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Chirality transitions in a system of active flat spinners
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We study in this work the two-dimensional dynamics of an experimental system of disk-shaped rotors,
fluidized by turbulent upflow. Contrary to previous knowledge, our experiments show the same particle chiral
geometry can produce flows with different chiralities. In particular, we unveil a conspicuous complex chiral
flow which displays multiple persistent vortices with either sign, located randomly in the system. This peculiar
phase mediates a continuous transition, which takes place as the kinetic energy input increases, from a flow with
positive chirality (one vortex rotating in the same direction as particles spin) to a flow with negative chirality
(one vortex in opposite sense to particle spin). We find that these surprising transitions are determined by the
specific state of the statistical correlations between particle-spin and translational velocity. We discuss how
these correlations are determined in turn by the combined action of a series of mechanisms (for instance, heat
dissipation at the boundaries, particle activity, average kinetic energy...), several of which are unveiled here.
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I. INTRODUCTION

Chiral fluids have received much attention in recent years
due to their complex and nontrivial dynamics. Examples can
be found in a variety of contexts and scales: biology [1],
colloids [2], granular matter [3], etc. These chiral fluids are
all composed of many particles with some kind of geometric
or dynamic asymmetry, which breaks the system symmetry
under parity and temporal inversion, i.e., they are composed
of particles whose geometrical or dynamical configuration has
chirality.

An important consequence of this chirality is that hy-
drodynamic theory for conventional fluids does not describe
the complex behavior observed in these fluids. This is so,
mainly, because an antisymmetric component of the stress
tensor (absent in regular fluids) emerges in fluids composed
of chiral particles. It is well established [4] that the antisym-
metric stress is responsible for the development of chiral flow,
which in turn can allow for the emergence of hyperuniform
structures [5,6], collective phenomena [7] such as flocking or
swarms [8], or topological effects [9]. Therefore understand-
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ing and control of the parameters that govern the complex
dynamics of these special fluids can help deepen the knowl-
edge of important biological processes and also allow for the
development of applications, such as smart materials [9,10].
However, the mechanisms that, at mesoscopic level, give rise
to the emergence of specific properties of this antisymmetric
tensor (which is related to new transport coefficients [11]) are
not well understood yet, and as a consequence, the topology
of chiral flow is usually analyzed according to the geometrical
configuration of particles alone. For instance, the role of the
fluidization state of the system and its statistical correlations
remains to be determined.

In order to analyze this important question, we study the
statistical properties in a set of macroscopic flat spinners,
which can be regarded as a simple test system that can re-
produce some important aspects of the dynamics in more
complex setups composed of active rotor particles [2,8,12–
14]. Active spinners are relevant since they allow one to study
a variety of phenomena such as chiral crystals [15], hexatic
phase [16], discontinuous chiral flow transition under density
changes [17], special topological properties [4,9,18,19], or
ferromagnetically coupled rotation [20].

More specifically, and in order to describe the dynamics
of chiral particles for a system that is more akin to biolog-
ical systems, we conduct here an investigation on the phase
behavior of a system of flat rotors with constant sign of their
average spin (i.e., constant particle chirality sign). In nature,
as it is known, most active particles have a definite chemical
and/or geometrical configuration, i.e., the chirality of most
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active particles is well defined and does not change. And this
is actually very relevant since, for instance, many isomers that
differ only in the chirality sign play significantly different
roles in the most relevant biochemical and biophysical pro-
cesses, according to particle chirality alone [21].

In several previous works, an important phenomenology
of spontaneous changes in the direction of vortex rotations
(i.e., inversion of the chirality of the flow) has been observed
[22–25]. However, this inversion appears to be always related
to different inversion mechanisms of the chirality of the con-
stituent particles. In effect, inversion of the chirality of the
flow has been reported for particles with oscillating or random
chirality, such as magnetic spinners [22] and rollers [23], and
for Janus particles [24]. Another similar but not analogous
situation has been described where, at constant particle chi-
rality sign, concentric flow rings with alternating vorticity sign
appear [25] (and thus the system does not display actual chiral
vortices but opposing alternate stream lines). In summary,
according to previous knowledge, a system of particles with
inherently constant chirality sign (as ours is) would not have
the ability to display chiral flow inversion. As an exception,
the flow chirality does not rely on particle chirality inversion
in a recent work [17]; however, flow chirality inversion was
produced exclusively under a change in the particle density
of the system. We will see that the phenomenology is actually
more complex, and a plethora of transitions at constant density
are here. We discuss that this is due to the fact that transitions
are controlled by additional variables found. Furthermore,
identification of all the relevant mechanisms in the chiral
transitions will allow us to discover a new phase and also
previously unknown properties of chiral flow transitions.

Our results reveal that, contrary to what would be expected,
inversion of flow chirality for a system of particles with con-
stant chirality sign is possible and is in general to be expected.
Furthermore, we have observed that the inversion appears
as a continuous transition that is mediated by a complex
chiral flow phase (that had remained unknown so far). This
complex chiral state is characterized by a disordered spatial
distribution of vortices of different signs and sizes. Moreover,
the transition to a flow with reverse chirality sign (i.e., flow
chirality is opposed to particle chirality) occurs when the
average translational kinetic energy of the particles is above
a threshold. Furthermore, the location of this threshold is
determined by structural changes in the statistical correlations
of the system, whose role has not previously been reported
in flow chirality transitions (and that here we characterize by
means of a theoretical analysis based on the description of the
cumulants of the single-particle distribution function, which
have not previously reported in this context either).

II. EXPERIMENTAL SETUP

We use an experimental configuration consisting of a set
of N identical, flat (disk-shaped) particles which are provided
with 14 blades, as sketched in Fig. 1(a). The dynamics in our
experiments is constrained to a horizontal perforated metallic
grid. The grid is delimited by a circular boundary of diameter
L = 10 σ , where σ = 7.25 cm is the particle diameter. Particle
mass is mp = 7.1 g, and I � (1/8) mp σ 2 = 46 g cm2 is the
moment of inertia (approximating the true value of I to that

of a homogeneous cylinder/disk). A controllable air current
impinges the arena from below.

