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Destroying superconductivity in thin films with an electric field
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In this paper, we use a Ginzburg-Landau approach to show that a suitably strong electric field can drive a phase
transition from a superconductor to a normal metal. The transition is induced by taking into account corrections
to the permittivity due to the superconductive gap and persists even when screening effects are considered. We
test the model against recent experimental observations in which a strong electric field has been observed to
control the supercurrent in superconducting thin films. We find excellent agreement with the experimental data
and are able to explain several observed features. We additionally suggest a way to test our theoretical proposal
via superconductor-superconductor electron tunneling.
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While the effects of a magnetic field in superconductors
have been thoroughly studied, little has been done regarding
static electric fields. The belief is that near-complete screening
effects in metallic superconductors make the electric field
irrelevant to superconductivity [1]. Recently, however, De Si-
moni et al. [2] reported field-effect control of the supercurrent
in thin, all-metallic transistors made of different Bardeen-
Cooper-Schrieffer (BCS) superconductor [3,4] films. They
found that, at low temperature, these transistors presented
a monotonic decay of the critical current under increasing
electrostatic field. For strong enough electric fields, normal
metal behavior was observed. This phenomenon is known as
the superconductive field effect (SFE) and the results have
been recently confirmed by other experimental groups [5–11].

The microscopic origin of this phenomenon is unclear. All
the materials [2,5–11] analyzed are well described by the con-
ventional BCS theory and metallic in the normal phase (hence
it is surprising that the electrostatic field could play any role).
It has been suggested that energetic quasiparticle injection
from the gate control [6,7] or energy or phase fluctuations [9]
could be responsible for the observations. These ideas seem
to be precluded by recent ionic-gating experiments, where the

*andrea.amoretti@ge.infn.it
†danny.brattan@gmail.com
‡nicodemo.magnoli@ge.infn.it
§luca.martinoia@ge.infn.it
‖ioannis.matthaiakakis@edu.unige.it
¶paolo.solinas@ge.infn.it

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

electric field is generated by crystallized charges [12], as there
is no moving charge.

Alternate microscopic proposals have been suggested to
explain the experimental results of Refs. [2,5–11]. These
include electric-field induced spin-orbit polarization [13],
Rashba-like surface effects [14], and the excitation of an ex-
otic superconducting state due to Schwinger-like effects [15].
All these proposals lead to a weakening of superconductiv-
ity but they do not fully explain other experimental results
[2,12,16–19].

Given that the SFE persists in many different compounds
with different experimental setups and geometries [16,17,20–
24] we suggest instead that the phenomenon is a property of
including the electric field in standard BCS theories. More-
over, we argue that there is a phase transition at strong electric
fields to a normal metal.

To overcome the difficulties with these microscopic ap-
proaches while still comparing our proposal with experiments,
we will consider the simplest phenomenological description
of a superconductor, namely, the Ginzburg-Landau (GL) mean
field theory. The strength of the GL approach is twofold; we
can calculate the main experimental observables and repro-
duce all features measured in experiments [2,5,6], and we can
constrain potential microscopic explanations. We investigate
an extension of the GL free energy in which the electric per-
mittivity is modified to include couplings between the electric
field and the order parameter. We demonstrate that, despite
screening effects, a suitably strong electric field leads to a
superconductor-normal metal phase transition for thin films
of order the coherence length.

I. THE MODEL

We will analyze the setup depicted in Fig. 1, a supercon-
ductive thin film extended in the x and y directions and with
thickness L in the z direction. The electric field is applied
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FIG. 1. Section of the setup. The superconductive film is ex-
tended in the x and y directions and has thickness L along the z
direction. The electric field Ez pointing along the direction of the
small black arrows is applied to both sides of the film, by means of
two charge distributions A and B, taken to be equal. The penetration
length is λE � 1 nm.

