear that for
given � and temperature ratio T2/T1 only at most one channel
can operate as a heat engine. Therefore, either T2

T1
> ω0

ω0−�

or T2
T1

< ω0
ω0+�

is a necessary but not sufficient condition for
obtaining P < 0 and the precise balance between the power
exchanged by the two channels must be studied [83].

C. Beyond the weak coupling regime

We conclude this section studying a regime beyond weak
coupling. In Figs. 4(a) and 4(b) we show heat engine per-
formance, obtained by numerically solving Eq. (15) and
evaluating the expressions for average power in Eq. (24) and
corresponding heat currents [84]. A clear broadening of the
power resonance line can be observed [Fig. 4(a)]. Indeed,
the maximum power is no longer achieved along the “bare”
resonance ω1 = ω0 − � (see the dashed line) but now appears
detuned. Also the efficiency, reported in Fig. 4(b), displays an
overall broadening.

To further inspect the strong-coupling regime we also show
in Figs. 4(c) and 4(d) the average power and efficiency as
a function of the coupling parameter κ and the driving fre-
quency � near the maximum of Fig. 4(a). Operating the
engine beyond weak coupling allows to achieve sensibly
larger power outputs. Indeed, the maximum power occurs at
moderate/strong coupling κ ≈ 0.2 and is over 10 times larger
than the maximum power obtained at weak coupling κ =

10−3. However, the average power is a nonmonotonic function
of κ and for κ � 1 the heat engine is lost. Looking at Fig. 4(d),
the maximum efficiency is achieved operating the engine in
the weak coupling regime κ 
 1. Therefore, the parameter κ

can be used to tune the tradeoff between power and efficiency.
As a final remark, we note that stronger coupling strengths
induce a marked detuning of the resonance frequency, due to
an energy renormalization which can be captured by solving
self-consistently ω2 − ω2

0 − Re[k̃0(ω)] = 0 and ω1 = ω − �.
The solution is shown as a dashed line in Fig. 4(c).

V. CONCLUSIONS AND OUTLOOK

We have shown that by properly modulating the system-
bath coupling it is possible to obtain a working heat engine.
Here, non-Markovianity is a useful resource for quantum ther-
modynamics, in that it allows for efficient dynamical heat
engines, even approaching Carnot efficiency. Our results open
up new possibilities for the exploitation of non-Markovianity.
For instance, one could consider the combined effect of
modulating couplings and driving the system, looking for a
cooperative effect to enhance the performance of thermal ma-
chines. In such a quest, machine learning tools [85–88] could
prove to be useful. Regarding possible implementations, our
results on structured environment could be tested in the field
of cavity optomechanics, which are emerging as an interesting
platform for new quantum technologies [74,77,89,90]. We
believe that these findings are not restricted to the investigated
working medium of a QHO, and an interesting follow-up
would be to investigate the role of non-Markovian contribu-
tions with different quantum system, for instance one or more
qubits, that can be integrated in superconducting waveguide
quantum electrodynamics architectures [75,76,91–93].
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APPENDIX A: PROOF THAT A = 0

Here we prove that

A = 1

T

∫ t+T

t
dt ′ Tr

[
d

dt ′
(
HQHO(t ′) + H (t ′ )

int (t ′)
)
ρ(t0)

]
= 0.

A convenient strategy is to rewrite the above quantity as

A = 1

T

[〈
H (t+T )

int (t + T )
〉 − 〈

H (t )
int (t )

〉

+〈HQHO(t + T )〉 − 〈HQHO(t )〉
]
.

Below, we will show that 〈H (t )
int (t )〉 and 〈HQHO(t )〉 are periodic

functions with period T , which eventually implies A = 0. The
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time dependence of the interaction term is given by

H (t )
int (t ) = −x(t )

2∑
ν=1

∞∑
k=1

gν (t )ck,νXk,ν (t )

+ x2(t )
2∑

ν=1

∞∑
k=1

g2
ν (t )

c2
k,ν

2mk,νω
2
k,ν

.

Using the equations of motion for the position x(t ) and mo-
mentum p(t ) of the QHO

ẋ(t ) = p(t )

m
ṗ(t ) = mẍ(t ),

with ẍ(t ) given in Eq. (8) and those for the position and
momentum of the degrees of freedom of the baths

Ẋk,ν (t ) = Pk,ν (t )

mk,ν

, Ṗk,ν (t ) = −mk,νω
2
k,νXk,ν (t ) + gν (t )ck,νx(t ),

we can rewrite H (t )
int (t ) in terms of the system position opera-

tors x(t ) alone, as

H (t )
int (t ) = −mx(t )ẍ(t )

− x2(t )

[
mω2

0 +
2∑

ν=1

∞∑
k=1

g2
ν (t )

c2
k,ν

2mk,νω
2
k,ν

]
.

Similarly, for the QHO term in Eq. (1) we have

HQHO(t ) = m

2

[
ẋ2(t ) + ω2

0x2(t )
]
.