The blades are tilted with respect to the horizontal so that a
steady clockwise average spin results from the upflow past the
particles (Fig, 1) that in turn yields vortex shedding [26], thus
inducing stochastic horizontal translations as well. Therefore,
under steady air upflow the system achieves a stationary state
with constant (rotational and translational) average particle
kinetic energy.

The average kinetic energy of the particles is monoton-
ically increasing for higher air upflow, as Fig. 1(b) shows.
Due to particle-particle collisions and upflow turbulence, the
particle spin w = wzêz is not exactly constant. Here, êz is a
unit vertical vector pointing upwards (same direction, oppo-
site sense of gravity), so that wz < 0 stands for clockwise
rotation and vice versa. Due to the designed blade tilting in
the set of identical disks, wz < 0 most times for all particles.

As a consequence of these features, the system displays a
nonequilibrium distribution function f , which for an arbitrary
state is f (r, v, w; t ) [t , is time, r is the two-dimensional (2D)
position vector, v is particle translational velocity], whose
standard deviations depend on air current intensity.

Moreover, as a result of the interplay of particle collisions
and air upflow and, due to the symmetries in the experimental
setup, the steady base states (i.e., the simplest steady states
[27]) are statistically characterized by a particle distribution
function of the form f (r, v, w). Moreover, the geometric
asymmetry of the particles [Fig. 1(a)] yields a nonvanishing
spin field of the form �(r) = �(r) êz, which will be respon-
sible for the emergence of circulating flow of the form u =
u(r) êφ , where êφ denotes the azimuthal direction. In this way,
a symmetry break arises so that the flow has chirality [28].

The marginal distribution functions used in Fig. 1 are de-
fined as

fr,w(v) = ∫
(1/n(r))dr

∫
dw f (r, v, w)δ(|v − v|),

fr,v (w) = ∫
(1/n(r))dr

∫
dv f (r, v, w)δ(wz − w), (1)

where n(r) is the particle density field. The relevant fields,
particle density n(r), flow velocity u(r), and particle average
spin �(r) are defined in Eqs. (A3) of Appendix A 2.

III. CHIRALITY TRANSITIONS

Since the sign of our particles chirality (spin) is constant,
we could only expect, from previous knowledge, that the chi-
ral fluid displays steady flows with a chirality sign that mimics
that of its constituent particles, as modeled in theoretical
works [4] and extensively reported in previous experiments.
(We can only find one previous work where a transition in
the sign is reported for particle chirality with constant sign;
the flow chirality reversal being observed as density increases
[17].) However, we have surprisingly detected that the direc-
tion of flow circulation displays a complex behavior that is
very sensitive to average kinetic energy of the particles. As we
will see, we have additionally discovered that this complexity
results from the balance between two distinct mechanisms,
namely, particle-spin-velocity statistical correlations and heat
dissipation at the outer walls.
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FIG. 1. (a) Schematic rendering of the system (left) and of one particle (right). The real trajectory of one particle is drawn in the left image,
with darker/lighter color indicating lower/higher speed, respectively. (b) Global translational kinetic energy (Tt ) vs upflow average speed (aair)
for φ = 0.25, 0.45. y axis is in log scale. As we can see, Tt ≡ 〈Tt 〉r grows exponentially with uair . Marginal distribution functions (c) of the
particle speed (v), fr,w (v) and (d) of the particle spin (w), fr,v (w). The spatial averages 〈v〉r , � ≡ 〈w〉r are indicated for each distribution
[ fr,w (v) and fr,v (w), respectively] with a vertical line with the same color as its distribution. Also, in panel (d) a black solid line is drawn
with w = 0 in order to separate the reverse (counterclockwise, in this case) spin region (w>0). Reduced 2D fields, for several Tt values:
(e–h) Reduced particle speed fluctuations U ∗(x, y) ≡ vth (x, y)/V0, with V0 = max(vth (x, y)): (e) Tt = 0.66, (f) Tt = 0.35, (g) Tt = 1.48, and
(h) Tt = 2.54. (i–l) Reduced average spin �∗(x, y) ≡ 〈w(x, y)〉/w0, with w0 = max(〈w(x, y)〉): (i) Tt = 0.66, (j) Tt = 0.35, (k) Tt = 1.48, and
(l) Tt = 2.54. In both U ∗(x, y) and �∗(x, y) color maps, brighter is higher and darker is lower; black stands for U ∗(x, y),�∗(x, y) = 0 and
white for U ∗(x, y), �∗(x, y) = 1. Tt ≡ 〈Tt 〉r is in units of mpσ

2/s2. In (e)–(l), the system boundary is marked with a thick yellow line. Area
fraction for panels (c)–(l): φ = 0.25.

For convenience, we use the notation 〈. . . 〉 =
(1/n(r))

∫
dv

∫
dw . . . f (r, v, w), where n(r) = ∫

dv
∫

dw f
(r, v, w) is the particle density. We define also the
global area fraction as φ = Nσ 2/L2 � N/100. We define

the field of translational kinetic energy fluctuations
as Tt (r) = (mp/2)〈V 2〉 [where V 2 = (v − u)2, with
u(r) = 〈v〉] and the rotational average kinetic energy as
Tr (r) = (I/2)〈w2〉. We define as well the spin kinetic energy
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fluctuations T ∗
r (r) = (I/2)〈W 2〉 [with W 2 = (w − �)2 and

�(r) = 〈w〉]. It will also be useful to denote spatial averaging
as 〈. . . 〉r = ∫

dr . . . .
Figures 1(c) and 1(d) show the marginal distribution

functions,

fr,w(v) = 〈〈δ(|v| − v)〉〉r, fr,v (w) = 〈〈δ(wz − w)〉〉r, (2)

whose first moment averages increase for increasing air cur-
rent (denoted as Tt ≡ 〈Tt 〉r). In 2, δ(x = 0) = 1 and δ(x �=
0) = 0, and |v| = (v2

x + v2
y )1/2, and w = wzêz. (See Ap-

pendix A for formal expressions of the marginal distributions
and other relevant magnitudes.)

