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Constructing all extreme instances of the set of completely positive trace-preserving (CPTP) maps, i.e.,
quantum channels, is a challenging and valuable open problem in quantum information theory. Here we introduce
a systematic approach that, despite the lack of knowledge about the full parametrization of the set of CPTP
maps on arbitrary Hilbert-spaced dimension, enables us to construct exactly those extreme channels that are
covariant with respect to a finite discrete group or a compact connected Lie group. Innovative labeling of quantum
channels by group representations enables us to identify the subset of group-covariant channels whose elements
are group-covariant generalized-extreme channels. Furthermore, we exploit essentials of group representation
theory to introduce equivalence classes for the labels and also partition the set of group-covariant channels. As a
result, we show that it is enough to construct one representative of each partition. We construct Kraus operators
for group-covariant generalized-extreme channels by solving systems of linear and quadratic equations for all
candidates satisfying the necessary condition for being group-covariant generalized-extreme channels. Deciding
whether these constructed instances are extreme or quasiextreme is accomplished by solving a system of linear
equations. Proper labeling and partitioning the set of group-covariant channels leads to a novel systematic,
algorithmic approach for constructing the entire subset of group-covariant extreme channels. We formalize
the problem of constructing and classifying group-covariant generalized extreme channels, thereby yielding an
algorithmic approach to solving, which we express as pseudocode. To illustrate the application and value of our
method, we solve for explicit examples of group-covariant extreme channels. With unbounded computational
resources to execute our algorithm, our method always delivers a description of an extreme channel for any
finite-dimensional Hilbert space and furthermore guarantees a description of a group-covariant extreme channel
for any dimension and for any finite-discrete or compact connected Lie group if such an extreme channel exists.
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I. INTRODUCTION

Quantum channels, which are completely positive trace-
preserving linear maps belonging to the set of linear maps
on Banach spaces of operators, represent the most general
allowed form of quantum dynamics [1–3], and they form a
convex subset. Characterizing quantum channels is important
for representing general dynamics and for modeling decoher-
ence in quantum systems [4]. Based on such characterizations,
efficient simulation of quantum dynamics becomes feasible.
Another importance of characterizing the whole set of quan-
tum channels is to describe general quantum communication
channels and to analyze rates of reliable classical and quan-
tum information that can be communicated through quantum
channels [5,6].
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As full characterization of convex sets is feasible by just
knowing the extreme points of a convex set, full channel
characterization can be accomplished by determining only the
small subset comprising all extreme channels. The conundrum
is that extreme channels can be determined by knowing the
convex set and vice versa. For quantum channels acting on d-
dimensional Hilbert space, necessary and sufficient conditions
for a channel to be extreme are described in [7] using similar
arguments to those presented in [8]. For qubit channels, full
characterization of extreme points is known [9–12]. On the
other hand, for Hilbert-space dimension d > 2 (qubit chan-
nels), neither extreme channels nor full characterizations of
the set of quantum channels are known

Here we advance the understanding and characterization
of extreme channels by treating channels restricted by sym-
metries, which are specified by finite discrete or compact
connected Lie groups. Compactness ensures that the con-
nected Lie group has finite-dimensional representations. We
exploit this symmetry to construct exact forms of extreme
channels. Specifically, for any d , we develop an algorithmic
approach to derive exactly a subset of extreme points of the
set of channels that have certain specified symmetries.

Only special types of channels have been fully character-
ized to date: a set of qubit channels including all extreme
points [9–12] and some extreme points for the set of unital
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channels [13,14], which are quantum counterparts of classical
bistochastic processes. Studying unital channels is useful for
investigating similarities between classical and quantum pro-
cesses, such as establishing a quantum version of Birkhoff’s
theorem [13] and proving additivity or superadditivity of
quantities relevant to the communication capacity of channels
[15–17]. Fully characterizing quantum channels is quite chal-
lenging, which necessitates tackling restricted cases such as
unitality.

Characterizing quantum channels has an important prac-
tical application to quantum simulation [18–20]. Quantum
simulation is an important application of quantum com-
puting and typically is studied for Hamiltonian-generated
unitary evolution [19,21–25], but, as general evolution is de-
scribed by quantum channels, a fully developed theory of
quantum simulation could be based on simulating quantum
channels. Whereas Hamiltonian simulation exploits notions
such as the Solovay-Kitaev theorem [26,27] for gate de-
composition and sparseness of Hamiltonians [22,23], direct
quantum simulation of channels is challenging. However,
some progress has been made by exploiting knowledge of
extreme channels. Decomposing the single-qubit channel has
been explored theoretically [28] and experimentally [29] and
exploits properties of extreme channels. Extreme channels
are valuable as well for qudit-channel decomposition [30],
including for dimension-altering channels [31], and for de-
composing m-qubit to n-qubit channels [32]. This latter result
[32] emphasizes the importance of their constructive approach
to channel decomposition, which guarantees success of the
channel-decomposition procedure. Those authors contrast
their constructive approach to the qudit-channel decompo-
sition approach [30], which is provably not guaranteed to
succeed based on an insufficient number of parameters. These
theoretical [28,31,32] and experimental [29] advances point
to the importance of determining extreme channels to make
quantum-channel simulation efficient or at least tractable.

Solving for extreme channels is currently restricted to
particular examples of unital channels, whereas our goal is
to establish a systematic, algorithmic approach to construct-
ing extreme channels that are group-covariant [33], whether
unital or not. Beginning with the name of a finite-discrete
group or a compact connected Lie group and d , we exploit
the possibility of being able to look up all inequivalent ir-
reducible representations (irreps) of the group in order to
be able to construct all possible inequivalent d-dimensional
representations of the group by direct sums of inequivalent
group irreps. For any two d-dimensional inequivalent repre-
sentations of the group and any inequivalent group irrep with
dimension less than or equal to d , we solve a set of linear
equations, obtained by applying the group-covariance con-
straint, to construct Kraus representations of corresponding
group-covariant generalized extreme channels. Our method
exploits the full power of representation theory; if we em-
ployed the obvious brute-force approach instead, we would be
solving a set of linear equations for all pairs of d-dimensional
representations and for all d2-dimensional representations of
the given group, which is an uncountably infinite number of
candidates; instead, provided the representation theory for the
group is known, our approach yields only a finite number
of candidates, making our approach feasible algorithmically.

Once we have identified these candidates, we then test if the
obtained generalized extreme channel satisfies the constraint
for being extreme. This constraint is expressed as a system of
linear equations whose solution reveals whether the obtained
generalized extreme channel is extreme or quasiextreme.

Our systematic, algorithmic approach is described by a
pseudocode that we define for this purpose. Typically, pseu-
docode serves as a convenient way of representing the logical
flow of a program for implementation on a standard, i.e.,
Turing-like, computer, but our pseudocode is quite different,
serving as a representation of the logical flow for our math-
ematical approach. Thus, we make it clear that, formally, our
pseudocode applies to a real-number model of computing; this
model enables us to be rigorous with respect to the logic of our
systematic, algorithmic approach to solving group-covariant
extreme and quasiextreme channels.

We begin by presenting a full background to our work
in Sec. II, including state of the art and methods, and then
we proceed to describe our approach in Sec. III. Our results
are presented and fully explained in Sec. IV, followed by a
discussion of these results in Sec. V. Finally, we conclude
in Sec. VI including an outlook on outstanding problems and
potential future work.

II. BACKGROUND

In this section, we summarize the pertinent literature and
provide basic concepts required for subsequent sections. We
begin by discussing quantum channels in Sec. II A, including
their Kraus and Choi representations. Section II B is devoted
to group-covariant channels and the constraints on the Kraus
operators of group-covariant quantum channels.

A. Quantum channels

In this subsection, first we review the definition of quantum
channels. We then review Kraus representation and Choi ma-
trix representations for quantum channels. Following that, we
recall the definition of specific subsets of quantum channels,
namely extreme channels, generalized-extreme channels, and
quasiextreme channels.

1. Channel representation

For H a complex finite-dimensional Hilbert space and
L(H ) the space of linear operators acting on H , density
operators {ρ} are positive trace-class operators on H , i.e.,
they belong to the subset of L(H ) denoted by

T (H ) = {ρ ∈ L(H )|ρ � 0, tr(ρ) = 1}. (1)

For our purposes, the trace of the density operator is unity. A
quantum channel is any completely positive trace-preserving
map � : T (H ) → T (H ).

For H restricted to finite dimension d , i.e.,

d := dim H , (2)

every quantum channel can be expressed as

�(•) =
K∑

k=1

Ak • A†
k, • ∈ T (H ), K � d2. (3)
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This expression is subject to the trace-preserving constraint

� = 1 (4)

for

� :=
K∑

k=1

A†
kAk, (5)

which can be nondiagonal. Here the nonzero linear operators
Ak ∈ L(H ) are called Kraus operators, with each Kraus op-
erator expressible as a d × d complex matrix whose entries
are

(Ak )i j :=〈ei| Ak |e j〉 ∈ C, i + 1, j + 1 ∈ [d] := {1, 2, . . . , d}
(6)

for {|ei〉} an orthonormal basis of finite-dimensional H ,
where i goes from 0 to d − 1. In summary, � can be rep-
resented by the set {Ak}k∈[K] with each Ak comprising d2

complex-valued matrix elements. Therefore, the channel is
described by up to Kd2 complex-valued parameters.

Remark 1. For d = 0, the only vector in Hilbert space is
zero, which has zero norm. Hence there is no allowed state in
this case. For d = 1, only one normalized state exists, which
forms the normal basis for the Hilbert space. Kraus operators
of this channel are proportional to the projector onto the basis
of the space satisfying the trace-preserving condition.

The set of Kraus operators describing a map � is unique up
to an isometry [27]. For a given map �, the minimum number
of Kraus operators, called the Choi rank, equals the rank of
the Choi operator

C� := 1

d
(� ⊗ 1)(|�〉 〈�|), |�〉 := 1√

d

d−1∑
i=0

|ei, ei〉 (7)

and

(C�)mn,pq = 〈em, en|C� |ep, eq〉 = 1

d
〈em| �(|en〉 〈eq|) |ep〉

(8)

is the Choi matrix. Typically, the operator (7) is called the
Choi matrix, but, due to our algorithmic approach, we need to
be extra careful in distinguishing operators from their matrix
representations, and we denote matrices of size m × n with
entries drawn from the field F by Mm×n(F ). Choi showed
that a minimal set of Kraus operators can be obtained from
the eigenvectors of the Choi matrix with nonzero eigenvalues
[8].

2. Extreme channels

The set of quantum channels S� is convex and thus has
extreme points.

Definition 1. Extreme points of the convex set S� are called
extreme channels. Extreme channels are channels that cannot
be written as a convex combination of any other two distinct
channels in a nontrivial way.

We denote the set of extreme channels by S�ext ⊂ S�. De-
spite the importance of extreme channels, characterization of
extreme channels is unknown except for the special case of
d = 2 [9–11]. Results beyond d = 2 are restricted to charac-
terizing extreme points of the set of unital channels [�(1) ≡

1], which are not necessarily extreme points of the set of all
channels [13].

An important theorem on extreme channels specifies nec-
essary and sufficient conditions for a channel to be an extreme
one [8]:

Theorem 1. A channel represented by a set of Kraus opera-
tors {Ak}k∈[K] is extreme if and only if (iff) the set of operators

S := {A†
kAl}k,l∈[K] (9)

is linearly independent [7,8].
Thus, the number K of Kraus operators of an extreme

channel has upper bound

K � d. (10)

Therefore, the Choi rank of an extreme channel is bounded
by d .

Clearly not all channels with Choi rank satisfying inequal-
ity (10) are extreme channels, but such channels are interest-
ing as well [11,34]. The fact that other channels are interesting
leads to defining two further important subsets of quantum
channels. One subset is known as generalized-extreme chan-
nels and the other subset is known as quasiextreme channels,
which we now define.

Definition 2. Channels with Choi rank not exceeding d
are called generalized-extreme channels [11] and the set of
generalized-extreme channels is denoted by S�gen .

Definition 3. Generalized-extreme channels that are not
extreme are called quasiextreme channels [11], and the set of
quasiextreme channels is denoted by S�qe .

Remark 2. Extreme and quasiextreme channels are mutu-
ally exclusive: S�gen ∩ S�qe = ∅.

B. Group-covariant channels

In this subsection, we elaborate on a specific class of
channels, namely group-covariant channels. First we recall the
definition of equivalent channels. Based on this definition we
explain that a group-covariant channel is a channel (3) with
the additional property that the channel’s action is invariant
under pre- and postunitary conjugations that are described
by group representations. Then we explain the constraints on
the Kraus operators of group-covariant channels and how two
group-covariant channels under the same group, with respect
to equivalent representations of the group, are equivalent.
Group-covariant channels have been studied in the context of
channel capacity [35–39], extreme points of unital channels
[13], and channel characterization [40–42], and complemen-
tarity and additivity properties of various covariant channels
are discussed in [43].

Definition 4. A channel � is unitarily equivalent to channel
�′, denoted by � ∼ �′, if there exist d-dimensional unitary
operators U and V such that

� ∼ �′ : � = TU ◦ �′ ◦ TV , (11)

where ◦ denotes composition of maps, and

TQ : L(H ) → L(H ) : • �→ Q • Q†, Q ∈ L(H ). (12)

The equivalence relation ∼ (11) partitions the set of all
quantum channels for given Hilbert-space dimension d into
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equivalence classes of channels. Any quantum channel is
equivalent to itself for U = V = 1. However, for some chan-
nels, each channel is equivalent to itself even if U and V
are not identity operators. These channels, with symmetric
properties, are group-covariant channels defined as below.

Definition 5. For a finite discrete group or a compact
connected Lie group denoted G, with a pair of unitary rep-
resentations [33]

D(1), D(2) ∈ L(H ), (13)

a channel � is group-covariant with respect to representations
D(1), D(2) if

TD(2) (g) ◦ � ◦ TD(1) (g) = � ∀g ∈ G, (14)

where TQ is defined in Eq. (12).
Suppose channel �, represented by Kraus operators

{Ak}k∈[K] (3), is group-covariant with respect to two d-
dimensional unitary representations of the group G, namely
D(1) and D(2). Then Eq. (14) implies that

D(2)†
(g)AkD(1)(g) =

K∑
l=1

�kl (g)Al , ∀k ∈ [K], ∀g ∈ G, (15)

subject to the trace-preserving condition (4), for � a unitary
representation of the group G on any K-dimensional unitary
space [35,40]. The dimension of � is equal to the number of
Kraus operators describing the channel [40].