The above expressions show that their quantum ensemble
averages can be written as correlators of the QHO position
operator only. Indeed, we have〈

H (t )
int (t )

〉 = −mMxẍ(t )

−
[

mω2
0 +

2∑
ν=1

∞∑
k=1

g2
ν (t )

c2
k,ν

2mk,νω
2
k,ν

]
Mxx(t ),

〈HQHO(t )〉 = m

2
Mẋẋ(t ) + mω2

0
2 Mxx(t ),

where

Mxx(t ) = Tr[x(t )x(t )ρ(t0)],

Mxẍ(t ) = Tr[x(t )ẍ(t )ρ(t0)],

Mẋẋ(t ) = Tr[ẋ(t )ẋ(t )ρ(t0)].

Note that all these correlators can be represented in terms of
the function

M(t, s) = Tr[x(t )x(s)ρ(t0)], (A1)

as

Mxx(t ) = lim
s→t

M(t, s), (A2)

Mxẍ(t ) = lim
s→t

d2

ds2
M(t, s), (A3)

Mẋẋ(t ) = lim
s→t

d

dt

d

ds
M(t, s). (A4)

We then focus on the evaluation of the quantum average of
M(t, s). Plugging into Eq. (A1) the time evolution given in
Eq. (13) we obtain

M(t, s) = 1

m2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2G(t, t1)G(s, t2)

×
2∑

ν=1

2∑
ν ′=1

gν (t1)gν ′ (t2)〈ξν (t1)ξν ′ (t2)〉

= 1

m2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2G(t, t1)G(s, t2)

×
2∑

ν=1

gν (t1)gν (t2)Lν (t1 − t2), (A5)

where in the second equality we have inserted the bath cor-
relator 〈ξν (t )ξν ′ (t ′)〉 = δν,ν ′Lν (t − t ′) with Lν (t − t ′) given
in Eq. (11). The time integrals are performed using the
Fourier representations in Eq. (14) for the Green functions
G(t, t1) and G(s, t2), Eq. (5) for the driving gν (t1) and gν (t2),
and

Lν (t1 − t2) =
∫ +∞

−∞

dω

2π
e−iω(t1−t2 )L̃ν (ω)

for the bath correlator. We finally obtain

M(t, s) =
+∞∑

n1,n2,μ1μ2=−∞

2∑
ν=1

gn1,νgn2,ν

∫ +∞

−∞

dω

2πm2
L̃ν (ω)

× G̃μ2 (−ω + n2�)G̃μ1 (ω + n1�)

× e−it (ω+(n1+μ1 )�)eis(ω−(n2+μ2 )�).

Notice that now the times t and s only appear in the
exponential factors: this means that after derivatives with
respect to t and s as appropriate according to the defini-
tions in Eqs. (A2)–(A4), the limit s → t implies a time
dependent term always of the form e−i�t (n1+n2+μ1+μ2 ). This
shows a clear periodicity with respect to the cycle time T .
This result demonstrates that the required correlators are
indeed periodic: Mxx(t + T ) = Mxx(t ), Mxẍ(t + T ) = Mxẍ(t )
and Mẋẋ(t + T ) = Mẋẋ(t ). Since, as shown above, these cor-
relators are the building blocks of 〈H (t )

int (t )〉 and 〈HQHO(t )〉 we
eventually arrive to the conclusion that the quantum averages
of the interaction term and of the QHO part are periodic.
This finally proves the key result that A = 0 and then that the
cycling average of the total power is totally balanced only by
the reservoir heat currents—see Eq. (23).

APPENDIX B: AVERAGE POWER AND HEAT CURRENTS
FOR A MONOCHROMATIC DRIVE

Here we derive a compact form for the power and heat
currents by focusing on the case discussed in the main part,
namely a constant coupling to the bath ν = 2 and a monochro-
matically modulated coupling to the bath ν = 1; see Eq. (6).
It is useful to begin recalling the general expressions of the
average total power P and heat currents Jν performed using
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Eqs. (20) and (21) as explained in Ref. [47]. We have

P = �

+∞∑
n1,n2=−∞

2∑
ν=1

n1gn1,νgn2,ν

∫ +∞

−∞

dω

2πm

{
iJν (ω) coth

(
ω

2Tν

)
G̃−(n1+n2 )(ω + n2�)

+
2∑

ν1=1

+∞∑
μ=−∞

+∞∑
n3,n4=−∞

gn3,ν1 gn4,ν1

Jν1 (ω)

m
coth

(
ω

2Tν1

)
Jν (ω − �(n2 + n4 + μ))G̃μ(−ω + n4�)G̃−(ntot+μ)(ω + n3�)

}
, (B1)

Jν =
+∞∑

n1,n2=−∞
gn1,νgn2,ν

∫ +∞

−∞

dω

2πm

{
− iJν (ω)ω coth

(
ω

2Tν

)
G̃−(n1+n2 )(ω + n2�) −

2∑
ν1=1

+∞∑
μ=−∞

+∞∑
n3,n4=−∞

gn3,ν1 gn4,ν1

× Jν1 (ω)

m
coth

(
ω

2Tν1

)
[ω − �(n2 + n4 + μ)]Jν (ω − �(n2 + n4 + μ))G̃m1 (−ω + n4�)G̃−(ntot+μ)(ω + n3�)

