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Bose-Einstein condensates in quasiperiodic lattices: Bosonic Josephson junction,
self-trapping, and multimode dynamics

H. C. Prates ,1 D. A. Zezyulin ,2 and V. V. Konotop 1

1Centro de Física Teórica e Computacional and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa,
Campo Grande, 1749-016 Lisboa, Portugal

2School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia

(Received 12 May 2022; accepted 19 August 2022; published 19 September 2022)

A Bose-Einstein condensate loaded in a one-dimensional bichromatic optical lattice with constituent sublat-
tices having incommensurate periods is considered. Using the rational approximations for the incommensurate
periods, we show that below the mobility edge the localized states are distributed nearly homogeneously in the
space and explore the versatility of such potentials. We show that superposition of symmetric and antisymmetric
localized states can be used to simulate various physical dynamical regimes, known to occur in double-well
and multiwell traps. As examples, we obtain an alternative realization of a bosonic Josephson junction, whose
coherent oscillations display beatings or switching in the weakly nonlinear regime, and describe self-trapping
and four-mode dynamics, mimicking coherent oscillations and self-trapping in four-well potentials. These
phenomena can be observed for different pairs of modes, which are localized due to the interference rather
than due to a confining trap. The results obtained using few-mode approximations are compared with the direct
numerical simulations of the one-dimensional Gross-Pitaevskii equation. The localized states and the related
dynamics are found to persist for long times even in the repulsive condensates. We also described bifurcations
of the families of nonlinear modes, the symmetry breaking, and stable minigap solitons.
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I. INTRODUCTION

The interaction and evolution of two weakly coupled spa-
tially localized Bose-Einstein condensates (BECs) are one of
the basic and well-studied problems in the physics of cold
atoms. BECs confined in a double-well trap, also known as
a bosonic Josephson junction (BJJ) [1–3], is the paradigmatic
implementation of such a system. It has been observed ex-
perimentally [4], and thoroughly studied theoretically within
the quantum and mean-field two-mode models (see, e.g.,
[5–15]). The validity of the two-mode approximation was
also discussed [16]. Among various fundamental nonlinear
phenomena that can be observed in such systems in the mean-
field regime we mention coherent oscillations and nonlinear
self-trapping [5,9], spontaneous symmetry breaking [17,18],
coupled solitons [19,20], and others. A common feature of
the mentioned theoretical studies is the use of a two-mode
approach. In the mean-field approximation, this approach re-
duces the Gross-Pitaevskii equation (GPE) to a system of
two coupled nonlinear ordinary differential equations for the
amplitudes of BECs in each of the potential wells. In the one-
dimensional (1D) setting the resulting model is also known as
a nonlinear dimer [21].
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In the two-mode approximation, the role of a double-well
potential is reduced to a confining mechanism for two (or
several) low-energy states in each of the potential wells. This
results in typical two-hump distributions of two BEC clouds
spatially separated by a potential barrier. Specific character-
istics of the potentials are accounted for by the coupling
coefficient and by the effective nonlinearities. In the mean-
time, the described confining mechanism, i.e., a double-well
trap, is not the only possibility of creating desirable atomic
densities localized in space, even in the linear regime. Indeed,
the Anderson localization [22,23] in a random potential is
an example of an alternative physical mechanism enabling
spatial localization. However, unlike a double- or multiwell
trap, a random potential does not offer an easily controllable
way of centering wave packets at desirable spatial locations or
generating pairs of modes of desirable symmetries.

An easier controllable approach could be the use of bichro-
matic quasiperiodic potentials [24–29], say optical lattices
characterized by incommensurate periods of the constituent
sublattices. Furthermore, considered on a sufficiently large,
but finite-size interval (as this always occurs in an experi-
ment), a quasiperiodic potential can be viewed as a limit of
two commensurate sublattices where the ratio between the pe-
riods is a rational approximation (RA) of the irrational number
defining quasiperiodicity [24,25,30]. Thus the localization in
some sense (specified below) can be achieved even in large
enough commensurate superlattices.

These properties determine the versatility of quasiperiodic
potentials, which is explored in our work. For instance, by a
judicious choice of such a potential (or of its commensurate
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approximation), one can obtain pairs of two-hump even and
odd states, which similarly to the states in a double-well
potential can be superimposed to provide two weakly local-
ized BECs (an example of similar states was shown in [27]).
The dynamics of these two-hump states should resemble the
dynamics of a BEC in a double-well tap. Since a quasiperiodic
potential may offer a rich choice of the pairs of localized
modes, it also allows one to explore the evolution of four (or
more) weakly coupled condensates, leading to more sophisti-
cated multimode dynamical scenarios. Furthermore, unlike in
a double-well trap, in this new setting amplitude variations of
the potential are allowed to be relatively small, i.e., the optical
lattices used for its creation can be relatively shallow and
hence far from the regime of the tight-binding approximation.
Quasiperiodic potentials also enable the existence of families
of nonlinear modes which can undergo symmetry-breaking
bifurcations. In this work, we describe the above phenomena
which result from the interplay between the spatial and energy
distributions acting simultaneously, while previous publica-
tions explored effects based on the features of the energy
spectra of quasiperiodic potentials.

The paper is organized as follows. The model and the
approach based on the rational approximations (RAs) are
described in Sec. II. Characteristics of the linear modes in-
cluding those allowing for emulation of a BJJ are described
in Sec. III. The two-mode approach for the weakly linear case
and the respective BEC dynamics within the framework of
the GPE are described in Sec. IV. Analysis of the bifurcations
of families of stationary nonlinear modes, of the symmetry
breaking, and of minigap solitons sustained by an incommen-
surate bichromatic lattice, is performed in Sec. V. In Sec. VI
we derive the four-mode Hamiltonian and discuss the evolu-
tion of coupled BECs. A possible protocol for preparing the
desired localized linear states in a quasiperiodic potential are
described in Sec. VII. The outcomes are summarized in the
Conclusion.

