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Toroidal magnetic molecules stripped to their basics
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Molecular magnetic toroidal moments are molecule-based structures of quantum spins that are expected to
boost magnetic storage technology and quantum computing. We study selected fictitious but typical examples of
single-molecule toroidal magnet behavior, discuss the essence of the concept, and clarify inappropriate or even
wrong assignments of physical properties. We provide an outlook that discusses necessary ingredients to the
concept of toroidicity.
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I. INTRODUCTION

Magnetic molecules constitute a fascinating class of mag-
netic materials, see, e.g., Refs. [1–5], for which in particular
two properties give rise to hope for technological applications.
The first property is the appearance of slow relaxation of the
magnetization [6–11], which would allow us to use a single
molecule as a bit of magnetic storage. The main obstacle in
the context of this paper is the appearance of temperature-
independent quantum tunneling of the magnetization due to a
tunneling gap (avoided level crossing) that opens up for non-
Kramers systems, for instance, for noncollinear arrangements
of easy anisotropy axes [12,13].

The second property is slow decoherence, which would
allow us to use a single molecule as a bit in quantum com-
puting schemes [14–25]. Here, recent efforts focus on clock
transitions, i.e., transitions where at least the first derivative of
the transition energy with respect to an external magnetic field
is zero. Such transitions are more robust against fluctuations of
the field than others and should thus exhibit longer coherence
times.

Molecular toroidal magnetic states [13,26–41] are often
advertised as a means to improve the properties for the use
as both units of single-molecule magnetic storage and quan-
tum q bits. The basic quantum states to be manipulated in
such schemes are left and right circular (chiral) orientations
of the toroidal (ground) states. One of the reasons for the
assumed improved properties is that toroidal arrangements of
spins appear less susceptible to fluctuating magnetic fields,
at least in a mean-field picture, which should shield them
from magnetic disturbances by other spins, compare discus-
sion in Ref. [42] for the related chirality in spin triangles.
This might indeed be the case but the usability of toroidal
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states and structures depends on finer details of the spin
Hamiltonian as well as on the precise coupling to disturbing
sources [43–45].

In the following, we demonstrate that quantum spin
Hamiltonians that consist of isotropic Heisenberg interac-
tion terms as well as of toroidal arrangements of single-ion
easy-axis anisotropy terms may have toroidal low-lying states
but these states do not offer any new insight compared
to systems with simple noncollinear single-ion easy-axis
anisotropy terms. The reason is that the toroidal arrangement
of single-ion easy axes can be transformed into nontoroidal ar-
rangements without altering the Hamiltonian and its spectrum.
This insight also explains that the S-shape of magnetization
curves, often taken as hallmark of toroidal systems, is not a
feature that can be used to unquestionably identify toroidal
spin systems.

Non-Kramers toroidal spin systems, i.e., systems with in-
teger total spin, practically unavoidably possess a tunneling
gap between their lowest states at B = 0. One therefore must
expect non-negligible quantum tunneling as decades of in-
vestigations of single-molecule magnets have taught us. We
present tunneling gaps for dimeric and trimeric systems. For
Kramers systems (odd number of half-integer spins), which
show no gap, transition rates between toroidal ground states
induced by small (fluctuating) fields may impact their stabil-
ity, see Ref. [13] for a recent discussion.

If toroidal states should provide concepts and prospects
beyond what we already know from single-molecule magnets
we have to ask which terms in a Hamiltonian would foster
a new behavior that is indeed intimately connected to the
concept of toroidal moments. Again in line with Ref. [13],
we think that dipolar interactions as well as Dzyaloshinskii-
Moriya interactions or anisotropic exchange in general are a
prerequisite for a magnetization dynamics where toroidicity
plays a role.

The paper is organized as follows. In Sec. II we discuss
spin Hamiltonians with toroidal arrangements of easy-axis
single-ion anisotropies together with their properties. In
Sec. III we discuss necessary prerequisites for the use of
toroidal moments in magnetic molecules. A summary is pro-
vided in Sec. IV.
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FIG. 1. The toroidal moment of a single spin is arbitrary due to
the arbitrariness of the point of reference (X). In (a) the toroidal
moment is nonzero, in (b) it is zero. The red arrow depicts a classical
spin, the brown bar symbolizes the easy-axis single-ion anisotropy
(for later use).