Remark 3. The group-covariant channel � (14) with re-
spect to D(1) and D(2) is not necessarily unique, and each
distinct � should be suitably labeled. The role of � (15) is
to label distinct group-covariant channels with respect to D(1)

and D(2), i.e., we can write ��.
Remark 4. If � is a reducible representation of the group,

then the group-covariant channel with Kraus operators satis-
fying Eq. (15) is a convex combination of other channels that
are also group-covariant with respect to D(1) and D(2) [40].

Remark 5. Let � (3) be group-covariant with respect to
representations D(1) and D(2). Let D′(1) and D′(2) be two
representations of the same group. Suppose these two repre-
sentations are, respectively, unitarily equivalent to D(1) and
D(2) so

UiD
(i)(g)U †

i = D′(i)(g), ∀g ∈ G (16)

for {Ui}i∈[2] d-dimensional unitary operators. Then channel
�′, described by Kraus operators {A′

k = U2AkU
†
1 }k∈[K], is

group-covariant with respect to representations D′(i)’s [40],

�′ = TU2 ◦ � ◦ TU †
1
. (17)

That is, according to Definition 4, these channels are unitarily
equivalent.

Equality (15) holds iff this equality holds for all generators
of the group. Consider any finite discrete group G generated
by a subset of G, namely

S = {g1, g2, . . . , gr}, r := rank(G). (18)

Then Eq. (15) is satisfied for all g ∈ G if Eq. (15) is satisfied
for all gi ∈ S. Now consider any compact connected Lie group
G with corresponding Lie algebra

g ∈ span{Tn}, n ∈ [ν], ν := dim g (19)

for Tn a generator. Then Eq. (15) can be expressed in terms of
the representations of g [40],

D(1)(Tn)Ak − AkD(2)(Tn) =
K∑

l=1

�kl (Tn)Al , ∀ Tn, (20)

where D(1) and D(2) are d-dimensional Hermitian representa-
tions of the algebra g, and � is a K-dimensional Hermitian
representation of the Lie algebra g.

Remark 6. If D ≡ D(1) = D(2), Eq. (20) simplifies to the
commutator

[D(Tn), Ak] =
K∑

l=1

�(Tn)Al ∀ Tn. (21)

In this section, we have reviewed the main properties of
quantum channels and group-covariant channels. Now we use
these results for our aim of constructing group-covariant ex-
treme points of the set of quantum channels [40].

III. APPROACH

In this section, based on the background provided in
Sec. II, we introduce our systematic approach to construct
group-covariant generalized-extreme channels where the cor-
responding group has unitary representation. In Sec. A 1,
we describe the problem as a computational problem. In
Sec. III B, we present a constructing subset of extreme chan-
nels that are group-covariant. Section III C is devoted to
an algorithmic approach for solving the problem (in Ap-
pendix A 3 we explain our approach to pseudocode).

A. Formal problems

The purpose of this subsection is to formalize problems
of constructing group-covariant extreme channels over finite-
dimensional Hilbert space. Specifically, the construction of
these channels is achieved by obtaining the exact Kraus repre-
sentations for generalized-extreme group-covariant channels,
and we deal with both finite discrete and compact connected
Lie groups. Our final problem concerns deciding whether a
channel is either extreme or not.

We formulate problems by specifying the inputs and out-
puts, and the problem in each case is to map the inputs to the
outputs, although the problem formulation does not strictly
use this language. Each problem is thus a task that needs
to be performed to construct group-covariant extreme and
quasiextreme channels.

We now formulate and explain our three problems. The
first two problems concern construction of group-covariant
generalized-extreme channels discussed in Sec. II A, first for
finite discrete groups and then for compact connected Lie
groups. For our first problem, the input comprises the name
of the finite discrete group and the dimension of the Hilbert
space. The output of the first problem is the set of d × d
matrix representations of Kraus operators for group-covariant
generalized extreme channels. Our second problem is similar
to the first, with the input comprising the name of the group,
but in this case a compact connected Lie group; otherwise the
statement is the same in that the input includes the dimension
of the Hilbert space, and the output is the set of d × d matrix
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representations of Kraus operators for group-covariant gen-
eralized extreme channels. These first two problems are now
given.

Problem 1. Construct all exact d-dimensional Kraus oper-
ators of all group-covariant generalized-extreme channels for
any finite discrete group.

Problem 2. Construct all exact d-dimensional Kraus
representations of all group-covariant generalized-extreme
channels for any compact connected Lie group.

The third problem, which is a decision problem, accepts
matrix representations of Kraus operators for a channels as
input. The problem is to solve whether the input channel is
extreme or not, and yields this answer as a single-bit output.
Therefore, in our case in which the inputs are the matrix
representations of Kraus operators for a generalized-extreme
channel, the problem solves whether the input channel is
extreme or quasiextreme

Problem 3. Decide whether a given set of d-dimensional
Kraus operators of a quantum channel describes an extreme
channel or not.

Now that we have three well-posed computational prob-
lems, albeit permitting real and complex numbers, we proceed
to describe our approach for designing a proper procedure and
its presentation as an algorithm that solves the problem.

B. Algebraic approach

Building on the formal problems posed in Sec. A 1, we
explain our approach for constructing generalized-extreme
group-covariant channels. First in Sec. III B 1 we transform
the relation between Kraus operators of a group-covariant
channel to systems of linear equations. Then in Sec. III B 2 we
discuss how to construct generalized-extreme group-covariant
channels. Finally, in Sec. III B 3 we explain how defining
equivalent channels helps to construct generalized-extreme
group-covariant channels, which only needs to be done for
group-covariant channels with respect to inequivalent repre-
sentations of the group. Discussions in Secs. III B 2 and III B 3
enables us to solve Eq. (15) just for the representative of
each class of group-covariant generalized extreme channels,
instead of employing a brute-force approach that is construct-
ing all group-covariant channels and then deciding which one
is extreme.

1. Solving a system of linear equations for Kraus operators of a
group-covariant channel

In this subsubsection, we convert the relations for Kraus
operators representing a group-covariant channel in the finite
discrete case (15) and in the compact connected Lie group
case (20) into a system of linear equations. The algorithm
for solving this system of linear equations can then be solved
algorithmically and is amenable to expressing in pseudocode.
First, for discrete finite groups and compact connected Lie
groups, we express relations between Kraus operators as sys-
tems of linear equations. In both cases, we discuss instances
for which group-covariant channels do not exist with respect
to particular representations D(1), D(2), and �.

We denote the vectorized form of a Kraus operator Ak by
Ak , and matrix elements convert to vector elements according
to (Ak )i j = (Ak )id+ j . Concatenation of vector representations

is denoted by �, i.e., Ak�Ak′ for the concatenation of vec-
tors representing Kraus operations Ak and Ak′ , respectively.
Concatenation of a length K sequence of vectors representing
Kraus operators is expressed as

A := �K
k=1Ak ∈ MKd2×1(C), (22)

which represents the channel as a vector comprising all of the
channel’s Kraus operators.

For a group-covariant channel with a finite discrete group,
a vector A (22) is obtained by solving linear equations (15)
for each gi ∈ S (18) and then imposing the trace-preserving
constraint (4). We reexpress the linear equations (15) as

P(gi )A = 0 ∀ i ∈ [r] (23)

for

P(gi ) =
K⊕

k=1

(D(2)†
(gi ) ⊗ D(1)T

(gi ))

− �(gi ) ⊗ 1d2 ∈ MKd2×Kd2 (C) (24)

with 1d2 the d2 × d2 identity matrix, and T denoting matrix
transposition: (•)T

i, j = (•) j,i. Equation (23) is a set of systems
of homogeneous linear equations. Each of these systems of
homogeneous linear equations is labeled in terms of the same
three representations of the group, namely D(1), D(2) and �,
as clearly seen in Eq. (24).

Remark 7. In the trivial case that D(1) = 1d = D(2) and
� = 1, then P(gi ) ≡ 0 for all i, which implies that A in
Eq. (24) is unconstrained and is a vectorized version of just
one single Kraus operator.

The solution A (23) belongs to ker(P(gi )) for all i ∈ [r].
If

⋂
i∈[r] ker (P(gi )) ≡ {0}, then the only solution to Eq. (23)

is the trivial solution A ≡ 0. Such a trivial case arises ei-
ther if gi ∈ S exists such that det (P(gi )) �= 0, which means
ker(P(gi )) = {0} for some i, or else ker(P(gi )) �= {0} for all
i ∈ [r] but their intersection is zero.

This trivial solution A ≡ 0 implies nonexistence of a
group-covariant channel with respect to group representa-
tions D(1), D(2), and �. On the other hand, if det (P(gi )) =
0 for all gi ∈ S and

⋂
i∈[r] ker (P(gi )) �= {0}, then Eq. (23)

yields a nontrivial solution A ∈ ⋂
i∈[r] ker (P(gi )) with

its number of parameters being less than or equal to
mini∈[r]{nullity (P(gi ))}. This nontrivial solution A could rep-
resent valid Kraus operators of a group-covariant completely
positive (CP) map with respect to given D(1), D(2), and �

and these nontrivial solutions are candidates for solutions for
a channel if the trace-preserving condition, discussed below,
can be imposed successfully.

These algebraic equations and arguments can be under-
stood geometrically as well, which provides an alternative,
and valuable, insight. From Eq. (23) we know that A, for each
i, is in the kernel of a matrix with Kd2 rows of Kd2 elements
per row. Each nonzero row of P(gi )A = 0 (23) defines a hy-
perplane in CKd2

. Thus, the solution to Eq. (23) for each i is a
flat, that is, the intersection of Kd2 hyperplanes obtained from
rows of Eq. (23) with the dimension of this intersection being
nullity(P(gi )). According to Eq. (23), A belongs to the inter-
section of all r flats. If the intersection of these flats is empty,
then a group-covariant channel labeled by D(1), D(2), and �
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does not exist. If the intersection is another flat, its dimension
is less than or equal to mini∈[r]{nullity (P(gi ))}, which equals
the number of parameters in the solution A. These solutions
represent valid Kraus operators of a group-covariant CP map
with respect to given D(1), D(2), and �, and next we constrain
these solutions by the trace-preserving condition to obtain, if
possible, solutions A for a channel.

For a channel, these Kraus operator solutions for CP maps
must further satisfy the trace-preserving condition (4), which
involves additional equations that restrict the parameter-space
domain for Kraus operators. To impose this trace-preserving
constraint, we reshape Kraus vectors {Ak} back to Kraus ma-
trices {Ak}. Then we verify if {Ak} describe a trace preserving
map for a range of complex parameters in {Ak}. Each diagonal
element of � (4) is the sum of modulus square of complex
parameters of Kraus operators

〈ei| � |ei〉 = �ii =
d∑

j=1

K∑
k=1

|(Ak )i j |2, (25)

hence a non-negative real number for {|ei〉} the orthonormal
basis of H .

To constrain solutions A that yield CP maps, by apply-
ing the trace-preserving condition, we test if � is diagonal
by checking that all off-diagonal terms for this matrix are
zero. If the test shows that � is a d-dimensional diagonal
matrix, then we have d equations that depend only on modulus
square complex parameters of Kraus operators. The num-
ber of parameters varies depending on the particular case.
Equations that are linear in modulus square of parameters of
Kraus operators can be solved by a linear equation solver for
modulus square complex parameters. The solution describes a
family of group-covariant channels.

The diagonal-� matrix case for imposing the trace-
preserving condition admits a beautiful geometric analogy.
Recalling the geometric perspective, Kraus operators of a
group-covariant CP map belong to a flat in parameter space.
If � is diagonal, the trace-preserving constraint (4) is repre-
sented geometrically by at most d hyperspheres embedded
in that flat such as a circle embedded in a plane. Thus, the
intersection of these hyperspheres determines the parameter
domain for which the CP map is trace-preserving, hence a
channel.

If � is not diagonal, then, in general, we have d (d +
1)/2 expressions quadratic in complex parameters. Not all
these d (d + 1)/2 are necessarily mutually independent. Fur-
thermore, the number of parameters can be fewer than the
maximum of Kd2. The off-diagonal case is harder than the
diagonal case with respect to imposing the trace-preserving
condition, and the geometric perspective is not as helpful,
so we discuss the nondiagonal case only from an algebraic
perspective. These equations can be solved algorithmically,
for example using SimPy discussed in Appendix C 1, but such
solvers are not guaranteed to solve nor is a solution known to
exist in general.

For compact connected Lie groups, the relation between
Kraus operators of the channel (20) is transformed to the set
of linear equations

Q(Tn)A = 0 ∀n ∈ [ν], (26)

analogous to Eq. (23) for discrete groups, with A (22) and ν

(19). In Eq. (26),

Q(Tn) =
K⊕

k=1

(D(1)(Tn) ⊗ 1d − 1d ⊗ D(2)(Tn)
T

)

− �(Tn) ⊗ 1d2 ∈ MKd2×Kd2 (C). (27)

Equation (26) is a set of systems of homogeneous linear
equations. Each of these systems of homogeneous linear
equations is labeled in terms of the same three represen-
tations of the group, namely D(1), D(2), and �, as clearly
seen in Eq. (27). Algebraic and geometrical descriptions of
the solution to Eq. (26) are similar to those for the solu-
tion of Eq. (23). As for the finite discrete-group case above,
the solution A of Eq. (26) belongs to

⋂
n∈[ν] ker (Q(Tn)).

If
⋂

n∈[ν] ker (Q(Tn)) = {0}, then the system of linear equa-
tions (26) has only a trivial solution, which means that the
group-covariant CP map with respect to D(1), D(2), and �

does not exist. If, on the other hand, ker (Q(Tn)) �= {0}, then
the solution of Eqs. (26) yields all Kraus operators of the
group-covariant CP map. If the trace-preserving condition can
be imposed successfully, then the group-covariant channel
with respect to D(1), D(2), and � is obtained following the
approach discussed above for discrete groups.

2. Constructing generalized-extreme group-covariant channels

In this subsubsection, we explain our approach for con-
structing group-covariant generalized-extreme channels. First
we establish our notation and explain how we label differ-
ent group-covariant channels. Then we discuss the labels of
group-covariant generalized-extreme channels.