II. THE MODEL AND ITS RATIONAL APPROXIMATIONS

Consider a 1D GPE

i
∂�

∂t
= H� + g|�|2�, H := −1

2

∂2

∂x2
+ V (x), (1)

for the dimensionless order parameter �(x, t ) which is nor-
malized such that g = +1 and g = −1 correspond to positive
and negative scattering lengths of the interatomic interactions.
We aim at considering potentials V (x), different from double-
well potentials, but by analogy with the latter ones, featuring
eigenstates of the linear eigenvalue problem

Hψ̃ (x) = μ̃ψ̃ (x) (2)

(hereafter a tilde is used to denote the linear eigenvalues
and eigenmodes) which are localized and either symmetric or
antisymmetric. Such modes correspond to atomic density dis-
tributions with two symmetric absolute maxima sufficiently
well separated from each other. The formulated task can be
implemented using a symmetric, V (x) = V (−x), quasiperi-
odic potential. To ensure two-hump profiles for the lowest
states we require V (x) to have a global maximum at x = 0
(which splits the atomic density similarly to the central barrier

in a double-well trap). One of the simplest implementations
of such a potential is a combination of two optical lattices
of amplitudes v1 > 0 and v2 > 0 and having incommensurate
spatial periods, say, π and π/ϕ, where ϕ is an irrational
number:

V (x) = Vϕ (x) := v1 cos (2x) + v2 cos (2ϕx). (3)

Thus Vϕ (x) is a quasiperiodic (alias almost periodic [31])
function. While a specific choice of ϕ is not essential for the
analysis performed below, to be specific in what follows we
use the golden ratio ϕ = (1 + √

5)/2.
In previous studies [25–28], it has been shown numerically,

that the Hamiltonian H with the potential of the type (3) may
sustain states which are well localized for energies lower than
the mobility edge (ME) μ̃ME: μ̃ < μ̃ME. The peculiarity of
our choice (3) is that such linear eigenstates are double hump.
Indeed, spatially localized (square-integrable) eigenstates of
H (considered on the whole real axis) are nondegenerate.
Thus, taking into account that for (3) a local maximum of
|ψ̃ |2 cannot be situated at the origin, the parity symmetry
implies that any state must have an even number of density
maxima, which are located symmetrically with respect to the
origin (see the examples in Fig. 2 below). Let �n be a dis-
tance that separates such maxima of nth eigenmode. Suppose
also that the size of a real condensate, we denote it by L, is
finite but much larger than �n for the majority of states with
μ̃n < μ̃ME: L � �n. Then, letting L be sufficiently large but
still finite, one can approximate any almost-periodic function
Vϕ (x) in the interval x ∈ [−L, L] by a periodic one with any
desirable accuracy (this follows directly from Bohr’s defini-
tion of an almost-periodic function [31]). In our case, such
approximation can be achieved by replacing ϕ by its RA M/N
where M and N are coprime integers (notice that the value
of N uniquely defines also the respective integer M and vice
versa). Such approximations introduce the set of Nπ -periodic
potentials [in [24] termed as periodic approximants to the
incommensurate potential Vϕ (x)]

VN (x) := v1 cos(2x) + v2 cos
(

2
M

N
x
)
. (4)

Obviously, this approximation fails in the vicinity of points
Nπ on the real axis but remains sufficiently accurate at x ∈
[−L, L] if L � Nπ . Indeed, one estimates

|VN (x) − Vϕ (x)| � 2v2L

∣∣∣∣M

N
− ϕ

∣∣∣∣. (5)

Thus |VN (x) − Vϕ (x)| → 0 for N → ∞ and L fixed.
The above estimate justifies that being interested in nonlin-

ear modes localized on a finite interval [−L/2, L/2], one can
consider the nonlinear eigenvalue problem, making the anstaz
�(x, t ) = e−iμtψ (x),

μψ = HNψ + g|ψ |2ψ, HN := −1

2

∂2

∂x2
+ VN (x) (6)

on the interval x ∈ [−Nπ/2, Nπ/2] where Nπ � L, as an
approximation for the stationary GPE with the quasiperiodic
potential (3):

μψ = Hψ + g|ψ |2ψ. (7)
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Furthermore, since for large dimension of the condensate the
effect of the boundaries, i.e., of the vicinity of the points x =
±Nπ/2, on the modes localized in the interval x ∈ [−L, L] is
negligible, in the limit of large N , the boundary conditions for
the stationary GPE (6) can be chosen at will, provided they
do not affect the symmetry of the system. Below we use the
periodic boundary conditions

�(−Nπ/2, t ) = �(Nπ/2, t ) [ψ (−Nπ/2) = ψ (Nπ/2)].
(8)

Respectively, we consider the auxiliary linear eigenvalue
problem

HN ψ̃ = μ̃ψ̃, ψ̃ (−Nπ/2) = ψ̃ (Nπ/2). (9)

One of the advantages of the periodic boundary conditions
is that with each bichromatic almost-periodic function, like
Vϕ (x) in our case, one can formally associate an infinite lattice
considering the periodic potential VN (x) on the whole real
axis. This allows us to interpret the modes of the problem
(9) as, and consequently approximate the modes of (2) by, the
Bloch functions of the periodic potential VN (x) at the center of
the Brillouin zone (i.e., at the zero Bloch quasimomentum).

As is customary, to quantify the localization of the so-
lutions we use inverse participation ratios (IPRs), however
considering them separately for portions of the condensate
located at x < 0 and at x > 0. Respectively, we introduce
numbers of atoms

N± =
∫

I (N )
±

|�(x, t )|2dx (10)

on the intervals I (N )
± defined as

I (N )
− = [−Nπ/2, 0], I (N )

+ = [0, Nπ/2] (11)

(the total number of atoms is given by N = N+ + N−), and
then introduce the left (“−”) and right (“+”) IPRs

χ± = 1

N 2±

∫
I (N )
±

|�(x, t )|4dx. (12)

Likewise, to characterize the position of the modes we use
the coordinate of the centers of mass (c.m.) of the atomic
clouds in the intervals I (N )

± :

X± = 1

N±

∫
I (N )
±

x|�(x, t )|2dx. (13)

Obviously, for symmetric and antisymmetric stationary modes
X+ = −X− (such that the separation distance introduced
above is given by � j = X+ − X−) and χ+ = χ− = 2χ , where
χ is the conventional participation ratio defined by (12) with
integration over the whole interval I (N ) = [−Nπ/2, Nπ/2].
By analogy with the usual criterion, a state is considered
localized if 1/χ± � Nπ/2.

III. LINEAR MODES

A. Localization and memory effect

We start with the analysis of the eigenmodes of underly-
ing linear problem (9). Since establishing the validity of the
approximation of Vϕ (x) by VN (x) is relevant for our approach,
below we explore two RAs of the golden ratio ϕ with five

FIG. 1. Energies of the 250 lowest linear modes (a), their center-
of-mass coordinates (b), and IPRs (c) computed for the RA N = 233.
The insets in panel (b) show the modes whose explicit shapes are
shown in Fig. 2 and which are used below for observation of the
dynamical effects. In panel (d) we compare the distribution of chem-
ical potentials and centers of mass for two RAs N = 55 shown for
x ∈ [−55π/2, 0]), and N = 233 shown for x ∈ [0, 55π/2].

and six digits of accuracy, given respectively by (M1, N1) =
(89, 55) and (M2, N2) = (377, 233). As we will see, these
approximations are accurate enough to describe the desirable
nonlinear phenomena. The results of the analysis of the linear
spectrum are summarized in Fig. 1.