}
, (B2)

where ntot = n1 + n2 + n3 + n4. We remind that the spectral
densities Jν (ω) are odd functions of frequency. We now spe-
cialize to the driving considered in this work, with Fourier
coefficients gn,1 = (δn,1 + δn,−1)/2 and gn,2 = δn,0. Then the
kernel in Eq. (17) reduces to

k̃0(ω) = −iωγ̃2(ω) +
∑

n=±2

k̃n(ω), (B3)

k̃±2(ω) = − i

4
ω±γ̃1(ω±), (B4)

with ω± = ω ± �. This shows that only the kernels k̃0,±2(ω)
are different from zero. We now plug the expressions of g0,ν

into Eq. (B1) to write down the average power. Notice that
only the ν = 1 term contributes to P, that can be conveniently
decomposed into two contributions P = P(a) + P(b). The first,
stemming from the first line of Eq. (B1) reads

P(a) = − �

4πm

∫ +∞

−∞
dωJ1(ω) coth

( ω

2T1

)
	

× [G̃0(ω − �) − G̃2(ω − �)], (B5)

while the second originates from the second line of the same
equation and it is given by

P(b) = �

+∞∑
n1,n2=−∞

n1gn1,1gn2,1

+∞∑
n3,n4=−∞

2∑
ν1=1

gn3,ν1 gn4,ν1

×
+∞∑

μ=−∞

∫ +∞

−∞

dω

2πm2
Jν1 (ω) coth

( ω

2Tν1

)

×J1(ω − �(n2 + n4 + μ))G̃μ(−ω + n4�)

× G̃−(ntot+μ)(ω + n3�). (B6)

To obtain Eq. (B5), we have used that n1, n2 = ±1, and the
property of the Floquet coefficients

G̃μ(ω) = G̃∗
−μ(−ω). (B7)

Exploiting the symmetry property (see Appendix C for de-
tails)

G̃μ

(
ω − μ

2
�

)
= G̃−μ

(
ω + μ

2
�

)
, (B8)

one sees that the last term in the square brackets of Eq. (B5)
has a null contribution upon integration giving then

P(a) = − �

4πm

∫ +∞

−∞
dωJ1(ω) coth

(
ω

2T1

)
	[G̃0(ω − �)].

(B9)

Using Eq. (B7) and renaming μ + n2 + n4 → μ we can then
rewrite the P(b) term as

P(b) = �

2πm2

+∞∑
n1,n2=−∞

n1gn1,1gn2,1

+∞∑
n3,n4=−∞

2∑
ν1=1

gn3,ν1 gn4,ν1

×
+∞∑

μ=−∞

∫ +∞

−∞
dωJν1 (ω) coth

( ω

2Tν1

)

×J1(ω − μ�)�[
G̃μ−(n2+n4 )(−ω + n4�)

× G̃−(μ+n1+n3 )(ω + n3�)
]
. (B10)

We now insert the explicit form of gn,ν , and for notational
convenience we write P(b) = P(b,1) + P(b,2) corresponding to
the ν1 = 1, 2 terms in the above expression. The former con-
tribution reads

P(b,1) = �

32πm2

∫ +∞

−∞
dωJ1(ω) coth

( ω

2T1

)

×
+∞∑

μ=−∞
J1(ω − μ�)�

×
[ ∑

n1,n3=±1

n1G̃−(μ+n1+n3 )(ω + n3�)

×
∑

n2,n4=±1

G̃μ−(n2+n4 )(−ω + n4�)

]
. (B11)

Taking the real part of the sum in the last square bracket and
using again Eq. (B7), one has

P(b,1) = �

16πm2

∫ +∞

−∞
dωJ1(ω) coth

( ω

2T1

)

×
+∞∑

μ=−∞
J1(ω − μ�)|G̃μ(−ω + �)

+ G̃μ+2(−ω − �)|2. (B12)
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Note that since J1(ω) coth( ω
2T1

) > 0 and since the last factor

in the summand is positive, the sign of P(b,1) is governed by
the behavior of J1(ω − μ�) only. We now consider P(b,2)

related to the ν1 = 2 contribution in Eq. (B6), where n1, n2 =
±1 and n3 = n4 = 0:

P(b,2) = �

8πm2

∫ +∞

−∞
dωJ2(ω) coth

( ω

2T2

)

×�
[ ∑

n1,n2=±1

n1G̃μ−n2 (−ω)G̃−(μ+n1 )(ω)

]
. (B13)

Performing the sum over n1, n2, we arrive at

P(b,2)0 = �

8πm2

∫ +∞

−∞
dωJ2(ω) coth

( ω

2T2

)

