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Floquet engineering the band structure of materials with optimal control theory
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We demonstrate that the electronic structure of a material can be deformed into Floquet pseudobands with arbi-
trarily tailored shapes. We achieve this goal with a combination of quantum optimal control theory and Floquet
engineering. The power and versatility of this framework is demonstrated here by utilizing the independent-
electron tight-binding description of the π electronic system of graphene. We show several prototype examples
focusing on the region around the K (Dirac) point of the Brillouin zone: creation of a gap with opposing flat
valence and conduction bands, creation of a gap with opposing concave symmetric valence and conduction
bands (which would correspond to a material with an effective negative electron-hole mass), and closure of the
gap when departing from a modified graphene model with a nonzero field-free gap. We employ time-periodic
drives with several frequency components and polarizations, in contrast to the usual monochromatic fields, and
use control theory to find the amplitudes of each component that optimize the shape of the bands as desired.
In addition, we use quantum control methods to find realistic switch-on pulses that bring the material into the
predefined stationary Floquet band structure, i.e., into a state in which the desired Floquet modes of the target
bands are fully occupied, so that they should remain stroboscopically stationary, with long lifetimes, when the
weak periodic drives are started. Finally, we note that although we have focused on solid state materials, the
technique that we propose could be equally used for the Floquet engineering of ultracold atoms in optical lattices
and for other nonequilibrium dynamical and correlated systems.

DOI: 10.1103/PhysRevResearch.4.033213

I. INTRODUCTION

The possibility of preparing materials in nonequilib-
rium steady states with tailored properties by exciting
them with continuous lasers and thereby manipulating—even
designing—their electronic band structure has attracted con-
siderable experimental and theoretical interest. Floquet theory
maps the time dependence of any periodically driven system
into a structure of states in energy space that are observable
as replica bands in time-resolved angle-resolved photoemis-
sion spectroscopy (ARPES) [1–3]. A number of theoretical
works [4–8] have proposed interpreting these dressed states
or sidebands of such laser-driven materials as new quasipar-
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ticle levels and identify the nonequilibrium steady states with
the eigenstates of the Floquet operator. It is thus possible to
predict a variety of new properties of such driven material
states by analyzing the Floquet eigenstates. This has led to the
idea sometimes referred to as Floquet engineering: tailoring
the material properties with a periodic drive, by manipulat-
ing the Floquet electronic band structure. In particular, the
topology of electronic Floquet states has been discussed in
many works. The paradigmatic example is graphene under
circularly polarized irradiation, which has been theoretically
predicted [9–11] to attain the properties of a Chern insulator, a
behavior which has been partially confirmed by ultrafast elec-
tronic pump-probe measurements [12,13]. The manipulation
of other Floquet topological phases [14–25] and the engineer-
ing of topological bands [26–38] have also been proposed. For
example, using a gradient-free optimization technique, Zhang
and Gong [39] demonstrated the optimization of the Chern
numbers of a continuously driven Harper model.

Thus far, however, this field has fallen short on two im-
portant points: (i) In order to create a material with a given
property, one should not only ensure that the Floquet bands
have a particular shape, but also ensure that the electrons
occupy the relevant bands. For example, the topological
character, classified by the Chern number, is given by the
integrated Berry curvature of the bands, which depends on
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FIG. 1. Schematic diagram of the technique demonstrated in this
paper: A graphene sheet is first pumped by a switch-on pulse, that
is designed by OCT techniques to prepare the system such that the
Floquet bands induced by a periodic multicolor continuous-wave
(CW) pulse, that comes later, are populated. This time-periodic driv-
ing is also designed by OCT methods, in order to produce Floquet
bands with a given predefined shape.

the occupations of the states. (ii) The touted promise of band
engineering has been limited to creating replica bands with
hybridization gaps [1,2], instead of designing or largely mod-
ifying band structures in a stricter sense.

In this paper we address these two points by demonstrating
the design of laser pulses capable of both creating Floquet
band structures with predefined dispersion shapes and fully
controlling their occupations (see Fig. 1). These two prop-
erties, occupation and shape, are in fact controlled by two
different pulses. The occupation is determined by how a first
pulse connects the equilibrium ground state to the Floquet
state, that is to say, by how it is switched on. While some
works take note of this fact and simulate the switch-on phase
[40] and others have analyzed the role of dissipation in the
stabilization of Floquet phases [41–43], most works make
strong a priori assumptions or approximations of the occu-
pations of Floquet states. We note that a system in a single
Floquet state in principle does not absorb energy from the
periodic driving laser, which means that it can remain longer
in the Floquet state before heating up in the long-time limit.
Therefore driving protocols such as the ones discussed here
may lead to an enhancement of the prethermal steady-state
[44,45] lifetime and thus to the experimental accessibility of
Floquet state properties.

