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Dissipation in a finite-temperature atomic Josephson junction
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We numerically demonstrate and characterize the emergence of distinct dynamical regimes of a finite-
temperature bosonic superfluid in an elongated Josephson junction generated by a thin Gaussian barrier over
the entire temperature range where a well-formed condensate can be clearly identified. Although the dissipation
arising from the coupling of the superfluid to the dynamical thermal cloud increases with increasing temperature
as expected, the importance of this mechanism is found to depend on two physical parameters associated (i)
with the initial chemical potential difference, compared to some characteristic value, and (ii) the ratio of the
thermal energy to the barrier amplitude. The former determines whether the superfluid Josephson dynamics are
dominated by gradually damped plasmalike oscillations (for relatively small initial population imbalances), or
whether dissipation at early times is instead dominated by vortex- and sound-induced dissipation (for larger
initial imbalances). The latter defines the effect of the thermal cloud on the condensate dynamics, with a reversal
of roles, i.e., the condensate being driven by the oscillating thermal cloud, being observed when the thermal
particles acquire enough energy to overcome the barrier. Our findings are within current experimental reach in
ultracold superfluid junctions.
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I. INTRODUCTION

Josephson effects across a junction separating two parts
of a quantum liquid [1,2] are ubiquitous in nature, occur-
ring across superconductors [1–3], superfluid helium [4–7],
trapped ultracold atomic gases [8–21], and exciton-polariton
condensates [22,23]. The most characteristic manifestation
of Josephson junctions in ultracold atomic systems relates
to the so-called “plasma” oscillations associated with pe-
riodically alternating particle transfer across the junction
with a population difference and an associated relative phase
between the two sides of the junction oscillating about a
zero value. Such behavior has been observed in a range of
experiments, including ultracold bosonic atoms in diverse ge-
ometries [9,10,12,14–16] and fermionic superfluids across the
BEC-BCS crossover [17–21], with atomic current across a
Josephson junction playing an important role in atomtronics
[24–28].

As the underlying features are of a quantum nature, asso-
ciated with the densities and phases of the superfluids across
the two sides of the junction, most theoretical treatments to
date have focused on the more fundamental, pure superfluid
(zero-temperature) analysis. The dynamics of such atomic
systems was first analyzed in Refs. [29,30], which predicted
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two distinct regimes, with the analysis based on a two-mode
model and a corresponding analogy to the nonrigid pendulum
with variable length with more detailed theoretical/numerical
analysis conducted by various authors [31–35]. Specifically,
the work of Refs. [29,30] highlighted the existence of a
“self-trapping” regime characterized by population imbalance
oscillations about a nonzero value (i.e., one side of the junc-
tions always maintains a higher population than the other),
associated with a relative phase increasing in time (rather than
an oscillating phase). Such a regime, was first observed in
Ref. [10], followed by related experiments in other groups
[14,15].

Viewed differently, the Josephson junction separating two
parts of a superfluid can also be viewed as a barrier acting
against the underlying superflow: as such, superflow dissi-
pation can emerge even strictly at T = 0 by the generation
of sound waves, and even nonlinear excitations, such as
solitons [36,37], vortices [17,18,38–42], and shock waves
[37,43], depending on system geometry and dimensionality.
Such dynamical excitation features across a Josephson junc-
tion, which are well-known as phase slips in the context
of superconductors [44,45], superfluids [4,7], and ultracold
transport [28,33,36,38,40,41,46,47], have also been observed
in recent ultracold experiments with fermionic superflu-
ids [17,18]. Such behavior has been previously analyzed
in depth by the present authors [38], thus shedding more
light on the microscopic and energetic origins of dissipa-
tion in such systems, and directly connecting microscopic
findings with experimental observations both for coher-
ent and dissipative transport across an ultracold Josephson
junction.
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The combination of earlier experimental and theoreti-
cal works thus indicated two distinct transitions from the
Josephson “plasma” regime with increasing initial popula-
tion imbalance, namely to either the self-trapped or to the
phase-slip-induced dissipative dynamical regimes. The for-
mer, “self-trapped,” regime is generally expected to emerge
in the limit of validity of the two-mode model [29,30,32,48–
53], i.e., in the limit of rather high barriers, compared to
the system’s chemical potential. To better understand the
conditions leading to either of these two dynamical transi-
tions, the present authors undertook a detailed systematic
analysis of the phase diagram of the dynamical regimes
across a Josephson junction as a function of initial popu-
lation imbalance, barrier properties, and underlying system
geometry [39]. Our findings clearly characterized the nature
of the transition of the Josephson oscillations with increasing
population imbalance as being “dissipative” in the limit of rel-
atively low/narrow barriers, and “self-trapped” in the opposite
regime of high/wide barriers, with a complicated intermediate
regime featuring irregular population/phase dynamics, thus
providing a complete characterization of the emergence of
such different dynamical regimes.