×
+∞∑

μ=−∞

∑
p=±1

|G̃μ(ω)|2 pJ1[ω + (μ + p)�]. (B14)

Also here, since J2(ω) coth( ω
2T2

) > 0 and since the first factor

in the summand is positive, the sign of P(b,2) is determined
by the terms J1[ω + (μ ± 1)�]. Finally, we sum the three
contributions in Eqs. (B9), (B12), and (B14) to obtain the ex-
pression for the average total power P = P(a) + P(b,1) + P(b,2)

as reported in Eq. (24).
We conclude this part analyzing the average heat current

J2 in Eq. (B2). We recall that the average heat current J1,
associated to the reservoir ν = 1 is obtained from the energy
conservation relation J1 = −(P + J2). As above, we separate
J2 = J (a)

2 + J (b)
2 into two contributions, where

J (a)
2 =

∫ +∞

−∞

dω

2πm
ωJ2(ω) coth

( ω

2T2

)
	[G̃0(ω)] (B15)

and

J (b)
2 = −

∞∑
n1,n2=−∞

gn1,2gn2,2

+∞∑
n3,n4=−∞

2∑
ν1=1

gn3,ν1 gn4,ν1

+∞∑
μ=−∞

∫ +∞

−∞

dω

2πm2
Jν1 (ω) coth

( ω

2Tν1

)
[ω − �(n2 + n4 + μ)]

×J2[ω − �(n2 + n4 + μ)]G̃μ(−ω + n4�)G̃−(ntot+μ)(ω + n3�). (B16)

Again, using Eq. (B7), and letting μ + n2 + n4 → μ, we can rewrite

J (b)
2 = − 1

2πm2

∞∑
n1,n2=−∞

gn1,2gn2,2

+∞∑
n3,n4=−∞

2∑
ν1=1

gn3,ν1 gn4,ν1

+∞∑
μ=−∞

∫ +∞

−∞
dωJν1 (ω) coth

( ω

2Tν1

)
(ω − μ�)J2(ω − μ�)

×�[G̃μ−(n2+n4 )(−ω + n4�)G̃−(μ+n1+n3 )(ω + n3�)]. (B17)

Now, recalling that n1 = n2 = 0 for ν = 2, performing the
sum over n3, n4 = ±1 in the ν1 = 1 term, and collecting J2 =
J (a)

2 + J (b)
2 we arrive at Eq. (25).

APPENDIX C: A USEFUL PROPERTY OF THE FLOQUET
COEFFICIENTS

Here we prove that, for the dynamical couplings consid-
ered in this work,

G̃μ

(
ω − μ

2
�

)
= G̃−μ

(
ω + μ

2
�

)
.

We begin by recalling the expression in Eq. (B4) for k̃±2(ω).
In addition, note that for a generic bath on contact 1 with
γ̃1(ω) = γ1φ(ω), Eq. (15) can be conveniently rewritten as

G̃μ(ω) = D0(ω)δμ,0 + λDμ(ω)
∑
p=±2

Jμ,μ−p(ω)G̃μ−p(ω),

(C1)
where we have introduced

λ = γ1

ω0
; Dμ(ω) = χ (ω + μ�),

Jμ,μ′ (ω) = iω0

4

(
ω + μ + μ′

2
�

)
φ

(
ω + μ + μ′

2
�

)
.

We now write a formal series expansion of G̃μ(ω) in powers
of λ:

G̃μ(ω) =
∑
n�0

λnG̃(n)
μ (ω), (C2)

which is plugged into Eq. (C1). Matching order-by-order in
λ a hierarchy of nested equations for the nth contribution
G̃(n)

μ (ω) is obtained. In particular, one immediately sees that

G̃(0)
0 (ω) = D0(ω) and that

G̃(n+1)
μ (ω) = Dμ(ω)

∑
p=±2

Jμ,μ−p(ω)G̃(n)
μ−p(ω). (C3)

From Eq. (C3) one can conclude that:
(1) G̃(n)

2μ+1(ω) ≡ 0 for all μ and n � 0;
(2) For given n � 0 the only possible nonzero G̃(n)

μ (ω) oc-
cur for |μ| � 2n with μ ∈ {−2n,−2n + 4, . . . , 2n − 4, 2n}.

One can picture the set of G̃(n)
μ (ω) satisfying n � 0 and

|μ| � 2n as a lattice of dots on a Pascal triangle, whose rows
are labeled by n and whose columns are labeled by μ. This
is represented in Fig. 5, where green (red) dots represent the
nonzero (zero) G̃(n)

μ (ω).
Equations (C3) can be solved recursively. As an ex-

ample, to first order one immediately finds G(1)
±2(ω) =
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FIG. 5. The Pascal triangle of dots representing the set of all
points associated with G̃(n)

μ (ω): Green (red) dots represent a nonzero
(zero) G̃(n)

μ (ω). The blue line represents one of the paths contributing

to G̃(5)
2 (ω), the yellow shaded line represent the region which con-

tains all possible distinct paths contributing to G̃(5)
2 (ω).