As we can see in Figs. 1(c) and 1(d), the shapes of
the marginal distributions fr,w(v), fr,v (w) vary significantly
versus airflow intensity. In particular, the marginal spin dis-
tribution [Fig. 1(d)] displays an interesting behavior. At low
activity levels (low upflow current intensity) the spin dis-
tribution extends to positive values (counterclockwise spin).
This behavior is likely due to angular momentum transfer
upon particle collisions [29], which can momentarily reverse
particle spin. Arguably, the spin would rapidly return after
collision to its clockwise rotation, as imposed by the blades
orientation with respect to upflow. However, as upflow inten-
sity increases, clockwise torque on particle blades becomes
strong enough so as to neutralize the spin reversal mech-
anism upon particle collisions. Most notably, in the weak
driving state, the marginal distribution displays a secondary
maximum at around w = 0. In spite of all these details in
the collisional dynamics, we have consistently seen that the
average particle spin is consistently negative in all experi-
ments, i.e., we deal with a system for which the sign of the
average particle chirality is constant, always negative (clock-
wise) in this case. Therefore any possible structural changes
in the steady states cannot be due to an eventual (nonexist-
ing) change in particle chirality. Figures 1(e)–1(h), 1(i)–1(l)
the 2D density fields vth(x, y) ≡

√
〈V 2〉 and �(x, y) ≡ 〈w〉,

respectively. The (approximately) radial structure can be seen.
It is also noticeable that particles do not occupy all the avail-
able space but concentrate in the central region. This kind
of particle density behavior has not been observed at higher
density (see the corresponding Figs. 1(c)–1(l) for a higher
packing fraction in the Supplemental Material [30]). Also,
it is apparent that fluidization is weaker in the center for
both particle velocity and spin, probably due to an enhanced
cooling rate, due to more frequent particle-particle collisions
[31].

We look up now at the fluid vorticity ω. The flow velocity
u (stream lines) and vorticity (color map) are represented in
Figs. 2(a)–2(c) for different (and increasing) upflow intensi-
ties. Each panel illustrates one of the three different vorticity
behaviors we have found. It is apparent that the flow field
has a broken symmetry, since its mirror image is not iden-
tical, i.e., the flows observed here have chirality [28]. First,
in panel (a), if the system is cold enough, fluid circulates in
the same direction as the average particle spin (clockwise,
in our system). We denote this behavior as spinwise chirality
C+. Next, at intermediate activity levels [Fig. 2(b)], the sys-
tem undergoes a transitional behavior with several vortices,
each with either spinwise or counter-spinwise rotation. We

denote this as complex chirality (C±). Finally, for high driving
[Fig. 2(c)], the system achieves complete chirality reversal,
which we denote as counter-spinwise chirality (C−). These
transitions can also be seen in Movie 1 [30]. Figures 2(d)
and 2(e) analyze the behavior of the flow velocity and spin
fields. In particular, for C+ states u(r) reaches its maximum
at the midpoint between the center and system boundary,
whereas for C±, C− the maximum is reached at the system
boundary. On the other hand, the spin field �(r) increases in
magnitude for C+ but remains essentially constant for C±
and C−. In summary, both fields present a distinct behavior
for each of the cases. This could indicate that the chirality
mechanism is inherently different for the three chiral states
{C+,C±,C−}.

Let us analyze in more detail the chirality transitions in
Fig. 3. As we can see in panel (a), the spatial averages
of counter-spinwise vorticity ω+ = 〈ω �(ω)〉r and spinwise
vorticity ω− = 〈ω �(−ω)〉r (here, �(x) = 1 for x > 0 and
�(x) = 0 for x < 0) present inverse behaviors, i.e., spinwise
vorticity monotonically decreases with Tt , whereas counter-
spinwise vorticity increases monotonically. Due to this, ω+
and ω− eventually cross at a given value of Tt , that we identify
as the critical point, and is slightly different for each den-
sity [see Fig. 3(a), inset]. These values (denoted as Tc) are
shown in the inset. Partial vorticities have been reduced in
Fig. 3(a) with ω+ + |ω−| and, as we can see, in this scaled
representation the curves for different densities all collapse
if Tt < Tc but split for Tt > Tc, suggesting again that a dif-
ferent mechanism begins to govern the chirality behavior
and that this mechanism is related to emergent boundary
currents [3]. In effect, particle-wall collision frequency de-
pends on the system density, which could account for this
divergence.

The C+ → C− transition clearly has a continuous nature
(no abrupt transition from spinwise to counter-spinwise vor-
ticity is observed), because as we can see it is mediated by a
distinct and continuously changing C± phase, with several
(instead of one) vortices of both signs (Fig. 2(b), see also
Movie 2 [30]). Nevertheless, one of the signs predominates
in the C±, except at the critical point. Yet, identification of
the C± chirality is unambiguous, as the count of vortexes in
the system is higher than 1. The transitions are graphically
described in Fig. 3(b), which depicts the global vorticity ω =
ω+ + ω− in the (φ, Tt ) parameter space.

Interestingly, it is not trivial that there should be a chi-
ral transition such as the one described here, nor that this
transition should be necessarily continuous. For this reason,
the results in Figs. 2 and 3 all lead us to consider that at
least two different mechanisms compete in the phase behavior,
balancing each other to different extents in the intermediate
phase. Also, as we know, chirality emerges from an asymmet-
ric part of the stress tensor [4] that is absent in regular fluids.
One of the contributions to this asymmetric stress tensor is
proportional to the odd viscosity [11]. This odd viscosity, as
other transport coefficients, should emerge from the micro-
scopic state structure of the system, i.e., the properties of the
nonequilibrium velocity distribution function [31,32].