II. SPIN SYSTEMS WITH NONCOLLINEAR
SINGLE-ION ANISOTROPIES

A typical Hamiltonian employed for magnetic molecules
made of d elements (and used as approximation for f el-
ements) consists of a Heisenberg exchange term, a term
collecting the single-ion anisotropies, and a Zeeman term, i.e.,

H∼ = −2
∑

i< j

Ji j �s∼i · �s∼ j +
∑

i

�s∼i · Di · �s∼i

+μB �B ·
∑

i

gi �s∼i. (1)

Here operators are marked by a tilde, and Ji j denotes the
exchange parameters between spins at sites i and j. A negative
Ji j corresponds to an antiferromagnetic interaction, a positive
one to a ferromagnetic interaction. For the sake of simplic-
ity it is assumed that the spectroscopic splitting is given by
numbers gi.

Di denotes the single-ion anisotropy tensor of the spin
at site i, which, in its eigensystem �e 1

i , �e 2
i , �e 3

i , can be
decomposed as

Di = Di�e 3
i ⊗ �e 3

i + Ei
{
�e 1

i ⊗ �e 1
i − �e 2

i ⊗ �e 2
i

}
. (2)

In the following we will assume that the Ei are zero and all
Di < 0, i.e., the anisotropy is locally of pure easy axis type.1

Such a Hamiltonian is often employed when approximately
modeling, e.g., dysprosium-containing magnetic molecules
where the Dy moments experience very strong easy axes
[13,28,46]. This corresponds to large negative Di.

A toroidal moment of a set of spins is defined as

�τ∼ =
∑

i

�ri × �s∼i, (3)

where the �ri are classical position vectors of the respec-
tive spin sites with respect to a chosen point of reference.
The definition reminds one of the respective formula for the
angular momentum, and it shares with that definition the
property that the quantity contains some arbitrariness due to
the arbitrariness of the point of reference, see Fig. 1 for the
simple example of a single spin.

1Di should not be confused with a similar symbol denoting the
Dzyaloshinskii-Moriya vector. The latter is a vector and connects two
spins.
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FIG. 2. The nonzero toroidal moment of the ground state of an
antiferromagnetically coupled classical dimer defined with respect to
the center between both spins (a) can be transformed to zero (b) by
a common rotation of both easy axes (brown bars) by 90◦ about a
common axis.

A. Symmetry properties, toroidal moments,
and energy spectrum

Hamiltonian (1) possesses an interesting symmetry in view
of the concept of toroidal moments. If one rotates all easy axes
as well as the field vector by the same angle about a common
axis, the energy spectrum remains the same, and so does the
magnetization as function of temperature T and magnitude of
the field B. The reason is that the Heisenberg term is isotropic
and does not know anything about the absolute orientation of
the anisotropy tensors in space. Only the relative orientations
of the anisotropy tensors with respect to each other matter.

This is a very important and far-reaching property since it
allows us to transform a toroidal moment to a value between
a minimum and a maximum by a global rotation without
changing the energy spectrum and the magnetization. In many,
in particular symmetric, cases the toroidal moment can thus be
eventually transformed to zero.

The following graphical representations show such trans-
formations for classical spin systems for simplicity but
symmetries and transformations extend to the respective
quantum versions. The applied field is not shown; one should
keep in mind that it has to be transformed alongside.

Figure 2(a) shows the simple case of a toroidal moment of
the ground state of an antiferromagnetically coupled classical
dimer defined with respect to the center between both spins.
This moment can be transformed to zero, compare Fig. 2(b),
by a common rotation of both easy axes by 90◦ about a
common axis.

The same is true for other arrangements as, for instance,
shown in Fig. 3 for a triangular configuration that can be
transformed to zero toroidal moment without changing the
energy spectrum and the magnetization. Squares, hexagons,
etc. behave in the same way.

Therefore we can state that if a spin Hamiltonian contains
only Heisenberg interactions and single-ion anisotropy, the
concept of toroidicity is virtually meaningless insofar as it
does not offer any new insight into the magnetic properties
of the spin system. The energy spectrum as well as thermal
expectation values of magnetization, susceptibility, or heat ca-
pacity remain unchanged under the discussed transformation,
i.e., are not correlated at all with the expectation value of the
toroidal moment.
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FIG. 3. The nonzero toroidal moment of the ground state of an
antiferromagnetically coupled classical spin triangle defined with
respect to the center of the triangle (a) can be transformed to zero
(b) by a common rotation of the easy axes (brown bars) by 90◦ about
a common axis.

We demonstrate these statements on the simple example
of a spin dimer. The arrangement is similar to that of the
hexagonal ring in Ref. [28] where the easy anisotropy axes
are tilted with respect to a plane that is perpendicular to the
field along z direction, compare Fig. 4.