In Fig. 1(a) we show the lowest part of the spectrum com-
puted numerically for N = 233. We use the lower index n to
enumerate the eigenenergies and arrange them in ascending
order: μ̃1 � μ̃2 � . . . . The shown part of the eigenspec-
trum fully covers the localized modes below the sharp ME
which is located in the gap between modes with n = 233
(the highest-energy localized mode) and n = 234 (the lowest-
energy delocalized mode) [cf. with panel (c)]. The spectrum
is characterized by groups of eigenvalues separated by mini-
gaps and by the relatively large (alias main) gaps which are
located at the modes with numbers n equal to 55, 89, 144,
and 233. The location of the largest gaps can be identified
by considering the successive RAs of ϕ since the gaps are
open at the center of boundary of the Brillouin zone of the
effective periodic potential VN (x) (this property was discussed
in [24] for the inverse of the golden ratio). Thus, in terms of
the spectrum of the periodic approximant, each RA preserves
the memory about the previous (less accurate) ones. In other
words, if N1 < N2, then in the approximation N2 one can find
information about the approximation N1. Indeed, let us start
with the spectrum shown in Fig. 1(a) which was obtained for
(M2, N2) = (377, 233). The first and the second large gaps oc-
cur, respectively, at the modes with the numbers N1 = 55 and
M1 = 89. The next large gap occurs at the mode with the num-
ber N1 + M1 = 144. Notice that N2/(N1 + M1) = 233/144 is
the RA for ϕ between the approximations N1 and N2. Thus the
first three relatively large gaps in the N2 = 233 approximation
occur exactly at the modes whose numbers are obtained from
the preceding approximations.
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FIG. 2. Two pairs of linear eigenmodes of HN with v1 = v2 =
0.8. In red and blue we plot the modes marked in Fig. 1 with the same
color, for the RA N = 55, and dashed lines are used to represent the
corresponding modes for N = 233.

This “memory effect” manifests itself not only in the spec-
trum, but also in the real space as discussed below, and it
is not restricted to the choice of the golden ratio (say, it
was recently observed in a spin-orbit BEC with incommen-
surate spin-orbit coupling and Zeeman lattice [30] with the
incommensurate relation

√
2). The spatial manifestation of the

memory effect is illustrated in Fig. 1(d). Indeed, computing
first the c.m. of the localized modes in the approximation
with N1 = 55, we observe that they cover the intervals I (55)

±
almost homogeneously [since the stationary modes are dis-
tributed symmetrically with respect to x = 0, in Fig. 1(d) we
show only the interval I (55)

− ]. The modes computed in the N2’s
approximation are shown in the interval I (55)

+ . Recalling that
the modes of the problem (9) coincide with the Bloch modes
of VN (x) at the center of Brillouin zone, one concludes that
passing on from the lower N1 approximation to the higher,
more accurate N2 = 233 approximation increases the number
of modes inside a given interval of the chemical potentials. In
the meantime, comparing the left and right parts of Fig. 2(d)
one can see that the c.m. of the modes as well as a number of
the modes on the interval I (55) are nearly the same in both
approximations. Thus, the “new” modes that appear when
one passes from N1 approximation to N2 approximation, are
almost all localized inside I (233) but outside in the interval I (55)

[this part is not shown in Fig. 1(d)]. In other words, almost
all modes of the N2 approximation inside I (55) ⊂ I (233) are
weakly deformed modes of the N1 approximation. Moreover,
the mentioned deformation is negligible for modes located
far from the interval boundaries as the examples in Fig. 2
illustrate.

B. Even and odd modes

In Fig. 1(c) we show the half-space IPRs χ± obtained for
the RA with N = 233. There exists a sharp ME located in
the energy gap between the modes with numbers n = 233 and
n = 234: All modes below the ME, i.e., those with μ̃ � μ̃N ,

are well localized, and the modes above the ME, i.e., those
with μ̃ > μ̃N , are delocalized. The dynamical effects reported
below are observed for localized modes below the ME.

Due to the symmetry of the potential and location of the ab-
solute maximum at the origin, the modes are either symmetric
or antisymmetric [see Fig. 1(d)]. In the case of a quasiperiodic
potential considered on the entire real axis, modes vanish-
ing at the infinities are nondegenerate. Therefore, modes of
N th approximation that are localized sufficiently far from
the boundaries are expected to be nondegenerate with the
number of nodes increasing with the number of the mode.
In other words, symmetric (even) and antisymmetric (odd)
modes should alternate. A relevant numerical finding is that
one can identify pairs of successive even and odd modes
corresponding to neighboring (linear) chemical potentials and
having maximal absolute values situated at approximately the
same spatial locations (like what happens in a double-well
trap). Indeed, Fig. 2 shows the profiles of two pairs of the
modes: The lowest two modes ψ̃2(x) = ψ̃2(−x) and ψ̃3(x) =
−ψ̃3(−x) (the left panels) and the modes ψ̃8(x) = ψ̃8(−x)
and ψ̃9(x) = −ψ̃9(−x) (the right panels). The spatial loca-
tions of density maxima of these modes with respect to other
localized modes in the system are shown by red and blue cir-
cles in the insets of Fig. 1(b). The symmetric modes shown in
Figs. 2(c) and 2(d) are alike an example of a mode symmetric
with respect to a potential minimum reported in [27], although
in our case these modes are even with respect to the potential
maximum.

The pairs of the modes like the ones shown in Fig. 2 allow
one to construct the distributions ( j = 2, 4, . . .)

ϕ j = ψ̃ j + ψ̃ j+1√
2

, ϕ j+1 = ψ̃ j − ψ̃ j+1√
2

(14)

which are normalized and mutually orthogonal and are local-
ized mainly in the domains x < 0 in the point X− if j is even,
and x > 0 in the point X+ if j is odd. The modes ϕ j are used
below for considering dynamical effects.

Finally, returning to the accuracy of the rational ap-
proximants VN (x), in Fig. 2 we show all modes for two
approximations: N1 = 55 and N2 = 233. One can see that
already at relatively crude approximation N1 = 55 the modes
are produced numerically with very high accuracy (the dis-
tinction between the two approximation is barely visible on
the scale of the figure).

IV. BOSONIC JOSEPHSON JUNCTION

A. Two-mode approximation

Although the localized modes constructed above share
some qualitative features, different pairs can undergo different
dynamics stemming from the significant differences in the
values of the linear and nonlinear hopping integrals of the
modes ϕ j and ϕ j+1. In particular, such integrals rapidly decay
with an increase of distance |X±| of the modes from the origin.
Therefore our first choice is the pair of modes ϕ8 and ϕ9

whose coupling is not negligibly small to ensure coherent
oscillations typical for the BJJ (cf. the location of the modes in
Fig. 2). Notice that this means that unlike in a double-well trap
where the BJJ is usually realized with the two lowest modes,
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FIG. 3. Phase portraits of (17) for (a) 	a < −1, (b) −1< 	a < 0,
(c) 0< 	a < 1, and (d) 	a > 1. The orbits I–IV and V–VIII corre-
spond to the regimes explored below using direct numerical solutions
of the GPE shown in Figs. 4 and 5.

here it will be obtained with higher modes. The approximate
analytical treatment of such BJJ, however, can replicate the
known approach elaborated for a BEC in a double-well trap
[5,9].