While such work thoroughly addressed the T = 0 pure
superfluid dynamical regimes, few studies to date have studied
the effects of thermal, or quantum, excitations [31,36,50,54–
62]. This can be crucial, since experiments are typically per-
formed at small, but nonzero, temperatures T � Tc (where Tc

is the critical temperature for Bose-Einstein condensation): in
fact, evidence of thermal dissipation in the self-trapped regime
has already been experimentally observed in [14]. It is thus
of significant interest to understand the role of the thermal
cloud on the junction dynamics. Some work on the decay of
the self-trapped regime has been performed in the context of
the dissipative and stochastic projected Gross-Pitaevskii equa-
tion [54], qualitatively reproducing the findings of Ref. [14].

In the present work, we provide a unified characterization
of the fundamental role of thermal dissipation in both the
Josephson plasma and the dissipative regimes by means of
a self-consistent theory that incorporates a dynamical ther-
mal cloud and its backaction on the condensate. Specifically,
we perform a detailed analysis of the long-term dissipative
dynamical evolution of the superfluid across a Josephson
junction, focusing on the relative population dynamics, their
dominant frequencies, and the relation between condensate
and thermal cloud dynamics. We identify two distinct dy-
namical regimes, namely a low-temperature regime in which
the small thermal cloud is driven by the condensate, and
a high-temperature regime in which the thermal cloud has
enough energy to overcome the barrier, and thus begins to
drive the condensate. The dominant frequencies identified
are the Josephson plasma frequency (slightly lower than the
trap frequency), a frequency we interpret as its corresponding
second-order contributions, and the dipolar frequency of the
thermal cloud (which is close to the underlying harmonic trap
frequency). All such frequencies are found to be relevant in
both the Josephson plasma and the dissipative regimes, with
their relative importance dependent both on the dynamical
regime and on temperature, as we shall discuss.

This paper is structured as follows: Section II intro-
duces the key concepts required for our analysis, namely the

physical system and geometry (Sec. II A), and a brief sum-
mary of the underlying dynamical regimes in the limit of a
pure superfluid (Sec. II B) and of the documented importance
of second-order tunneling contributions to date (Sec. II C),
with the dynamical finite-temperature model used summa-
rized in Sec. II D. Section III summarizes the parameter
regime of this study and identifies the physical observables
that are used to analyze the emerging dynamics across the
entire temperature domain (Sec. III A), analyzing the sys-
tem dynamics, dominant frequency components, and damping
rates in both the Josephson (Sec. III B) and dissipative regimes
(Sec. III C) at a fixed condensate number, further highlighting
the role of the thermal cloud on the damping of sound waves.
Our findings on the finite-temperature dynamical regimes are
revisited in Sec. IV in the context of fixed total particle num-
ber, with our observations further discussed and concluded in
Secs. V and VI, respectively.