On the other hand, it is evident from Figs. 1(c) and 1(d) that
the distribution functions show in general significant devia-
tions from the Maxwellian, which are more apparent for weak
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(a)

(d) (e)

(b) (c)

FIG. 2. (a)–(c) Stream lines and vorticity field for three experiments with the same area fraction φ = 0.45 and Tt ≡ 〈Tt 〉r =
{0.63, 1.16, 2.65} mp(σ/s)2 for (a), (b), and (c), respectively. They represent the different chiral flow phases we have found: (a) chiral flow
with rotation in the same direction as the particle spin, or spinwise (we denote this phase as C+, clockwise in this case, and thus with negative
vorticity ω); (b) complex chiral flow (note the multiple vortices with different sense of rotation, we denote this phase as C±); and (c) a system
with counter-spinwise fluid rotation, C−. Panel (d) shows the radial profile of the flow velocity modulus u(r), each line corresponds to one of
the experiments of the previous panels. (e) The mean particle angular velocity as we get away from the center. For spinwise chirality (C+),
there is a clear gradient where particles move faster near the walls and slower in the central region; meanwhile, in complex or counter-spinwise
situations, particles maintain a steady self-rotation speed for every r, this speed being larger in magnitude the stronger the driving.

driving. These deviations off the Maxwellian have already
been qualitatively described and detected in previous works
on chiral fluids (see, for instance, [17]). However, in order to
provide a more precise and quantitative description, one has
to resort to the properties of the cumulants of the distribution
function, which additionally provide information on the statis-
tical correlations present in the system [31]. Surprisingly, the
distribution function cumulants and the statistical correlations
they describe have so far remained unreported in the context
of chiral flows. Thus, in order to investigate on the origin of
the mechanisms producing the observed chiral transitions, we
look here at the first four relevant spin or velocity moments
(cumulants are defined so that they are null for an equilibrium
Maxwellian distribution function [31], see Appendix A for
details on their derivation):

a(0)
20 (r) = 1

2

(
1

2

〈V 4〉
〈V 2〉2

− 1

)
, a(0)

02 (r) = 1

2

(
1

2

〈W 4〉
〈W 2〉2

− 1

)

a(0)
11 (r) = 1

2

( 〈V 2W 2〉
〈V 2〉〈W 2〉 − 1

)
, a(b)

00 (r) = 3

2

〈(v × w) · êϕ〉√
〈V 2〉〈W 2〉

.

(3)

The cumulant a(b)
00 in Eq. (3) [the unit vector êφ denotes

the (counterclockwise) azimuthal direction] can be regarded
as the analog of the bend coefficient in the stress tensor of
liquid crystals [28] and quantifies velocity-spin correlations
in the azimuthal direction (see Appendix A for more details).
Notice that, according to its definition in (3), a(b)

00 > 0 when
particles tend to orbit, performing a rotation in the same sense
as particles spin (i.e., the C+ phase), whereas for a(b)

00 < 0
the fluid would orbit in opposite sense to particle spin (the
C− phase). Nonchiral fluids or with chirality changing locally
would display vanishing a(b)

00 . In this way we take into account
the inherent anisotropy of the system. Also, a(0)

11 measures
correlations of the spin-velocities moduli. It is also relevant
to consider the translational and rotational kinetic energy
fluctuations ratio, Tt/T ∗

r , since this ratio indicates the degree
of particle-spin synchronization, i.e., when particles rotate at
nearly the same rate (spins synchronize), T ∗

r tends to be small
against Tt and thus Tt/T ∗

r increases.
We plot in Fig. 4(a) the trends of the cumulants a(0)

11 , a(b)
00 ,

together with Tt/T ∗
r (results for cumulants a(0)

20 and a(1)
02 do not

display a clear trend except that in general they are not small,
see SI Materials and Methods). Results for a(0)

11 (blue symbols)
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FIG. 3. (a) We have represented the fraction of total positive
(ω+, red points) and negative (|ω−|, blue points) vorticity for exper-
iments at four representative area fractions, adding a simple spline
approximating the points to show the trend, represented with lines.
The critical average kinetic energy Tc for each density is found by
calculating the crossing point of both fractions. The inset displays a
slight negative slope in the value of Tc vs φ; therefore we confirm a
C+ → C− chirality transition at constant Tt , just increasing φ [17],
but we find that Tt is the main driver of changes in the collective
rotation of spinners. (b) Chirality phase map where the color gradient
indicates the global vorticity ω ≡ ω+ + ω−, which is representative
of the dominant rotation direction. In the purple, areas where col-
lective motion goes in the same direction as the natural particle spin
(C+), experiments located in orange region have a counter-spinwise
chirality (C−). White regions are transitional areas where several
rolls of opposite direction are found (complex chirality, C±).

and a(b)
00 (inset) reveal indeed that our system features corre-

lations between rotations and translation. This coupling can
yield the C+ chirality, as sketched in Fig. 4(c). In particular,
it is interesting to note that the sign of the bend cumulant
a(b)

00 evolves from negative for low T t to positive for high T t ,
thus determining the changes of sign of the global vorticity
ω. Also, the speed-spin correlations (a(0)

11 ) mostly vanish at

higher T t , when C− chirality is predominant, with a fast
decreasing interval that roughly coincides with the transitional
C± chirality. This correlation decay is additionally accom-
panied by a notable drop (of two orders of magnitude) of
spin kinetic energy fluctuations relative to translational energy
fluctuations [set of red points, right y axis in Fig. 4(a)], as the
system increases its activity (higher T t ) and approaches the
C− chiral state. This signals a process of spin synchronization
that, apparently, allows for the decay of the C+ chiral mode.
In summary, measurements indicate that correlations between
rotation and translations at the level of the particle dynamics
have distinctive features, according to the observed chiral
phases.