D±2(ω)J±2,0(ω)D0(ω). As another example, a nontrivial so-
lution for the second order is

G(2)
0 (ω) = D0(ω)J0,2(ω)D2(ω)J2,0(ω)D0(ω)

+ D0(ω)J0,−2(ω)D−2(ω)J−2,0(ω)D0(ω). (C4)

Each term in the above equation can be interpreted as a path
on the Pascal triangle, linking dots (μ, n) and (μ, n′) within
the triangle according to the simple rule |μ − μ′| = 2 and
|n − n′| = 1. To each dot a factor Dμ(ω) is associated, to each
link between dots a factor Jμ,μ′ (ω) is associated. Explicitly,
the two paths representing the terms in Eq. (C4) are (0, 2) →
(2, 1) → (0, 0) and (0, 2) → (−2, 1) → (0, 0), respectively.
Notice that the index n to the left-hand side gives the number
n of links between the n + 1 dots.

Proceeding with the recursion one quickly realizes that the
situation depicted above is general. Indeed, the term G̃(n)

μ (ω)
consists of a sum of N (n, μ) = ( n

2n−μ

4

)
terms,

G̃(n)
μ (ω) =

N (n,μ)∑
j=1

G̃(n, j)
μ (ω), (C5)

where G̃(n, j)
μ (ω) is associated to one of all the N (n, μ) distinct

paths P j (μ, n) [with 1 � j � N (n, μ)] that connect the dot
(μ, n) with (0,0) with n links that follow the rules |μ − μ′| =
2 and |n − n′| = 1 as stated above.

More formally, each path P j (μ, n) associated to G̃(n, j)
μ (ω)

can be represented by the sequence of dots

P j (μ, n) = {(
μ( j)

n , n
)
,
(
μ

( j)
n−1, n − 1

)
, . . . ,

(
μ

( j)
0 , 0

)}
,

with “fixed boundaries” μ
( j)
n ≡ μ and μ

( j)
0 = 0. One of such

path for μ = 2 and n = 5 is shown as a blue line in Fig. 5.
Then, to construct G̃(n, j)

μ (ω) we associate a term Dμν
(ω)

to each dot in the path and a term Jμν,μν+1 (ω) to each link
between consecutive dots (with 0 � ν < n) which leads to

G̃(n, j)
μ (ω) = D

μ
( j)
0

(ω)
n−1∏
ν=0

J
μ

( j)
ν ,μ

( j)
ν+1

(ω)D
μ

( j)
ν+1

(ω). (C6)

The set of all paths P (μ̄, n) = ∪N (n,μ̄)
j=1 P j contributing to

Eq. (C5) lies within a rectangular region of the Pascal triangle
(a representative example for the case μ = 2 and n = 5 is
shown as the yellow region in Fig. 5). It is simple to see that
such rectangle has vertices

A = (0, 0), B =
(

μ + 2n

2
,

2n + μ

4

)
,

C =
(

μ − 2n

2
,

2n − μ

4

)
, D = (μ, n).

To prove Eq. (B8) for the nth order term we need to
shift the argument of G̃(n)

μ (ω). To this end, it is useful to
observe that Dμ(ω + k�) = Dμ+k (ω) and Jμ,μ′ (ω + k�) =
Jμ+k,μ′+k (ω), with k an integer. Geometrically, this means that
shifting the argument of G̃(n)

μ (ω) by k� is equivalent to shift
all paths [94] that contribute to it [and hence the whole set
P (μ̄, n)] by |k|� to the right or to the left according to Sgn(k).

According to what we discussed above, let us denote
with P+ the region containing all the paths contributing to
G̃(n)

μ (ω − μ

2 �), with vertices

A+ =
(
−μ

2
, 0

)
, B+ =

(
n,

2n + μ

4

)
,

C+ =
(

−n,
2n − μ

4

)
, D+ =

(μ

2
, n

)
,

while the paths contributing to G̃(n)
−2μ(ω + μ�) belong to the

region P− with vertices

A− =
(μ

2
, 0

)
, B− =

(
n,

2n − μ

4

)
,

C− =
(

−n,
2n + μ

4

)
, D− =

(
−μ

2
, n

)
.

Observe that all the factors in Eq. (C6) actually depend only
on the ordered set {μ( j)

ν } but are invariant under any permu-
tation of the second coordinate of each lattice point. This
allows to reorder the vertices of P− in decreasing order of
their second coordinate as

A− =
(μ

2
, n

)
≡ D+, B− =

(
n,

2n + μ

4

)
≡ B+,

C− =
(

−n,
2n − μ

4

)
≡ C+, D− =

(
−μ

2
, 0

)
≡ A+.