Indeed, consider the two-mode ansatz

�a = [a1(t )ϕ8(x) + a2(t )ϕ9(x)]e−iνt , (15)

where ν = (μ̃8 + μ̃9)/2, in the GPE (1). Since this ansatz im-
plies the approximation |a1|2 + |a2|2 = N (only two modes
are excited) one defines the population za imbalance and the
relative phase φa,

za = |a1|2 − |a2|2
N , φa = arg(a2) − arg(a1), (16)

thus obtaining the dynamical equations

dza

dτ
= −

√
1 − z2

a sin φa,
dφa

dτ
= za cos φa√

1 − z2
a

+ 	aza, (17)

where τ = (μ̃8 − μ̃7)t is the rescaled time,

	a = gNχa

μ̃9 − μ̃8
, (18)

and χa is the IPR of any of the ϕ8 and ϕ9 modes. Notice that
in our case |a1,2|2 is approximately (but not exactly) equal to
N+,−.

The system (17) coincides with the one known for a
double-well trap [5,9] and its dynamics is well studied. Its
phase portraits for different values of the parameters are
illustrated in Fig. 3. Thus, at the level of two-mode approxima-
tion there is no qualitative difference between the dynamical
regimes of a BEC in double-well trap and of the chosen couple

of modes in a quasiperiodic potential. In other words, the
considered modes in a quasiperiodic potential emulate a BJJ.
However, in contrast to the double-well setup, the quasiperi-
odic model offers a possibility to consider different pairs of
interacting modes that have different locations of absolute
maxima and hence different parameters of the two-mode ap-
proximation (17).

We illustrate this by comparing the parameters for the
modes ϕ8,9 which for the sake of brevity we call a modes
and for the modes ϕ2,3, called below b modes, for which one
deduces the system similar to (17):

dzb

dτ
= −ε

√
1 − z2

b sin φb,
dφb

dτ
= εzb cos φb√

1 − z2
b

+ ε	bzb,

(19)
where ε = (μ̃3 − μ̃2)/(μ̃9 − μ̃8), while zb, φb, and 	b are
defined for the b modes by analogy with similar definitions
for the a modes [see (16) and (18)].

As a numerical example, we choose v1 = v2 = 0.8. The
respective numerical values of the chemical potentials are
μ̃2 = −0.256 81, μ̃3 = −0.256 79, μ̃8 = −0.2519, and μ̃9 =
−0.2480. Thus weakening of the hopping integral due to
larger distances between the humps of the modes, �2,3 � �8,9,
is determined by the factor ε ≈ 0.005 greatly slowing down
the oscillations of the b modes. As a matter of fact, this
means that ϕ2,3 can be viewed as metastable localized linear
eigenstates with an anomalously long time of decay.

B. Negative scattering length

The evolution of a BEC described by the original GPE (1)
in the case of a quasiperiodic potential might be different from
that of the double-well potential, because the localization in
our case is due to the interference effect rather than due to
potential wells confining the condensate. In this and in the
next section we report the results of the numerical simulations
of the the GPE (1) with V (x) replaced by its RA V55(x) with
N = 55, for the dynamical regimes predicted by the two-mode
approximations (see Fig. 3). We use the initial condition as
follows:

�(x, 0) =
√
N
2

[√
1 + z0ϕ8(x) +

√
1 − z0eiφ0ϕ9(x)

]
, (20)

where z0 = za(0) and φ0 = φa(0) are real constants.
Starting with the case of a negative scattering length (g =

−1), we use the parameters of a cigar-shaped (transverse
size of a trap a⊥ = 5 μm) BEC of 7Li atoms (the scattering
length as = −27.6a0, where a0 is the Bohr radius), loaded in
an optical lattice of the equal amplitudes v1 and v2 as men-
tioned above, which are created by two counterpropagating
laser beams with wavelengths λ1 = 1 μm and λ2 = (N/M )λ1.
The relation between the norm N and the real number of
atoms Nat , controlling the strength of the nonlinearity, is given
by N = (2λ1as)/(πa2

⊥)Nat . The parameters of the dynam-
ical systems (17) and (19) determining the strength of the
nonlinearity are 	a ≈ −93.18N and ε	b ≈ −101.88N (the
critical value separating the dynamical regimes for a modes
	a = −1, corresponds to 288 7Li atoms).

In Fig. 4, I we show the evolution of the initial distribution
close to the self-trapping fixed point [trajectory I in Fig. 3(a)].

033219-5



PRATES, ZEZYULIN, AND KONOTOP PHYSICAL REVIEW RESEARCH 4, 033219 (2022)

FIG. 4. Numerical solutions of GPE (1) corresponding to the
orbits I–IV in Fig. 3 with 	a = −1.46 (N = 1.57×10−2) (I–III) and
	a = −0.53 (N = 5.71×10−3) (IV). The initial conditions (za, φa)
are (0.656, 0) for I and IV, (0.656, π ) for II, and (1, 0) for III. The
upper panels show the density distributions; in the middle panels we
show the population imbalance obtained from the direct numerical
solution as ζ = (N− − N+)/N (solid line) and za obtained from
the two-mode model (17) (dotted line). The lower panels in each set
show the fraction of the total number of atoms n/N obtained from
the direct simulations using (21). In the upper panels II–IV showing
the full evolution the described coherent oscillations persisted for the
whole temporal domain used in simulations: τ � 1200.

While at the initial stages τ we observe good quantitative
agreement with the two-mode model (cf. solid and dashed
lines in the second panel of Fig. 4, I), at τ � 5 for quanti-
tative and at τ ≈ 40 even qualitative discrepancy of the direct

numerical simulations with the two-mode model is observed.
Namely, switching between two fixed points corresponding to
self-trapping occurs in the real space: Atoms are transferred
from the mode ϕ8 (centered at x < 0) to ϕ9 (centered at x > 0).
The switching occurs several times until the atoms become
concentrated in the mode ϕ9. At even longer times τ � 170
oscillations corresponding to the trajectory III in Fig. 3(a) are
established. This failure of the prediction of the full dynamics
by the two-mode model can be explained by the excitation
of other localized modes upon the evolution governed by the
GPE (1) and will be discussed below in Sec. VI A. The loss of
the atoms by the initially excited states is shown in the lower
panel where the relative number of atoms

n(τ ) =
∣∣∣∣
∫

ϕ∗
8�(x, τ )dx

∣∣∣∣
2

+
∣∣∣∣
∫

ϕ∗
9�(x, τ )dx

∣∣∣∣
2

(21)

is computed for the a modes (the two-mode model corre-
sponds to n/N = 1). The newly excited modes have small
amplitudes and are not well visible in the upper panel.