The absence of correlations would not be the only factor
involved in the buildup of the C− mode. In fact, it is known
that heat dissipation at the boundaries plays a significant role
in flow chirality reversal as well [17]. In this sense we ob-
serve that, in the C± mode, counter-spinwise vortices tend to
become first predominant in the boundaries (see Fig. 2(b) and
Movie 2 [30]), which could indicate that in effect the C− mode
builds up from the boundaries. This effect has been already
detected but not directly quantified yet. Thus in Fig. 4(b) we
plot dTt/dr vs Tt as measured at the boundaries (main panel)
and vs r (inset), since the normal heat flux is proportional
to -dTt/dr [32]. We find that the heat flux undergoes a sig-
nificant increase for high Tt , coinciding with the emergence
of the C± and, afterwards, the C− mode. The increase of
heat dissipation at the boundaries indicates that wall-particle
collisions (which are inelastic [31]) are more frequent. Due to
a mechanism of tangential friction (roughness) on impact, this
favors counter-spinwise chirality after collision with the outer
walls, see diagram in Fig. 4(d), and thus the subsequent flow
chirality reversal.

However, it is important to remark that heat dissipation is
also proportional to particle collision frequency [31], which
notably drops at low densities. Therefore the chirality reversal
at low densities, as illustrated in Fig. 3(b) (for instance, in
the transitions found in the vertical lines at low densities),
can only be explained by means of the spin synchroniza-
tion mechanism that, according to our observations, is also
strong at low densities (see low-density series data in Fig. 4).
Moreover, we have found that the inversion occurs also for
boundary-frictionless systems, as reported in Movie 3 [30] of
the Supplemental Material, which reinforces the idea that tran-
sitions build up of changes in the statistical correlations and
that boundaries are not necessarily involved in these processes
(for more details on this question, see theoretical analysis in
Appendix A).

IV. CONCLUSION

In summary, we have described a system of active spinners
with a rich and nontrivial dynamical behavior whose station-
ary flows feature three different chiral modes. The transition
between these modes is controlled by the interplay of spin-
velocity correlations and boundary heat dissipation, as we
have shown; this interplay is controlled by kinetic energy fluc-
tuations (primary role) and particle density (secondary role).
In particular, it is interesting to notice that the main chiral
mode C+ (for which fluid rotation is particle spinwise) is
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FIG. 4. (a) Particle velocity-spin correlations vs Tt ≡ 〈Tt 〉r , as measured from the cumulant a(0)
11 = 1

2 ( 〈V 2W 2〉
〈V 2〉〈W 2〉 − 1) (blue series, left y axis),

and the ratio T t/T
∗
r (red series, right y axis). Inset represents cumulant a(b)

00 (dark gray color). The error bars of series of a(0)
11 , T t/T

∗
r , and

a(b)
00 points are highlighted in blueish, reddish, and gray backgrounds, respectively. The transition interval in Tt , with complex chirality, is

highlighted in yellow; a dashed line marks the chirality transition point Tc. Magnitudes are measured in different annuli of the system, each
annulus marked with a different symbol: ◦ : 0.49 σ , 
 : 1.47 σ , � : 2.45 σ , � : 3.43 σ for a(0)

11 and T t/T
∗
r and ◦ : 0.87 σ , � : 2.62 σ , × : 4.36 σ

for a(b)
00 ; area fraction is φ = 0.25. (b) Radial gradient dTt/dr [heat flux qr ∝ (dT/dr)], as a function of Tt , and measured at the boundary, i.e.,

r � 5 σ . Inset shows dTt/dr radial profiles for several values of Tt .

suppressed via a mechanism of spin synchronization and bend
coefficient reversal, eventually enhanced by heat dissipation at
the boundaries.

Let us remark here that the fact that changes in the details
of the coupling between particle translations and rotations
can induce changes in the average sign of particle chirality,
which in turn induces a transition in the sense of rotation
of the chiral flow, has been already been studied in detail
(see, for instance, [13,22–25]). However, we report now a
very different situation. That is, by means of experimental
evidence and theoretical analysis, we observed that a change
in the statistical correlations can also yield chiral flow tran-
sitions, these transitions not being mediated by a change in
the sign of particle average chirality (particle spin sign in the
case of rotors), which actually remains constant here for all
transitions.

Therefore we report here strong experimental evidence that
the sign of chiral flow is not necessarily determined by the
type of particle chirality. In fact, it is statistical correlations
between particle velocity and spin that directly determine the
sense of rotation of the chiral flow. We think this result is also
very relevant, since, as a consequence, a variety of different
chiral flows emerge now as accessible for constant chirality
particles as well.

Furthermore, the transitions between the observed chiral
modes are defect mediated and continuous (due to the new
and intermediate complex chiral phase C±), as opposed to
the transitions previously observed [17]. To be more precise
and according to our results, flow chirality defects appear
gradually (here in the form of counter-spinwise vortices), thus

yielding an intermediate and previously not reported complex
chiral phase, which we denoted as C± [see Figs. 2(a)–2(c)].
This result is also relevant since it is in close analogy to the
scenario of transitions in other systems, such as semiflexible
filament bundles [33] or two-dimensional crystals [34]. Thus,
clear links between chiral flow transitions and other systems
emerge now, in a broader context in soft matter.

Finally, our results illustrate that the set of transport coef-
ficients inherent to chiral fluids, including (but not only) odd
viscosity [4,11], would be controlled by the microscopic be-
havior (i.e., the nonequilibrium distribution function features)
of the system, just in the same way as transport coefficients
for regular fluids are [32]. Future development of a kinetic
theory for this chiral of fluids would thus provide insight on
their transport phenomena properties. We expect to fulfill this
in future work.
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APPENDIX A: STATISTICAL MECHANICS OF THE
TWO-DIMENSIONAL CHIRAL FLUID

1. Properties of the kinetic equation

Let us now consider the global features that the kinetic
equation should have for our system.