To construct a set of group-covariant channels given
group G and Hilbert-space dimension d , one chooses two
d-dimensional representations D(1) and D(2) for G. The set
of group-covariant channels with respect to D(1) and D(2) is
denoted by WG,D(1),D(2) . To construct WG,D(1),D(2) , one selects
each � from the set of unitary representations for G and solves
the linear equations in Eq. (15) to obtain matrix descriptions of
Kraus operators. As explained in Sec. III B 1, solving Eq. (15)
is equivalent to solving a set of systems of homogeneous lin-
ear equations (23) for the case of finite discrete groups, which
is a set of systems of homogeneous linear equations labeled
by three representation of the group, namely D(1), D(2), and
�. Hence, we label the solution to this set of systems of ho-
mogeneous linear equations by the same labels and denote this
solution by �D(1),D(2),�. This approach, involving equivalence
between Eqs. (15) and (26) and labeling by D(1), D(2), and �,
pertains as well to the compact connected Lie group case.

Trivial solutions (� ≡ 0) are excluded and each nontrivial
solution is denoted by �D(1),D(2),� ∈ WG,D(1),D(2) . The index �

labels distinct group-covariant channels with respect to D(1)

and D(2), which are general d-dimensional representations of
G including the reducible case. The set of all group-covariant
channels is denoted by

WG :=
⋃

D(1),D(2)

WG,D(1),D(2) , (28)

where the union is over all d-dimensional representations of
G.
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The set of indices labeling distinct group-covariant chan-
nels with respect to D(1) and D(2) is denoted by

FG,D(1),D(2) := {� : �D(1),D(2),� ∈ WG,D(1),D(2)}. (29)

Then FG := ⋃
D(1),D(2) FG,D(1),D(2) is the set of all labels of

group-covariant channels.
Unitary conjugation is an equivalence relation ≈ that parti-

tions FG to equivalence classes, and each class is denoted by
[�]. Indeed labels of classes are inequivalent representations
of the group. We show that all elements of each class [�] label
the same group-covariant channel; hence, instead of label-
ing distinct group representations by a unitary representation
of the group, we use a more appropriate notation, i.e., we
label each group-covariant channel by an equivalence class
�D(1),D(2),[�].

We denote the set of group-covariant generalized-extreme
channels by WG,gen ⊂ WG , which is a subset of all
generalized-extreme channels, WG,gen ⊂ S�gen , and it has
two exclusive subsets, namely quasiextreme group-covariant
channels and extreme group-covariant channels. This set of
channels are, respectively, denoted by WG,qe ⊂ WG,gen and
WG,ext ⊂ WG,gen with WG,qe

⋂
WG,ext = ∅. We show that the

subset of FG/≈, denoted by FG,gen, which includes all ir-
reducible [�]s with dimension not exceeding d , labels all
channels in WG,gen.

Thus, to construct group-covariant generalized-extreme
channels, instead of solving Eq. (15) for all � which is a
brute-force approach, we solve Eq. (15) for all [�] ∈ FG,gen

to obtain Kraus operators of all group-covariant generalized-
extreme channels. Then by testing whether S (9) is a set
of linearly independent operators, we classify, according to
Theorem 1, resultant nontrivial channels into extreme and
quasiextreme classes.

3. Equivalent extreme channels

In this subsubsection, we partition the set of group-
covariant channels and explain that it is enough to construct
one representative of each class, which is more efficient than
the direct approach of solving every extreme channel. We
discuss that, if an element of a class of equivalent channels
as described in Definition 4 is an extreme group-covariant
channel, then all elements of that class have that property.

First we show that, according to the equivalence relation
in (11), all �D(1),D(2),[�] ∈ WG,D(1),D(2) and all �D′(1),D′(2),[�] ∈
WG,D′(1),D′(2) , with D(i) and D′(i) being two unitarily equivalent
representations of G (16), are equivalent. We denote the set of
group-covariant channels with respect to all representations of
G that are equivalent to D(1) and D(2) by WG,[D(1)],[D(2)], which
is an equivalence class. Then we show that if �D′(1),D′(2),[�] ∈
WG,[D(1)],[D(2)] is extreme, all channels in WG,[D(1)],[D(2)] are
extreme. Hence, for [�] ∈ FG,gen (defined in Sec. III B 2) if

�D′(1),D′(2),[�] ∈ WG,[D(1)],[D(2)] (30)

is extreme/quasiextreme, then all channels in WG,[D(1)],[D(2)]
are extreme/quasiextreme. Hence, to construct all generalized
extreme group-covariant channels, for each [�] ∈ FG,gen, we
construct �D(1),D(2),[�]. Other elements of the classes are de-
rived according to the equivalence relation among quantum

channels, which is any arbitrary pre- or postunitary conjuga-
tion. This step is repeated for all inequivalent representations
D(1) and D(2).

C. Algorithmic approach

In this subsection, we explain the algorithmic approach
for constructing group-covariant extreme channels for finite
discrete groups and compact connected Lie groups. We com-
mence by constructing the algorithm for solving Problems 1
and 2 in Sec. III C 1. We discuss constructing an algorithm
for Problem 3 in Sec. III C 2. We express the algorithm as
input and output, including the type of each input and output
(such as symbol, integer, real number, bit, character, and so
on). In our algorithmic approach, we do not restrict ourselves
to discrete mathematics; rather we permit symbols and real-
and complex-number entries in the register as we are focused
on an algorithmic approach to the problem but not issues of
computability or complexity associated with various compu-
tational models [44]. In each procedure, we employ required
functions from our libraries discussed in Appendix C.

1. Algorithm for solving Problems 1 and 2

In this subsubsection, we present our approach to develop-
ing the algorithm for solving Problems 1 and 2. Specifically,
we state the input, output, and a brief description of the pro-
cedure, with the full explanation of the algorithm in the first
algorithm of Sec. IV B.

a. Input: A binary number that flags the type of the group,
which is either a finite discrete group or a compact connected
Lie group. The name of any finite discrete group or a compact
connected Lie group expressed as a character string. Examples
of finite discrete group names include Z2, which is the cyclic
group of order 2, or S3, which is the symmetric group of
degree 3. Hilbert-space dimension d ∈ Z+ is the other input.

b. Output: A finite number C ∈ Z+ is the first output
representing the total number of generalized extreme group-
covariant channels on d-dimensional Hilbert space, and the
second output is the set of Kraus operators for all C channels.

c. Procedure: We import required functions from the li-
braries discussed in Appendixes C 1 and C 2 and declare
necessary variables for the algorithm. Then we solve the sys-
tem of linear equations (23) and (26), respectively, for finite
discrete group (Problem 1) and compact connected Lie group
(Problem 2). In either case, we solve the corresponding set of
linear equations for each instance D(1), D(2) (inequivalent d-
dimensional representations of the group) and � (inequivalent
irreps of the group with dimension less than or equal to d).

(i) If a nontrivial symbolic solution exists for this instance,
then this solution is unique, and the algorithm constructs a
set of Kraus operators for this solution and imposes the trace-
preserving condition on it, which as explained in Sec. III B 1
is done by first constructing � (5) and second solving � = 1.
If � is diagonal, then a linear-solver algorithm solves a system
of linear equations for modulus squares of symbols for Kraus
matrices. If the solution exists, it is stored and the counter C
for successful case increments. Then the algorithm proceeds
to the next instance. If � is not diagonal, as discussed in
Sec. III B 1, a solver such as Python’s SimPy aims to solve
sets of quadratic equations. If the solution is found within the
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FIG. 1. Schematic representation of the algorithmic approach for solving Problem 1.

allowed time, the solution is written to the register, the counter
C increments, and the algorithm proceeds to the next instance.

(ii) If the system of linear equation does not have a nontriv-
ial solution, the algorithm goes to the next incident without
incrementing the counter C.

After testing all instances, and generating a parametric
solution to a system of linear equations for all instances where
this solution exists, an ordered list (with ordering determined
by GPROPS defined in Appendix C 2) of all sets of Kraus
operators is returned. The algorithm returns finite number C in
the output. If C = 0, then acceptable channels have not been
found. Figure 1 shows a schematic representation of algorithm
for solving Problem 1 which is useful for going through the
details of pseudocode in Sec. IV B.

2. Algorithm for solving Problem 3

In this subsubsection, we describe inputs and outputs for
the algorithm to solve Problem 3. When we present our pro-
cedure to determine whether a given channel is extreme or
not.

a. Input: A list of K d-dimensional Kraus operators
{Ak∈[K]} with symbolic elements.

b. Output: The single-bit output is �, denoting “true,” if
the given Kraus operators correspond to an extreme channel;
otherwise the output is ⊥, denoting “false,” which means that
the Kraus operators do not describe an extreme channel.

c. Procedure: We import required functions from the
libraries Appendixes C 1 and C 2 and declare necessary vari-
ables for the algorithm. Then, from K d-dimensional symbolic
matrices in the input An, n ∈ [K], we construct a larger set
of K2 d-dimensional symbolic matrices by computing Bnn′ :=
A†

nAn′ for all n, n′ ∈ [K]. In the next step, the algorithm de-
cides whether or not matrices Bnn′ are linearly independent.
Like typical algorithms for deciding linear independence, our
algorithm solves a system of linear homogeneous equations.
If the only solution is trivial, then the output is �, which
means that the input channel is an extreme channel; otherwise
the output is ⊥, which means that the input channel is not
extreme.

IV. RESULTS

In this section, we present our new results. First we
begin in Sec. IV A by establishing our method for con-
structing group-covariant generalized-extreme channels for
finite discrete and compact connected Lie groups and for
given finite Hilbert-space dimension. Then, in Sec. IV B,
we present our pseudocode for constructing generalized ex-
treme group-covariant channels. Finally, in Sec. IV C, we
solve and elaborate on four finite discrete-group and two
compact connected Lie group examples of group-covariant
generalized-extreme channels as interesting in their own right
but also excellent illustrations of the generality of our method.

A. Algebraic construction of group-covariant extreme channels

In this subsection, we establish a procedure for construct-
ing group-covariant generalized-extreme channels for given
finite discrete and compact connected Lie groups and also
given a finite Hilbert-space dimension. We use the equivalence
relation in Definition 4 to show that either all elements of an
equivalence class are extreme or else none are extreme. This
property of classes simplifies the procedure for constructing
all generalized extreme group-covariant channels.

1. Labeling group-covariant channels

In this subsubsection, we explain how to construct the set
of group-covariant generalized-extreme channel labels FG,gen,
which is explained in Sec. III B 2. An element [�] ∈ FG,gen,
where FG,gen is defined in Sec. III B 2 and discussed more
in Sec. III B 3, labels group-covariant generalized-extreme
channels, which are elements of the set WG,gen, defined in
Sec. III B 2, with G the name of the group. We propose
two lemmas that are needed to construct group-covariant
generalized-extreme channels.

The following lemma shows that (matrix) labels � and �′,
which are unitarily equivalent, label the same group-covariant
channel, i.e.,

�D(1),D(2),� = �D(1),D(2),�′ . (31)
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Lemma 2. All unitarily equivalent representations of G
label the same group-covariant channel.

Proof. We being by recognizing that Eq. (15) holds for
Kraus operators {Ak}k∈[K] if

�D(1),D(2),� ∈ WG,D(1),D(2) (32)

for each �D(1),D(2),� described by this set {Ak}k∈[K] (3). If �′ is
a representation of G that is unitarily equivalent to � through
unitary conjugation by U , i.e.,

�′(g) = U�(g)U †, ∀g ∈ G, (33)

then, for

A′
� :=

K∑
k=1

U�kAk ∀� ∈ [K] (34)

we obtain

D(2)†
(g)A′

�D(1)(g) =
K∑

�′=1

�′
��′ (g)A′

�′, ∀g ∈ G. (35)

Equation (35) implies that channel �D(1),D(2),�′ , described by
Kraus operators {A′

�}�∈[K], belongs to WG,D(1),D(2) . Therefore,
from Eq. (34) we verify Eq. (31). �

Equation (32) shows that the triplets (D(1), D(2),�) and
(D(1), D(2),�′) label the same group-covariant channel if
� and �′ are unitarily equivalent. Unitary conjugation is
an equivalence relation that partitions the set of labels of
group-covariant channels FG (defined in Sec. III B 2) into
equivalence classes denoted by [�]. Distinct classes are rep-
resented by inequivalent representations of G. According to
Lemma 2, all elements of each class [�] label the same group-
covariant channel. Hence, we label group-covariant channels
by equivalence classes: �D(1),D(2),[�]. As a consequence of
Lemma 2, for constructing group-covariant channels, instead
of solving Eq. (15) for all �s, just solving Eq. (15) for in-
equivalent �s, which represent distinct classes [�]s, suffices.

The second lemma shows a necessary condition for [�] to
label an extreme group-covariant channel.

Lemma 3. If

�D(1),D(2),[�] ∈ WG,ext, (36)

then [�] is any class of irreps of G with dimension not exceed-
ing d .

Proof. If Eq. (36) holds, then according to Remark 4, [�]
is a class of irreducible representation of G and, due to in-
equality (10), the number of Kraus operators of �D(1),D(2),[�]
does not exceed d . On the other hand, according to Eq. (15),
the number K of Kraus operators of �D(1),D(2),[�] equals the
dimension of the representation of the group denoted by �.
Therefore, for all �D(1),D(2),[�], [�]s are classes of irreducible
representations of the group with dimension less than or equal
to d . �

Lemma 3 yields necessary but not sufficient conditions for
�D(1),D(2),[�] to be extreme. If, for �D(1),D(2),[�] ∈ WG,ext, � is
an irreducible representation of the group with dimension not
exceeding d , and recalling that the number of Kraus operators
of �D(1),D(2),[�] is equal to the dimension of �, one concludes
that the number of Kraus operators of �D(1),D(2),[�] does not ex-
ceed d . Therefore, the Choi rank of �D(1),D(2),[�] is less than or

equal to d . Hence, �D(1),D(2),[�] is a generalized-extreme chan-
nel: �D(1),D(2),[�] ∈ WG,gen. Therefore, FG,gen, which is the set
of labels of all group-covariant generalized-extreme channels,
is the set of irreps of G with dimension not exceeding d .
Hence, solving Eq. (15) for all [�] ∈ FG,gen ensures that we
construct all group-covariant generalized-extreme channels.
Actually an innovation in proposing a successful algorithmic
approach for constructing all group-covariant generalized ex-
treme channels is restriction to irreps � with dimension not
exceeding d . By testing whether or not S in Eq. (9) is a
set of linearly independent operators, �D(1),D(2),[�] ∈ WG,gen

are classified as either group-covariant extreme or group-
covariant quasiextreme channels.