Stable BJJ oscillations in the full model are also possible
and they correspond to the trajectories II–IV in Figs. 3(a) and
3(b) and shown in Fig. 4, II–IV. It turns out, however, that in
the full model, described by GPE, such oscillations are accom-
panied by beatings of the population imbalance, particularly
strong in Fig. 4, II and III, and by the frequency shift also
visible in Fig. 4, IV (cf. solid and dashed lines in the second
panels). None of this effect is captured by the two-mode
model. As above, this can be explained by excitation of the
new localized modes, thus resulting in a multimode dynamics.
We also notice that qualitatively, the oscillatory dynamics
described by the trajectories II and III within the framework of
the two-mode model is different, which is reflected in different
beating scenarios (cf. second panels in Fig. 4, II and III)]. The
trajectory II is characterized by a simple periodic exchange
of the atoms between the original pair of modes and the
newly excited ones, while in the case of the trajectory III the
population of the original modes undergoes beating itself (cf.
the lower panels in Fig. 4, II and III). Apart from the described
beating and the frequency shifts, the coherent oscillations are
sustained by the quasiperiodic potential for a sufficiently long
time used in simulations (note the different time scales of the
upper and lower panels in Fig. 4, III).

In the case of trajectory IV shown in Fig. 3(b), the two-
mode model accurately describes BJJ (even quantitatively). In
Fig. 4, IV we observe stable coherent oscillations with a slow
increase of the period of oscillations at large times.

C. Positive scattering length

Now we consider BJJ within the framework of the GPE
with positive scattering length. For the sake of definiteness,
we refer to a condensate of 87Rb atoms, loaded in the same
optical lattice as in the previous subsection. Considering as =
95.44a0, we obtain 	a ≈ 93.18N and ε	b ≈ 101.88N (the
critical parameter 	a = 1 separating the dynamical regimes
for the a modes, 	a = 1, corresponds to 83 87Rb atoms).

Typical results of numerical simulations are summarized
in Fig. 5. In Fig. 5, V we show coherent BJJ oscillations
for times τ � 100 and observe close similarities with the
case of negative scattering length shown in Fig. 4, IV. Thus,
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FIG. 5. The same as in Fig. 4, but corresponding to the orbits
V–VIII in Fig. 3, with 	a = 0.53 (N = 5.71×10−3) (V) and 	a =
1.46 (N = 1.57×10−2) (VI–VIII). The initial conditions (za, φa ) are
(0.656, 0) for V and VI, (0.656, π ) for VII, and (1, π ) for VIII.
Notice the different scales in the upper panels. In panel V the re-
pulsive interatomic interactions are week enough to lead to complete
dispersion of the wave packet on the temporal scales shown in the
full evolution in panels VI–VIII.

for the trajectories like V in Fig. 3(c), the two-mode model
gives an accurate prediction: Only a small frequency shift is
observed. The trajectories VI and VIII in Fig. 3(d), in the
full dynamics governed by the GPE reveal two phenomena.
First, one observes a frequency shift: The GPE solution has
a larger frequency compared with the two-mode model. In-
terestingly, this frequency mismatch between the models is

of the opposite sign compared with that observed for neg-
ative scattering length (see Fig. 4). It has an opposite sign
also in comparison with the frequency mismatch between the
two-mode model and the GPE solution, found previously in
[16] for the coherent oscillations in a double-well trap. This
difference can be related to the fact that here we consider
the effect of lower-energy modes 2,3 on the higher-energy
modes 8,9.

In addition to the frequency shifts in Fig. 5, VI and VIII,
we observe beating (cf. Fig. 4, II and III, respectively). Like
in the case of the negative scattering length considered above,
periodic interchange of particles in the two initial states ϕ8,9

with newly excited states is expressed in the lower panels
where variations of n/N of the order of 10% are illustrated.
In the repulsive condensate, we did not observe switching of
the trajectories in the vicinity of the self-trapping fixed point
[Fig. 3(d)]. Instead, Fig. 4, VII shows a surprisingly (given the
repulsive nonlinearity) long-living, self-trapped state which
at τ ≈ 900 delocalizes due to the effect of the interatomic
repulsion. In all the scenarios VI–VIII the evolution ends up
with the complete dispersion of the localized atomic states.
We note that no delocalization was observed for the case
shown in Fig. 4, V for the times τ � 1200.

V. NONLINEAR STATIONARY SOLUTIONS

A. Families of modes and symmetry breaking

The two-mode approximation developed above predicts
the existence of stationary self-trapping regimes which cor-
respond to fixed points of dynamical systems (17) and (19).
This prediction, however, is based on weakly nonlinear ap-
proximations expressed by the ansatz (15). In this section,
we explore the corresponding stationary modes in the frame-
work of the stationary GPE model. These regimes can be
identified as eigenstates of the nonlinear problem (6) with
periodic boundary conditions (8). In the small-amplitude limit
|ψ (x)| � 1 families of the nonlinear modes bifurcate from the
underlying linear problem (9). Standard perturbation theory
shows that for |μ − μ̃n| � 1 the shape of a nonlinear mode
ψ (x) bifurcating from a linear mode ψ̃ (x) [the latter solves
(9)] can be approximated as

ψ (x) ≈
(

μ − μ̃

gχ̃

)1/2

ψ̃ (x), (22)

where χ̃ = ∫
I (N ) ψ̃

4dx is the IPR corresponding to the under-
lying linear mode (recall that the linear modes are normalized
as

∫
I (N ) ψ̃

2dx = 1). Using this approximation, one can perform
the numerical continuation to obtain nonlinear modes of grad-
ually increasing amplitude.

First, we illustrate nonlinear solutions bifurcating from the
pair of linear modes shown in the two left panels of Fig. 2,
i.e., from b modes in terms of Sec. IV. In our simulations we
use the rational approximation with M = 377 and N = 233.
Figure 6(a) presents the dependencies N (μ) for different fam-
ilies of nonlinear modes. Attractive (g = −1) and repulsive
(g = 1) nonlinearities correspond to dependencies with neg-
ative and positive slopes, respectively. Regarding the spatial
shape of nonlinear modes, approximation (22) implies that
for either sign of the nonlinearity in the small-amplitude limit
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FIG. 6. Stationary nonlinear states bifurcating from the lin-
ear modes shown in the left panels of Fig. 2. (a) Dependencies
N (μ) computed for even (red), odd (green), and asymmetric (blue)
nonlinear modes under attractive (g = −1) and repulsive (g = 1)
nonlinearity. The inset zooms in the region corresponding to the
small-amplitude solutions bifurcating from the limit N → 0. On the
scale of the main panel, the dependencies N for even and odd modes
are indistinguishable and therefore presented by dashed lines with
alternating colors. (b) The corresponding dependencies of IPRs χ (μ)
for nonlinear even modes under attractive (g = −1) and repulsive
(g = 1) nonlinearity; vertical dashed line corresponds to the μ = μ̃.
(c) Profile of an asymmetric mode at μ = −0.3. (d) Profile of a
symmetric mode under the repulsive nonlinearity at μ ≈ −0.2543.
[In (c) and (d) only the central part of the total interval I (233) is
shown.]