(a) First of all, particles display thermal-like translational
movement (the concept of thermal-like movement for macro-
scopic particles was probably first introduced by Kanatani see
[35]. Thus the kinetic equation should be provided with an
external forcing term Fth that is acting stochastically on each
particle. This kind of forcing is usually denoted in nonequi-
librium statistical mechanics as a stochastic thermostat [36].
In this case we consider a stochastic thermostat in the form
of a white noise [37,38], which is defined by the relations
〈Fth(t )〉 = 0, 〈Fi(t )Fj (t ′)〉 = m2ξ 2

0 δi jδ(t − t ′), and ξ 2
0 is the

forcing intensity. Notice that the forcing only correlates a
particle with itself, i.e., there is no forcing between different
particles (i.e., i �= j).

(b) Secondly, let us point out that particle activity emerges
within the rotational degrees of freedom. This activity is in-
herently chiral since it is rooted in the geometric configuration
of the particle, which here has chirality. We will denote par-
ticles geometric chirality as C, and rotational activity will be
denoted as A(C| w).

(c) Lastly, particle collisions should also be chiral since
momentum conservation laws imply, in general [31], a back-
and-forth transfer between the translational and the (here,
chiral) rotational degrees of freedom. Additionally, it cannot
be expected that active particle encounters will involve some
energy exchange 
E between the particle external dynamics
and their internal degrees of motion. Therefore collisions (en-
counters) between these active particles are inelastic, i.e., they
will not preserve energy.

Therefore, if we only consider the case of a low-density
fluid so that particle encounters occur by pairs and their pre-
collisional velocities are statistically uncorrelated, i.e., this
implies a Boltzmann-like equation [32] with an inelastic [39]
and chiral collision operator,

∂ f

∂t
+ v · ∇ f − ξ 2

0

2

∂2 f

∂v2
+ A(C| w)[ f ]

= J[r, v, (C|w); t | f , f ]. (A1)

We have tagged with the symbol C each parity-violating term
in Eq. (A1). It is not the purpose of the present work to analyze
a specific collisional model that in the case of active particles
can be rather involved [40]. However, for our purpose, it
will suffice here to consider, for instance, the feature of hard
collisions. In this case the two-particle collision operator J
would be of the form

J[r, v1, (C|w1); t | f , f ]

= σ

∫
dv2

∫
d σ̂�(g · σ̂ )(g · σ̂ )

× (b−1[
E ,C] − 1) f (r, v1, w1, t ) f (r, v2, w2, t ),
(A2)

where here g = v1 − v2, σ̂ is a unit vector along the line
joining centers of the colliding particles (with velocities and
spins vi, wi, respectively), and � is the Heaviside function.
The function b−1 operates on f in such a way that yields the
particles velocities before the collision. Thus it can be denoted
as a restituting operator [39]. As we see, it is both chiral and
inelastic, and this has a fundamental effect on the dynamics of
the system.

Also, from Eq. (A1) it is evident that there is a mathe-
matically complex coupling between the chirality in the spin
activity and chirality in the collision operator (which has a
non-trivial integro-differential form), and as a result, it cannot
be asserted that chirality of the flow field u will yield a flow
vorticity whose chirality sign will necessarily coincide with
that of (C|w) (vorticity is defined here as ω(r) = (1/2)εi j∂iu j ,
where εi j is the 2D Levi-Civita symbol).

The question of the emergence of a fluid vorticity from
a chiral flow pattern and the direction of this vorticity is the
fundamental question in the field of chiral active matter (see,
for instance, the last paragraph of Sec. B2, page 16 in [41];
or also Refs. [3,42] for instance, and most of the other ones
in the bibliography), and the analysis above illustrates the fact
that this question is not trivial and cannot depend on the sign
of particle chirality and/or activity or boundary conditions
alone. Rather, it is a combination of those together with the
collisional properties of particle-particle collisions which will
determine (a) if chiral particles will produce a chiral flow at
all and (b) if the flow chirality has the same or opposite sign
as particle chirality.

Furthermore, the chirality of the system should emerge in
the particle distribution itself, as we have explained. Therefore
the distribution function should contain variables that are able
to express this parity violations taking place in the system. We
analyze this in the next section.

2. Particle velocities distribution function

We will consider in this work stationary states only (dis-
tribution functions are time independent); thus, ∂/∂t = 0 in
(A1). Additionally, if we consider small spatial gradients,
a normal solution for f [39] should be attainable, i.e., all
of the space dependence of the distribution function can be
expressed through the relevant fields [43]. In this case, this
implies f (r, v, (C|w)) = f [n, (C|u(r)), (C|�)(r)], which
shows that chirality will be transmitted from particle to av-
erage fields level, and thus the chiral flow observed in Fig. 1.

Moreover:
(a) The distribution function f (r, v, w) will inherently

have also chirality. Thus a plausible way to describe them is
through the a vectorial coupling of v and w. For instance, the
magnitude cos α ≡ (v × w) · êφ/|v × w| would feature these
properties.

(b) f (r, v, w) should be sensitive to the sign of cos α; since
for cos α < 0 the particle-spin-velocity correlation is clock-
wise, thus favoring clockwise particle circulation and thus
clockwise flow vorticity. Conversely, for cos α > 0, counter-
clockwise flow vorticity is favored. In this way we guarantee
that f has the ability to display different flow vorticity behav-
iors for the same particle chirality (C|w).
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We define the relevant average fields, particle density n,
fluid flow u, and average particle spin �:

n(r) =
∫

dv
∫

dw f (r, v, w),

u(r) = (1/n(r))
∫

dv
∫

dw f (r, v, w)v,

�(r) = (1/n(r))
∫

dv
∫

dw f (r, v, w)w, (A3)

and Tt (translational kinetic energy fluctuations) and Tr (rota-
tional kinetic energy)

Tt (r) = mp

2n(r)

∫
dv

∫
dw f (r, v, w)(v − u(r))2,

Tr (r) = I

2n(r)

∫
dv

∫
dw f (r, v, w)w2, (A4)

with w = wz (in our 2D system), and mp, I are particle mass
and moment of inertia, respectively. We also define the spin
kinetic energy fluctuations,

T ∗
r (r) = I

2n(r)