along the z direction by means of two charge distributions
(A and B in Fig. 1) placed in the vicinity of the surfaces
of the film. This setup is similar to the one realized in the
experiments [18], where the interested reader can find further
technical details that do not alter the present analysis. In what
follows, charges A and B are assumed to be equal. This implies
that the direction of the electric field is reversed as we cross
the middle of the channel at z = L/2 (see Fig. 1). The physical
results do not depend appreciably on the sign of the charges
and on such a symmetric configuration [18] whose purpose
is simplifying numerical computations. We include screening
effects in our model by assuming that they are set at the level
of the normal metal phase. Due to the reduced thickness of
the sample, we assume the electric field generated by charges
A and B inside the material to be along the z direction. Hence
we fix the applied electric field �E to be nondynamical with a
decreasing exponential profile at the ends (z = 0 and z = L)
of the film, i.e.,

�E = −∂zϕ(z)ẑ = EA(z)ẑ + EB(z)ẑ = E0e− z
λE ẑ − E0e− L−z

λE ẑ

= 2E0e− L
2λE sinh

( L
2 − z

λE

)
ẑ. (1)

We take the penetration length, λE , to be � 1 nm, which is
compatible with normal metals [1]. Note that the above for-
mula for the electric field implies that the sample is charged;
this, however, is an artifact of the simple screening model, as
we are considering a charged-neutral film. Since the film is
much larger than the penetration length, the spurious charge
distribution in the bulk that would make it overall neutral will
give rise to negligible effects and we consequently ignore it.

Now consider the mean-field description [3,4] of this
configuration. We use the usual complex scalar super-
conductive order parameter written in polar form �(�r) =
�(�r) exp [iθ (�r)], where �(�r) and θ (�r) are the amplitude
and the phase of the order parameter, respectively. Having
fixed the electric field profile, we focus on time-independent

configurations. Consequently, the resulting time-independent
GL free energy is

F =
∫

d3r

{
h̄2

2m
‖�∂�‖2 + h̄2

2m
�2‖�∂θ‖2 +

(α2

2!
+ qϕ

)
�2

+ α4

4!
�4 + ε[�]

2

(
dϕ

dz

)2
}

, (2)

where m, q are the mass and charge of the Cooper pair,
respectively, ϕ(z) is defined in Eq. (1) and ‖�x‖ is the vector
norm of �x.

Our free energy Eq. (2) differs from the usual GL free
energy [3,4] by allowing the electric permittivity to depend
on the condensate density �. We will assume the following
functional dependence on �:

ε[�] = ε0(1 + β1�
2 + β2�

4 + . . .), (3)

where β1 and β2 are phenomenological parameters. These
additional couplings respect all the symmetries of the system
and are at most quartic in the gap and quadratic in derivatives.
It is consequently natural to include them within a GL func-
tional approach. The conditions for the expansion Eq. (3) to be
consistent are β1�

2
0 � 1, β2�

4
0 � 1, where �2

0 = −3α2/2α4

is a homogeneous condensate density in absence of an electric
field.

Analogous terms in the electric permittivity Eq. (3) al-
ready occur in the BCS context [25] due to perturbative
loop corrections around the (constant, spatially independent)
BCS ground state. The same perturbative approach has been
followed in Ref. [26]. We, however, consider an alternative in-
homogeneous (coordinate-dependent) ground state generated
by solving the full GL equations in the presence of an external
electric field. Moreover, we promote the corrections to the
permittivity found in Ref. [25] to be interactions of the bare
GL functional Eq. (2). This corresponds to finding a complete
nonperturbative solution to the GL equation including inter-
actions between the order parameter and the electric field.
Qualitatively our results agree with Refs. [25,26] when the
applied electric field is sufficiently small. Moreover, in what
follows we will prove that even parametrically small coupling
constants β1 and β2 have dramatic consequences on the order
parameter �, when the external electric field cannot be treated
as a perturbative correction (as in Ref. [25]).