II. PHYSICAL SYSTEM AND T > 0 KINETIC MODEL

A. Gaussian junction in an elongated anisotropic harmonic trap

The physical system considered in this study is an
anisotropic highly elongated harmonic trap, with a double-
well potential of the form

Vext (x, y, z) = 1

2
M

(
ωx

2x2 + ωy
2y2 + ωz

2z2
)

+V0 e−2x2/w2
. (1)

This geometry is motivated by the LENS fermionic su-
perfluid experiments, which observed the dissipative regime,
with our analysis restricted to the BEC limit of lithium
molecules [17,18]. As such, and consistent with our earlier
works [38,39], our study uses trapping frequencies ωx =
2π × 15 Hz, ωy = 2π × 148 Hz, and ωz = 2π × 187.5 Hz
across the x, y, and z directions, respectively. To avoid a
potential change in the system dynamical regime caused by
a changing condensate particle number with varying temper-
ature, our primary finite-temperature study is conducted at
a fixed condensate particle number, NBEC = (5.04 ± 0.02) ×
104. The small error bar is given by the maximum difference
between the condensate number at different T , and it has
no noticeable effect on our characterization of the Josephson
junction dynamics. We also keep fixed the barrier height V0 =
104h̄ωx and width w = 2 μm. In the pure superfluid limit
(T = 0), this amounts to V0 = 0.97μ and w = 3.8ξ , where
ξ = h̄/

√
2μM = 0.52 μm denotes the condensate healing

length. For these parameters, the system cannot support the
emergence of macroscopic quantum self-trapping, and only
the Josephson plasma and the dissipative regimes are found.
Moreover, smaller values of V0/μ would imply being more in
a hydrodynamical than a tunneling regime.

A schematic of the initial system density for such parame-
ters is shown in Fig. 1 for T = 0 [pure condensate, Fig. 1(a)]
and T = 0.58Tc [Fig. 1(b)]: in the latter case, the top panel (i)
shows the condensate, with the corresponding thermal cloud
contribution shown—within the context of the Hartree-Fock
approximation—in panel (ii), clearly revealing the thermal
cloud surrounding the condensate and partly infilling the bar-
rier region where the condensate contribution decreases. More
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(d)

FIG. 1. (a) Equilibrium 2D integrated condensate density in the
xz-plane at T = 0 (which coincides with the total density). (b) The
corresponding equilibrium integrated (i) condensate and (ii) thermal
cloud density profiles in the xz-plane at T = 88 nK = 0.58Tc for the
same fixed condensate number NBEC � 5.04 × 104 and V0/μ(T =
0) = 0.97. All densities are scaled to their corresponding maximum
values, as indicated by the color bars. (c) Condensate fraction as a
function of the temperature T scaled to the noninteracting critical
value Tc = Tc[N (T )] for the corresponding total particle number
N (T ) in each case (circles), showing the entire regime of temper-
atures probed in our present analysis: the cases T = 0 and 0.58Tc,
whose corresponding densities were shown, respectively, in (a) and
(b), are indicated as hollow circles, and the dashed line is a guide to
the eye. The thin solid gray line shows the corresponding ideal-gas
analytical prediction. (d) Time evolution of the population imbalance
at T = 0 for different values of z0: (i) for an initial imbalance z0 just
below zcr the system exhibits undamped Josephson plasma oscilla-
tions (black dashed line); (ii) at z = zcr, corresponding to the critical
imbalance for the onset of the dissipative regime, with a single vortex
ring generated (red line); (iii) z0 > zcr, showing kinks characteristic
of the sequential generation of multiple vortex rings (green line).

details of our theoretical model are discussed in Sec. II D and
Appendix A. The dependence of the condensate fraction on
(scaled) temperature over which such dynamical behavior is
characterized is shown in Fig. 1(c). As our analysis is per-
formed with a fixed condensate particle number at different
temperatures, this implies that the thermal, and thus total,
particle number N = N (T ) increases with increasing temper-
ature; for this reason, each point on this graph has been scaled
by its own corresponding noninteracting harmonically trapped
three-dimensional (3D) critical temperature Tc = Tc[N (T )] �
0.94 × (h̄ω̄/kB)[N (T )]1/3 [where ω̄ = (ωxωyωz )1/3] [63]. For
comparison, we also plot the noninteracting prediction for the
condensate fraction, which confirms the expected shift of the
critical region due to finite-size and mean-field corrections
[63]. As is evident from Fig. 1(c), our analysis is performed
over a very broad temperature range, in which there is at least

a 10% condensate fraction, thus avoiding limitations of our
approach as the system approaches the critical region.