We evaluate the toroidal moment as well as the magnetiza-
tion, which both point along z direction, at T = 0 for a small
magnetic field. This problem, by the way, can be solved ana-
lytically [47]. For φ = 0, which corresponds to the situation
shown in Fig. 4, the ground state | ψ0 〉 has got a nonvan-
ishing toroidal moment τ0 = 〈ψ0 | τ∼

z | ψ0 〉. With increasing

φ the toroidal moment decreases steadily until it vanishes at
φ = 90◦, see Fig. 5(a). The magnetization of the ground state,
M0 = −gμB〈ψ0 | S∼

z | ψ0 〉, does not change at all and neither

does the whole energy spectrum (only ground-state energy E0

shown). This means that both the magnetization along z di-
rection as well as the powder-averaged magnetization remain
the same for all angles φ as it must be since the Hamiltonian is
not at all altered by the symmetry transformation. The result is
shown in Fig. 5(b), where the magnetization curves for φ = 0◦
and φ = 90◦ are displayed along the field.

φφ

B B

(b)(a)

FIG. 4. (a) Top view of an antiferromagnetically coupled classi-
cal dimer with slightly tilted easy axes (brown bars). The tilt angle is
seen in the side view (b). φ denotes the angle by which the anisotropy
axes are collectively rotated about the field axis.

FIG. 5. (a) Ground-state magnetization, toroidal moment, and
energy for a magnetic field of B = 0.1 T as a function of φ =
0 . . . 90◦ (appropriately scaled). Without loss of generality we choose
typical parameters J = −0.5 K, Di = −2 K, and gi = 2.0. The
anisotropy axes are tilted by 10◦ with respect to the plane perpen-
dicular to the field axis, compare Fig. 4(b). (b) Magnetization along
z and powder average as function of field strength B for T = 2 K for
the two extreme cases with φ = 0 and φ = 90◦.

B. Shape of magnetization curves

Sometimes, it is argued that a shape of the low-temperature
low-field magnetization curve, which resembles the letter S,
is a signature of a toroidal moment, see Ref. [46] for an ex-
ample. The same authors weaken their statement in Ref. [41].
As one may deduce from the previous discussion, S-shaped
magnetization curves cannot be taken as signature of toroidal
moments. In particular, cases where the toroidal moment can
be transformed to zero without altering the magnetization
curve demonstrate unquestionably that such a simple relation
cannot exist.

Figure 6 nicely demonstrates that the magnetization may
assume an S-shape, here shown for the triangle introduced
in Fig. 3. The curves show the magnetization for three
spins s = 5/2 for a strong easy-axis anisotropy D = −10 K
as function of increasing antiferromagnetic coupling, J =
0,−0.1,−0.2, · · · − 2.0 K from left to right. Bx points along
one of the easy axes. This figure does not change if the easy
axes are oriented in toroidal fashion, Fig. 3(a) or are collec-
tively rotated and point along radial directions, Fig. 3(b).
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FIG. 6. Magnetization of the triangular spin arrangement
(Fig. 3): s = 5/2, D = −10 K, curves for increasing antiferromag-
netic coupling, J = 0, −0.1, −0.2, · · · − 2.0 K from left to right. Bx

points along one of the easy axes.

In general, the situation is much more involved. It seems
that one needs a certain strength of exchange interaction com-
pared to the easy-axis anisotropy in order to obtain S-shape
magnetization curves. We provide two examples along this
line: an hourglasslike spin system that might stand for Dy6Cr
and similar compounds [41,46] and a hexagonal ring. For
simplicity, the easy axes are aligned in toroidal fashion in a
plane, see Fig. 7. When looking at these structures one should
keep in mind that the magnetization as well as other mag-
netic properties do not change, when all anisotropy tensors
are rotated by a common angle of 90◦ about the field axis.
The toroidal moment could collapse to zero under such a
transformation.

Figure 8 shows several magnetization curves along x or z
direction for various parameter sets for an hourglass molecule
and a hexagonal ring. Depending on parameters and field di-
rection the curves might resemble an S-shape or not, compare
Ref. [41] for similar experimental curves. The same also holds
for the powder average, which again would not change if all
anisotropy axes in Fig. 7 would be rotated by 90◦ about the
z-axis to point radially outwards.

Sometimes the S-shape is taken as signature of a non-
magnetic ground state, but this statement is too weak
because a nonmagnetic ground state dominates the low-field

FIG. 7. Structures of an hourglass molecule (left-hand side) and
a hexagonal ring (right-hand side). Yellow sticks represent the easy
axes; the red and blue connections represent J1 and J2 in the hour-
glass, whereas the blue connections represent J for the ring.