II. DRIVING THE PHASE TRANSITION

The minimal energy solutions for the equations of motion
resulting from Eq. (2) have constant phase θ as can be seen by
examining the equation of motion,

�∂ · (�2�∂θ ) = 0,

and minimizing the contribution of the second integrand in
Eq. (2) to the free energy. The equation for � then reduces to

h̄2

m
�∂2� −

(
α2 + 2qϕ + ε0β1

(
dϕ

dz

)2)
�

−
(

α4

3!
+ 2ε0β2

(
dϕ

dz

)2)
�3 = 0. (4)
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This equation has to be solved imposing the usual boundary
conditions at the edges of the material �′(0) = �′(L) = 0 [4].
The z-dependent profile for the electric field in Eq. (1) makes
the solution of Eq. (4) depend on z as well. Since we are
interested in global observables (e.g., the critical current of the
full thin film), the relevant quantity will be the averaged gap
�av = 1

L

∫ L
0 dz �(z). See the Appendix for technical details

about the numerical solution of Eq. (4).
To have a direct comparison with the experiments, we

consider the devices used in Ref. [2]. We take Tc � 410 mK,
London penetration length λL � 900 nm, and the coherence
length ξ0 � 100 nm. We also assume the usual GL temper-
ature scalings for the relevant parameters, so α2 = −K(1 −
T/Tc), with K = 6.104 × 10−25 kg m2 s−2 and α4 = 6.356 ×
10−50 kg m5 s−2.

The parameters β1 and β2 in Eq. (3) are phenomenological,
and, to fix them, we rely on experimental observations [2]. To
qualitatively understand their effect, suppose we can ignore
the kinetic energy. This is certainly true in films thin enough
such that the electric field penetrates deeper in the bulk (see
plots of the kinetic energy in Fig. 8 in the Appendix for proof
of concept). In this case, one can define new effective GL
parameters α̃2 and α̃4 averaged over the system: α̃2 = α2 +
2qϕav + ε0β1E2

av and α̃4 = α4 + 12ε0β2E2
av, where ϕav and Eav

are the space averages of the scalar potential and the electric
field, respectively. As in the standard GL model, the phase
is consequently determined by the sign of α̃2 (negative for
superconducting, positive for metal) [3]. If β1 > 0 is chosen
carefully, since α2 < 0, we can set α̃2 = 0 for some critical
averaged electric field E c

av, which determines the critical point.
Similarly, α̃4 affects the form of the potential energy (e.g.,
position of minima) and, therefore, the dependence of � on
Ez. It does not, however, affect the value of E c

av.
Focusing on samples with thickness of the order of the

coherence length (L � ξ0), from the experimental data [2], it
turns out that β1 has a linear dependence on T [see Fig. 5(b)
in the Appendix],

β1 =
[
A + B

(
1 − T

Tc

)]
m3, (5)

with A = 1.208 × 10−30 and B = 5.947 × 10−28. The pres-
ence of the positive constant A ensures that in the limit
of T → Tc, β1 remains positive. This means that when the
superconductor is in the normal phase but close to Tc, the
electric field cannot induce a phase transition to the supercon-
ducting state. With this information Eq. (5), we can estimate
the correction to the critical temperature due to the β1 cou-
pling. In particular, α̃2(0) = (1 − T/Tc)(−K + ε0B(E c

av)2) +
ε0A(E c

av)2. Assuming E c
av ∼ 108 V/m as in Ref. [2], we can

solve the above equation for α̃2 = 0, obtaining a new crit-
ical temperature Tc,new and a variation �Tc = Tc,new − Tc ∝
3 − 4 mK. This is a rough estimate but is compatible with
the full numerical simulations and the absence of variation of
Tc observed in the experiments [16].