To compute the initial equilibrium imbalanced state, we
apply a linear barrier shift −εx to the double-well potential.
This is subsequently instantaneously removed, at t = 0, in
order to initiate the dynamics that we probe. The shift ε is
kept the same for all temperatures considered throughout our
analysis, thus fixing the initial condensate imbalance (a subtle
shift at rather high T will be commented upon later, in Sec. III
and Appendix E).

B. Josephson plasma oscillations versus dissipative
dynamics at T = 0

As is well known, a pure (T = 0) superfluid system with
an initial population imbalance across the junction can exhibit
undamped oscillatory particle transfer across the junction (for
a given barrier height/width configuration) with plasma fre-
quency νJ [shown in Fig. 1(d) by the black dashed line].
This is typically characterized by the fractional population
imbalance

z(t ) = NR(t ) − NL(t )

NR(t ) + NL(t )
, (2)

where NR/L is the number of condensate particles on the
right/left sides of the barrier (centered at x = 0); the time
derivative of this quantity gives the superfluid current across
the junction, via the expression I = −(N/2)dz(t )/dt , with
N = NR + NL being the total particle number.

Increasing the initial population imbalance for our param-
eters actually leads to flow speeds exceeding the local critical
velocity, thus inducing the dissipation of superflow kinetic
energy through the generation of vortex rings and associated
sound waves, an effect already interpreted in our previous
work [38,39], and observed experimentally [17,18]. This is the
so-called dissipative regime, characterized by a rapid initial
decay of the population imbalance, followed by oscillations
around a zero value with one or more frequencies. The emer-
gence of such behavior can be clearly seen in the evolution of
the population imbalance corresponding to the red and green
curves in Fig. 1(d).

As a first step, we explicitly calculate for our parame-
ters the critical population imbalance marking the transition
from Josephson plasma to the phase-slip-induced dissipative
regime (shown in Appendix C). At T = 0 and for each barrier
height value, we define zBEC

cr as the first explored value of
initial imbalance at which the imbalance amplitude exhibits
(within t ∼ 0.1 s) exactly one kink (indication of the back-
flow associated with the generation of a vortex ring [38,39]),
while simultaneously the relative phase undergoes one phase-
slippage mechanism; such behavior is shown by the red profile
in Fig. 1(d). Further increase in the population imbalance
leads to sequential generation of multiple vortex rings across
the junction during the early phase of unidirectional flow
across the junction, as can be seen by the green line showing
the case of an initial population imbalance well above the
critical value for the chosen parameters. We use the same cri-
terion to identify the critical condensate population imbalance
in the case of finite T . Indeed, in Appendix C we show that
fixing the condensate particle number implies the transition is
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(within numerical error) unaffected by the presence of thermal
particles for all barrier heights probed.

Furthermore, we note that the condensate dynamical
regime across the Josephson junction depends on the value
V0/μ(T = 0), where μ(T = 0) is the zero-temperature chem-
ical potential obtained by the Gross-Pitaevskii equation in
the limit of all particles being in the superfluid. Given that
μ(T = 0) is held fixed throughout our simulations, all our
analysis is thus done at fixed V0 = 0.97μ(T = 0).

For completeness, we note here that the third dynamical
regime, namely self-trapping, is not relevant to this work,
as—for our parameter set—it manifests itself at a much higher
value of V0/μ(T = 0) � 1.7.

In the subsequent analysis of Sec. III, we will consider
those two regimes separately (Secs. III C and III D, respec-
tively) to focus on the role of the thermal cloud on particle
dynamics.

C. Second-order Josephson junction contributions

Given that our study identifies more than one relevant
superfluid oscillation frequency, both at T = 0 and in the
T > 0 regimes, it is appropriate here to briefly summarize
prior relevant work identifying such multiple frequencies and
the role of their arising couplings [19,20,38,55,61,64–67].