FIG. 8. Magnetization curves for various parameter sets as func-
tion of applied field along x or z direction for (top) an hourglass
molecule and (bottom) a hexagonal ring. z denotes the direction
perpendicular to the triangular or hexagonal planes whereas x is
in plane.

magnetization only if it is separated by a non-negligible
energy gap from magnetic states. Thus an S-shaped magneti-
zation curve signals that the low-energy spectrum is populated
with nonmagnetic states whereas magnetic states appear only
above some energy gap.

C. Tunneling gap

The key problem of toroidal arrangements of easy axes
(including the antiferromagnetic dimer discussed above) is
the tunneling gap at the avoided level crossing of the two
lowest-energy eigenstates at B = 0. This practically unavoid-
able property of many spin Hamiltonians, in particular in
case of noncollinear easy axes, not only leads to a quantum
tunneling of the magnetization [48,49], but also of the toroidal
moment. In view of the symmetry discussed above, the tunnel-
ing rates are just the same and thus a major obstacle against
bistability and thus technological use.

We provide tunneling gaps � for antiferromagnetic dimers
as well as trimers with J = −0.5 K and D as well as s in
Tables I and II, respectively. A slight prospect is provided by
the observation that the tunneling gap shrinks with increasing
easy axes anisotropy Di of the participating spins as well as
with increasing spin quantum number [50], the latter being
a good argument to use dysprosium in such compounds. We
conjecture that the major reason for this behavior is that with
increasing spin quantum number as well as with increasing D
the contribution of the single-ion anisotropy to the total energy
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TABLE I. Tunneling gaps � for antiferromagnetic dimers with
J = −0.5 K and D as well as s as given in the table. All quantities
are provided in kelvin. For real materials the accuracy of the gap is
of course not better than for J and D.

D −1.0 −2.0 −4.0 −8.0

s = 1 0.561553 0.372281 0.216990 0.116844
s = 3/2 0.227998 0.087343 0.027536 0.007767
s = 2 0.072088 0.015878 0.002738 0.000407
s = 5/2 0.019653 0.002519 0.000239 0.000019

increases. Since single-ion anisotropy is a one-body operator
this increases the anisotropy relative to the Heisenberg in-
teraction and therefore decreases the entanglement between
the spins, which is due to the Heisenberg interaction, in the
zero-field split ground states. This way the system approaches
the limit of independent, i.e., noninteracting spins, for which
there is no avoided level crossing.

But even with a very small tunneling gap or for Kramers
systems (in total odd number of spin 1/2), where � = 0, the
ground state might be very susceptible to small transverse
fields since the anisotropy axes are not collinear and ground
states are thus superpositions of basis states with various
magnetic quantum numbers, compare investigations in, e.g.,
Refs. [13,49,51–53].

III. INTERACTIONS THAT FOSTER
TOROIDAL MOMENTS

Under which circumstances is the concept of toroidal mo-
ments useful? We are convinced that one needs terms in the
Hamiltonian that break the symmetry of the discussed collec-
tive rotations. There are (at least) two options: The exchange
interactions are also anisotropic, due to contributions of, e.g.,
antisymmetric Dzyaloshinskii-Moriya interaction, dipolar in-
teraction, as well as anisotropic symmetric exchange, or the
magnetic field depends on the space coordinates and has got
cyclic character, for instance.

The following Hamiltonian contains both options:

H∼ = −2
∑

i< j

�s∼i · Ji j · �s∼ j +
∑

i

�s∼i · Di · �s∼i

+μB

∑

i

gi �B(�ri ) · �s∼i. (4)

Here Ji j is the 3 × 3 matrix of the anisotropic exchange
between spins at sites i and j.

TABLE II. Tunneling gaps � for antiferromagnetic trimers with
J = −0.5 K and D as well as s as given in the table. All quantities
are provided in kelvin. For real materials the accuracy of the gap is
of course not better than for J and D.

D −1.0 −2.0 −4.0 −8.0

s = 1 0.415911 0.161685 0.047158 0.013061
s = 3/2 0 0 0 0
s = 2 0.011954 0.001137 0.000074 0.000004
s = 5/2 0 0 0 0

FIG. 9. Magnetization along the field direction of a spin ring with
single spins s = 2 and a toroidal arrangement of easy axes as shown
in Fig. 7. (a) Comparison of magnetization curves for a ring with
ferromagnetic nearest-neighbor coupling of J = 0.5 without (red)
and with dipolar interactions (blue). (b) Comparison of magneti-
zation curves for a ring with dipolar interactions with (blue) and
without ferromagnetic nearest-neighbor coupling of J = 0.5 (green).
The field is applied in the xy plane defined by the toroidal anisotropy
axes along one of these axes.