Finally, the second parameter β2, is obtained as the best fit
of experimental data. As it is a best fit parameter and the tem-
perature range of the experimental data is small, it is difficult
to extract a precise temperature dependence. Nevertheles,s we
find that this parameter has a mild temperature dependence,

(a)

(b)

FIG. 2. (a) Numerical computation of the averaged critical cur-
rent Ic normalized against its values at T = 5 mK, Īc, as a function
of the applied electric field E0 ]see Eq. (1)] normalized against
the 5 mK critical electric field Ēc. The curves are the numerical
simulations and the dots are the experimental data from Ref. [2]. The
values of Īc at different temperatures are taken from the experiments.
The parameters β1 and β2 are fixed as discussed in the text. (b) The
suppression of the electric-field effect as a function of the thickness
of the film L for T = 5 mK and E = Ēc. The red dots are the
experimental data from Ref. [2].

with −4 × 10−54 m6 � β2 � −6 × 10−54 m6 for the range of
temperatures examined.

We are now in a position to discuss the numerical results
derived from the solution of the full GL Eq. (4), which are
presented in Fig. 2. Figure 2(a) displays the critical current
of the wire, i.e., the maximal current that the superconduc-
tor can sustain [3], Ic against the applied electric field at
the material boundaries, E0, for various temperatures. In GL
theory, Ic ∝ �3; in our inhomogeneous situation, we take
Ic ∝ (�av)3 [27]. As displayed, the presence of a strong elec-
tric field weakens superconductivity and eventually leads to
a vanishing Ic, which corresponds to a superconducting to
normal phase transition (i.e., �(z) → 0). The numerical sim-
ulations reproduce the qualitative behavior of the experiments
[23] at low temperatures. This should be expected, since the
GL approach to superconductivity is expected to be accurate
for T � Tc. For larger temperatures, our GL model is only
expected to reproduce the qualitative features of superconduc-
tive transport, as seen in Fig. 2(a).

From the numerical data for Ic we observe a small
asymmetry in the critical electric field between positive and
negative choices for the electrodes. This is evident from the
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equation of motion for the gap Eq. (4) as the chemical po-
tential term, qϕ, is not symmetric under E0 → −E0. Such an
asymmetry also seems to be present in the experimental data,
but the effect is significantly stronger than what we predict.
It remains to be demonstrated experimentally whether this is
a real effect, as this would point to additional terms missing
from our modified GL free energy Eq. (2).

An important feature of the experimental data which has
not yet been explained in the literature is the emergence of
the coherence length scale in the dependence of the SFE
on film thickness. To examine this issue, we set T = 5 mK
and E0 = Ēc � 108 V m−1 and consider films with different
thicknesses L. Plots for other temperatures are qualitatively
similar. The numerical results are sketched in Fig. 2(b). For
L � ξ0, the electric field causes a complete phase transition
to the metallic phase. As L > ξ0 is increased, one finds that
the same external electric field does not completely suppress
the gap. The effect becomes completely irrelevant if the sam-
ple is thicker than 7 − 8 coherence lengths. This behavior
matches the experimental observations [2,5,6] (shown with
the red dots in the figure).

This latter observation strongly supports the idea that the
SFE emerges from an interplay between the small electric
field penetration length λE and the much larger superconduct-
ing coherence length ξ0. This has an interesting interpretation
in terms of the renormalization group. The naive scaling di-
mension of the couplings β1 and β2 shows that these terms are
marginal in d = 2 dimensions and irrelevant for d > 2. When
L � ξ0, and the material is effectively two-dimensional, there
can be a phase transition as the β corrections are important for
defining the low-energy behavior of the effective field theory
(EFT). This numerical and theoretical analysis also explains
why these kinds of phase transition have never been seen in
extended three dimensional samples.

III. ELECTRON TUNNELING

Up to this point, we have compared predictions of our
modified GL model, Eqs. (2) and (3), with the published
experimental data. Here we discuss what the presented theory
predicts in a tunneling experiment.