2. Equivalent channels

For a finite discrete group or a compact connected Lie
group G and Hilbert-space dimension d , the set of group-
covariant channels is denoted WG (28), where the union is
over all d-dimensional representations of G. In this subsub-
section, by using the equivalence relation between quantum
channels, Definition 4, we partition the set of group-covariant
quantum channels. Then we show that, if an element of an
equivalence class is extreme, then all channels in that class are
extreme. Thus, we show that group-covariant channels with
respect to equivalent representations of G belong to the same
equivalence class, and if an element of an equivalence class
is extreme/quasiextreme, then all elements of that class are
extreme/quasiextreme. This observation leads us to construct
group-covariant extreme channels more efficiently.

Equivalence relation ∼ in Eq. (11) partitions the set of
quantum channels into disjoint equivalence classes [�]. The
next lemma shows that, if one of the channels in an equiva-
lence class [�] is extreme, the other elements of that class are
extreme as well.

Lemma 4. If channel � ∈ S�ext , then all channels belonging
to [�] are extreme.

Proof. Let an extreme channel � be described by a set of
Kraus operators {Ak}k∈[K]. If the channel �′, described by a set
of Kraus operators {A′

k}k∈[K], belongs to the same class as �,
then unitary operators U and V exist such that Eq. (11) holds.
Therefore,

A′
k =

∑
m

WkmU †AmV † (37)

with W being a d-dimensional unitary operator. To show that
�′ is an extreme channel, we show that operators {A′

k
†A′

�} are
linearly independent (see Theorem 1). If∑

k,�

Xk�A′
k

†A′
� = 0, (38)

then ∑
m,n

(W †XW )mnA†
mAn = 0 (39)

is easy to see. As � is extreme, according to Theorem 1,
X = 0. Therefore, the set of operators {A′

k
†A′

�} is linearly
independent. Hence, �′ ∈ S�ext . �

Per Definition 4, if D(i) and D′(i) for i ∈ [2] are uni-
tarily equivalent representations of the group (16), then
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Eq. (17) holds. Therefore, according to Remark 5, channels
�D(1),D(2),[�] ∈ WG,D(1),D(2) and �′

D′(1),D′(2),[�] ∈ WG,D′(1),D′(2) are
equivalent and belong to the same class. We denote the set
of all group-covariant channels with respect to representa-
tions of G, which are unitarily equivalent to D(1) and D(2),
by WG,[D(1)],[D(2)] , where labels of distinct classes [D(i)]s are
inequivalent representations of the group.

Remark 8. According to Lemma 4, if �D(1),D(2),[�] ∈
WG,[D(1)],[D(2)] is extreme, then all other channels in
WG,[D(1)],[D(2)] are extreme. Hence, for group-covariant
generalized-extreme channels, that is for all �D(1),D(2),[�]
with [�] ∈ FG,gen (defined in Sec. III B 2), if �D(1),D(2),[�] ∈
WG,[D(1)],[D(2)] is extreme/quasiextreme, then all other chan-
nels in WG,[D(1)],[D(2)] are extreme/quasiextreme. There-
fore, to construct WG , instead of constructing all el-
ements of WG,D(1),D(2) and then taking the union over
d-dimensional representation of G, we just construct one
channel �D(1),D(2),[�] in each WG,[D(1)],[D(2)] with [�] ∈ FG,gen.
The other extreme/quasiextreme channels can be constructed
from this representative channel by unitary conjugations be-
fore and after the action of the channel.

B. Pseudocoding the construction of generalized extreme
group-covariant channels

In this subsection, we present our pseudocode results
for constructing descriptions of group-covariant generalized-
extreme channels. Typically construction of channel descrip-
tions is accomplished mathematically but of course not
successfully in general due to difficult in solving such generic
problems. Our approach is not to write the mathematical so-
lution in general but rather the algorithm that generates the
solution on an appropriate autonomous logical machine with
sufficient resources. Our approach synthesizes techniques
from computing and representation theory and thus involves
knowledge from both fields. Here, we express our algorithmic
approach for solving Problem1, Problem 2, and Problem 3 as
pseudocodes. For more details on pseudocode, notation, and
library used in the pseudocode, see Appendixes A 3, B, and C.

C. Explicit examples

In this subsection, we present explicit examples for con-
structing group-covariant extreme or quasiextreme channels
for Z2, S3, A4, and D5 as finite discrete groups [45] and SO(3)
and SU(2) for compact connected Lie groups [46]. We recall
from Appendix A and Sec. III B that for any given group,
group-covariant generalized-extreme channels are denoted by
�[D(1)],[D(2)],[�], where D(1) and D(2) are representative of dis-
tinct classes of d-dimensional representations of the group,
and � is representative of class of irreducible representations
of the group with dimension less than or equal to d . In making
choices for �, we use the theorem that says that thenumber
of inequivalent irreps for a finite discrete group equals the
number of conjugacy classes [47].

1. Z2-covariant extreme qubit channels

Our first example is the group Z2, which is Abelian, hence
it has just one-dimensional irreps. As the number of Kraus
operators equals the dimension of the irrep, a Z2-covariant

channel has just one Kraus operator and, due to the trace-
preserving constraint (4), this channel is strictly a unitary
channel. Therefore, the constructed channel is certainly ex-
treme [8].

The Z2 group is explicitly

Z2 := 〈g〉/{g2 = e} = {e, g} (40)

with e being the identity element of the group and the notation
〈〉 denoting the generating set (18). This group has two in-
equivalent irreducible representations, namely �

(1)
± (g) = ±1,

which are one-dimensional. Thus, we have two options for
� in Eq. (23). For a single-qubit Z2-covariant channel, D(1)

and D(2) are two-dimensional representations of the group,
and uncountably many two-dimensional representations for
each of D(1) and D(2) are allowed. According to Lemma 4
and Remark 8, we just consider inequivalent two-dimensional
representations. These two cases are constructed as direct
sums of inequivalent irreps of Z2, i.e., �

(1)
+ ⊕ �

(1)
± , Therefore,

we have two cases for D(1), two cases for D(2), and two cases
for �, so we have eight cases to consider.

Now we proceed to investigate the first of these
eight cases. The unitary Kraus operator representing
�[�(1)

+ ⊕�
(1)
− ],[�(1)

+ ⊕�
(1)
− ],[�(1)

+ ] is represented by (3)

A = diag(1, eiα ), α ∈ R. (41)

This matrix A is evidently unitary and satisfies the
trace-preserving constraint (4). From the trivial linear
independence of the single-element set S = {A†A} (9),
�[�(1)

+ ⊕�
(1)
− ],[�(1)

+ ⊕�
(1)
− ],[�(1)

+ ] must be extreme.
Now we move to the second case. The unitary Kraus oper-

ator of �[�(1)
+ ⊕�

(1)
− ],[�(1)

+ ⊕�
(1)
− ],[�(1)

− ] is

A =
(

0 eiβ

1 0

)
, β ∈ R. (42)

Evidently, this matrix is unitary, thus it is trace-preserving and
extreme, as expected.

Now we consider the case of �[�(1)
+ ⊕�

(1)
+ ],[�(1)

+ ⊕�
(1)
+ ],[�(1)

+ ].
In this case, following from Remark 7, the group-covariant
property does not constrain the single Kraus operator. Hence,
the only constraint is the trace-preserving condition, which
results in the map �[�(1)

+ ⊕�
(1)
+ ],[�(1)

+ ⊕�
(1)
+ ],[�(1)

+ ] being a general
unitary evolution. In the fourth case, �[�(1)

+ ⊕�
(1)
+ ],[�(1)

+ ⊕�
(1)
+ ],[�(1)

− ],
the Kraus operator is zero, which means that such a group-
covariant channel does not exist.

Finally, we consider the last four cases, which are

�[�(1)
+ ⊕�

(1)
− ],[�(1)

+ ⊕�
(1)
+ ],[�(1)

+ ], �[�(1)
+ ⊕�

(1)
− ],[�(1)

+ ⊕�
(1)
+ ],[�(1)

− ],

× �[�(1)
+ ⊕�

(1)
+ ],[�(1)

+ ⊕�
(1)
− ],[�(1)

+ ], �[�(1)
+ ⊕�

(1)
+ ],[�(1)

+ ⊕�
(1)
− ],[�(1)

− ].

(43)

All four of these maps (43) fail to satisfy the trace-preserving
constraint. Thus, these cases do not occur as outputs from the
algorithm.

This simple example of Z2-covariant channels illustrates
how our method leads to successful results, which are already
known for the case of qubit channels [9,11]. To go beyond
unitary group covariant channels, we need to consider cases
of non-Abelian groups. Hence, in Sec. IV C 2, we study the
permutation group.
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Algorithm 1 Generate all group-covariant generalized-extreme channels up to unitary equivalence for a finite discrete group or a compact
connected Lie group

Input:
character GNAME � Name of finite discrete or compact connected Lie group G
binary GTYPE � 0 for finite discrete group; 1 for compact connected Lie group
natural HDIM � Hilbert-space dimension

Output:
symjagged[ ][ ][HDIM][HDIM] KRAUS � Set of Kraus operators with dimension HDIM

natural COUNT � Number of generalized extreme GNAME-covariant channels
1: Procedure KROPDISCGGNAME,GTYPE,HDIM

2: IMPORT SOLVECHANNEL, DELETE, DAG, ID, SYMSOLVE, PROPS, TRANSP, VECTOMATR, ZERO � Import from libraries
Appendix C 1, Appendix C 2

3: posinteger NUMIRREP

4: posinteger NUMREP

5: posinteger NUMGEN

6: posinteger[ ] DIM

7: symbol[ ][ ][HDIM][HDIM] REP

8: symjagged[ ][ ][ ][ ] IRREP

9: symjagged[ ][ ][HDIM][HDIM] KRAUS

10: natural COUNT � Counts the number of generalized extreme GNAME-covariant channels
11: (NUMIRREP,NUMREP,NUMGEN,DIM,IRREP,REP)← PROPS(GNAME,GTYPE,HDIM)
12: symbol[NUMREP][NUMREP][NUMIRREP][NUMGEN][ ][ ]B � Coefficient matrix in Eq. (23)/(26) (GTYPE=0/1)
13: COUNT← 1
14: for M← 0 to NUMIRREP − 1 do
15: for K← 0 to NUMREP − 1 do
16: for L← 0 to NUMREP − 1 do
17: if GTYPE= 0 then
18: for I← 0 to NUMGEN − 1 do
19: B[COUNT][I]← ⊕DIM[M]−1

j=0 (DAG(GREP[K][I]) ⊗ TRANSP(GREP[L][I])) − GIRREP[M][I] ⊗ ID(HDIM2)
20: end for
21: else
22: for I← 0 to NUMGEN − 1 do
23: B[COUNT][I]← ⊕DIM[M]−1

j=0 (GREP[K][I] ⊗ ID(HDIM) − ID(HDIM) ⊗ DAG(GREP[L][I])) − OMEGA[M][I]
⊗ ID(HDIM2)

24: end for
25: end if
26: symbol[DIM[M] ∗ HDIM2] X

27: X← SYMSOLVE(B[COUNT])
28: if X�= ZERO(DIM[M] ∗ HDIM2) then � Tests if the covariant CP exists
29: KRAUS[COUNT]←VECTOMATR(X,DIM[M])
30: KRAUS[COUNT]←SOLVECHANNEL(KRAUS[COUNT])
31: if KRAUS�=ZERO(DIM(M),HDIM,HDIM) then � Tests if the covariant channel exists
32: COUNT← COUNT + 1
33: end if
34: DELETE(X) � Delete X and clear space
35: end if
36: end for
37: end for
38: end for
39: RETURN COUNT

40: RETURN KRAUS

41: end procedure

2. S3-covariant qubit and qutrit extreme and quasiextreme

In this subsubsection, we consider S3-covariant channels
with S3 the symmetric group, which is a set of all permu-
tations of three objects. For all Abelian groups, we always
obtain unitary channels. Hence, to obtain nonunitary channels,
we begin by choosing S3, which is the smallest non-Abelian
group.

The order of the group S3 is 6, that is, |S3| = 6, with |G|
denoting the order of the group G. It has two generators
denoted by σ1 and σ2 such that

S3 = 〈σ1, σ2〉/
{
σ 2

1 = σ 2
2 = e, σ1σ2σ1 = σ2σ1σ2

}
. (44)

S3 has three inequivalent irreps, specifically two one-
dimensional irreps

�
(1)
+ (σ1) = 1 = �

(1)
+ (σ2), �

(1)
− (σ1) = 1 = −�

(1)
− (σ2), (45)

033206-11



LALEH MEMARZADEH AND BARRY C. SANDERS PHYSICAL REVIEW RESEARCH 4, 033206 (2022)

Algorithm 2 Test whether a given channel is extreme or not

Input:symbol[NUM][HDIM][HDIM] KRAUS � Kraus operators of the channel
Output:binary ISEXTREME � ISEXTREME is 0 for an extreme channel and 1 for a quasiextreme channel

1: procedure testExtKRAUS

2: IMPORT DAG, SYMSOLVE, ZERO � Import from libraries Appendix C 1 and Appendix C 2
3: binary ISEXTREME

4: natural N � Counts loops
5: symbol[1][HDIM2][NUM2] MATCOEFF � Matrix of coefficients
6: symbol[NUM2] SOLUSION � Solution of system of linear equations
7: symbol[NUM2][HDIM][HDIM] SCRATCHPAD � Scratch space for calculating
8: for I← 0 to NUM − 1 do
9: for J← 0 to NUM − 1 do
10: SCRATCHPAD[N]←DAG(KRAUS[I])×KRAUS[J]
11: end for
12: N← N + 1
13: end for
14: N← 0
15: for I← 0 to HDIM2 − 1 do
16: for J← I + 1 to HDIM2 − 1 do
17: for K← 0 to NUM2 − 1 do
18: MATCOEFF[0][N][K]←SCRATCHPAD[K][I][J]
19: end for
20: N← N + 1
21: end for
22: end for
23: X←SYMSOLVE(MATCOEFF)
24: if X �= ZERO(NUM2) then
25: ISEXTREME← 1 � ISEXTREME indicates quasiextreme channel; else extreme (0)
26: end if
27: RETURN ISEXTREME

28: end procedure

and one two-dimensional irrep

�(2)(σ1) = diag(1,−1), �(2)(σ2)

= 1

2

( −1
√

3eiφ√
3e−iφ 1

)
, φ ∈ [0, 2π ]. (46)

Representations of S3 with dimension larger than 2 are indeed
reducible and can be constructed as unitary conjugations of
direct sums of its irreps.

a. Qubit channels: For qubit channels, d = 2, D(1) and
D(2) are two-dimensional representations of S3. According
to Lemma 4 and Remark 8, among an uncountable num-
ber of two-dimensional representations for S3, it is sufficient
to consider just inequivalent two-dimensional reps of S3 to
solve Eq. (23). In fact, there are just four inequivalent two-
dimensional representations for S3 given by

�(2),�
(1)
+ ⊕ �

(1)
+ , �

(1)
+ ⊕ �

(1)
− , �

(1)
− ⊕ �

(1)
− . (47)

For �, we first note that one-dimensional irreps of the groups
cannot lead to nonunitary channels. Hence, to go beyond
unitary channels, we have just one option for �, that is, �(2)

(46). Thus, given that for each D(1) and D(2) we have four
options, the total number of cases to be solved for nonunitary
S3-covariant channels is 16.