While the occupations of the bands are controlled by the
initial switch-on pulse, the shape of the Floquet band structure
is instead determined by the varying amplitudes and phases of
the different frequencies of the continuous driving pulse that
comes after the switch-on has been completed. It is important
to note that the only condition for the Floquet theorem to apply
is that the system Hamiltonian is periodic in time. There is no
restriction on the number of frequencies that can be contained
in the pulse, beyond the fact that they must be multiples of the
fundamental frequency that determines its overall periodicity.

Floquet materials engineering has emerged as a viral field
of physics and embodies all studies about how many-body

systems can be geared by a periodic drive. Apart from a
variety of proposed “well known” Floquet topological struc-
tures (such as, for example, Floquet topological insulators and
Floquet Weyl semimetals) that replicate existing equilibrium
analogs, there is a treasure trove of possible Floquet states
which have no equilibrium counterpart. Until now, however,
Floquet engineering was limited to opening band gaps and
manipulating topological phases with simple drivings. It is
to be expected that the use of more complex, multifrequency
driving will help to find those more unexpected states. Our
work points in that direction, as we will show that both the
band shapes and the band occupations can be fully controlled
by designing the driving field with optimal control theory.

Specifically, we demonstrate, as a proof of principle, how
one can design realistic multicolor driving fields that result in
predefined shapes of Floquet bands in parts of the Brillouin
zone (BZ), thereby fulfilling the promise of band engineering.
One can achieve in this way almost arbitrary band shapes
defined as control targets—and, for example, control the ef-
fective masses, which can be given a negative, zero, or positive
value. We further show that it is possible to design light fields
such that a single Floquet band is selectively occupied, thus
preparing the system in a single Floquet eigenstate. In this
way, one may prepare a steady-state electronic structure that
is entirely governed by the properties of that Floquet state. In
essence, in the following we provide a practical and efficient
theoretical framework to design at will the electronic band
structure of a material, by designing a multifrequency periodic
pumping. The approach relies on merging electronic structure
and quantum optical control theory methods in a seamless
way.

Finally, we note that by shaping the band structure, one
is effectively shaping the nature of electron correlations (e.g.,
flat bands are connected in many cases to strong electron cor-
relation effects and other rich phenomena). It is an intriguing
possibility to study the manipulation of laser-induced elec-
tronic correlations with optimal control, which we, however,
leave for future work.

In Sec. II we present the graphene model that we have used,
with and without the presence of time-dependent periodic
perturbations, that can then be described with the help of
Floquet formalism. Section III presents the combination of
optimal control theory and the Floquet formalism that we pro-
pose in order to perform Floquet engineering of the materials.
Section IV shows results for some band engineering possi-
bilities: band flattening, band curvature inversion, and gap
closing. Finally, Sec. V summarizes our conclusions.

II. MODEL

In the following we will first briefly describe the tight-
binding model of graphene that we have used and its behavior
under circularly polarized laser pumping, using Floquet
theory. This will serve as the reference system for this proof-
of-principle work.

We demonstrate the practical feasibility of true Floquet
band engineering using graphene as an example, because it
has been widely discussed in this context. We use this simple
model of independent electrons that describes the low-energy
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states of graphene [46,47]:

Hk = −τ

(
0 �(k)

�∗(k) 0

)
, (1)

where

�(k) = e−ikxa

[
1 + 2ei3kxa/2 cos

(√
3

2
kya

)]
, (2)

with a = 2.68 a.u. being the lattice constant, and τ =
0.127 a.u. This model parametrizes the π bands of graphene,
containing the linear dispersing Dirac regions around the K
points of the Brillouin zone. Upon irradiation with an electric
field (to be treated in what follows in the long-wavelength or
dipole approximation), this Hamiltonian must be modified to
include an applied time-dependent vector potential A(t ); this
can be achieved with the substitution k → k + A(t ).

For a vector potential with periodicity T = 2π/�, Floquet
theory can be applied. We start by defining the Floquet bands
εkα (also known as pseudoenergies, or pseudobands) in terms
of the eigenvalues of the evolution operator at the periodic
time T :

Uk(T )
∣∣uα

k

〉 = e−iεkαT
∣∣uα

k

〉
. (3)

Because, in our case, the basis space of the model is two
dimensional, there are only two eigenvalues per k point (α =
0, 1). However, note that the pseudobands are only defined
modulo �, such that all ε

(n)
kα

= εkα + n� (for all n ∈ Z) are
valid values. These replicas of the pseudobands are often
called sidebands. One may also define a so-called “effective”
Hamiltonian that verifies

Uk(T ) = e−iH eff
k T . (4)