The tunneling between two different superconductors sep-
arated by a tunnel junction gives access to information about
the density of states N (E ) [3], where E is the energy. In this
case, one can think about two pieces of identical supercon-
ducting material separated by an insulating barrier, with the
electric field applied only to one side. We assume that the
superconductor excitations are locally in a Fermi distribution.
Furthermore, we expect the functional dependence of the den-
sity of states to be very similar to the standard BCS case. This
follows from the expectation that any deviations from the BCS
density of states are induced, in this case, by inhomogeneities
in �. Said inhomogeneities however are, in our situation,
small—order 1%—and appear only near the boundaries of
the sample [see Fig. 5(a) in the Appendix]. As such, only
negligible deviations from the form of the �(z) = �0 density
of states are expected [28] and thus we assume that N (E ) =
|E |/

√
|E2 − �2|. The applied electric field E does, however,

modify the gap[� = �av(E0)] and thus the value, if not the
form, of the density of states.

FIG. 3. Tunneling currents as a function of the applied volt-
age eV through the junction for E0/Ēc = 0 (dashed green curve),
E0/Ēc = 0.98 (blue curve) and E0/Ēc = 1.1 (red dots line). The
temperature is T = 250 mK � 3Tc/5.

When the superconductor-superconductor junction is sub-
ject to a external voltage V , the tunneling current is given by
[3]

Iss ∝
∫ ∞

−∞

|E |
[E2 − �av(E0)2]1/2

|E + eV|[
(E + eV)2 − �2

0

]1/2

× [ f (E ) − f (E + eV)]dE, (6)

where f (E ) is the Fermi distribution at energy E . The nu-
merical results from our model at T = 250 mK are shown in
Fig. 3. The tunneling current is weakly modified for electric
fields up to 0.9 Ēc [3]. However, for stronger electric fields,
the superconductor gap decreases and new features emerge.
The discontinuous jump at voltages of eV = �av(E0) + �0

(present for all values of E0) shifts toward lower voltages and a
new peak at eV = |�av(E0) − �0| appears. When the electric
field exceeds Ēc, a phase transition occurs and one side of
the junction becomes metallic. The expected current Ins [3]
is shown in Fig. 3.

A similar tunneling experiment has been proposed in
Ref. [29]. In that case, the interaction between the super-
conductor and the electric field was mediated by the orbital
degrees of freedom of the material. Because of the differ-
ent underlying theories, the tunneling experiment predictions
were quantitatively different from ours. Indeed, a high accu-
rate experiment could discriminate between the two theories.

In this direction, an interesting experimental setup was
used in Ref. [6]. However, the experiment was not de-
signed to measure the change in the matching peak and the
superconductor-normal metal transition, so it is likely that the
effects discussed in Fig. 3 were not accessible.

IV. CONCLUSIONS

In this paper, we have shown that, even when the screening
effects are taken into account, a sufficiently strong elec-
tric field leads to the breakdown of superconductivity and
the emergence of a normal-metal phase. Theoretically, this
phase transition is induced by the mutual back reaction be-
tween the order parameter and the electric field, encoded in

033211-4



DESTROYING SUPERCONDUCTIVITY IN THIN FILMS … PHYSICAL REVIEW RESEARCH 4, 033211 (2022)

the modification of the electric permittivity appearing in the
GL functional. The existence of these couplings is perfectly
justified in an EFT approach, as they respect all the basic
symmetries of the original GL functional. In Ref. [25], small
corrections to the electric permittivity due to the supercon-
ductive energy gap were already found in the context of BCS
theory and their structure is exactly the same as the interac-
tions considered in this paper. Differently from our approach,
however, Ref. [25] relies on a small electric field approxi-
mation, and the numerical values can not be compared. In
addition, Ref. [25] presumes a fixed ground state with a con-
stant gap, while we consider an, in general, inhomogeneous
ground state. The precise values of the new couplings have
been obtained phenomenologically by matching our theory
against recent experimental observations in Refs. [2,5,6].