At first order in the tunneling Hamiltonian, only the
condensate-to-condensate tunneling term contributes to the
superfluid current, and the current-phase relation is sinusoidal,
I = Ic sin(�φ). This is valid as long as the barrier height is
much larger than μ. However, if instead V0 ∼ μ, second-order
terms must be considered that originate from the tunneling
between condensate and noncondensate states. At T = 0 and
for a BEC, the latter consists of phonon modes [31,55].

In the presence of a finite chemical potential differ-
ence between the two wells, this second-order term could
lead to the presence of an additional nondissipative [of
the form “sin(2�φ)”] and/or dissipative term [of the form
“cos(2�φ)”] in the current-phase relation, with the latter
being finite even at T = 0. The presence and importance of
the coherent (nondissipative) term oscillating at double the
νJ frequency has been studied in several papers both with
bosonic and fermionic systems [19,20,38,55,61,64]. More-
over, for our geometry, Ref. [38] shows that the profile of
the maximum superfluid current flowing through the junction
versus the barrier height V0/μ could be described by the pres-
ence of both the first-order [“sin(�φ)”] and the nondissipative
second-order [“sin(2�φ)”] term in the current-phase relation,
with the second having a negative sign. In fact, a recent study
with a point-contact junction [68] shows the presence even of
a dissipative current term in that geometry, as predicted by
[55].

In the following sections, we will show that our analysis,
based on the long-time evolution of the superfluid dynamics,
suggests that both dissipative and nondissipative second-order
terms in the superfluid current (i.e., population imbalance)
could become important, and their presence depends on the
dynamical regime. For completeness, we also note here that
the multimode regime is also found in the highly excited
self-trapping regime for an initial imbalance much larger than
a critical value [39,65,66].

D. Self-consistent finite-temperature kinetic model

We model the system as the sum of a condensate and
a thermal part, in the context of the collisionless Zaremba-
Nikuni-Griffin (ZNG) formalism [69–72]. This technique,
which has already been successfully applied to diverse
nonequilibrium settings, including condensate growth [73],
collective modes [74,75], soliton [76], and vortex [77–79]
dynamics, is described in more detail in Appendix A. The con-
densate wave function ψ evolves according to the generalized
Gross-Pitaevskii equation

ih̄
∂ψ

∂t
=

[
− h̄2∇2

2M
+ Vext + g(|ψ |2 + 2nth )

]
ψ, (3)

which accounts for the thermal cloud mean-field poten-
tial, 2gnth [69]. Here M is the particle mass (here the 6Li
molecule), Vext is the double-well potential defined above, g =
4π h̄2a/M is the interaction strength with a the corresponding
s-wave scattering length, and nth is the thermal cloud den-
sity. The condensate density is obtained from nBEC = |ψ |2.
The thermal cloud dynamics are described through the phase-
space distribution f [where nth = 1/(2π h̄)3

∫
dp f (p, r, t )],

which satisfies the collisionless Boltzmann equation

∂ f

∂t
+ p

M
· ∇r f − ∇rV

th
eff · ∇p f = 0, (4)

where V th
eff = Vext + 2g(nBEC + nth ) is the generalized mean-

field potential felt by the thermal particles, whose profile is
shown in Appendix B.

Due to the repulsive interaction between condensate and
thermal particles, the thermal density nth is maximum where
the condensate density nBEC is minimum. This is evident in
Fig. 1(b), where the thermal cloud (ii) is concentrated at the
edges of the condensate density (i) and close to the barrier
where nBEC is minimum.

Our numerical study for the superfluid, based on the tech-
niques discussed in Refs. [69,70], is conducted in a grid of
[−24, 24]lx, [−4, 4]lx, [−4, 4]lx along the x, y, and z direc-
tions, respectively, where lx = √

h̄/Mωx, based on 1024 ×
64 × 64 grid points for the condensate. For the more spatially
extended thermal cloud, we use a corresponding double grid
of size [−48, 48]lx, with 2048 grid points along the x axis,
further extended to [−100, 100]lx , and 2348 grid points for the
highest probed temperatures T ∼ 0.8Tc. The broad tempera-
ture range studied here corresponds to a condensate fraction
NBEC/N tot ∼ [0.1 : 1] [see Fig. 1(c)].