This allows us to conclude that the two regions are actu-
ally identical. Since shifting the argument only amounts to
a rigid translation of the paths and the actual re-ordering
performed above corresponds to reading each term from right
to left rather than left to right, it follows that to each path
of G̃(n)

μ (ω − μ

2 �) identically corresponds one and only one

term of G̃(n)
−μ(ω + μ

2 �). This allows to conclude that G̃(n)
μ (ω −

μ

2 �) = G̃(n)
−μ(ω + μ

2 �) is valid ∀n. By virtue of the series
expansion in Eq. (C2), the above property is valid also for
the complete G̃μ(ω):

G̃μ

(
ω − μ

2
�

)
= G̃−μ

(
ω + μ

2
�

)
.
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APPENDIX D: NON-MARKOVIANITY CRITERION

Memory effects and non-Markovian dynamics are the sub-
ject of many studies, and several notions of non-Markovianity
have been introduced recently (see the review in Ref. [50]
and references therein). Different estimators have been inves-
tigated to witness and to quantify non-Markovianity, and these
not always are equivalent [50]. Moreover, many criteria, such
as the ones related to the trace distance, are not well-suited in
the study of asymptotic states, i.e. looking at properties in the
long time limit (like in our case of interest). There, different
estimators should be used, as discussed in Refs. [64–67]. In
particular, it has been shown that non-Markovianity can be
assessed through the violation of the divisibility condition:
the evolution is Markovian if and only if it is described by a
divisible, completely positive map. Importantly, this criterion
is valid for both finite and asymptotic times.

In Refs. [65–67] this criterion has been applied to the
case of a QHO coupled to a thermal bath at temperature T ,
exploiting the exact solution derived in Ref. [56], and the
divisibility estimator has been linked directly to the form of
the bath spectral density J (ω). We now recall the defini-
tion of this estimator, details on the derivation can be found
in Refs. [65,67]. The punctual non-Markovianity measure is
given by

Np(t ) = 1

2

[
1 − �(t )√

�2(t ) + �2(t ) + �2(t )

]
, (D1)

where �(t ), �(t ), and �(t ) are the damping, direct and
anomalous diffusion coefficients, respectively, and are com-
pletely determined by the form of the bath spectral density
J (ω). Notice that we have indicated the damping coefficient
with �(t ), instead of γ (t ) used in the original paper [67] to
avoid confusion with the quantity introduced in the main text.
Equation (D1) is valid at any time, and in particular also in
the asymptotic t → ∞ regime. It is worth noting that this
quantity is bounded 0 � Np(t ) � 1. If Np(t ) = 0, then one
has a Markovian dynamics, hence described by a separable
dynamical map. However, if Np(t ) > 0, then the divisibility
criterion is violated and the dynamics is non-Markovian. In
general, the above three time-dependent coefficients are given
by cumbersome integral expressions. However, at weak cou-
pling the above coefficients can be evaluated in closed form,
and in the asymptotic regime they read [65,67]

�(∞) = J (ω0)

2mω0
, �(∞) = �(∞) coth

( ω0

2T

)
(D2)

and

�(∞) = −P
∫ +∞

0
dω

J (ω)

πm
coth

( ω

2T

) 1

ω2 − ω2
0

, (D3)

where the integral is taken as a principal value. We underline
that, since �(∞) is positive definite, in the asymptotic regime
Np(∞) is bounded between 0 (Markovian regime) and the
maximal non-Markovianity 1/2. Hereafter, we analyze the be-
havior of Np(∞) for the case of baths with a spectral density
∝ ωs (s > 0) or with a structured Lorentzian spectral density,
which are the examples discussed in the main text. We will
show in particular that only the strictly Ohmic spectral density

FIG. 6. Punctual non-Markovianity measure in the asymptotic
regime Np for a spectral density ∝ ωs with a hard cutoff ωc. (a) Den-
sity plot of Np = Np(∞) as a function of the inverse cutoff ω0/ωc

and T/ω0 for the Ohmic s = 1 case. (b) Plot of Np as a function of s
for three different temperatures (see legend) and ωc = 104ω0.

at high temperature (classical regime) leads to Np(∞) = 0
and thus to a Markovian dynamics.

We begin considering the spectral density

J (ω) = mγω

∣∣∣ω
ω̄

∣∣∣s−1
θ (ωc − |ω|), (D4)

where θ (x) is the Heaviside θ function, which models a sub-
Ohmic (0 < s < 1), Ohmic (s = 1) or super-Ohmic (s > 1)
bath with a hard cutoff ωc. Figure 6(a) shows Np = Np(∞)
for the Ohmic s = 1 case, as a function of the (inverse) cut-
off and temperature. It is clear that only for ωc � ω0 and
T � ω0 one has Np → 0. Indeed, setting T � ω0 and eval-
uating the principal value in Eq. (D3) one finds �(∞) ≡ 0,
while in the same regime �(∞)/�(∞) = ω0

2T → 0, which
proves that Np ∝ ( ω

T )2 → 0. Away from this regime devia-
tions from the Markovianity occur, particularly in the T < ω0

(quantum) regime. It is also worth investigating the sub- and
super-Ohmic cases for large cutoff (ωc � ω0). The results are
summarized in Fig. 6(b) where Np is shown as a function of s
for three different temperatures. In all cases except the high-
temperature Ohmic one, the dynamics is non-Markovian.