Without any further assumption or fitting parameter, we
found that (i) consistent with an EFT approach, parametrically
small corrections to the electric permittivity are sufficient to
drive a phase transition and to match the measured behavior
of the critical current as a function of the applied electric field,
(ii) the qualitative behavior is independent of the charge sign
of the electrodes, (iii) the critical temperature is not apprecia-
bly affected by the electric field applied, and (iv) the effect
vanishes when the thickness of the sample is increased over
several coherence lengths. All these predictions are both qual-
itatively and quantitatively in agreement with the experiments
[2,5,6,12,16–19]. Additionally, we have proposed a way to
further test our theoretical model through electron tunneling,
highlighting the features that could be detected in these kinds
of experiments.

The success of the present model in predicting the ob-
served experimental behavior opens up several directions
for further research. Arguably the most important task is to
calculate the additional couplings β1 and β2 directly from
a microscopic theory. Additionally, it would be interesting
to analyze whether modulating the phase of the condensate
alters our results. This can be done by, e.g., considering a
SQUID setup and attempting to match the results to the data
of Refs. [19,30].
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APPENDIX: TECHNICAL AND NUMERICAL ASPECTS OF
THE COMPUTATION OF THE ORDER PARAMETER

We employ the following normalizations to render the
equations of motion dimensionless (and thus suitable for nu-

FIG. 4. A plot of the superconductor energy at zero temperature
(minus a constant permittivity contribution) against the applied elec-
tric field. The blue dots represent our model while the yellow dots are
the standard Ginzburg-Landau model (ε[�] = ε0) with a chemical
potential. The normal phase has zero energy (modulo the constant
permittivity term) and lies along the horizontal axis. We can see as
the electric field is increased the energy of our system eventually
becomes equal to that of the energy of the normal phase indicating a
phase transition.

merical calculations). Let L be the width of the sample and
(x, y, z) the spatial coordinates so

(x, y, z) → (u, v,w) = 1
L (x, y, z), (A1a)

�(z) → �̄(w) =
√

−2α4

3α2
�(w), (A1b)

Ez → Ēz = qL2

ch̄
Ez, (A1c)

α2 → ᾱ2 = −mL2

h̄2 α2, (A1d)

α4 → ᾱ4 = mL2�2
0

h̄2 α4 = −3mL2

2h̄2 α2, (A1e)

ε0 → ε̄0 = mc2�2
0

q2L2
ε0 = − 2mc2α4

3α2q2L2
ε0, (A1f)

β1 → β̄1 = mε0c2

2q2L2
β1, (A1g)

β2 → β̄2 = mε0c2�2
0

2q2L2
β2 = −3mε0c2α2

4q2L2α4
β2.

(A1h)

As all our solutions will only depend on z, we can drop
all the derivatives with respect to u and v. Subsequently,
after these replacements, the equation of motion for the phase
becomes

0 = d

dw

(
�̄2 d

dw
θ

)
. (A2)

As is standard, we will choose a constant phase profile which
solves Eq. (A2) identically. This choice also minimizes the
free energy contribution of this corresponding term. Hence,
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the equation of motion for the gap becomes

0 = d2

dw2
�̄ +

(
ᾱ2 −

(
2mcL2

h̄
ϕ̄ + β̄1

(
d

dw
ϕ̄

)2))
�̄

−
(

2ᾱ4

3
+ 2β̄2

(
d

dw
ϕ̄

)2)
�̄3. (A3)

We use the standard MATHEMATICA routine NDSolve to
integrate Eq. (A3) from the boundary of the material at w = 0
to w = 1, where again w = z/L with L the width of the
superconductor. The boundary condition on the condensate
requires that we set d�̄

dw
(0) = 0 but leaves the initial value,

�̄(0), unfixed. As such, we use this initial value as a free pa-
rameter and integrate from w = 0 to w = 1 with some choice
of this parameter. We search for solutions where d�̄

dw
( 1

2 ) =
0 by adjusting the value of �̄(0) (i.e., we use a shooting
method). This second condition ensures that the condensate is
symmetric about the midpoint of the material. Subsequently,
we confirm that d�̄

dw
(1) = 0 as a crosscheck that the solution is

symmetric about the midpoint.
To confirm that we are indeed finding a minimal energy

solution at zero temperature, we can compute the supercon-
ductor energy. In terms of our dimensionless quantities, the
energy has the form