∫
dv

∫
dw f (r, v, w)(w − �)2. (A5)

The scale of Tt and T ∗
r in our system will in general be

different.
For convenience, we define V ≡ v − u(r), W ≡ w −

�(r); V = (V · V)1/2, W = (W · W)1/2. Let us also define the
bivariate Maxwellian:

f2M (r,V ∗,W ∗)

= n(r)

(
mp

2πTt (r)

)(
I

2πT ∗
r (r)

)1/2

e− V 2

2Tt /mp e− W 2

2T ∗
r /I

≡ n(r)

(
mp

2πTt (r)

)(
I

2πT ∗
r (r)

)1/2

e−V ∗2

e−W ∗2

. (A6)

Henceforth we use the notation

V ∗ = V/(2Tt/mp)1/2 ≡ V/〈V 〉1/2,

W ∗ = W/(2T ∗
r /I )1/2 ≡ W/〈W 2〉1/2,

for j{\rm th} powers of translational velocities and angular
velocities, respectively, where we have taken into account
(A4).

We can write the distribution function as a polynomial
expansion around f2M (r,V ∗,W ∗):

f (r,V ∗,W ∗, cos α) = f2M (r,V ∗,W ∗)
∞∑

j,k,�=0

a(�)
jk L(�+�0 )

j (V ∗2)L(�+�′
0 )

k (W ∗2)P�(cos α) W(V ∗2
,V ∗2

, cos α)

= n(r)
m

2Tt (r)

(
I

2T ∗
r (r)

)1/2 ∞∑
j,k,�=0

a(�)
jk L(�+�0 )

j (V ∗2)L(�+�′
0 )

k (W ∗2)P�(cos α)(π−3/2e−V ∗2

e−W ∗2

)

× W(V ∗,W ∗, cos α),

where j, k, � are positive integers and �0, �
′
0 are (integer) con-

stants. The symbols L(�)
j (x), with � being an integer, stand for

the associated Laguerre polynomials of order ( j, �), and with
x ∈ [0,∞]. They are also commonly denoted, in the context
of kinetic theory, as Sonine polynomials [44,45]. Also, P� are
the Legendre polynomials.

The independent variable cos α characterizes particle chi-
rality and is defined here as

cos α ≡ v × w
|v × w| · êϕ = wz

vyêx − vx êy

|v||w| · êφ

= wz

w

(
vyêx − vx êy

v

)
·
(−yêx + xêy

r

)

= −sg(wz )
v · r
r v

= −sg(w)
vr

v
. (A7)

Notice, from (A7), that determination of cos α involves
also knowledge of particle position, and thus it will be consid-
ered henceforth as an integration variable that is independent
of reduced particle velocity (V ∗) and spin (W ∗). Also, notice
that these three features combined imply that in our system
cos α < 0 is to be expected for a flow whose vorticity is
counterclockwise, and hence flow rotation is the same as
particle spin. We will denote this situation as C+ (or spinwise,
SW) chiral flow phase. Conversely, for cos α > 0 it yields

clockwise vorticity, i.e., vorticity is counter-spinwise (CSW),
which we denote as C−.

The product of associated Laguerre and Legendre poly-
nomials both configure the set of orthogonal polynomials
L(�)

j (V ∗2)L(�)
k (W ∗2)(V ∗W ∗)2�P�(cos α) in (A2). Use of the

shifted Legendre polynomials [31,46] is not justified here
since, as we said, particle chirality depends on the sign of
cos α. The weight function W(V ∗,W ∗, cos α) is determined
so that ∫

dV∗
∫

dW∗
∫

d (cos α)W(V ∗,W ∗, cos α)

× (π−3/2e−V ∗2

e−W ∗2

/W ∗)

=
∫

dV∗
∫

dW∗
∫

d (cos α)wL
(�)(V ∗2)wL

(�)(W ∗2)

× wP(cos α),

where wL
(�)(x) ≡ e−xx�, wP(x) ≡ 1 are the weight functions

of the associated Laguerre and Legendre polynomials,
respectively [46], with respect to a variable x. Taking into
account that (mp/2Tt (r))

∫
dV = ∫

dV∗ = 2π
∫

V ∗dV ∗ =
π

∫ ∞
0 dV ∗2, (I/2T ∗

r (r))1/2
∫

dW = 2
∫ ∞

0 dW ∗ =∫ ∞
0 (1/W ∗)dW ∗2, we obtain W(V ∗,W ∗, cos α) =

π1/2W ∗(V ∗W ∗)2�.
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Therefore, for products of the type [L(�+�0 )
j (V ∗2)L(�+�′

0 )
k (W ∗2)P�(cos α)] × f (r,V ∗,W ∗, cos α), we obtain

∫
dV

∫
dW

∫ 1

−1
d (cos α)

[
L(�+�0 )

j (V ∗2)L(�+�′
0 )

k (W ∗2)P�(cos α)
]

f (r,V ∗,W ∗, cos α)

= n(r)
∞∑

j,k,�=0

∫ ∞

0
dV ∗2

∫ ∞

0
dW ∗2

∫ +1

−1
d (cos α)

(
L(�)

j (V ∗2)L(�)
k (W ∗2)P�(cos α)

)(
L(�′ )

j′ (V ∗2)L(�′ )
k′ (W ∗2)P�′ (cos α)

)

× e−V ∗2−W ∗2

(V ∗W ∗)2�

= n(r)
∞∑

j,k,�=0

a(�)
jk

�( j + � + 1)

j!

�(k + � + 1)

k!

2

2� + 1
δ j, j′δk,k′δ�,�′ = n(r)a(�)

jk

�( j + � + �0 + 1)

j!

�(k + � + �′
0 + 1)

k!