the profile ψ (x) is determined by the underlying linear mode
ψ̃ (x). The numerical continuation to the region of stronger
amplitudes indicates that the impact of attractive and repul-
sive nonlinearity is significantly different. In the attractive
case (g = −1) the shape of nonlinear modes remains close to
that of the underlying linear mode. As a result, the IPR of
nonlinear modes [defined as χ = N−2

∫
I (N ) ψ

4dx and plotted
in Fig. 6(b)] does not deviate significantly from the IPR of
the underlying linear mode: The IPR only slightly increases
with the growth of N (i.e., with the decrease of μ towards the
negative infinity) which is a natural consequence of the attrac-
tive self-action. However, the repulsive nonlinearity (g = 1)
excites multiple new densely located peaks, and the increasing
number of these new peaks eventually leads to delocalization
of the nonlinear mode whose IPR decays monotonously and
eventually becomes very close to zero [see the plot with g = 1
in Fig. 6(b) and an example of an symmetric nonlinear mode
with multiple new peaks plotted in Fig. 6(d)].

Apart from even and odd nonlinear states bifurcating from
the linear modes of corresponding parity, we have also found
asymmetric modes emerging as a result of a symmetry-
breaking bifurcation that occurs for families of even and
odd modes in the attractive and repulsive cases, respec-
tively. Clearly, each asymmetric state ψ (x) has a partner state
given by ψ (−x), i.e., the bifurcations are pitchfork type. The
symmetry-breaking bifurcations occur for small but nonzero
threshold values of the total number of particles N and are
well visible in the inset in Fig. 6(a). As follows from the

FIG. 7. Stationary nonlinear states bifurcating from the linear
modes shown in right panels of Fig. 2. (a) Dependencies N (μ) com-
puted for even (red), asymmetric (blue), and odd (green) nonlinear
modes under attractive (g = −1) and repulsive (g = 1) nonlinearity.
The inset zooms in the region corresponding to the small-amplitude
solutions bifurcating from the limit N → 0. (b) The corresponding
dependencies of IPRs χ (μ) for nonlinear even and odd modes un-
der attractive (g = −1) and repulsive (g = 1) nonlinearity; vertical
dashed lines correspond to the μ = μ̃. (c) Profile of even and odd
modes at μ = −1. (d) Profile of an odd mode under the repulsive
nonlinearity at μ ≈ −0.2283. [In (c) and (d) only the central part of
the total interval I (233) is shown.]

double-mode approximation developed above, the moment of
symmetry-breaking bifurcation corresponds to the condition
|	b| = 1, and therefore the smallness of the threshold value
N is determined by the smallness of the difference |μ̃1 − μ̃2|.
The observed symmetry-breaking bifurcations strongly re-
semble those occurring in the double-well potentials, where
the lowest (even) and first excited (odd) nonlinear states
are known to undergo supercritical symmetry-breaking bi-
furcations in the attractive and repulsive cases, respectively
(see, e.g., [18,32–35]).

For nonlinear solutions bifurcating from linear modes
shown in the right panels of Fig. 2 (i.e., for a modes),
the resulting figure becomes slightly different. As shown
in Fig. 7(c), under the attractive nonlinearity the initially
two-peaked profiles eventually acquire several well-separated
peaks, so that the nonlinear profiles become multipeaked (with
different number of density peaks for even and odd modes).
The moment of emergence of new peaks corresponds to a
sharp decay of the IPRs plotted in Fig. 7(b) for g = −1.
However, even after the step decrease, the IPRs of attractive
nonlinear modes remain distinctively different from zero. As
a result, under the attractive nonlinearity the IPRs feature a
counterintuitive, nonmonotonic behavior. The emergence of
“new” peaks is related to the fact that as the chemical po-
tential decreases towards the negative infinity, the families of
nonlinear modes, bifurcating from μ̃7 and μ̃8, come past the
lower chemical potentials (respectively, the positions of the
“new” peaks are determined by positions of the density peaks
of the eigenfunctions corresponding to the lower chemical
potentials).
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The repulsive nonlinearity in Fig. 7 again leads to the
emergence of multiple densely located peaks in the profiles of
stationary modes. With the growth of N (i.e., with the increase
of the chemical potential μ), the newly emerging peaks spread
all over the entire spatial interval I (N ) and, as a result, IPRs
decrease monotonously and eventually become very close to
zero as shown in Fig. 7(b) with g = 1. An example of a non-
linear mode which already contains multiple newly excited
peaks but is not yet strongly delocalized is shown in Fig. 7(d).

B. Minigap solitons

Under the continuous change of the chemical poten-
tial, the families of localized modes cross several minigaps
and minibands. Therefore the respective stationary solutions,
considered in the truly aperiodic medium, in our case cor-
responding to the limit N → ∞, can be termed as minigap
solitons. Such solitons differ from the so-called gap solitons
in quasiperiodic potentials found previously in [36] (and in
the aperiodic discrete models [37,38]), which were obtained
for the main gaps, thus resembling the conventional matter
gap solitons in periodic media (see, e.g., [39]). Unlike gap
bright solitons, bifurcating from the Bloch state at an edge of a
linear band towards a gap, the minigap solitons bifurcate from
the localized linear modes below the ME and their chemical
potentials are not required to belong to a spectral gap. By
analogy to gap solitons, minigap solitons can be found for
both positive and negative scattering length [see families in
Fig. 7(a)].

VI. FOUR-MODE DYNAMICS

As we have shown above for BJJ and for nonlinear station-
ary solutions, when two localized modes are initially excited,
the nonlinearity excites other localized states. The effect of
such modes on the BJJ is clearly detectable, even though the
new excited modes could remain small enough during the
evolution. This raises a question about the properties of the
multimode dynamics of a condensate in a quasiperiodic lattice.
In this section, we consider the evolution of four coupled
modes and show that already such an extension of the theory
allows one to explain several phenomena observed in Figs. 4
and 5, but not captured by the two-mode model. We notice that
the use of models beyond two-mode approximation, allowing
for more accurate accounting of the properties of the BJJ in
a double-well trap has been reported before [16]. There are,
however, several significant distinctions between the modes
described below in this section and those in the double-well
trap. The modes considered here are spatially separated (in
our case �2 � �8), i.e., the impact of nonlinear interactions
is different. We consider the correction of the dynamics of
higher-energy a modes by accounting for lower-energy b
modes. Furthermore, below we present the explicit Hamilto-
nian for the four-mode evolution, allowing, for example, for
the exact (within the four-mode dynamics) analytical compu-
tation of the fixed points.