− 2mα4

3Lh̄2α2
H = A2

∫
dw

{
1

2

(
d�̄

dw

)2

+
(

− ᾱ2

2
+ mcL2

h̄
ϕ̄

)
�̄2

+ ᾱ4

4!
�̄4 + 1

2

(
ε̄0 + β̄1�̄

2 + β̄2�̄
4
)( dϕ̄

dw

)2
}

,

(A4)

with A2 the area of the sample in the u and v directions. We
plot its value (minus the contribution from the constant per-
mittivity term) against the applied electric field in Fig. 4. For

the displayed quantity, the normal phase, which corresponds
to �̄(w) = 0, lies along the horizontal axis. Consequently,
we see that our solution has a lower energy than the normal
state for small to moderate electric fields. As we approach the
critical electric field, the energy of the ground state increases
until it is comparable with the normal state, signaling a phase
transition.

1. Constant permittivity

We first consider the situation at zero temperature with
a constant permittivity (ε[�] = ε0). In this case, it is still
possible to drive a phase transition with the electric field;
however, this requires an applied electric field of

E0 ≈ 5.162 × 1011 Vm−1 (A5)

—several orders of magnitude larger than what is used in the
experiments of Ref. [2] where Ēc ≈ 108 Vm−1. Moreover, for
E0 of the opposite sign, there is no phase transition at all.
This is because the chemical potential term in Eq. (A3) is
not symmetric under E0 ↔ −E0 and only one choice of sign
leads to a reduction in the gap. The order of magnitude of the
electric field and the unipolarity of this effect are in contrast
with what has been observed in the experiments. Therefore,
we need to include the change of the permittivity as a function
of the superconducting gap.

The profile of the gap at the critical electric field Ez = Ēc =
108 Vm−1 and constant permittivity is given by the red line in
Fig. 5(a). Despite appearances, the electric field does lead to a
position-dependent condensate in this case but the dependence
is too weak to be visible.

2. Quadratic density correction to the permittivity

Now we consider quadratic density corrections to the per-
mittivity so ε[�] = ε0(1 + β1�

2). First, we work at zero

FIG. 5. (a) The profile of the gap in the z direction at the critical electric field Ēc and zero temperature with various values of the coupling
β1. The red line corresponds to the constant permittivity case (ε[�] = ε0) and depends only weakly on the position. For each blue line of
smaller �̄(z), we are increasing β1 (from 1.42 × 10−29 m3 to 1.13 × 10−28 m3 in steps of 1.42 × 10−29 m3). (b) The dependence of β1 on T/Tc

normalized by the value of β1 at zero temperature [given in Eq. (A6)]. The blue line represents how β1 must change if the critical electric field
is unaffected by temperature. The red points are the critical electric field extracted from experimental data [2]. The grey dashed line is a linear
fit to the first three experimental points and it has a nonzero, positive intercept with the y axis.
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FIG. 6. (a) The dependence of the average gap at zero temperature on the electric field applied at the edge of the superconductor for β1

having the critical value Eq. (A6). The red line corresponds to β2 = 0. The purple dashed lines indicate values of β2 greater than zero (below
the red line) from 1.97 × 10−54 m6 to 9.83 × 10−54 m6 in steps of 1.97 × 10−54 m6. The blue dashed lines are for values of β2 less than zero
(above the red line) from −3.93 × 10−55 m6 to −1.97 × 10−54 m6 in steps of −3.93 × 10−55 m6. (b) A plot of the critical current, normalized
by its zero temperature value, against the applied electric field. The red dots are data while the solid blue line is a best fit from our model.

temperature. The red line in Fig. 6(a) demonstrates the effect
of a nonzero β1 on the average gap against the applied electric
field (at zero temperature). The value of β1 in this image is
chosen so there is a phase transition at the experimental value
of the critical electric field Ēc = 108 Vm−1, i.e.,