In this work, we focus on the dynamical evolution of the
condensate and total particle number fractional population
imbalance across the Josephson and dissipative regimes, and
we analyze their dominant contributions and corresponding
frequencies of oscillations, which display a range of interest-
ing features.

III. DYNAMICAL REGIMES AT FIXED
CONDENSATE NUMBER

A. Physical variables

In this section, we show our results for a fixed condensate
particle number. Our parameter choice of barrier height and
width here corresponds to a regime in which the generated
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vortex ring shrinks rapidly at the barrier location, making it
hard to directly visualize the vortex ring. Nonetheless, to con-
firm the existence of vortex rings at lower values of V0/μ, for
which we have previously found them to be long-lived [39],
we have done some analysis at V0/μ ∼ 0.6, which clearly
shows the generated vortex ring in the condensate as a region
of locally reduced condensate density being infilled by the
thermal cloud, consistent with [77–79]—see Appendix D for
more details.

To also fix the initial condensate population imbalance
when varying temperature, we use a fixed value of ε in the
linear barrier shift contribution −εx for each regime (Joseph-
son, dissipative) studied.

We define the condensate zBEC(t ), the thermal cloud zth(t ),
and the total ztot (t ) fractional population imbalances, respec-
tively, as

zBEC(t ) = NBEC
R (t ) − NBEC

L (t )

NBEC
R (t ) + NBEC

L (t )
, (5)

zth(t ) = N th
R (t ) − N th

L (t )

N th
R (t ) + N th

L (t )
, (6)

ztot (t ) = NR(t ) − NL(t )

NR + NL
= NR(t ) − NL(t )

N tot
, (7)

where NBEC
R/L and N th

R/L are the number of the condensate and
thermal particles on the right/left sides of the barrier (centered
at x = 0), while NR/L is the sum of the number of thermal
particles and condensate particles on the right/left sides of the
junction; we also note that, by construction, the total particle
number is conserved in our collisionless model.

Having fixed the ratio of V0/μ, the T = 0 limit has a
definitive value for the critical population imbalance mark-
ing the transition from plasma to dissipative regime; for our
current parameters, this occurs at zBEC

cr = 0.08. The system
dynamics in the pure superfluid limit is thus determined by
the sign (and magnitude) of (zBEC

0 − zBEC
cr ) [38,39]. To clearly

analyze the role of temperature on the system dynamics, we
choose to avoid potential transient issues very close to the
dynamical transition point, and thus conduct our analysis
for two fixed values of z0 chosen as zBEC

0 = 0.046 < zBEC
cr

(Josephson plasma regime) and zBEC
0 = 0.106 > zBEC

cr (vortex-
induced dissipative regime), for which only a few vortex rings
are generated.

The presence of a thermal cloud introduces an additional
relevant physical parameter for the system dynamics. Specif-
ically, the ratio V0/kBT distinguishes between two dynamical
regimes for the thermal cloud. For relatively low tempera-
tures V0/kBT � 1, the thermal cloud particles—which would
normally be constrained to either side of the barrier having
insufficient energy to travel above it (exhibiting incoher-
ent tunneling)—can only propagate through their interaction
with the condensed particles. However, in the opposite high-
temperature regime V0/kBT � 1, the thermal particles have
sufficient energy to overcome the barrier, and are thus allowed
to execute oscillations in the underlying trap, hindered, but
not precluded, by the Gaussian barrier forming the Josephson
junction for the superfluid. As such, one would expect—and

we indeed find—different dynamical behavior to be domi-
nating the low- and high-temperature regimes, observing a
gradual change in the system dynamical behavior around the
regime T ∼ V0/kB. In this work, we probe the temperature
range kBT/V0 ∈ [0, 3.1], corresponding to T ∈ [0, 220] nK.