It must have the same eigenstates, H eff
k |uα

k〉 = εkα|uα
k〉, also

called the Floquet modes. These can be used to expand any
solution to Schrödinger’s equation as

|ψk(t )〉 =
∑

α

fkαeiεkαt
∣∣uα

k (t )
〉
. (5)

In this equation, the time-dependent Floquet modes |uα
k (t )〉

are defined from the following propagation of the static modes
|uα

k〉 [which were defined through Eq. (3)]:

|uα
k (t )〉 = e−iεkαtUk(t )

∣∣uα
k

〉
. (6)

These modes are time periodic. The complex coefficients fkα

describe how much each Floquet state is contributing to the
dynamics, and hence we define them as the occupation of
the Floquet states. Floquet theory permits us to simplify the
treatment of periodically driven systems in the following way:
Once the evolution of the Floquet modes |uα

k (t )〉 in a single
period is known (the so-called “micromotion”), the long-term
evolution of any state can be easily obtained via Eq. (5).

For practical purposes, it is useful to decompose these
time-periodic Floquet modes into their Fourier components,

∣∣uα
k (t )

〉 =
∞∑

m=−∞
eim�t

∣∣uα
km

〉
, (7)

∣∣uα
km

〉 = 1

T

∫ T

0
dt e−im�t |ukα (t )〉, (8)

which can then be found using the following eigenvalue
equation (which must be truncated at some finite harmonic
component value):

∑
n

Hmn
k

∣∣uα
kn

〉 = εαk
∣∣uα

km

〉
, (9)

Hmn
k = �

2π

∫
2π/�

dtei(m−n)�t Hk(t ) + δmnm�, (10)

where m and n label the harmonic components of each Floquet
eigenstate and α labels the pseudoband. These Fourier modes,
which can be identified with the sidebands mentioned above,
correspond to the observed sideband Floquet states in ARPES
experiments.

The recently most widely discussed [12,48–52] case of
Floquet engineering is the possibility of endowing a material
with topological properties by applying circularly polarized
light, in particular, in the case of graphene. Figure 2(a) shows
the Floquet bands at the Dirac point of graphene under cir-
cularly polarized illumination with a 6.5 μm wavelength
(≈190 meV) and an intensity of 20 MV/m. The linear cross-
ing of the Dirac bands is deformed in the Floquet steady state
to admit a band gap (the field-free linearly crossing bands
are also shown for reference). The series of replica bands is
shown for a cut across the Dirac point in Fig. 2(d). These side-
bands are color-coded: The blue intensity is proportional to
|uα

km|, which represents the contribution of the corresponding
component in the Fourier expansion to the Floquet state. The
states, in their micromotion during a period T , oscillate with
different multiple frequencies of the fundamental one, and in
this way one can visually see what the relevant frequencies
are—which is sometimes referred to as the population of the
sidebands. It can be noted that, with increasing harmonic
number |m|, the contributions become negligibly small.

The characteristic gap opening shown in Fig. 2(a) is, for
large frequencies, inversely proportional to the frequency of
the applied light and directly proportional to the intensity [9]
(although this dependence is only valid in the high-frequency
limit). The analysis of the Berry curvature of the Floquet
modes (see Fig. 4) shows that they are nonzero and integrate
to nontrivial Chern numbers. Defined as the BZ integral of the
Berry curvature of all occupied bands, the Chern number is
a topological invariant and is connected to the observation of
the anomalous quantum Hall effect [46,53,54].

While each of the two Floquet bands of graphene under cir-
cularly polarized illumination separately integrates to a Chern
number, they have opposite signs: Unless one is completely
empty and the other one is completely occupied, the over-
all system is not in a topological phase. Instead, its steady
state would be characterized by a mixture of opposite Chern
numbers. Hence the creation of novel Floquet phases requires
control over the population of Floquet states. The band engi-
neering with the circularly polarized light in graphene shown
in Fig. 2(a) is limited to an opening of a gap at the Dirac point,
which may be controlled by the intensity of the light, but this
does not address the problem of preparing the system in a
state with the appropriate occupations. We will now discuss
how optimal control theory (OCT) can be utilized to design
pulses that control both the occupations and the shape of the
Floquet bands.
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FIG. 2. (a)–(c) Field-free bands (gray) and Floquet pseudobands (blue) of graphene, in the vicinity of the K point. The Floquet pseudobands
are computed (a) using a reference circularly polarized field (see text), (b) using fields optimized to create a gap with opposing parallel bands,
and (c) using fields optimized to create a gap with opposing concave bands. (d)–(f) Cuts through the xz plane of the previous three-dimensional
plots, displaying also the target bands in red and the series of Floquet replicas. These are color-coded: A darker blue color corresponds to
a larger Fourier component 〈uα

km|uα
km〉 [see Eqs. (7) and (8)]. (g)–(i) Fourier decomposition (left) and Lissajous plots (right) of the fields

corresponding to the pseudobands shown above. FT, Fourier transform.