To be specific we explore the case when all four modes
ϕ2,3,8,9, shown in Fig. 2, are excited. The respective four-mode
ansatz reads

� = (a1ϕ8 + a2ϕ9 + b1ϕ2 + b2ϕ3)e−iμ0t , (23)

where μ0 = 1
4 (μ̃2 + μ̃3 + μ̃8 + μ̃9). Now the phase differ-

ences φa,b and the population imbalances within each of the
pairs of the modes za,b are defined as above [see (16)] but
with N = |a1|2 + |a2|2 + |b1|2 + |b2|2. We also introduce the
imbalance between populations of the pairs

z = 1

N (|b1|2 + |b2|2 − |a1|2 − |a2|2), (24)

as well as the phase mismatch

φ = 1
2 [arg(a2) + arg(a1) − arg(b2) − arg(b1)]. (25)

In these variables the equations for the four-mode dynamics
are governed by the Hamiltonian H = Ha + Hb + Hin where

Ha =
√

z2− − z2
a cos φa − 	a

2

(
z2

a + z2
−
)
, (26)

Hb = ε

√
z2+ − z2

b cos φb − ε	b

2

(
z2

b + z2
+
)
, (27)

z± = (1 ± z)/2 describe the population dynamics of the a and
b modes independently, while

Hin = 2ωz + w

2
(z2 − 4zazb)

−
√

(z− + za)(z+ + zb)[wa(z− + za)

+wb(z+ + zb)] cos[(φb − φa)/2 + φ]

−
√

(z− − za)(z+ − zb)[wa(z− − za)

+wb(z+ − zb)] cos[(φb − φa)/2 − φ] (28)

with

ω = μ̃2 + μ̃3 − 2μ0

2(μ̃9 − μ̃8)
= 2μ0 − μ̃8 − μ̃9

2(μ̃9 − μ̃8)
,

wa = gN
μ̃9 − μ̃8

∫
ϕ3

2ϕ8dx, wb = gN
μ̃9 − μ̃8

∫
ϕ3

8ϕ2dx,

w = gN
μ̃9 − μ̃8

∫
ϕ2

2ϕ
2
8dx,

describes interaction between a and b modes originated by the
nonlinearity.

The equations of motion are obtained as Hamiltonian equa-
tions

dza,b

dτ
= ∂H

∂φa,b
,

dφa,b

dτ
= − ∂H

∂za,b
, (29)

dz

dτ
= ∂H

∂φ
,

dφ

dτ
= −∂H

∂z
. (30)

Obviously, at zero nonlinear hopping, wa,b = w = 0, we have
Hin = 2ωz. Then φ is a cyclic variable and thus z is constant.
In this case we recover the two-mode dynamics described
previously by Eqs. (17) and (19) in the form

dza

dτ
= −

√
z2− − z2

a sin φa,
dφa

dτ
= 	az + za cos φa√

z2− − z2
a

, (31)

dzb

dτ
= −ε

√
z2+ − z2

b sin φb,
dφb

dτ
= ε	bz + εzb cos φb√

z2+ − z2
a

,

(32)

accounting for the fact that the total number of atoms N can
be distributed differently between the pairs of a and b modes
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FIG. 8. Projection of a phase trajectory of the four-mode ap-
proximation (31), (32) on the (za, φa) plane for 	a = −1.46. The
trajectory corresponds to the initial imbalance z = −0.99 (0.5% of
the population belongs to the b modes). The darker to lighter blue
colors correspond to different types of the dynamics from earlier to
later times (see the text). Light-gray lines are the phase portrait at
z = −1 (all atoms belong to the a modes). Panels (a) and (b) here
show the projections corresponding to the orbits I and II of the
underlying two-mode model in Fig. 4. The arrows mark the direction
of evolution.

as determined by z− and z+, respectively. The fixed points of
Eqs. (31) and (32) are given by

z±
a = ±

√
z2− − 1/	2

a, φa = 0, (33)

z±
b = ±

√
z2+ − 1/	2

b, φb = 0, (34)

for g = −1, and by

z±
a = ±

√
z2− − 1/	2

a, φ±
a = ±π, (35)

z±
b = ±

√
z2+ − 1/	2

b, φ±
b = ±π, (36)

for g = 1. The diversity of the dynamical regimes is now much
richer than that of the two-mode system described above. Be-
low we concentrate only on some of them allowing for a better
understanding of the limitations of the two-mode model.

A. Switching

For numerical simulations, the nonlinear coefficients ac-
quire the following values: wa ≈ ±5.81N , wb ≈ ∓9.14N
and w ≈ ±1.23N (g = ±1). We start with the four-mode gen-
eralization of the switching described in Fig. 4 and consider
the dynamical system (31), (32) with the initial condition in
which 99.5% of atoms are initially in the a modes. Since
the respective phase space is six-dimensional, to perform a
comparison with the counterpart two-mode model (17), in
Fig. 8 we show the projections of two trajectories on the
(za, φa) plane. The trajectory starting near the self-trapping
point (za, φa) = (z+

a , 0) is highly sensitive to the population
of the modes. Owing to the atoms transfer from a to b modes
the projection in Fig. 8(a) (dark blue) increases its distance
from the self-trapping point, and at some instant it becomes
alike the oscillatory trajectory III in Fig. 4. At this instant the
switching occurs. At later times there occurs another switch-
ing to the oscillations around the center (za, φa) = (0,−π )
(blue line), which is followed by the subsequent switching
(shown by a light-blue line).

FIG. 9. Numerical solution of the GPE (1) with the negative
scattering length, that corresponds to switching dynamics shown in
Fig. 8(a) for the initial data z = −0.99, za = 0.9z+

a ≈ 0.65, zb = 0,
and φa = φb = φ = 0, with N = 1.57×10−2. The upper panel
shows the density distributions; the middle panels show the popu-
lation imbalances za, zb, and z for the numerical solution (solid lines)
and the four-mode model (dotted lines); and the lower panel shows
the fraction of population on the four modes initially excited n/N
obtained from the projections on the a and b modes, analogously
to (21).

The described evolution [corresponding to the switching
between the trajectories I, II, and III in Fig. 3(a)] is confirmed
now with initial simultaneous excitation of a and b modes, as
shown in Fig. 9. In the upper panel one can see a weak b mode.
The switching between self-trapping solutions and coherent
oscillations occurs at τ ≈ 15. [Notice that the comparison
should be considered qualitative, because the initial conditions
for the dynamical systems (31), (32), and (17) are not exactly
the same].

B. Beatings

Another phenomenon, that was not captured by the
two-mode model, but can be observed in the four-mode ap-
proximation (31), (32), is beatings. In the trajectory shown
in Fig. 8(b) we observe a slow-time dynamics of changing
the amplitude of the trajectory imposed on the fast rotations
around the center. Obviously this is the effect of slow vari-
ations of z. Indeed, it follows from (19) and the definition
of the Hamiltonian, that dz/dτ ∝ wa,b,w. In other words,
such beatings are induced by the atomic exchange between
the modes.