We note that the chosen value V0 of the barrier height
used in our analysis corresponds for the simulated condensate
particle number to an effective temperature V0/kB ∼ 70 nK.
Noting the changing total particle number and Tc with tem-
perature, our analysis is thus conducted in the range T/Tc ∈
[0, 0.8], with the characteristic thermal energy separating the
two thermal cloud dynamical regimes emerging (for the par-
ticular geometry and condensate particle number) at V0/kB ∼
0.5Tc.

Having introduced the physical variables, we now proceed
to analyze the role of the thermal cloud on the dynamics in
each regime, paying particular attention to the dependence of
the plasma frequency on temperature, and the relative impor-
tance of this frequency on the system dynamics.

B. T > 0 Josephson plasma regime

In general, the Josephson frequency of the condensate pop-
ulation imbalance plasma oscillations is expected to be set
by the frequency of the lowest relevant excited state of the
system in the combined potential of the underlying trap and
barrier, approaching the corresponding oscillatory mode in
the trap in the limit of vanishingly small barrier height V0/μ

[80,81]. In a harmonically confined condensate, as consid-
ered in this work, it is thus expected to be a fraction of the
trapping potential [31]. Correspondingly, in a box potential,
the Josephson frequency is a fraction of the sound frequency
[37,61], and approaches it for barrier heights approaching
zero. In the deep tunneling regime, the oscillation frequency
ωJ depends on the characteristic Josephson junction energies,
such as the tunneling energy EJ and the on-site interaction
energy Ec, with ωJ = (1/h̄)

√
EcEJ in the two-mode model

approximation [29–31,49]. In our present configuration, for
which the two-mode model does not in fact predict well the
Josephson frequency [38], we extract the relevant frequencies
numerically from sinusoidal fits of the time evolution of the
condensate imbalance.

We start by analyzing the dependence of the system dy-
namics on temperature in the Josephson regime, upon fixing
the initial condensate population imbalance zBEC

0 = 0.046 <

zBEC
cr (with zBEC

0 /zBEC
cr ∼ 0.6).

The evolution of the fractional relative population imbal-
ance is shown in Fig. 2 for (a) a low, (b) an intermediate,
and (c) a relatively high temperature. At low temperatures
the small thermal fraction (red) is moved by the condensate
motion, with no significant distinction between the conden-
sate (solid black) and total (solid green) fractional population
imbalances, both of which are slightly damped through the
mutual friction of the condensate in its motion through the
thermal cloud: such damping is evident in Fig. 2(a), which
also shows—for comparison—the previously considered T =
0 undamped plasma oscillations [dashed black line already
shown in Fig. 1(d)].

However, as the temperature increases to values kBT > V0

[Figs. 2(b) and 2(c)], the increasing thermal component is free

033205-5



K. XHANI AND N. P. PROUKAKIS PHYSICAL REVIEW RESEARCH 4, 033205 (2022)

FIG. 2. Population imbalance oscillations exhibiting damping
(and, in some cases, beating) for the condensate (black), thermal
(red), and total (green) population imbalances in the Josephson
regime (z0 < zcr = 0.08) at different temperatures: (a) T = 40 nK =
0.31Tc, (b) T = 100 nK = 0.63Tc, and (c) T = 160 nK = 0.76Tc,
where Tc corresponds to the noninteracting critical temperature for
the case of a fixed condensate number NBEC = 5.04 × 104 (such
that Tc varies with T ). These data correspond to a Gaussian barrier
with V0 = 104h̄ωx = 0.97μ(T = 0) and w = 3.8ξ . For comparison,
the dashed black line in (a) depicts the corresponding undamped
single-frequency Josephson plasma oscillations in the pure superfluid
(T = 0) limit, which corresponds to the black dashed line in Fig. 1,
i.e., z0 = 0.046.

to execute its own oscillations over the barrier, at a distinct
frequency from that of condensate oscillations. As a result,
the condensate oscillations are significantly damped, and the
total population difference oscillation features becomes more
similar to those of the thermal imbalance, with the combina-
tion of the two distinct frequencies leading to the emergence
of beating. The higher the temperature, the shorter the beating
time is, i.e., its corresponding frequency fbeat is larger, thus

favoring its observation even within experimental times. The
reason for that will be clearer in the following sections.