We now turn to the case of a Lorentzian spectral density
with a hard cutoff,

J (ω) = md1γ1ωθ (ωc − |ω|)(
ω2 − ω2

1

)2 + γ 2
1 ω2

, (D5)

FIG. 7. Punctual non-Markovianity measure in the asymptotic
regime Np = Np(∞) for a Lorentzian spectral density with a hard
cutoff. (a) Density plot of Np as a function of the inverse cutoff
ω0/ωc and γ1 for ω1 = ω0/2 and T = 0.2ω0. (b) Plot of Np as a
function of T/ω0 for three different values of γ1 (see legend) and
ωc = 104ω0.
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discussed in Sec. IV in the large cutoff limit. Figure 7(a)
shows the non-Markovianity measure as a function of the
cutoff and the damping parameter γ1 for typical values of ω1

and T . In this case we found for Np a minimum value ≈0.36
for a broad Lorentzian peak (γ1 ≈ ω0) which increases to the
maximum Np = 1/2 when the peak is very sharp (γ1 
 ω0),
signaling a distinctly non-Markovian dynamics. Also, it is
worth noting that Np is essentially insensitive to the cutoff
when ωc > ω1. Figure 7(b) confirms that the non-Markovian
dynamics is stable against thermal effects.

APPENDIX E: WEAK COUPLING

In this Appendix we derive closed expressions for the av-
erage power and heat currents in the weak coupling regime
with respect to J1(ω). The starting point are the general forms
previously obtained for the power in Eq. (24) and for the heat
current in Eq. (25). We first need the perturbative expansion of
the Floquet coefficients in Eq. (15), which, recalling Eqs. (B3)
and (B4), can be written up to linear order in J1 as

G̃0(ω) = χ0(ω)
{

1 + i

4
[ω+γ̃1(ω+) + ω−γ̃1(ω−)]χ0(ω)

}
,

G̃±2(ω) = i

4
χ0(ω ± 2�)ω±γ̃1(ω±)χ0(ω),

G̃|m|>2 = O
(
J 2

1

)
. (E1)

Above we have introduced the bare susceptivity

χ0(ω) = − 1

ω2 − ω2
0 + iωγ̃2(ω)

, (E2)

with effective damping γ̃2(ω). Notice that this quantity fulfill
the relation

	[χ0(ω)] = ω|χ0(ω)|2�[γ̃2(ω)] = 1

m
J2(ω)|χ0(ω)|2. (E3)

Considering the average power in Eq. (24), we should evaluate
Eqs. (B9), (B12), and (B14) up to linear order in J1. The first
contribution is already linear in J1, hence, by using the zeroth
term G̃0(ω) = χ0(ω) in Eq. (E1) one has

P(a) = − �

4πm

∫ +∞

−∞
dωJ1(ω) coth

( ω

2T1

)
	[χ0(ω − �)].

Equation (B12) does not contribute, since it is at least of
second order in J1. Then, using Eq. (E3) we can write the
first-order contribution of Eq. (B14) as

P(b,2) = �

8πm

∫ +∞

−∞
dω coth

( ω

2T2

)
×	[χ0(ω)][J1(ω + �) − J1(ω − �)]. (E4)

Combining the above expressions and recalling that
coth(x/2) = 1 + 2nB(x), with nB(x) = (ex − 1)−1, we arrive
at

P = −�

∫ +∞

0

dω

2πm
	χ0(ω)

[
J1(ω+)nB

(ω+
T1

)
− J1(ω−)nB

(ω−
T1

)
+ [J1(ω−) − J1(ω+)]nB

( ω

T2

)]
. (E5)

We now focus on the average current J2 as reported in Eq. (25), with Eqs. (B15) and (B17). To this end, we can use the following
relations (valid up to linear order in J1):

|G̃0(ω)|2 = |χ0(ω)|2
{

1 − 1

2

∑
p=±

ωp	[χ0(ω)γ̃1(ωp)]

}
, (E6)

	G̃0(ω) = 	χ0(ω) + 1

4

∑
p=±

ωp{�[χ0(ω)]�[χ0(ω)γ̃1(ωp)] − 	[χ0(ω)]	[χ0(ω)γ̃1(ωp)]}. (E7)

Comparing the two above equations and recalling Eq. (E3) we can write

J2(ω)

m
|G̃0(ω)|2 = 	G̃0(ω) − 1

4m
|χ0(ω)|2

∑
p=±

J1(ωp). (E8)

Plugging these expressions into Eqs. (B15) and (B17) and using the explicit form of G̃±2(ω) in Eq. (E1) (linear in J1) we arrive
at the compact form

J2 = −
∫ +∞

−∞

dω

4πm
ωJ1(ω + �)	χ0(ω)

[
coth

(ω + �

2T1

)
− coth

( ω

2T2

)]
, (E9)

J1 =
∫ +∞

−∞

dω

4πm
(ω + �)J1(ω + �)	χ0(ω)

[
coth

(ω + �

2T1

)
− coth

( ω

2T2

)]
, (E10)

where, for the sake of completeness, we have quoted also the expression for J1 = −(P + J2).