β1 ≈ 5.996 × 10−29 m3. (A6)

Plots of the gap against position for various other values
of β1 less than this critical value, but at fixed electric field
Ēc, are given by the blue lines in Fig. 5(a). As β1 is in-
creased toward the critical value, we can see that the gap
near the edges of the superconductor decreases, as argued
in the main text. The profiles also keep a small gradient, as
expected, to minimize the kinetic energy; as such the gap
in the interior is forced to decrease from unity even though
the electric field is effectively restricted to the skin of the
material.

At nonzero temperature, we need to account for the fact
that the critical electric field appears to be weakly dependent
on the temperature. With the dependence of α2 and α4 on
temperature this leads to β1 having a non-zero dependence on
temperature. This is displayed in Fig. 5(b). In what follows,
whenever it is necessary to determine the value of β1 at a
given temperature, we shall use an interpolation between the
experimental points with the addition of one point at zero tem-
perature [where the β1 coupling takes the previously obtained
value, Eq. (A6)].

With the temperature dependence of β1 fixed, one can
determine the dependence of the average gap on the applied
electric field. Before doing this, however, we shall consider
quartic corrections in the density to the permittivity, as these
help to give more realistic profiles.

3. Quartic density correction to the permittivity

In general, one can consider very general density-
dependent corrections to the permittivity. As an example
of the effect that higher density corrections can have on

the average gap, in the main text we have included β2 so
ε[�] = ε0(1 + β1�

2 + β2�
4). In Fig. 6(a), the dashed blue

and purple lines represent the effect of β2 at zero temperature
[with β1 fixed to the critical zero temperature value Eq. (A6)]
and the red line gives the dependence of the average gap
for β2 = 0. We can see that as β2 is increased, the average
gap is decreased; meanwhile, if we take β2 negative, the
average gap is increased and the curve becomes less sharp
about E0 = 0. As such, we can tune β2 negative to generate
a more flat profile about E0 = 0 to better match experimental
results.

At nonzero temperature, we compute the mean-square-
difference between our model profiles and the experimental
data. We then minimize this measure to obtain the optimal
value of β2 at each temperature. The resultant dependence
of the average gap on the electric field for T = 350 mK is
displayed in Fig. 6(b). The values of β2 for other temperatures
are given in Fig. 7.

FIG. 7. The dependence of the β2 coupling, normalized by the
value at 5 mK (−7.27 × 10−55 m6) against temperature extracted by
fitting our model to experimental data.
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FIG. 8. Plots of the energy densities. Each line is a different choice of E0/Ec,T =0 with red corresponding to positive values and blue to
negative values of E0. (a) is a plot of the potential energy density against position for E0 > 0 with E0/Ec,T =0 = 0, 1/10, . . . , 9/10 (bottom to
top). (b) is a plot of the potential energy density against position for E0 < 0 with E0/Ec,T =0 = 0, −1/10, . . . , −9/10 (bottom to top). (c) and
(d) represent the values of the kinetic and boundary energy densities against electric field and position with the electric field ranging from
E0/Ec,T =0 = −9/10, . . . , 9/10.

4. Kinetic, potential, and boundary energies

The energy density of the condensate can be decomposed
into three terms,

εkinetic =
(

d

dz
�

)2

, (A7a)

εpotential =
(α2

2!
+ qϕ

)
�2 + α4

4!
�4, (A7b)

εboundary = ε[�]

2

(
d

dz
ϕ

)2

, (A7c)

which are the kinetic, potential, and boundary energy densi-
ties, respectively. In the main text, we argue that the kinetic
energy contribution is small compared to the other contribu-
tions for a large range of electric field values. This can be
seen by looking at the values of the densities as displayed in
Figs. 8(a)–8(d). The absolute value of the kinetic term is much
smaller than the sum of potential and boundary energy terms.
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