Anisotropic exchange comprises all kinds of anisotropic
interactions, among them symmetric anisotropic exchange,
e.g., with 4d or 5d elements [54] or Kitaev interactions
[55–58] as well as antisymmetric anisotropic exchange
of Dzyaloshinskii-Moriya type [59–61] and generalizations
thereof, e.g., topological-chiral magnetic interactions [62–64].
The strength of such interactions does of course depend on
the symmetry of the chemical structure of the considered
molecules (including ligands, etc.). However, many 4d or
5d ions that show anisotropic exchange are effective dou-
blets (effective spins s = 1/2), and therefore do not possess
single-ion anisotropy. The simplest anisotropic interaction
is the dipolar interaction, which acts between all kinds of
magnetic moments and in addition to all other terms in the
Hamiltonian.

One should, however, keep in mind that the thermal sta-
bility of toroidal effects is limited by the strength of the
respective anisotropic interaction at work. For instance, if
the contribution of the dipolar interaction to the Hamiltonian
amounts to 1 K, then one cannot expect it to stabilize toroidal
states for temperatures above this scale, and such a system
will be similar to that without dipolar interactions for higher
temperatures. We demonstrate this behavior with the follow-
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FIG. 10. Artistic view of a toroidal dimer whose toroidal quan-
tum states can be driven by the field of the tunneling current of
the scanning probe microscope. Unfortunately, the estimated field of
about 10−6 T for realistic tunnel currents at the sites of the spins is
too weak for practical use.

ing example of a toroidal hexagonal ring, see right-hand side
of Fig. 7.

Figure 9 compares three scenarios. Figure 9(a) compares
the magnetization curves for a ring with a ferromagnetic
nearest-neighbor coupling of J = 0.5 without (red) and with
dipolar interactions (blue). The dipolar interaction was taken
to be realistic for a six-membered ring such as in Refs. [30,37]
(R = 3.74 Å); it acts pairwise between all spins of the ring.
One notices that the dipolar interaction indeed stabilizes the
toroidal arrangement of the ground state since the field at
which the magnetization jumps at low temperatures is shifted
to higher values. One also notices that this effect is weakened
by higher temperatures; in particular at T = 2 K it is almost
gone. It should be added here that the dipolar interaction
does not necessarily stabilize a toroidal moment; it may also
counteract.

Figure 9(b) investigates how the dipolar interaction alone
would perform compared to a combined action of ferro-
magnetic and dipolar interaction. The result is depicted by
the green curves in Fig. 9(b). They show that at least for
the discussed example the magnetization is not stabilized
against the magnetic field, which leads us to conclude that
a combined action of isotropic and anisotropic exchange is
preferential.

Finally we would like to speculate about toroidal magnetic
fields that would match toroidal states perfectly in the same
way a homogeneous field matches a collinear arrangement of
ferromagnetically aligned spins. A perfectly suited magnetic
field to pick up or initialize a toroidal moment would be the
field of a straight wire as for instance realized by the tunnel-
ing current in a scanning tunneling microscope, see artistic
view in Fig. 10. Unfortunately, such a tunneling current gen-
erates a much too weak field of only about 10−6 Tesla for
today’s STMs [65]. One could, however, employ a magnetic
tip that would initialize or pick up a toroidal moment by being
placed above one of the magnetic ions as was demonstrated
in Ref. [66].

IV. DISCUSSION AND CONCLUSIONS

There are three lessons to be learned from our
investigation.

(i) Even if a magnetic molecule possesses easy anisotropy
axes that are arranged in a toroidal fashion its properties will
not be related to possible toroidal moments if the Hamiltonian
consists dominantly of Heisenberg exchange and single-ion
anisotropy. The toroidal moment is a coincidence and does
not influence the spectrum and thermal properties.

(ii) Toroidal moments might play a role if additional
anisotropic exchange enters the Hamiltonian [13]. Then a
symmetry transform as discussed above is not possible, and
the toroidal moment might be stabilized by the anisotropic
exchange. In such a case one can hope to employ toroidal
moments for quantum devices.

(iii) In physics one can usually estimate simple figures of
merit by looking at scales. Here, the thermal stability of the
toroidal moment is given by the magnitude of the anisotropic
interactions. If these terms sum up to less than a kelvin, then
the concept of a toroidal moment is useful below a kelvin and
useless above a kelvin. Thus, we need to search for materials
where both the single-ion anisotropy as well as the anisotropic
exchange are large.
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