Among these 16 cases, here we just report one case, that
is, �[�(2)],[�(2)],[�(2)]. For this case the only solution to the set
of Eqs. (23) is zero. Thus, �[�(2)],[�(2)],[�(2)] does not exist.
Although we have only treated one the of 16 cases here, this

case illustrates the feasibility of our method and the qubit case
is fully understood [11], so we move on to the unexplored
d = 3 cases instead.

b. Qutrit channels: For qutrit channels, d = 3, and the
dimension of all irreps of S3 satisfies d < 3; hence, the nec-
essary condition in Lemma 3 is satisfied for � being any S3

irrep. Among these three choices for �, to go beyond unitary
channels, we choose � = �(2) (46) as other irreps of S3,
namely �

(1)
± , are one-dimensional (45) and label channels that

are unitary. According to Remark 8, candidates for D(1) and
D(2) are all three-dimensional inequivalent representations of
S3 which we construct by direct sum of irreps of S3. Direct
sums of one-dimensional irreps yield four inequivalent irreps,
namely

�
(1)
+ ⊕ �

(1)
+ ⊕ �

(1)
+ , �

(1)
+ ⊕ �

(1)
+ ⊕ �

(1)
− , �

(1)
+ ⊕ �

(1)
− ⊕ �

(1)
− ,

× �
(1)
− ⊕ �

(1)
− ⊕ �

(1)
− , (48)

which are direct sums of one-dimensional and two-
dimensional irreps and also yield two more inequivalent cases

�
(1)
± ⊕ �(2). (49)

Hence, for each D(1) and D(2), we have six candidates.
In total for strictly nonunitary S3-covariant channels, 36

cases need to be solved. Among these 36 cases, we just solve
one case as an illustration. One case suffices to confirm our
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method before proceeding to test our method on different
groups.

We now solve Eqs. (23) for Kraus operators with

D(1) = D(2) = �
(1)
+ ⊕ �(2), � = �(2), (50)

which yields the Kraus-operator family

A1 =
⎛
⎝0 α 0

β γ 0
0 0 −γ

⎞
⎠,

A2 =
⎛
⎝ 0 0 α

0 0 −γ

βe−2iφ −γ e−2iφ 0

⎞
⎠, α, β, γ ∈ C, (51)

which represent an S3-covariant completely positive map. By
imposing the trace-preserving constraint (4), we obtain the
relations

2|β|2 = 1, |α|2 + 2|γ |2 = 1 (52)

between the parameters in Eq. (51). Hence, Kraus operators
of the S3-covariant channel with respect to �

(1)
+ ⊕ �(2) and

labeled by �(2), that is, �[�(1)
+ ⊕�(2)],[�(1)

+ ⊕�(2)],[�(2)], are given in
Eq. (51) with the constraint in Eq. (52).

To see which parameter values correspond to extreme
channels, we construct the set S (9) for Kraus operators (51).
The obtained set is a set of linearly independent operators for
all values of parameters in Eq. (51) except for the instance

|α|2 = 1
2 , |γ |2 = 1

4 . (53)

That is, the set of Kraus operators (51) with constraint (52)
represents S3-covariant extreme channels for the entire range
of parameters except at the point (53), which represents an
S3-covariant quasiextreme channel.

3. A4-covariant extreme qutrit channel

Our next example is for the alternating group A4, which is
a normal subgroup of S4, and A4 consists of all even permuta-
tions of a four-object set. Although S4 is the natural next case
after S3 in Sec. IV C 2, S4 has three generators, so we restrict
to the more manageable case of A4 here for our generalization.
The group A4 is non-Abelian and of order 12, and A4 has
two generators, which we denote by g1 and g2. Furthermore,
A4 has four inequivalent irreducible representations. Three of
these representations are one-dimensional and are denoted by
�

(1)
+,◦,−. The fourth case is the three-dimensional irreducible

representation

�(3)(g1) = diag(1, ω, ω2), �(3)(g2)

= −1

3

⎛
⎝ 1 −2ω2 2ω

−2 ω2 2ω

2 2ω2 ω

⎞
⎠, ω := e

2iπ
3 . (54)

For a qutrit channel, d = 3, which determines the dimen-
sion of both D(1) and D(2). Based on Remark 5 for D(1)

and D(2), we only consider inequivalent three-dimensional
cases from among the uncountable number of available three-
dimensional representations of A4. Hence, for each D(1) and

D(2), 11 candidates

�
(1)
+ ⊕ �

(1)
+ ⊕ �

(1)
+ , �(1)

◦ ⊕ �(1)
◦ ⊕ �(1)

◦ , �
(1)
− ⊕ �

(1)
− ⊕ �

(1)
− ,

�
(1)
+ ⊕ �

(1)
+ ⊕ �(1)

◦ , �
(1)
+ ⊕ �(1)

◦ ⊕ �(1)
◦ , �

(1)
+ ⊕ �

(1)
+ ⊕ �

(1)
− ,

�
(1)
+ ⊕ �

(1)
− ⊕ �

(1)
− , �(1)

◦ ⊕ �(1)
◦ ⊕ �

(1)
− , �(1)

◦ ⊕ �
(1)
− ⊕ �

(1)
− ,

�
(1)
+ ⊕ �(1)

◦ ⊕ �
(1)
− , �(3) (55)

exist. To select a proper representation for �, we note that
its dimension should be less than or equal to 3. Therefore,
according to Lemma 3, all irreps of A4 satisfy the necessary
condition for labeling an A4-covariant generalized-extreme
channel. The three one-dimensional irreps of A4 label unitary
channels, if they exist. Hence, the only candidate for � to la-
bel a nonunitary A4-covariant generalized-extreme channel is
�(3). Thus, for nonunitary A4-covariant generalized-extreme
channel in total, there are 121 cases to study due to 11 choices
we have for each D(1) and D(2). Among these, we focus on one
of them just to illustrate how our method works.

Solving Eq. (23) for channel �[�(3)],[�(3)],[�(3)] yields Kraus
operators

A1 = 1√
2

diag(0, 1,−1), A2 = 1√
2

⎛
⎝0 −1 0

0 0 0
ω 0 0

⎞
⎠,

A3 = 1√
2

⎛
⎝ 0 0 1

−ω 0 0
0 0 0

⎞
⎠, (56)

which is a set of constant-valued matrices rather than a
parameter family (51). These Kraus operators satisfy the
trace-preserving condition (4). Also the set of operators S =
{A†

i A j} with i, j = 1, 2, 3 is linearly independent. Hence,
�[�(3)],[�(3)],[�(3)] is an extreme quantum channel.

4. D5-covariant extreme qutrit channel

For S3 in Sec. IV C 2, we obtain Kraus operators (51) of
a family of extreme channels. Instead of extending to S4, for
tractability reasons we extend to A4, which is a restriction of
S4 to even permutations. That yields only constant matrices
(56) as the solution. Now we consider another “small” group,
dihedral group D5, which is the group of symmetries for a
regular pentagon. By studying D5, we can see whether the S3-
covariant and A4-covariant extreme channels are also extreme
channels for a D5-covariant channel or not despite D5 � S3

and D5 � A4.
The group

D5 = 〈g1, g2〉/
{
g2

1 = g5
2 = (g1g2)2 = e

}
(57)

is of order 10 with two generators, namely g1 and g2, which
generate reflection and rotation, respectively. D5 has four
inequivalent irreps. Two of the inequivalent irreps are one-
dimensional,

�
(1)
+ (g1) = 1 = �

(1)
+ (g2) = 1, �

(1)
− (g1) = −1 = −�

(1)
− (g2),

(58)
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and the other two are two-dimensional,

�
(2)
+ (g1) =

(
1 0
0 −1

)
,

�
(2)
+ (g2) =

(
cos ω − sin ω

sin ω cos ω

)
,

�
(2)
− (g1) =

(
1 0
0 −1

)
,

�
(2)
− (g2) =

(
cos 2ω − sin 2ω

sin 2ω cos 2ω

)
. (59)

for ω := e
2iπ

5 . Indeed, representations of D5 in dimensions
other than 1 and 2 are reducible and are constructed by unitary
conjugation of direct sums of its irreps.

In this example, we are interested in qutrit D5-covariant
generalized-extreme channels. Hence, d = 3, which deter-
mines the dimension of D(1) and D(2). According to Remark
8, among the uncountable number of three-dimensional
representations of D5, we only consider inequivalent three-
dimensional representations for each D(1) and D(2). These
eight cases are

�
(1)
+ ⊕ �

(1)
+ ⊕ �

(1)
+ , �

(1)
+ ⊕ �

(1)
+ ⊕ �

(1)
− , �

(1)
+ ⊕ �

(1)
− ⊕ �

(1)
− ,

× �
(1)
− ⊕ �

(1)
− ⊕ �

(1)
− , �

(1)
+ ⊕ �

(2)
+ , �

(1)
+ ⊕ �

(2)
− ,

× �
(1)
− ⊕ �

(2)
+ ,�

(1)
− ⊕ �

(2)
− . (60)

As the dimension of all irreps of D5 satisfies the necessary
condition in Lemma 3, they are all acceptable candidates to
label D5-covariant generalized-extreme channels. However,
only irreps of dimension greater than 1 can label nonuni-
tary maps. Hence, for nonunitary D5-covariant generalized-
extreme channels, the two candidates for � are �

(2)
+ and �

(2)
− .

Therefore, for nonunitary D5-covariant generalized-extreme
channels, we have 128 cases to study.

Remark 9. The number of nonunitary group-covariant
generalized-extreme channel candidates for group D5 exceeds
the number for A4 in Sec. IV C 3 despite |A4| > |D5| and
despite the number of inequivalent irreps for A4 being equal
to the number of irreps for D5.

Among all these cases, we just consider two cases as an
example, namely

�[�(1)
+ ⊕�

(2)
+ ],[�(1)

+ ⊕�
(2)
+ ],[�(2)

+ ], �[�(1)
+ ⊕�

(2)
− ],[�(1)

+ ⊕�
(2)
− ],[�(2)

− ]. (61)

Solving Eq. (23) for these instances yields the same Kraus
operators,

A1 = 1√
2

⎛
⎝0

√
2 0

1 0 0
0 0 0

⎞
⎠, A2 = 1√

2

⎛
⎝0 0

√
2

0 0 0
1 0 0

⎞
⎠ (62)

for both cases. Although D5 � S3, by comparing Eqs. (62)
and (51) we see that the Kraus operators for the D5-covariant
channels discussed in this example are a special case of the
family of S3-covariant extreme channels with Kraus operators
given in Eq. (51).

5. SO(3)-covariant channels

Thus far, examples of group-covariant extreme channels
have been studied for finite discrete groups. In this example,

we focus on SO(3)-group covariant channels with SO(3) gen-
erated by the Lie algebra so(3). The generating set for so(3)
comprises the ladder operators L± and the Cartan operator
Lz, and {|l, m〉} are the weight states labeled by Casimir and
Cartan operators, L2 and Lz, respectively [46]. The Casimir
invariant has spectrum {l (l + 1); l ∈ N} for N denoting the
set of natural numbers discussed in Appendix B. Thus, unitary
irreps of so(3) have odd dimensions {2l + 1; l ∈ N} and are
given by

�(2l+1)(L±) =
l∑

m=−l

C±
lm |l, m ± 1〉 〈l, m| , �(2l+1)(Lz )

=
l∑

m=−l

m |l, m〉 〈l, m| (63)

for the Clebsch-Gordan coefficient

C±
lm :=

√
l (l + 1) − m(m ± 1). (64)

The case l = 0 yields the trivial representation for �(1) in
Eq. (63).

a. Qudit SO(3)-covariant generalized-extreme channels:
For qudit channels, the dimension of both D(1) and D(2) is d .
According to Remark 5, among uncountable d-dimensional
unitary representations of SO(3), we only consider one of
many inequivalent representations of SO(3). Only a finite
number of inequivalent representations is possible as the
number of inequivalent representations equals the number of
partitions of d into odd-number components, such as 1, 1, 1,
and 3 for d = 3. According to Lemma 3, all SO(3) irreps with
dimension less than or equal to d label a generalized-extreme
channel. Hence, for �, we have [ d+1

2 ] candidates.
b. Special case: Among the many candidates for D(1), D(2),

and �, we choose one candidate as an example of an SO(3)-
covariant generalized-extreme channel. Our arbitrary choice
for study is �[�(d )],[�(d )],[�(d )]

In this example, D(1) and D(2) are chosen to be �(d ),
which is an SO(3) irrep. As SO(3) irreps are odd-dimensional,
bearing in mind that the dimension of D(1) and D(2) equals
the Hilbert-space dimension d , this example is valid just for
odd d . For the case of �[�(d )],[�(d )],[�(d )], following Remark 6,
Eq. (20) simplifies to the commutators (21)

[�(d )(Lz ), Am] = mAm, [�(d )(L±), Am]

= C±
lmAm±1, l ≡ d − 1

2
, (65)

which yields Kraus operators of �[�(d )],[�(d )],[�(d )] being rank-l
irreducible spherical tensors as candidates for generalized ex-
treme channels. Furthermore, as in this example D(1) is chosen
to be an irrep of SO(3), � as defined in Eq. (5) is proportional
to the identity [40]. To see if the trace-preserving condition (4)
is satisfied, and to determine if �[�(d )],[�(d )],[�(d )] is extreme or
quasiextreme, we restrict our attention to the low-dimensional
cases of d = 3 and 5 for which the problem is tractable.