APPENDIX F: NO HEAT ENGINE FOR OHMIC AND
SUB-OHMIC SPECTRAL FUNCTION

Here we show that when J1(ω) = mγ1ω|ω
ω̄
|s−1 and 0 <

s � 1 no working heat engine can be achieved. Note that in

this Appendix we assume that the cutoff ωc is the largest
energy scale (ωc � ω0,�). To somewhat ease the proof, we
focus on the case of a Ohmic bath for the static contact 2,
with γ̃2(ω) = γ2 
 ω0. In this regime the imaginary part of

033233-13



FABIO CAVALIERE et al. PHYSICAL REVIEW RESEARCH 4, 033233 (2022)

the bare susceptibility is well described by

Im{χ0(ω)} ≈ π

2ω0
[δ(ω − ω0) − δ(ω + ω0)]. (F1)

Plugging Eq. (F1) into Eqs. (E5), (E10), and (E9) the average power and heat currents reduce to

P = − �

4mω0

∑
p=±1

pJ1(ω0 + p�)

[
nB

(
ω0 + p�

T1

)
− nB

(ω0

T2

)]
=

∑
p=±1

P(p), (F2)

J1 = 1

4m

∑
p=±1

(
ω0 + p�

ω0

)
J1(ω0 + p�)

[
nB

(
ω0 + p�

T1

)
− nB

(ω0

T2

)]
=

∑
p=±1

J (p)
1 , (F3)

J2 = − 1

4m

∑
p=±1

J1(ω0 + p�)

[
nB

(
ω0 + p�

T1

)
− nB

(ω0

T2

)]
=

∑
p=±1

J (p)
2 . (F4)

We start observing that given Eqs. (F1) and (33) the
condition in Eq. (35) becomes f (ω0,�) > 0. The best-case
scenario, for this monotonic spectral density, occurs when
T2 → 0, as also discussed in the main text, since it minimizes
for given s,�, T1 the positive contribution ∝ [J1(ω0 + �) −
J1(ω0 − �)]nB( ω0

T2
) to the power P and thus maximizes the

power output. The condition f (ω0,�) > 0 is then equivalent
to ∑

p=±1

p(ω0 + p�)|ω0 + p�|s−1nB

(
ω0 + p�

T1

)
> 0. (F5)

Observing that (ω0 − �)nB( ω0−�
T1

) > 0 always, with some re-
arrangements the above equation becomes

fs(�) > gT1 (�), (F6)

where

fs(�) =
∣∣∣ω0 + �

ω0 − �

∣∣∣s
(F7)

gT1 (�) =
∣∣∣nB[(ω0 − �)/T1]

nB[(ω0 + �)/T1]

∣∣∣. (F8)

We first observe that both fs(�) and gT1 (ω) are continuous
functions of � except at � = ω0 where they diverge as

fs(�) ≈ (2ω0)s

|ω0 − �|s ; gT1 (�) ≈ T1(e2ω0/T1 − 1)

|ω0 − �| (F9)

when � → ω0. At least for � ≈ ω0 and 0 < s � 1 it is then
clear that fs(�) � gT1 (�) and thus no working engine can be
obtained there. To prove that this is the case for any � we
now inspect the general properties of fs(�) and gT1 (�), and
their derivatives, to show that for 0 < s � 1 Eq. (F6) cannot
be verified. Observe that

dfs(�)

d�
= s

(
2ω0

ω2
0 − �2

)
fs(�) for � �= ω0, (F10)

and

dgT1 (�)

d�
= φT1 (�)gT1 (�), (F11)

where

φT1 (�) =
{ 1+δT1 (�)

T1
if 0 < � < ω0,

δT1 (�)
T1

if � > ω0,
(F12)

with δT1 (�) = sinh(ω0/T1)/[cosh(ω0/T1) − cosh(�/T1)]. It
can be checked (not shown here) that φT1 (�) is a monoton-
ically decreasing function of T1 and that

lim
T1→∞

φT1 (�) = 2ω0

ω2
0 − �2

= 1

s fs(�)

dfs(�)

d�
, (F13)

where in the second passage we have used Eq. (F10). Thus,
we arrive at the following inequality:

dgT1 (�)

d�
>

1

s

gT1 (�)

fs(�)

dfs(�)

d�
. (F14)

Integrating Eq. (F14) from 0 to � one obtains fs(�) < gs
T1

(�)
or equivalently

fs(�)

gT1 (ω)
< gs−1

T1
(�). (F15)

Since gT1 (�) > 1 for � > 0, from the last inequality it follows
that if 0 < s � 1 one has fs(�) < gT1 (�). This is in contrast
with Eq. (F6) and this shows that f (ω0,�) < 0 and then no
engine can be achieved for 0 < s � 1.
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