III. METHOD: QUANTUM OPTIMAL CONTROL THEORY

Optimal control theory addresses the following mathe-
matical problem [55–59]: Given a dynamical system (e.g.,
Schrödinger’s equation) that can be controlled with a set
of control parameters (e.g., the frequencies and amplitudes
of an external electromagnetic field), find those parameters
that optimize the behavior of the system with respect to the
achievement of some predefined target (e.g., the population
of some given state at the end of the process). We are con-
cerned here with two different target definitions: (i) Given a
material subject to periodic fields, find the temporal shape
of those fields such that the generated Floquet pseudobands
most closely resemble some predetermined dispersion, and
(ii) given the same material in its ground state, find the shape
of the switch-on fields that drive the electrons in a valence
band to occupy a given Floquet pseudoband (in particular, the
pseudoband induced by the fields that have been optimized
previously).

Let us start with a brief description of the method that we
have used for target (i). The control parameters u1, . . . , uP

will be the Fourier coefficients that determine the shape of
the vector potential A(t ):

Ax(u, t ) =
M∑

n=1

u2n cos(�nt ) + u2n−1 sin(�nt ), (11)

Ay(u, t ) =
M∑

n=1

u2M+2n cos(�nt ) + u2M+2n−1 sin(�nt ). (12)

The frequencies �n = 2π
T n are multiples of the fundamental

frequency � used for the previously described example of
graphene irradiated with circularly polarized light, and T is
the corresponding period. Note that by using this parametriza-
tion we automatically include a cutoff frequency M�, which
also sets the total number of control parameters (4M). The
existence of a cutoff frequency is a natural experimental
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constraint, too. We assume the possibility of independently
shaping the fields in the x and y directions.

These fields determine the temporal shape of the
Hamiltonian at each k point: At the low amplitudes that we
assume in this paper, we can expand Hk+A(u,t ) in terms of the
field A(u, t ) and retain the linear part, i.e.,

Hk(u, t ) = Hk +
∑
i=x,y

Ai(u, t )Hi
k. (13)

These Hamiltonians, in turn, determine the evolution
operators:

i
∂Uk[u]

∂t
(t ) = Hk(u, t )Uk[u](t ), (14)

Uk[u](0) = I. (15)

The Floquet pseudobands εkα (u) and the corresponding
Floquet modes |uα

k (u)〉 can then be defined using the eigen-
values and eigenfunctions of the evolution operator at the
periodic time T :

Uk[u](T ) =
∑

α

e−iεkα (u)T
∣∣uα

k (u)
〉〈

uα
k (u)

∣∣. (16)

Suppose now that we wish for the external fields to induce
a given set of pseudobands ε̃kα and Floquet modes |ũα

k〉. This
would be equivalent to asking the perturbation fields to induce
an evolution operator given by

Ũk =
∑

α

e−iε̃kαT
∣∣ũα

k

〉〈
ũα

k

∣∣. (17)

One can use quantum optimal control theory for the gen-
eration of target evolution operators. This concept was first
developed for the problem of designing quantum gates within
quantum information theory studies [60]. However, we may
use it for the problem at hand—with the added complication
that the target must be simultaneously formulated for a set of
k points.

Thus the mathematical formulation of the optimization
problem can be established by defining the following target
functional:

F (Uk[u](T )) = 1

Nkps

∑
k∈K

|Ũk · Uk[u](T )|2, (18)

where we use the Frobenius dot product for operators,

A · B = 1

d
TrA†B. (19)

d is the dimension of the operators, which in our case is 2. Nkps

is the number of k points in the set K: This is a finite set of
points in the Brillouin zone that defines the region of interest.
The goal is to engineer the band structure in this region. Here,
we will work with a disk-shaped region defined around the K
point of graphene.

The functional in Eq. (18) takes a maximum value equal to
1 when the generated evolution operators Uk[u](T ) are equal
to the target ones Ũk (or are equivalent, i.e., related by a global
multiplicative phase factor). The goal is therefore finding the
parameters u that lead to those evolutions: The problem finally
boils down to the maximization of the function:

G(u) = F (Uk[u](T )). (20)

Note that, in this paper, we are only interested in the shape of
the pseudobands εkα , regardless of the modes |uα

k〉. However,
in the formulation described above, we need to specify the
target modes |ũα

k〉. In this paper, we have simply set those
modes to be equal to the field-free states associated with the
corresponding band [61].