c. Qutrit SO(3)-covariant extreme channels: We consider
the special case of odd-dimensional Hilbert space for d =
3. The number 3 is partitioned into (3), (2,1), and (1,1,1),
which can be represented by Young diagrams [48] , ,

and , respectively. For our case, only partitions of d = 3 into
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odd-number components and are required. Thus, only
two candidates for each D(1) and D(2) are possible, namely
three-dimensional representations

(66)

For � two candidates arise, namely a one-dimensional irrep
necessarily labeling a unitary channel and a three-dimensional
irrep. Hence, the case we study here,

(67)

is one among eight possibilities. According to Eq. (65), Kraus
operators are irreducible spherical tensors of rank 1, namely

A1 =
⎛
⎝0 −a 0

0 0 −a
0 0 0

⎞
⎠

= −A†
−1, A0 = diag (a, 0,−a), a ∈ C. (68)

It is straightforward to show that �, defined in Eq. (5), is given
by

� =
1∑

k=−1

A†
kAk = 2|a|21, (69)

which satisfies the trace-preserving condition (4) for |a| =
1√
2
. Furthermore, the set of operators S (9) in this example

is a set of linearly independent operators; hence, according to

Theorem 1, the qutrit channel described
by Kraus operators (68) with |a| = 1√

2
is extreme.

d. Ququint SO(3)-covariant extreme channels: For ququint
channels, the three candidates for each D(1) and D(2) are

(70)

For � there are three candidates: one-, three-, and
five-dimensional irreps of so(3), namely , , and

. Among all 27 cases, we focus on the one case

. Following the same steps as for
qutrit SO(3)-covariant channels, but here for d = 5, then

is described by five Kraus operators
that are irreducible rank-2 spherical tensors

A2 = 1

2

⎛
⎜⎜⎜⎜⎝

0 0 2a 0 0
0 0 0

√
6a 0

0 0 0 0 2a
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠,

A1 = 1

2

⎛
⎜⎜⎜⎜⎝

0 −√
6a 0 0 0

0 0 −a 0 0
0 0 0 a 0
0 0 0 0

√
6a

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ (71)

and

A0 = a

2
diag (2,−1,−2,−1, 2), A−1

= −AT
1 , A−2 = AT

2 , a ∈ C, (72)

which satisfy the trace-preserving condition (4) for |a| =√
2/7. The operators in S (9) are linearly independent; hence,

the ququint channel is extreme.

6. SU (2)-covariant channels

In this subsubsection, we consider SU(2)-covariant chan-
nels. As su(2) � so(3) discussed in Sec. IV C 5, much of
the analysis here is similar, but SU(2) admits both even-
and odd-dimensional irreps whereas SO(3) only admits odd-
dimensional irreps. The ladder and Cartan operators are J±
and Jz, respectively, and the Casimir invariant is J2 with spec-
trum { j( j + 1); 2 j ∈ N}. Unitary irreps of su(2) are given by

�(2 j+1)(J±) =
j∑

m=− j

C±
jm | j, m ± 1〉 〈 j, m| , �(2 j+1)(Jz )

=
j∑

m=− j

m | j, m〉 〈 j, m| (73)

with {| j, m〉} the weight states labeled by Casimir and Cartan
operators, respectively, and

C±
jm =

√
j( j + 1) − m(m ± 1) (74)

the Clebsch-Gordan coefficients. As in Sec. IV C 5, the case
j = 0 yields the trivial representation for �(1) in Eq. (73).

a. Qudit SU(2)-covariant generalized-extreme channels:
For qudit channels, the dimension of both D(1) and D(2) is d .
According to Remark 5, among uncountable d-dimensional
unitary representations of SU(2), we only consider one of
many inequivalent representations of SU(2). Similar to the
case of SO(3)-covariant qudit channels, the number of in-
equivalent d-dimensional representations of SU(2) is finite.
For SO(3) the total number equals the number of partitions
of d into odd-number components, but for SU(2), it equals
the number of partitions of d into even- and odd-number
components because irreps of su(2) have both even- and

odd-dimensional irreps. As an instance , , and are par-
titions for d = 3. According to Lemma 3, all SU(2)-covariant
generalized-extreme channels are labeled by irreps of su(2)
with dimension less than or equal to d . Hence, for �, we have
d candidates.

b. Two cases: For d-dimensional Hilbert space Hd among
all candidates, we focus on two cases to illustrate salient
points. In the first case, we clarify how the special case studied
for SO(3)-covariant channels is also SU(2)-covariant chan-
nels. In the second case, we present SU(2)-covariance, which
we prove to be extreme for any dimension d .

Case 1. Among all possible candidates, we pick
�[�(d )],[�(d )],[�(d )]. For this case, following Remark 6, Eq. (20)
simplifies to the commutators (21)

[�(d )(Jz ), Am] = mAm, [�(d )(J±), Am] = C±
jmAm±1. (75)

For odd values of d , that is, for j ∈ N, Eq. (65) yields Kraus
operators of �[�(d )],[�(d )],[�(d )] being rank- j irreducible spher-
ical tensors, which is exactly the same as what we have for
SO(3)-covariant channels �[�(d )],[�(d )],[�(d )]. When d is even,
that is, 2 j ∈ N, Eq. (75) yields A− j�m� j = 0. Thus, if among
all candidates we restrict our attention to �[�(d )],[�(d )],[�(d )], we

033206-15



LALEH MEMARZADEH AND BARRY C. SANDERS PHYSICAL REVIEW RESEARCH 4, 033206 (2022)

get nothing more than the case we studied for SO(3)-covariant
channels on odd-dimensional Hilbert space.

Case 2. Among the candidates, we pick
�[�(d−1)⊕�(1)],[�(d−1)⊕�(1)],[�(d−1)] for �(d−1) defined in (73)
with j = d−2

2 . Following Remark 6, Eq. (20) simplifies to the
commutators (21)

[�(d−1)(Jz ) ⊕ �(1)(Jz ), Am]

= mAm, [�(d−1)(J±) ⊕ �(1)(J±), Am] = C±
jmAm±1. (76)

The Kraus-operator solution to Eq. (76) is [49]

Am = 1√
d − 2

| j = (d − 2)/2, m〉 〈e| + (−1)
d−2

2 −m |e〉

× 〈 j = (d − 2)/2,−m|, (77)

represented in the orthonormal basis of Hilbert space

H = Hd−1 ⊕ H1, Hd−1

= span{| j = (d − 1)/2, m〉}, H1 = span{|e〉}. (78)

The trace-preserving condition (4) is evidently satisfied:

� =
j∑

m=− j

A†
mAm = 1d−1 ⊕ |e〉 〈e| = 1d . (79)

To show that �[�(d−1)⊕�(1)],[�(d−1)⊕�(1)],[�(d−1)] is extreme, we
prove that the operators in S (9) are linearly independent.
Hence, we assume that

j∑
m,n=− j

αmnA†
mAn = 0, αmn ∈ C, (80)

and our task is to prove that αmn ≡ 0 for all m and n. By
replacing A†

m and An from Eq. (77), we have

j∑
m,n=− j

αmnA†
mAn =

j∑
m=− j

αmm

d − 1
|e〉 〈e|

+
j∑

m,n=− j

αmn(−1)m+n | j,−m〉 〈 j,−n|

= 0. (81)

Therefore, αmn = 0 for all m and n, which implies that the
channel �[�(d−1)⊕�(1)],[�(d−1)⊕�(1)],[�(d−1)] described by Kraus op-
erators Am (77) is an extreme channel for all d . We now
illustrate explicitly for three subexamples.

c. Qubit channel: Now we consider d = 2, hence j = 1
2 ,

for qubits and we continue the reasoning above. Channel
�[�(1)⊕�(1)],[�(1)⊕�(1)],[�(1)] is labeled by one-dimensional irrep
of SU(2). Hence, it has just one Kraus operator and is a unitary
channel. Following Eq. (77), its single Kraus operator is given
by

A0 = |0, 0〉 〈e| + |e〉 〈0, 0| , (82)

which is one of the extreme channels discussed in Z2-
covariant channels in Sec. IV C 1 and is already discussed in
the literature [8,34].

d. Qutrit channel: Continuing with cases of the sec-
ond example, this time for qutrits, we let d = 3 and thus

set j = 1
2 . According to Eq. (77), the extreme channel

�[�(2)⊕�(1)],[�(2)⊕�(1)],[�(2)] is described by a pair of Kraus op-
erators

A±1/2 = 1√
2

|1/2,±1/2〉 〈e| ± |e〉 〈1/2,∓1/2| . (83)

e. Ququart channel: Continuing with the second example,
for d = 4 we set j = 1 and the number of Kraus operators
K = 3. According to Eq. (77), Kraus operators of the extreme
ququart channel �[�(3)⊕�(1)],[�(3)⊕�(1)],[�(3)] are

A±1 = 1
3 |1,±1〉 〈e| + |e〉 〈1,∓1| ,

A0 = 1
3 |1, 0〉 〈e| − |e〉 〈1, 0| . (84)

These illustrations show how our formulation applies for all
d .

V. DISCUSSION

Now we summarize and discuss our results. We begin
by discussing group-covariant generalized-extreme channels.
Then we explain the nature and importance of our pseudocode
method and results. Finally, we discuss our explicit examples
and their generalizations.

Our first results concerned establishing the mathemati-
cal framework for constructing group-covariant extreme and
quasiextreme channels. Our approaches leverages off the
well-understood case of qubit channels, but only a few ex-
treme cases are known for dimension d > 2 without providing
insight into how to extend beyond these examples. The full
problem of characterizing and constructing extreme channels
is too daunting, so we restrict our attention to a subset of
extreme channels that are group-covariant for the group either
being a finite discrete group or else a compact connected Lie
group. By studying this subset, we make some of the hard
problems concerning constructing extreme and quasiextreme
channels tractable, and, furthermore, group-covariant chan-
nels are useful and valuable in their own right.

Although previous results concern specific examples of
generalized-extreme channels, we introduce a systematic
method for constructing all generalized-extreme channels if
they are covariant with respect to finite discrete or compact
connected Lie groups. Our method labels every group-
covariant channel with three unitary representations of the
channel: the channel is group-covariant with respect to the
first two labels, and the third label removes multiplicity. Mul-
tiplicity is removed by uniquely labeling each channel adding
a label whose purpose is to distinguish between different
channels that are identically labeled with respect to the first
two unitary representations. After uniquely labeling channels,
we prove that any group-covariant channel is a generalized-
extreme channel if and only if its third label is a group irrep
whose dimension does not exceed the Hilbert-space dimen-
sion. With these results, we have set the stage for a systematic
method, which we formalize as algorithms expressed in pseu-
docode.

As algorithms and pseudocode are not common in studies
of quantum information theory, we carefully developed the
relevant concepts and explained how our pseudocode works
in formally presenting algorithms. Importantly, our algorithms
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are built not a Turing-type computational model but rather on
a computational model involving complex-number arithmetic
at the foundational level. Our choice of computational model
reflects that our results are aimed not at solving generalized-
extreme channels using computers but rather formalizing the
problems and their solutions as logical steps for mathematical
physics.

Thus, our systematic method for solving generalized-
extreme channels is about constructing solutions for every
conceivable group-covariant channel with groups of particular
classes, namely finite discrete groups and compact connected
Lie groups. Specifically, we establish a procedure to construct
group-covariant generalized-extreme channels methodically
given the name of the group and the Hilbert-space dimension.
To this end, we formalize existing knowledge about groups
in terms of a (hypothetical but plausible) library, which is the
repository of information about groups and is called upon in
our pseudocode. Our systematic method guarantees, for any
Hilbert-space dimension and any valid group name, an output
comprising the set of all group-covariant generalized-extreme
channels, which, in the empty-set case, implies nonexistence
of any group-covariant generalized-extreme channels for that
group at that dimension. Furthermore, we present pseudocode
for deciding whether a given channel is extreme or quasiex-
treme. Therefore, starting with a given dimension and a
group name, and employing our first and second algorithms
expressed in pseudocode, we show how to methodically con-
struct the entire set of generalized extreme channels with an
additional label conveying whether this generalized-extreme
channel is extreme or quasiextreme.

We then present examples showing the application of our
systematic method to these instances. These examples illus-
trate our methods to elucidate how our techniques work and
furthermore validate our approach by showing that known
results, specifically for two-dimensional Z2-covariant chan-
nels, are obtained using our technique. We also obtain results
for new group-covariant examples, which show interesting
results. For example, for three-dimensional S3-covariant chan-
nels we obtain a continuously parametrized family of extreme
channels instead of a finite number of extreme channels. An-
other intriguing result we find is that the extreme channel
output is never empty for the group SU(2) and for any dimen-
sion greater than or equal to 2.

Furthermore, we observe that, as the group becomes larger,
the number of candidates for nonunitary generalized extreme
channels tends to increase, but, importantly, exceptions ex-
ist to this rule of thumb such as that shown in our results
for the D5 case. This general rule and its exceptions high-
light the importance of using pseudocode for constructing
group-covariant generalized-extreme channels, as studying
this problem analytically is infeasible. Another important
point raised in the last example concerning SU(2)-covariance
shows that our algorithm yields a nonempty set of extreme
channels for all Hilbert-space dimensions without exception.

VI. CONCLUSIONS

We have addressed the problem of constructing the set
of extreme channels for d-dimensional Hilbert space. This
well-known problem is hard because the set of channels at

Hilbert-space dimension d > 2 has not been parametrized.
Therefore, the detailed structure of the set of channels and
a parametrized description of the boundary of the set are
unknown, which makes it impossible currently to construct
directly the extreme points of the set of channels. By consider-
ing symmetry, we can construct a subset of extreme channels,
and convex combinations of these extreme channels enable
parametrization of an important subset of channels.

Here we have restricted our attention to a subset of ex-
treme channels that are covariant with respect to a finite
discrete group or a compact connected Lie group. By ex-
ploiting knowledge about group and representation theory, we
are able to develop a systematic approach to construct those
extreme and quasiextreme channels that are group-covariant.
Our systematic approach is represented by pseudocode, which
makes our procedure especially clear. We present a variety
of elucidating and instructive examples, which includes the
proof that an extreme group-covariant channel exists for every
choice of Hilbert-space dimension.