In Fig. 10 we show the numerical comparison of the direct
numerical simulations of the GPE, with four modes initially
excited (the upper panel) with the dynamics governed by the
four-mode approximation. Comparing the solid and dashed
lines in the middle panels we conclude that beatings are in-
deed accurately predicted by the four-mode model.

C. On weakly coupled self-trapped states

An essential difference between a and b modes consists in
much weaker linear coupling of the latter ones: |μ̃3 − μ̃2| �
|μ̃9 − μ̃8|. This occurs due to greater spatial separation of
the b modes. Thus, if only one of the b states, ϕ2 or ϕ3, is
excited, one can expect that even a very weak nonlinearity will
transform it in a stable soliton. This is indeed what happens in
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FIG. 10. The same as in Fig. 9 but for the initial conditions
z = −0.99, za = 0.9z+

a ≈ 0.65, zb = 0, φa = π , and φ = φb = 0
corresponding to the trajectory in Fig. 8(b).

the direct numerical simulations illustrated in Fig. 11. For a
negative scattering length, we observe a stable soliton, whose
norm undergoes weak oscillations (about 1%) caused by the
atom exchange with small-amplitude a modes also excited at
τ = 0 [Fig. 11(a)]. This behavior strongly differs from the
switching that we observed for the a modes near the self-
trapping limit (cf. Fig. 4, I). Repulsive two-body interactions
result in long-living strongly asymmetric b modes, but after
some time τ ≈ 900 the nonlinearity results in the dispersion
of the wave packet [Fig. 11(b)].

VII. ON PREPARATION OF INITIAL STATES

Now we briefly address the issue of exciting the desired
atomic states, in particular those used in the present work.
While this task may look challenging in view of the multitude
of states having very close energies, from the theoretical per-
spective the excitation of such modes is greatly facilitated by
their nearly homogeneous spatial distribution (see Sec. III),
which implies that the states with close energies are well
separated in space. Indeed, a two-hump mode, with humps
centered at X± and considered “separately” can be expanded
over the complete set of the Gauss-Hermite functions (i.e.,
harmonic oscillator eigenstates) ξn(x) = e−x2/(2σ 2 )Hn(x/σ ),
where Hn is the nth Hermite polynomial:

�(x, 0) =
∞∑

n=0

cn[ξn(x − X−) ± ξn(x − X+)]. (37)

FIG. 11. Numerical solutions of the GPE (1) corresponding to
the dynamics of the b modes near self-trapping points for negative
(a) and positive (b) scattering lengths, N = 1.57×10−2, with the
initial data z = 0.99 (95.5% of all atoms initially in the b modes),
za = 0, zb = 0.9z+

b ≈ 0.895, φa = φ = 0 and (a) φb = 0, (b) φb = π .

FIG. 12. Numerical solutions of (1) with an initial condition (37),
evolved according to the procedure described in the text. Since such
evolution for different cases ends up different phases θ (see the text)
they are indicated in each panel. The black lines are the modes
ψ̃2,3,8,9 shown in Fig. 2. The colored solid and dotted lines represent
distributions Re �(τn) and Im �(τn), respectively. The insets show
the distributions of the atomic densities. In all panels σ = 1.3.

In Eq. (37), cn are projections of the mode over the states
ξn(x − X±) and σ > 0 is an optimization parameter. Due to
strong localization of the modes, one can find σ such that only
a few terms in (37) are essential, i.e., representing, say, above
90% of atoms of the mode. However, the linear states have
a multipeak structure, i.e., in a pure linear system two Gauss-
Hermite modes cannot generate the desired linear state, even if
the initial harmonic-oscillator states are created in the correct
locations X± before the quasiperiodic potential is switched
on. This difficulty, however, can be overcome by using weak
nonlinearity, which in the process of evolution makes the
job of creating a nonlinear stationary state (belonging to a
required family described in Sec. V) easier. After the weakly
nonlinear mode is formed, one can switch off the nonlinearity
adiabatically, thus driving the system to the linear state, from
which the respective family of the nonlinear modes bifurcates.

In Fig. 12 we illustrate direct numerical implementation of
the described procedure. At τ = 0 for the even (“+”) and odd
(“−”) modes we consider the modes n = 0, 4 for the modes
ψ̃2,3,8 and n = 0, 1 for the mode ψ̃9. Such initial condition
evolves in a BEC with a negative scattering length, where
we have chosen the attractive nonlinearity to be N = 10−3

until the instant τ = 10, after which we start to adiabati-
cally decrease the nonlinearity according to the law N (τ ) =
N (0)(1 − ατ ) where we have used α = 0.26 (recall that τ

is the slow time), until the linear regime is reached. During
such evolution the order parameter �(x, τ ) may acquire an
additional, generally speaking inhomogeneous, phase. In the
panels of Fig. 12 we indicate the values θ of such phases
computed in the points of maxima of atomic densities, i.e.,
at x where |�(x, τfin)|2 with τfin = 10 + 1/α, are maximal.
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Finally, we note that the proposed approach for prepar-
ing the desired state is not the only one, as soon as the
explored linear modes are Bloch states in the center of the
Brillouin zone of the respective superlattice approximation.
In the meantime, further improvement of the method can
be achieved by using additional optimization parameters; in
particular, phase distributions resulting in an x-independent
phase at τfin. This task, however, goes beyond the scope of
this work.

VIII. CONCLUSION

A BEC in a quasiperiodic potential is a versatile system
allowing for the observation of several phenomena which are
characterized by nonlinear dynamics of two or more coupled
BECs. In order to emulate a bosonic Josephson junction, we
considered a one-dimensional condensate in a bichromatic
optical lattice emulating a bosonic Josephson junction, re-
sembling the setting with a double-well trap, in both positive
and negative scattering lengths. Approximating the almost
periodic potential by a periodic one, we have shown that
the system possesses a memory effect when each subsequent
more accurate approximation inherits the information from all
previous rational approximations both in spectral and real-
space distribution of the modes. Below the mobility edge,
we identified different pairs of modes (even and odd ones)

allowing for constructing strongly localized linearly coupled
states, alike those known for a double-well trap, but localized
due to the interference effect rather than due to confining
potential wells. Studying the dynamics of such couples of
modes we obtained coherent oscillations, which in our case
display such additional phenomena as switching between self-
trapping and different oscillatory regimes. These phenomena
are related to the excitation of other localized modes due to
the nonlinearity, and can be captured by the four-mode model,
which was also deduced. We also discussed bifurcations of
the nonlinear stationary modes and obtained minigap solitons,
being a peculiarity of a quasiperiodic system.

The phenomena described here can also be observed in
other physical systems, such as, for example, light propaga-
tion in a quasiperiodic Kerr medium, and most likely allows
for generalization for a two-dimensional setting, which makes
the problem of fairly general interest for physical applications
beyond the theory of matter waves.
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