In order to find the maximum of a multivariate function G,
there is a plethora of available algorithms; the most efficient
ones require the use of the gradient ∇G(u). We have used
the sequential least-squares quadratic programming (SLSQP)
algorithm [62] as implemented in the NLOPT library [63].
Optimal control theory permits us to derive an expression
for the gradient (essentially, as an application of Pontryagin’s
maximum principle [64]),

∂G

∂um
(u) = 1

Nkps

∑
i=x,y

∑
k∈K

2 Im
∫ t f

0
dt

∂Ai

∂um
(u, t )

× Bk[u](t ) · (
Hi

k(t )Uk[u](t )
)
, (21)

where the costate Bk[u](t ) is defined by the following
equations:

i
∂

∂t
Bk[u](t ) = Hk(u, t )Bk[u](t ), (22)

Bk[u](T ) = (Ũk · Uk[u](T ))Ũk. (23)

This equation of motion is analogous to the one that defines
the evolution operator Uk[u](t ), except for the boundary con-
dition, which is given at the final time of the propagation T : It
is a final condition, instead of an initial condition.

Note that the parameter search space is not unbounded,
as that would allow for solution fields with arbitrary intensi-
ties, which would be experimentally impractical. We imposed
bound constraints, |um| � κ , for some predefined bound κ .

Equations (21)–(23) enable us to compute the gradient
of the function G defined in Eq. (20), which allows its
maximization, and the solution of the first OCT problem
mentioned above: (i) finding the periodic drivings that per-
mit the Floquet pseudoband engineering. The second OCT
problem—(ii) finding the switch-on laser pulses that permit
us to populate those pseudobands starting from the material
at equilibrium—is a more conventional one. In this case, the
problem and the target functional are not defined in terms of
the evolution operator of the system, but rather in terms of
the material states. The goal is to drive the electrons in the
valence band towards the Floquet modes; the states are driven
by Schrödinger’s equation in the presence of a switch-on time-
dependent Hamiltonian:

i
∂ψkα[v]

∂t
(t ) = Hk(v, t )ψkα[v](t ), (24)

ψkα[v](0) = ψkα, (25)

where α is the valence band index (α = 0, in our case).
The switch-on pulses are given by two vector field functions
Aso

x (v, t ) and Aso
y (v, t ) that operate for a time Tso, after which

they are substituted by the optimal periodic driving that has
been found using the method described above. Once again,
the shapes of the pulses are determined by a set of parameters
v, but in this case the parametrization is different. We have
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enforced the following shape:

Aso
i (v, t ) = S(t ) fi(v, t )Ai(u

opt, t ), i = x, y. (26)

Function S(t ) = 3(t/Tso)2 − 2(t/Ts )3 smoothly varies from
zero at t = 0 to 1 at t = Ts. The fields Ai(uopt, t ) are the opti-
mal periodic pulses that induce the target Floquet pseudoband
structure. The functions fi(v, t ) are, once again, Fourier se-
ries, similar to the ones in Eqs. (11) and (12), and the control
parameters v are the corresponding Fourier coefficients. In
this case, they are constrained to ensure that f (v, t = Tso) =
1. With this definition, the periodic pulses Ai(uopt, t ) are ini-
tiated but are first multiplied by a smooth envelope function
S(t ) fi(v, t ) that slowly switches from zero to 1 at t = Tso. Af-
ter that switch-on pulse time Tso, the optimal periodic drivings
stay indefinitely. The shape of the optimized envelope should
be such that, by the end of the switch-on phase, the ground-
state orbitals of the material valence band are transformed
into the Floquet modes and, in this way, they are afterwards
stationary (in the Floquet sense, that is, stroboscopically
stationary).

It remains to specify the target functional for this case: If
the goal is to maximize the population, at time Tso, of the
Floquet modes |ukα〉, the natural choice is

F (ψkα[v](Tso)) =
∑
k∈K

|〈ψkα[v](Tso)|ukα〉|2. (27)

Function G is now defined in terms of this new functional:

G(v) = F (ψkα[v](Tso)), (28)

whose gradient is given by [65]

∂G

∂vm
(v) =

∑
i=x,y

∑
k∈K

2 Im
∫ t f

0
dt

∂Aso
i

∂vm
(v, t )

× 〈
χkα[v](t )

∣∣Hi
k(t )

∣∣ψkα[v](t )
〉
. (29)

The costates χkα[v](t ) are now defined by

i
∂

∂t
χkα[v](t ) = Hk(v, t )χkα[v](t ), (30)

χkα[v](T ) = 〈ukα|χkα[v](T )〉ukα. (31)

Equations (29)–(31) permit us to compute the gradient of
function G defined in Eq. (28), which can then be fed into
any function maximization algorithm to solve the second op-
timization problem posed above.