Our results extend significantly knowledge of extreme
channels by going beyond the usual restriction to unital chan-
nels for d > 2. Furthermore, our approach reveals that the
problem of constructing group-covariant generalized-extreme
channels reduces to the well-studied problems of solving a
system of linear and quadratic equations.

At this stage, our theory does not yet consider tensor
products of Hilbert spaces. Our results could be generalized
in nontrivial ways by dealing with tensor products, perhaps
restricting to the same groups considered here to study group-
covariant extreme channels involving this added structure.
Incorporating tensor-product structure could be useful for
solving problems of correlated channels [50,51].

One interesting application of our algorithmic approach
could be to the problem of searching for increasingly large
Holevo-capacity additivity violations; regarding the conjec-
ture that Holevo capacity of quantum channels is additive
[52], Hastings disproves this conjecture by introducing a
counterexample but leaves open how to find all channels that
are nonadditive and how large of an additivity violation is
possible [53]. Here we suggest an algorithmic approach, based
on our methods, to addressing this problem of increasing the
violation.

Now we introduce additivity violation as a superadditivity
computational problem of discovering channels with greater
additivity violation compared to what is known now. Additiv-
ity violation of Holevo capacity for a pair of quantum channels
�1,2 is quantified by

v(�i,�2) := χ (�1 ⊗ �2) − χ (�1) − χ (�2), χ (�)

= sup
{pi,ρi}

[
S

(∑
i

pi�(ρi ) −
∑

i

piS (�(ρi ))

)]

(85)

if v is positive, with ρi ∈ T (H ), pi > 0, ∀i,
∑

i pi = 1, and
S (ρ) the von Neumann entropy of ρ. An algorithm for com-
puting v (85) would accept the descriptions of two channels
�1,2 and yield v as output: a value of v greater than the
best-known v to date would be flagged as a success. Our
algorithm yields descriptions of generalized extreme channels
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as outputs, so the algorithm for computing v would call our
algorithm as an oracle to obtain pairs of channels, which could
be for different Hilbert-space dimension d and different group
names {G}.

Using this approach, we compute the additivity violation
v (85) for pairs of channels drawn from the set of group-
covariant generalized extreme channels. This set is smaller
than the set of all channel pairs that should be searched for
obtaining the largest possible v, but this restricted search is a
good start to search algorithmically for the largest v over all
possible channel pairs.

We emphasize some caveats on our approach to discover-
ing increasingly large v algorithmically. As our algorithm is
designed for the Blum-Shub-Smale machine [54], adapting to
a Turing type of discrete computer is needed: this adaptation
is achieved by working with floating numbers with a conse-
quence that computations are then approximate rather than
exact. Second, our algorithm does not generate all possible
pairs of channels but rather just a restricted set of channels,
so our additivity-violation algorithm would not be performed
exhaustively over all pairs of channels, but if an algorithm
could be devised to generate all possible channel pairs, that
algorithm would supplant our own generalized extreme chan-
nel generator and then permit an exhaustive search. We also
emphasize that our algorithm could be infeasible on current
computers.

Another promising direction to follow would be to ex-
tend beyond pseudocodes to writing actual computer code
and implementing on a computer to solve for new group-
covariant extreme channels. Our results could be used to
construct circuits for simulating extreme channels, which
could be useful for quantum-channel simulation theoretically
[12,28,32] and experimentally [29,55–57]. Finally, our theory
could help to study complexity considerations associated with
quantum-circuit simulation of channel-construction problems
[12,28,30,32].
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APPENDIX A: FORMAL APPROACH

In this Appendix, we review the formal approach and main
ingredients for specifying a formal problem, as well as ba-
sics for writing a formal problem as a pseudocode. We first
discuss, in Appendix A 1, how we specify problems formally
as such formal specifications are needed for our algorithmic
approach, and we make clear our model for solving formal
problems. Second we explain pseudocode, data types, and the

notation we use. Next we provide background on the role of a
library in writing algorithms to solve the problem. Finally, we
explain the structure of any algorithm and its essentials.

1. Formal problems

In this subsection, we provide principles for specifying
formal problems. Then we explain our model for stating and
solving formal problems, with our model described in com-
putational terms. A problem should be stated in a form that
the reader can understand, which requires that the language
for the problem be clear and the terms employed are under-
stood by the intended audience, which can be sentient (e.g.,
a human) or autonomous (e.g., a computer). In our case, we
would like our hard channel problems to be so clear that a
machine can understand and potentially solve the problem.
For this goal of autonomous solving to be met, we adopt
principles from computing, which requires us to specify var-
ious structures such as data types, which could be integer or
real or complex numbers or symbols, as we explain below. A
formal problem has well-defined arithmetic operations such as
addition and multiplication. The formal statement is lucid re-
garding input and output and whether the solution is obtained
deterministically or probabilistically and whether exact or ap-
proximate. The procedure to map input to output is specified
in terms of universal primitive operations. Library functions
are permitted; such library functions offer known algorithms
that solve specific problems and are in a library because these
algorithms are popular for multiple applications.

Typically the Turing machine [58], or perhaps its extension
to quantum Turing machines [59,60], would suffice as the
starting point for the foundational model on which to base
formal problems and their algorithmic solutions. However, we
are not devising ways to solve group-covariant channels on
a computer per se but rather seeking to formalize the mathe-
matical problems. As these quantum channels are defined over
the complex number field, we choose as our starting point the
Blum-Shub-Smale machine [54], which modifies the Turing
machine to allow for an uncountable alphabet corresponding
to real numbers. Although we are employing complex num-
bers, rather than real numbers, the Blum-Shub-Smale machine
can be extended to complex numbers by treating complex
numbers as pairs of real numbers with complex conjugation
and multiplication rules suitably incorporated. In addition to
the alphabet including the full uncountable set of complex
numbers, our alphabet also includes standard alphanumeric
characters.

Various types of problems can be specified, such as search,
optimization, function inversion, and decision. In our work,
we deal with just two types of computational problems,
namely function problems and decision problems. A function
problem maps each input to some output according to a set
of rules, such as exponentiating or taking a square root. Of
course a well-posed function problem can fail to have a so-
lution that occurs from dividing by zero. A decision problem
is a special case of a function problem in that the output can
only be binary, such as “true,” denoted by �, or “false,” which
is denoted by ⊥.

A problem statement requires specification of a clear task
and needs well-defined inputs and outputs including their data
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types. The algorithm for solving the problem is expressed
as inputs, outputs, and a step-by-step procedure to map the
input to the output with these steps specified in terms of
operations that are themselves constructed from a universal
set of primitives, and some operations can be drawn from the
library whereas others are explicit logical steps in terms of the
computational model.

2. Essentials of algorithms

An algorithm is designed to solve a specific, well-posed
problem, in terms of instructions that the machine can un-
derstand. Specifically, the algorithm accepts inputs, processes
these inputs by a procedure expressed as a sequence of in-
structions, and yields the desired output. Below we describe
what inputs, outputs, and procedures are as we use this termi-
nology and employ these principles throughout our work.

a. Inputs: The first component of an algorithm is its inputs.
We require, in our approach to algorithms, the value of the
input and also type. Type refers to the nature of this input,
which implies rules such as arithmetic or concatenation. In
some programming languages, such as Python, to which we
refer often, type is not needed but then an interpreter is re-
quired; as we are focused on an algorithmic approach but not
on actual programming or implementations of computation,
we prefer to keep all types explicitly stated.

b. Outputs: The outputs of the algorithm are the solutions of
the problem. In our approach, we specify type of each output
to be clear, and the format is the same as for inputs. Outputs
can be exact or approximate solutions and obtained determin-
istically or probabilistically. Flags can be binary outputs that
indicate whether a valid solution was found or not.

c. Procedures: The algorithmic procedure’s purpose is to
map the inputs to the outputs in a logical way following
steps that the machine can understand. Procedures can be
represented by flow charts or by pseudocode; we prefer using
pseudocode, which includes both instructions and comments
following � symbols that explain briefly the instructions.
Procedure statements include explicit declaration of vari-
ables, including their types, and return statements for sending
variable values to outputs and end statements that termi-
nate the procedure. We typically do not include initialization
statements as we assume all numbers and numerical arrays are
initialized to 0 or arrays of zeros and symbolic variables are
initialized to blank �.

3. Pseudocode

In this subsection, we explain pseudocode. We have thus
far explained formal problems and essentials of algorithms,
and now we explain the transition from algorithms to pseu-
docode.

Pseudocode appears similar to how a formal program
looks, but pseudocode is not meant to be compiled. Rather
pseudocode formalizes the logic of how we are solving the
problem, and it is an alternative to a flow-chart representa-
tion. We employ pseudocode to ensure that our algorithms
are complete. Breaking what could be one large algorithm
into multiple subalgorithms ensures that what would be a
complicated algorithm is modularized and thus fathomable.

Our pseudocode for each algorithm and subalgorithms
(treated as an algorithm) is introduced by first presenting the
description of the algorithm and then presenting the name of
the algorithm. Then we present sequentially the input and
then the output and then the procedure. The procedure is
named on formal line 1 of each pseudocode and is followed
by the formal name of the algorithm and then its arguments in
parentheses.

In the procedure, the pseudocode begins with importing
functions from the library or other algorithms. Variables that
arise during the procedure are declared as they arise. Requisite
variables are returned for output before the procedure ends.

APPENDIX B: NOTATION AND DATA TYPES

In this Appendix, we establish concepts and notation for
those data types [61] that are pertinent to our study and used in
our pseudocode. Our two key additions to the typical notation
in physics pseudocode are the use of multidimensional arrays
with hyperrows and using a jagged structure. We describe
these new notational results at the end of this Appendix.

We write data types in lower-case typewriter font and
allow for both static and dynamic arrays.

Names of variables are expressed in small-capital CAMEL-
CASE with our pseudocode presentation and notational
convention closely following the qudit benchmarking case
[62]. As our model includes real and complex numbers, we
use these data types in that context rather than real and
complex data types representing floating point numbers as in
languages such as Fortran.

Now we proceed to introduce and explain specific data
types. In some cases we introduce new data types for use
in our studies; although some terms and types are new, these
novelties are based on established concepts.

a. Numbers: First we define numbers, which can be a
countable set such as integers Z, a finite subset of inte-
gers such as [n] (6) for n ∈ Z+ (positive integers denoted
posinteger) and natural numbers N (natural) comprising
positive integers and zero or the uncountably infinite numbers
such as real R (real) and complex C (complex) numbers
or their floating-point representations. A binary digit (bit) has
type binary with two values 0 and 1. All numbers are sub-
ject to arithmetic operations such as addition/subtraction ±,
multiplication ∗, and exponentiation ∧, with these operations
and their character representations regarded as being defined
deep in the computer architecture stack [63] in a natural way
for each kind of number.

b. Non-numerical: Variables are represented by symbols
(denoted symbol), which serve akin to variables in symbolic
expressions. These symbolic variables are expressed as an al-
phabetical string of Latin and Greek letters in our model. The
type string is a concatenation of alphanumeric characters,
brackets, and punctuation marks, but not arithmetic operation
symbols, to produce a literal constant such as “SO(3)” to
denote the special orthogonal group of dimension 3.

c. Array: An array is a list of elements drawn from the
same data type (e.g., natural, symbol) and can be multidi-
mensional. We introduce the term “hyperrow” here to refer to
coordinates (labeled by indices) of the array, with a hyperrow
of first order referring to an array’s row, a hyperrow of second
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order referring to a column, a hyperrow of third order referring
to, say, a sheet (following Microsoft Excel terminology), and
so on. A one-dimensional array is a vector whose coordinates
are row numbers. A matrix is a two-dimensional array, with
coordinates given by rows and columns. This concept can be
generalized to multidimensional arrays with multiple arrays.
An array need not have the same number of columns for
each row: instead the number of columns could vary for each
row, in which case this array is “jagged.” In our pseudocode,
we declare arrays following the common convention, that is,
expressing first the type of array and its elements data type,
second the dimension of the array represented by the number
of brackets, and finally the name of the array. For example,

symjagged[ ][ ] ARRAYONE (B1)

declares a two-dimensional symbolic jagged array called AR-
RAYONE. As another example,

complexarray[2][ ] ARRAYTWO (B2)

declares a two-dimensional complex array called ARRAYTWO

with its row having two elements and the number of
elements in its column not determined at the declara-
tion step. We address array elements using the notation
ARRAY[row number][column number] for an element of the
two-dimensional array ARRAY with row number and column
number. This notation is extended in a straightforward way for
higher-dimensional arrays. Generalized arithmetic operations
used for arrays include tensor product ⊗ and direct sum ⊕.

Previously, two-dimensional arrays have been treated
in physics pseudocode, but higher-dimensional arrays, al-
though employed in programming, have not previously
been introduced in physics pseudocode. Here we pro-
duce a straightforward but useful notation for higher-
dimensional arrays, exemplified by the following case. A
three-dimensional array, denoted ARRAY, with elements be-
ing of any type, say, symbol for symbol, is declared as
symbol[SIZE0][SIZE1][SIZE2]ARRAY, where SIZE0, SIZE1, and
SIZE2, respectively, are the sizes of the first-order hyperrow,
second-order hyperrow, and third-order hyperrow, respec-
tively, for ARRAY. By convention, the index of each array starts
from zero. Then ARRAY[I][J][K] is an element of ARRAY with
sheet (third-order hyperrow) number K, column (second-order
hyperrow) number J, and row (first-order hyperrow) number
I, and this notation convention extends in an obvious way to
arrays of higher dimensions.

Sometimes we need to work with a lower-dimensional
array from a higher-dimensional array, which we explain here
by example. Given three-dimensional array ARRAY defined
above, we construct the “projected” one-dimensional array
ONEDARRAY ← ARRAY[I][J], which is a one-dimensional ar-
ray extracted from ARRAY with SIZE2. The Kth element of
ONEDARRAY, ONEDARRAY[K], is ARRAY[I][J][K]. Similarly,
TWODARRAY ← ARRAY[I] is a two-dimensional array ex-
tracted from ARRAY with the first hyperrow of size SIZE1 and
the second hyperrow of size SIZE2.

We find necessary the use of jagged arrays, which are used
in programming but have not been introduced into pseudocode
within physics papers yet, so we do so here. Hence, we define
a multidimensional jagged array as an array whose order n
hyperrow has a size that depends on the index of the hyperrow

of order n − 1. For example, if ARRAY is a three-dimensional
jagged array with elements of type symbol, its declaration is
symjagged[SIZE0][SIZE1][ ]ARRAY, and ARRAY[I][J] is a one-
dimensional array whose size depends on the chosen indices I

and J.