2

2� + 1
,

where we have taken into account the orthogonality conditions for the associated Laguerre and Legendre polynomials [46].
In order to determine the constants �0, �

′
0 we determine the integral in (A2), for j = 1, k = 0, � = 0, taking into account also

(A4)

∫
dV

∫
dW

∫
d (cos α)L(�0 )

1 (V ∗2)L(�′
0 )

0 (W ∗2)P0(cos α) f (r, v, w) =
∫

dV
∫

dW
∫

d (cos α)(1 + �0 − V ∗2) f (r, v, w)

=
(

1 + �0 − 〈V 2〉
2Tt (r)/mp

)
n(r),

[where we have used 〈. . . 〉 = (1/n(r))
∫

dV
∫

dW
∫

d (cos α)
(. . . ) f (r, v, w)] which, by comparing with (A2) leads to

2�(�0 + 2)�(�′
0 + 1)a(0)

10 = 1 + �0 − 〈V 2〉
2Tt (r)/mp

. (A8)

The equation above makes evident the convenient choice
�0 = 0, for which (A8) yields

2�(�′
0 + 1)a(0)

10 = 1 − 〈V 2〉
2Tt/mp

= 0, ⇒ a(0)
10 = 0, (A9)

since the definition of average translational kinetic energy Tt

in (A4) implies that (m/2)〈V 2〉 = Tt . We proceed analogously
to obtain a(0)

01 = 0 for �′
0 = 0.

Moreover, the choice �0, �
′
0 = 0 implies that all a(�)

j,k = 0

except for the zeroth-order contribution a(0)
00 , if the parti-

cle distribution function is a 2D Maxwellian (i.e., f = f2M).
Therefore these constants (usually called cumulants or Sonine
coefficients in the context of kinetic theory [31]) measure de-
viations from the Maxwellian (i.e., from the thermodynamic
equilibrium state).

Thus, the expansion series for our distribution function
would be written as

f (r, V, W)

= f2M (r,V,W )
∞∑

j,k,�=0

a(�)
jk L(�)

j (V ∗2)L(�)
k (W ∗2)(π1/2W ∗)

× (V ∗2W ∗2)�P�(cos α).
(A10)

Notice that for �0, �
′
0 = 0 the first three associated

Laguerre polynomials are L�
0(x) = 1, L(�)

1 (x) = (1 + �) − x,
L(�)

2 (x) = x2/2 − (2 + �)x + 1. On the other hand, the
first two Legendre polynomials are P0(y) = 1, P1(y) = y.

Thus, by replacing x → V ∗2,W ∗2 and y → cos α

and repeating the procedure in (A2), (A8) for the
polynomial combinations L(0)

2 (V ∗2)L(0)
0 (W ∗2)P0(cos α),

L(0)
0 (V ∗2)L(0)

2 (W ∗2)P0(cos α), L(0)
1 (V ∗2)L(0)

1 (W ∗2)P0(cos α),
and L(1)

0 (V ∗2)L(1)
0 (W ∗2)P1(cos α) we obtain, respectively, the

first four cumulants:

a(0)
20 (r) = 1

2

(
1

2

〈V 4〉
〈V 2〉2

− 1

)
, a(0)

02 (r) = 1

2

(
1

2

〈W 4〉
〈W 2〉2

− 1

)
,

a(0)
11 (r) = 1

2

( 〈V 2W 2〉
〈V 2〉〈W 2〉 − 1

)
, a(1)

00 (r) = 3

2

〈
v × w · êφ

|v × w|
〉
,

(A11)

where for the expression of a(1)
00 we have taken into account

our definition cos α ≡ 〈(v × w) · êφ/|v × w|〉.
The cumulant a(1)

00 characterizes particle translation-spin
correlations. However, notice that for characterization of par-
ticle translation-spin correlations we use instead the slightly
different coefficient a(b)

00 ,

a(b)
00 = 3

2 〈(v∗ × w∗) · êϕ〉, (A12)

(with v∗ ≡ v/
√

〈V 2〉 and w∗ ≡ w/
√

〈W 2〉), which retains
analogous statistical information on the relative orienta-
tion of particle translations and spin, while holding a
closer analogy to the bend coefficient used in elasticity
theory [28]. For this reason we used a(b)

00 to character-
ize translation-spin correlations in Fig. 4(a) in the main
file.

APPENDIX B: MATERIALS AND
EXPERIMENTAL METHODS

We describe in this section the experimental methods.
Additional experimental results and data, together with a

033230-10



CHIRALITY TRANSITIONS IN A SYSTEM OF ACTIVE … PHYSICAL REVIEW RESEARCH 4, 033230 (2022)

description of the experiment movies, are provided in the
Supplemental Material file and in an external data set
[30].

The particles we used in our experiments are 3D-printed
polylactic acid (PLA) disks of diameter σ = 72.5 mm and
height h = 6 mm, and they have 14 oblique blades that gen-
erate a clockwise spinning as an air flow passes through
the disk [see Fig. 1(a)]. The rotors are located on top of
a perforated steel sheet 3-mm-diameter holes in a hexag-
onal pattern, with a 3-mm spacing). This grid has been
carefully leveled and is mounted on a box that guides an
adjustable air current, generated by a fan and made homo-
geneous by means of a polyurethane foam layer; uniformity
of the airflow is verified with an anemometer, and local
deviations are found to be within ±5% of the averaged
value; mean air flows ranged from 2.2 to 3.2 m/s. Our

disks are contained inside a circular PLA border of 725 mm
diameter.

We have recorded a total of 120 experiments, carefully
varying the parameters (density and air current), each realiza-
tion consisting of two movies (filmed with a Phantom VEO
410L high-speed camera). The first has a duration of 27.75 s
and is recorded at 900 frames per second, which allows for
measuring particle spin. The second take has a duration of
∼100 s at 250 fps and is used to calculate vorticity and the
other relevant fields. Positions are calculated using a modified
version of the Crocker and Grier algorithm [47], obtaining a
spatial resolution of around 0.05% of the particle diameter.
Meanwhile, spinner angular velocities were found using a
custom method based on tracking blade luminosity, where
the accuracy in the measurement of frame-to-frame angular
displacements is ±3.5 × 10−3 rad.
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