Our numerical approach to solving the quantum optimal
control theory (QOCT) problem is of course not the only
alternative. The general optimal control theory was first ap-
plied to quantum systems in the 1980s [66–71], and various
algorithms have been proposed over the years [72–74]—one
of the most used ones has been Krotov’s method [75]. Another
very successful option is the gradient ascent pulse engineering
(GRAPE) algorithm [76], put forward in the context of control
for nuclear magnetic resonance (NMR) applications. A rather
common assumption of most of those algorithms, however,
is the use of control functions in real time, u1(t ), . . . , un(t ),
instead of using generic parametrizations of those functions
in terms of parameters u1, . . . , uP, as we have assumed in
the previous equations. We have preferred this option, as in
our opinion it facilitates the enforcement of constraints on the

control functions. Note that, in addition to the method that
we have described before, some other alternatives designed
for the use of arbitrarily parametrized control functions also
exist, such as, for example, the so-called gradient optimization
of analytic controls (GOAT) [77] and chopped random basis
(CRAB) [78] algorithms. The latter, however, is a gradientless
algorithm, and the former requires more propagations for the
calculation of the gradient. For these reasons we have opted
for the described choice—perhaps the method found in the
literature that is closest to ours was put forward in Ref. [79].

IV. RESULTS

A. Band engineering

We now describe the obtained results, starting with an op-
timization of type (i): The first goal was to engineer a periodic
driving field that induces Floquet bands that are optimized to
resemble two parallel disks in a region around the Dirac point,
thus creating a gap in between two flat bands. As the funda-
mental frequency �, we used the same one (corresponding to
6.5 μm) used in the previously discussed reference example
with circularly polarized light. We set the cutoff frequency
to five times �, i.e., M = 5 in the parametrization given
in Eqs. (11) and (12). Furthermore, we establish a bound
constraint for the amplitudes of each individual frequency
component (|um| � κ), where we set κ to match the amplitude
of the reference circularly polarized example (20 MV/m).

The radius of the target disks was chosen to be
0.005 a.u., which amounts to ≈0.3% of the length of a recip-
rocal lattice vector. The manipulation of the Floquet bands’
shape, in these examples, is therefore limited to a reciprocal
space region around the K point of that size. This size was
chosen considering that we are interested in some energy
window around the Fermi level: The energy separation of the
field-free valence and conduction bands for graphene around
the K point (where the Fermi level is placed) at our chosen
radius of 0.005 a.u. is already of the order of 0.1 eV [see
Fig. 2(c)], and thus, of the order of 1000 K. This is the
frequency range that must be used to search for the optimal
periodic drivings capable of manipulating the Floquet bands.
In the presence of frequencies below those temperatures, the
relevant region in reciprocal space is therefore the one that we
have used. We note that we have also successfully performed
similar optimizations using larger target regions in reciprocal
space—at the cost of using a correspondingly larger frequency
range for the periodic drivings.

Figure 2(b) shows the resulting bands together with the
original Dirac cones. Note that the target region, where the
bands are optimized, comprises only a part of the shown area;
hence on the edges the disks are slightly bent. Figure 2(e)
shows a cut through Fig. 2(b) along the kx direction, and the
target disks are indicated in red. We see here more clearly
that the OCT process results in bands that are almost perfectly
matching the target in the region where it is defined, and the
parallel character of the bands extends somewhat beyond that
region.

Parallel bands correspond to states that are well localized
in real space, and have been widely discussed in connection
with twisted bilayer systems, where the electron localization
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is caused by the interaction of the electronic structure at cer-
tain twist angles. Here, instead, the driving pulse creates a
superposition of valence and conduction states that result in a
very similar band structure, but without the need for structural
twisting and within the original Brillouin zone. The degree
of spatial localization is dictated by how much of the BZ is
spanned by the Floquet flat band. In our example in Fig. 2(e)
it is around 1%, which is similar to the localization length in
moiré materials. Note that this is different from the previously
discussed dynamical localization [80], which results from a
monochromatic high-frequency drive and which in the case
of graphene only results in the bands shown in Fig. 2(b).
Instead, the optimized pulse here has a complex frequency
structure, as shown in Fig. 2(h): It displays the absolute value
of its Fourier components [essentially, the control parameters
u; see Eqs. (11) and (12)]. The fundamental frequency for
the flat Floquet band optimization is the same as for the
simple monochromatic Floquet case in Fig. 2(a), and the gap
opens by the same amount; however, the optimized pulse
has additional components. Furthermore, it has a nontrivial
polarization dynamics, as shown in the right panel of Fig. 2(h),
where the Lissajous plot of the electric field is shown
[compare with the simple circle in Fig. 2(g)].

Having demonstrated that it is possible to create flat bands
in a defined region of the BZ, we take the band engineering
one step further to demonstrate that, in principle, arbitrary
band shapes can be designed. Figure 2(c) shows a Floquet
band structure where the effective mass of the bands has
been inverted relative to the monochromatic case: Instead of
a convex band with a positive effective mass, it is possible to
create a concave band where the effective mass is negative.
Figure 2(f) is a cut along Fig. 2(c), and it shows in red the
target bands, along with the Floquet bands and sidebands, in
varying tones of blue, once again graded according to their
Fourier component magnitude. While for the present case
there is no direct application of such band inversion (at least to
our knowledge), in other materials it will result in drastically
altered optical properties.