APPENDIX C: LIBRARY

In this Appendix, we paraphrase the concept and role of
libraries [64] in solving computational problems algorith-
mically. Then we briefly describe the functions we use for
solving group-covariant channels in Secs. III C and IV B.
In Appendix C 1 we explain the common functions avail-
able in public libraries that are required in our pseudocode.
Then, in Appendix C 2 we discuss a convenient library of our
new functions used in our pseudocode. A library is vital in
computer programming and more generally in software de-
velopment [64]. Libraries appear in a variety of forms, but our
use of libraries here is restricted to subroutines, which are a
packaged sequence of instructions that perform a well-defined
task [63]. Such library elements are known as functions, and
we use this terminology throughout. A function is called by
invoking the name of the function and passing parameters and
then receiving new parameter values after execution.

1. Functions available in a public library

In this subsection, we describe the common well-known
functions that are useful for our algorithm. Specifically, we
describe the matrix functions that prove useful later, and then
we proceed to describe the function we use to solve simulta-
neously sets of equations. Finally, we describe the functions
that identify symbols in expressions and simplifies algebraic
expressions. Our approach to introducing library functions
is to make use of concepts existing in the literature or from
actual libraries such as Python’s SymPy [65] or NumPy [66]
or alternatives such as NAG [67].

As solving linear equations is vital to our analysis, and
array manipulation is germane to solving such systems of
equations, we introduce here basic array library functions that
prove to be useful in our algorithm for solving generalized
group-covariant channels. The zero and identity matrices are
especially useful, so we introduce library functions ZERO and
ID for creating zero and identity matrices of specific size, and
they can be two-dimensional arrays or beyond to multidimen-
sional cases. If a matrix has complex entries, the transpose
and the Hermitian conjugate of a matrix can also be valuable,
for which we use the functions TRANSP and DAG, respectively.
Another important function for our purposes is RESHAPE,
which converts an array of some dimension to an array of
another dimension, with the easiest nontrivial examples being
conversion of a vector to a matrix and vice versa. Although
SymPy includes an ordering option, we only ever use one
ordering here, so we do not include this input option.

Finally, we consider useful functions for solving systems
of equations. The first of these library functions is SOLVE,
which solves a given system of equations in terms of symbols,
which are imported or given as input. Thus, SOLVE yields
symbolic solutions to this set of equations in terms of specified
allowed symbols. Of course these expressions can be com-
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plicated, so rules are applied to simplify these expressions,
and this simplifying function is called SIMPLIFY. The role of
SIMPLIFY is to simplify algebraic expressions by recognizing
and simplifying common or specified arithmetic expressions
for symbols being both numbers and arithmetic operations,
for example the replacements 5 + 2 by 7 or replacement of
1 + 2x + x2 − (1 + x)2 by 0 with the end result of SIMPLIFY

still being a symbol, albeit simpler in form. Lastly, inspired
by a SymPy library function FREE_SYM, we introduce another
equivalent function in our library, which we call SYMIDEN-
TIFIER; this function returns all symbols found in expression
entries of a given multidimensional array.

2. New functions for the computer library

In this Appendix, we discuss the computer library of our
new functions, which augments the set of known functions
in public libraries discussed in Appendix C 1. We briefly de-
scribe each new built-in function that is used in our algorithms
in Sec. IV B, and then we present the detailed information
about these functions, including types of input and output.
These functions are presented as their name in CAMELCASE

followed by a plain description of the function, then their
inputs and outputs.

(1) Oracle for group/algebra properties: Our library in-
cludes one oracular function, accepting a binary input that
determines the type of the group, which is either a finite
discrete group or a compact connected Lie group. Next the
input of this function is a name of a finite discrete group or
a compact connected Lie group. This oracular function also
accepts an integer input corresponding to Hilbert-space di-
mension d . This function returns pertinent information about
the properties of the input finite discrete group or the input
compact connected Lie group, depending on the type of the
group determined by the first input of the function. This
oracular function yields six outputs. Depending on the type
of the group in the input, the first output is the number of
inequivalent irreps of the finite discrete group or the number
of inequivalent irreps of Lie algebra corresponding to the
compact connected Lie group with dimension less than or
equal to d . The second output is the number of inequivalent
representations of the finite discrete group or the number of
inequivalent representations of the Lie algebra corresponding
to the compact connected Lie group, with respect to the group
type in the input, for given d . The third output is the rank of
the finite discrete group or the number of generators of the Lie
algebra corresponding to the compact connected Lie group.
The fourth output is the dimension of the inequivalent irreps
of the finite discrete group or the dimension of all inequivalent
irreps of the compact connected Lie algebra corresponding to
the compact connected Lie group, with dimension less than
or equal to d . Next we have the fifth output, which is all
inequivalent unitary irreps of the finite discrete group or all
inequivalent unitary irreps of the Lie algebra corresponding to
the compact connected Lie group with dimension less than or
equal to d . Finally, the sixth output is all unitary representa-
tions of the finite discrete group or all unitary representations
of the Lie algebra corresponding to the compact connected Lie
group, for the given d .

• PROPS� Properties and representations of a discrete group
or a compact connected Lie group GNAME

INPUT:
binary[ ] GTYPE� Flag: 0 for finite discrete groups and 1

for compact connected Lie groups.
character[ ] GNAME� Name of finite discrete group or

compact connected Lie group.
posinteger HDIM � Hilbert-space dimension.
OUTPUT:
posinteger NUMIRREP� Number of inequivalent irreps

of the GNAME for GTYPE=0 and number of inequivalent irreps
of algebra generating GNAME for GTYPE=1 with dimension
less than or equal to HDIM.

posinteger NUMREP� Number of inequivalent reps of
the GNAME for GTYPE=0 and number of inequivalent irreps
of algebra generating GNAME for GTYPE=1 with dimension
HDIM.

posinteger NUMGEN� rank of GNAME for GTYPE=0 and
number of generators of the Lie algebra generating GNAME for
GTYPE=1.

posinteger[ ] DIM� Dimension of NUMIRREP inequiva-
lent irreps of GNAME with dimension less than or equal to
HDIM for GTYPE=0 and dimension of NUMIRREP inequivalent
irreps of Lie algebra generating GNAME with dimension less
than or equal to HDIM.

symjagged[ ][ ][ ][ ] IRREP � For GTYPE=0, entries of
the first hyperrow label the NUMIRREP inequivalent irreps of
GNAME with dimension less than or equal to HDIM. Entries
of the second hyperrow label NUMGEN generators of GNAME.
The third and fourth hyperrows are matrix elements for each
irrep of GNAME with dimension less than or equal to HDIM.
For GTYPE=1 entries of the first hyperrow label the NUMIRREP

inequivalent irreps of Lie algebra generating GNAME with
dimension less than or equal to HDIM. Entries of the second
hyperrow label NUMGEN generators of the Lie algebra gen-
erating GNAME. The third and fourth hyperrows are matrix
elements for each irrep of Lie algebra generating GNAME with
dimension less than or equal to HDIM.

symbol[ ][ ][ ][ ] REP � For GTYPE = 0/1, entries
of the first hyperrow label the NUMREP inequivalent reps
of GNAME/Lie algebra generating GNAME with dimension
HDIM. Entries of the second hyperrow label NUMGEN gen-
erators of GNAME/Lie algebra generating GNAME. The third
and fourth hyperrows are matrix elements for each rep
of GNAME/Lie algebra generating GNAME with dimension
HDIM.

(2) Imposing a trace-preserving condition on completely
positive maps: Our library requires a function for accepting
N number of d × d Kraus operators of a completely positive
map and returning N number of d × d Kraus operators of the
same completely positive map that satisfy the trace-preserving
condition in Eq. (4). Given the set of Kraus operators, this
function constructs � in Eq. (5) and solves the matrix equa-
tion in Eq. (4) for parameters in Kraus operators of the
completely positive map. If the solution exists, it employs
the solution to simplify the Kraus operators and returns 1 for
TP, indicating that the trace-preserving condition is satisfied
in addition to the set of Kraus operators satisfying the trace-
preserving condition (4). If the solution does not exist, the
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function returns 0 for TP, indicating that the solution does not
exist.

• SOLVECHANNEL� Apply the trace-preserving condition
to the input CP map to yield either a channel or no solution.

INPUT:
symbol[N][D][D] KRAUS� ND × D Kraus matrices for CP

map.
OUTPUT:
binary[ ] TP� Flag: 0 for no solution and 1 for existence

of the solution.
symbol[N][D][D] KRAUS� ND × D Kraus matrices for

channel.
PROCEDURE:
(a) symbol[D][D] XI� Represents � (5).
(b) symbol[ D(D−1)

2 ] EQS� Constrained expressions due to
the trace-preserving condition.

(c) symbol[ ] SYMBOLS� Yields parameters obtained
from KRAUS.

(d) symbol[ ] SOL� Relations between parameters in
KRAUS due to the trace-preserving constraint; same size as
SYMBOLS.

(e) binary FLAG� TRUE if solutions exist.
(f) Compute XI� From Eq. (5)
(g) For all I ∈ [D], EQS[I]← XI[I][I] − 1� Apply trace-

preserving condition for diagonal elements.
(h) For I from D + 1 to D(D−1)

2 , EQS gets upper-diagonal
elements of XI� Apply trace-preserving condition for upper-
diagonal elements.

(i) SYMBOLS← SYMIDENTIFIER(KRAUS) � Extracts sym-
bols from KRAUS.

(j) SOL← SOLVE(EQS,PARAMS) � Assigns EQS=0, then
solves for PARAMS; FLAG←FALSE if a solution is not found.

(k) If FLAG, proceed to the next step.
(l) RETURN KRAUS← SIMPLIFY(KRAUS,SOL) � Employ

expressions in SOL to simplify KRAUS

(3) Solving systems of linear equations: The next function
solves systems of homogeneous linear equations symbol-
ically; this system is Anx = 0 for (d1 × d2)-dimensional
symbolic matrices Ans with n ∈ [N]. Solving this system
of equations is accomplished by computing the intersection
between kernels of {An}, which is accomplished by solving
a system of linear homogeneous equations. The matrix of
coefficients in this system of coupled linear equations is an

Nd1 × d2 matrix constructed by stacking N instances of An

matrices. This system of homogeneous linear equations is
solved by standard methods such as singular value decompo-
sition.

• SYMSOLVE� Solves symbolic x for Anx = 0∀n ∈ [N],
with each An a K × L symbolic matrix, and SIMPLIFY em-
ployed to simplify all algebraic expressions.

INPUT: symbol[N][K][L] A

OUTPUT: symbol[L] X

(4) Reshape: Our library incorporates a function that re-
shapes the input symbolic vector into a square matrix, where
the input vector has a length that is a squared integer d2

and the matrix has size d × d . Reshaping is accomplished by
writing in order each element of the vector into each element
of the first row of the matrix until that row is full. Then we
continue by writing the next elements of the vector into the
next row of the matrix until that row is filled. This procedure
is complete when all rows of the vector are written into all
elements of the square matrix, and we have ensured that our
matrix is exactly the right size for this transcription from a
length d2 vector to work properly.

• RESHAPE� Reshape symbolic VECTOR Appendix C 1 but
here only for a vector of squared-integer length to a square
matrix, converted according to the rule that the first row fills
the matrix, then the second row, and so on.

INPUT: symbol[DIM2] VECTOR

OUTPUT: symbol[DIM][DIM] MATRIX

(5) Convert a vector to multiple matrices: Our library
furthermore requires a function that converts a given vector
to a set of square matrices, which generalizes the previ-
ous function that maps a vector to a single square matrix.
The input is a symbolic vector of size Kd2 × 1 yielding
K number of d × d matrices at the output. This function
chops an input vector of size Kd2 into K length d2 vectors
and then reshapes each of these vectors into a square d × d
matrix.

• VECTOMATR� Chops a length-KD2 symbolic vector into
K length D2 vectors and RESHAPE each vector to a square D-
dimensional symbolic.

INPUT:
symbol[K ∗ D2] VECTOR,
posinteger K

OUTPUT: symbol[K][D][D] MATRIXSEQ

[1] G. Ludwig, Attempt of an axiomatic foundation of quantum me-
chanics and more general theories. III, Commun. Math. Phys. 9,
1 (1968).

[2] K. Hellwig and K. Kraus, Pure operations and measurements,
Commun. Math. Phys. 11, 214 (1969).

[3] S. Doplicher, R. Hagg, and J. E. Roberts, Local observ-
ables and particle statistics I, Commun. Math. Phys. 23, 199
(1971).

[4] A. S. Holevo, Statistical Structure of Quantum Theory, Lecture
Notes in Physics Monographs Vol. 67 (Springer-Verlag, Berlin,
2001).

[5] C. E. Shannon, A mathematical theory of communication, Bell
Syst. Tech. J. 27, 379 (1948).

[6] C. E. Shannon, A mathematical theory of communication, Bell
Syst. Tech. J. 27, 623 (1948).

[7] L. J. Landau and R. F. Streater, On birkhoff’s theorem for
doubly stochastic completely positive maps of matrix algebras,
Lin. Alg. Appl. 193, 107 (1993).

[8] M.-D. Choi, Completely positive linear maps on complex ma-
trices, Lin. Alg. Appl. 10, 285 (1975).

[9] A. Fujiwara and P. Algoet, Affine parameterization of quantum
channels, in Proceedings of the 1998 IEEE International Sym-
posium on Information Theory (IEEE, Piscataway, NJ, 1998),
p. 87.

[10] A. Fujiwara and P. Algoet, One-to-one parametrization of quan-
tum channels, Phys. Rev. A 59, 3290 (1999).

033206-22

https://doi.org/10.1007/BF01654027
https://doi.org/10.1007/BF01645807
https://doi.org/10.1007/BF01877742
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1016/0024-3795(93)90274-R
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1103/PhysRevA.59.3290


GROUP-COVARIANT EXTREME AND QUASIEXTREME … PHYSICAL REVIEW RESEARCH 4, 033206 (2022)

[11] M. B. Ruskai, S. Szarek, and E. Werner, An analysis of com-
pletely positive trace-preserving maps on m2, Lin. Alg. Appl.
347, 159 (2002).

[12] D. Braun, O. Giraud, I. Nechita, C. Pellegrini, and M. Žnidarič,
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