For completeness, we have also attempted an optimization
with the target of closing a gap, rather than opening it as in the
previous cases. Since graphene does not have a gap, we have
modified the graphene model that we have used, adding to the
static Hamiltonian the term

Hgap
k =

(
δ/2 0
0 −δ/2

)
, (32)

which creates a gap in the K point. This modification corre-
sponds to the trivial part of the Haldane model [46]. We have
not used the off-diagonal terms of the Haldane model, which
determine its topological properties, since those would not
change the discussion below about closing the band gap. For
the value of the gap δ we have chosen 0.01 a.u. ≈ 270 meV.
The modified field-free bands of this model are shown in
Fig. 3(a), in gray [and also in Fig. 3(b), which is a cut of
Fig. 3(a) along direction y]. We have then performed an op-
timization with the target of closing the gap at point K : For
that purpose, we used the functional defined in Eq. (18), using
only the K point to define the set K and setting the target
pseudoenergies of both bands to zero. The resulting optimal
pseudobands are shown in both Figs. 3(a) and 3(b): It can
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FIG. 3. Gap closing. (a) Field-free bands (gray) of the modified
graphene model in the vicinity of the K point (blue) showing how
the gap can be closed. (b) Cut along the y axis of (a). Along with the
Floquet bands in the first BZ, the sidebands are also shown. The
color intensity of each point is proportional to the value of the corre-
sponding Fourier component. (c) Fourier components and Lissajous
figure of the optimized pulse.

be seen how the optimization is successful and the gap is
effectively closed.

We now discuss how the flexible band engineering by
OCT shown above is accompanied by changes to the Berry
curvature. In this paper, we chose not to design pulses that
target specific Berry curvatures or topologies, although this is
in principle possible. However, for completeness, we show in
Fig. 4 the Berry curvature for the Floquet pseudobands ob-
tained with the optimal pulses shown above (and also with the
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FIG. 4. Berry curvature of the valence (left panels) and conduc-
tion (right panels) pseudobands. They correspond to (a) and (b) the
Floquet pseudobands computed with the reference circularly polar-
ized fields, (c) and (d) the flat pseudobands, and (e) and (f) the
negative curvature bands shown in Fig. 2. (a) replicates the results
shown in Fig. 3(d) of Ref. [13]. Black dashed circles indicate the
area for which the target was defined.

reference monochromatic circularly polarized fields), com-
puted as

�B(k) = −i

T

∫ T

0
dt

[∇k × 〈
uα

k (t )
∣∣∇k

∣∣uα
k (t )

〉]
z. (33)

Here, α = 0, 1 for the lower (valence) and higher (con-
duction) pseudoenergy Floquet pseudoband, respectively. We
display them separately in the left [Figs. 4(a), 4(c), and 4(e)]
and right [Figs. 4(b), 4(d), and 4(f)] panels of Fig. 4. It
can be seen that, while the Berry curvature of the Floquet
states obtained with the monochromatic circular pulse varies
strongly, the curvatures of the pseudobands obtained with the
two optimized cases show more gradual changes. It can also
be seen how valence and conduction curvatures take approxi-
mately inverse values. We note that a region of the BZ outside
the target area is also shown; inside the target area the Berry
curvature is very small in both cases. The variations seem to
be the result of small changes in the optimal results. This
indicates the sensitivity of the Berry curvature to the shape
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FIG. 5. (a) Optimal switch-on Aso
x (blue) and Aso

y (red) pulses,
applied during the first 20 periods of duration T , followed by the
optimized periodic drivings Ax and Ay. Lines represent the full pulses
Aso

i (vopt, t ) = S(t ) fi(vopt, t )Ai(uopt, t ), whereas the filled curves are
the absolute value of the envelopes S(t ) fi(vopt, t ) (which become
equal to 1 after the switch-on phase). (b) Average population of the
lower pseudoenergy Floquet modes: |〈ψk0(t )|u0

k(t )〉|2. One can see
how, after the switch-on phase, it is approximately constant and equal
to 1 since the system has been (almost) transferred to those states.

of the bands and to the driving protocol. This would hint that
an optimization protocol that would directly target the Berry
curvature could be very efficient in manipulating this property.
This would entail a target definition not only in terms of the
bands, but also in terms of the modes. In the calculations
presented here, the target bands were arbitrarily set to match
the field-free eigenstates, at least at the stroboscopic times 0,
T , 2T , etc. The optimal modes obtained are therefore similar,
but not equal, to those states.

B. Design of the switch-on pulse

For the Floquet engineering of materials to be practically
useful, one also needs to be in full control of the occupation
of bands: The material properties depend not only on the band
shapes, but also on how they are occupied. Therefore, before
the periodic drivings are started, there should be a switch-on
phase in which a pulse leads the electrons in the valence bands
to occupy the Floquet bands of interest. OCT can be used
to design this switch-on pulse, and we show in Fig. 5 one
example, demonstrating that it is possible to target the full
occupation of a single Floquet state. In particular, this plot
corresponds to the problem of the design of flat bands. The
target is to transfer the electrons in the equilibrium valence
band to the lower Floquet pseudoband that was found via
the previous optimization process (in the target region defined
previously, a disk around the K point of the BZ).

As discussed in the previous section, we have enforced
some constraints on the switch-on pulse, since we are aware
that the experimental realization of these ideas would also
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face technical constraints. For this proof-of-principle study,
we have envisioned a switch-on phase that consists of the
same periodic drives that are later responsible for the tailored
bands, but multiplied by a smooth envelope that slowly ramps
from zero to 1. This envelope admits some low frequencies,
and the amplitudes of these are the control parameters in the
optimization process. One also needs to specify a duration for
the switch-on phase; in our case we have set it to 20 times the
fundamental period of the periodic drive T ≈ 21.7 fs.
Figure 5(a) displays the resulting optimal pulses; the thin lines
are the full electric fields [Eq. (26)], whereas the shaded filled
curves are the envelopes. One can see how they smoothly
morph into the periodic drives. Of course, the true exper-
imental constraints regarding the maximal frequencies or
amplitudes may vary, but the OCT methodology that we have
described may be adapted accordingly.

To illustrate the evolution of the Floquet occupations under
the optimized pulses, we show the average of the square
modules of the projection of the time-evolving states onto
the Floquet states |u0

k(t )〉 (“0” is the index of the lower
pseudoband):

P(t ) = 1

Nkps

∑
k∈K

|〈ψk0(t )|u0
k(t )〉|2. (34)

By design, the switch-on pulse stops once the occupation has
reached unity, after which the periodic Floquet driving is ac-
tivated and the occupation remains (approximately) constant,
as intended.

V. CONCLUSIONS

We have demonstrated, by performing proof-of-principle
OCT calculations, that one can create and control the nonequi-
librium steady-state Floquet phase with an unprecedented
range of versatility, by finding the necessary multifrequency
periodic drivings. The Floquet band structure of materials can
thus be shaped at will over the regions of the Brillouin zone
deemed to be relevant in each case. This has strong implica-
tions for optical and transport properties. We have not used
global or local topological properties as optimization targets,
but the sensitivity of the Berry curvature shown here clearly
indicates that manipulation of this and other topological prop-
erties is possible. Thus this proposed design of driving pulses
is an important step towards designing quantum materials “on
demand” [81].

We have exemplified our proposal inspired by the ex-
periment reported by McIver et al. [12], who measured a
light-induced anomalous Hall effect in monolayer graphene,

driven by a femtosecond pulse of circularly polarized light.
The model that we have used permits us to describe such
an experiment [13]. The driving field parameters (intensity,
frequency) of our model are of the same order as the experi-
mental parameters [12]. Therefore the only ingredient missing
to implement the control scheme described here would be
the ability to shape the perturbations as a combination of
five frequencies, rather than using a simple monochromatic
one. However, laser shaping technologies have fast advanced
in the last decades.

Furthermore, we have not only optimized the Floquet band
structure shape by designing the periodic drivings, but also
demonstrated the possibility of controlling the occupation
of Floquet states via a switch-on pulse optimization. Here,
we have assumed a closed quantum system and employed
a single-electron tight-binding model. However, the case of
correlated materials can be treated similarly and is left for
a future work. The results shown in this paper are naturally
transportable to the case of including electron correlations in
the Hamiltonian.

Finally, the discussed scheme also offers a route to-
wards controlling the stability of Floquet states and af-
fecting their long-time behavior. It is expected that in the
early times a system will absorb significantly less energy
when prepared as a single Floquet eigenstate, because the
entire dressed state, electronic structure and laser, is an eigen-
state of the time-dependent Schrödinger equation. However,
decoherence, dissipation effects, and scattering pathways that
are not included in the Schrödinger equation can affect
this state. Therefore the state will eventually lose its pure
Floquet character and gradually heat up to T → ∞ at infinite
times. However, the so-called Floquet prethermal state may
last much longer for a pure Floquet state, thus making it
accessible for technological applications. Additionally, one
could envision OCT schemes that account for the major de-
coherence channels and thereby design pulses that counteract
them, and thus one could increase the Floquet states’ lifetimes.
The extension of the current work to deal with these issues by
considering open quantum systems is a work in progress.
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