At low T the thermal cloud mean kinetic energy kBT is not
high enough for the thermal cloud to flow hydrodynamically
through the barrier. Thus thermal particles can only perform
incoherent tunneling through the barrier [31,54]. For rela-
tively low T such that the thermal cloud mean kinetic energy
kBT is smaller than or comparable to (V0 − μ̃), the crossing
rate of a thermal particle across the barrier is given by the
Arrhenius-Kramers formula:

Pth � ωx

2π
exp

(
− (V0 − μ̃)

kBT

)
, (8)

where μ̃ = μ(N/2) [31].
For the chosen barrier height, which is close to μ̃, Eq. (8)

is valid for T � 15.4 nK. For our lowest nonzero temperature
data point, T = 15 nK � 0.1Tc, Eq. (8) estimates a crossing
rate Pth ∼ 5.4 Hz, which corresponds to a time τth ∼ 0.19 s.
This means that each ∼0.19 s, thermal particles may cross the
barrier via tunneling.

Closer inspection of the superfluid oscillations reveals
contributions from more than one frequency, even at low tem-
peratures. This might have been expected as in our parameter
regime (V0/μ � 1 and w/ξ � 4), which is not in the deep
tunneling regime, the superfluid current (thus the conden-
sate imbalance) is expected to oscillate with two frequencies,
namely a dominant Josephson plasma frequency and an addi-
tional second frequency arising from the second-order term in
the tunneling amplitude [55].

Moreover, at finite T , the presence of the thermal cloud
introduces a normal component In to the Josephson current (an
Ohmic-like contribution) [31,55] In = −Gth�μ, where Gth is
the junction conductance. In the limit of low T , the latter
can be estimated from the Arrhenius-Kramers formula as
Gth = h̄PthN th/(kBT N tot ) [31,54], with �μ the chemical po-
tential difference between the two wells being proportional to
the condensate imbalance [i.e., �μ(t ) = EczBEC(t )NBEC/2].
Based on these two considerations, and knowing that the con-
densate current is related to the condensate imbalance through
I = −(NBEC/2) dzBEC/dt , we then choose as our fitting func-
tion for the condensate imbalance a function of the form

F (t ) = aJ cos(2πνJt + φJ ) exp(−γJt )

+ ai cos(2πνit + φi ) exp(−γit ), (9)

which, in addition to distinct amplitudes (a.), frequencies (ν.),
and damping rates (γ.) for the two components (where the dot
subscript denotes either J or i), also allows for unconstrained
phases φ. of each contribution.

First, we focus on the condensate zBEC(t ) oscillations, and
their dependence on temperature. Examination of both Fourier
transforms and the above functional fits reveal, as expected,
periodic oscillations at a dominant frequency—which we in-
terpret as the Josephson plasma frequency, labeled by the
subscript J, along with a clearly identified secondary fre-
quency over the entire temperature range probed.

Interestingly, the secondary oscillations (labeled here by
i = 1, 2) correspond to distinct frequencies at low tem-
peratures kBT/V0 � 1 (henceforth labeled as ν1) and high
temperatures kBT/V0 � 1 (henceforth labeled as ν2). To
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FIG. 3. Temperature dependence of oscillatory dynamics of (a) the condensate, and (b) the total population imbalance across a Josephson
junction for a system of fixed condensate particle number, barrier amplitude V0/μ ∼ 0.97, and initial condensate imbalance z0 < zcr (such that
the pure superfluid dynamics are in the Josephson dynamical regime). Shown in each case are (i) the dominant oscillation frequencies, (ii) their
relative amplitudes [extracted from Eqs. (9) and (10)], and (iii) their corresponding initial phases [extracted through the fits of Eq. (9)] as a
function of scaled temperature. The vertical dashed lines indicate the temperature corresponding to the barrier height, i.e., T = V0/kB = 70 nK,
which corresponds, for the chosen parameters, to T/Tc ∼ 0.5, with the gray band indicating the region around this characteristic temperature in
which there is a transition in the relative importance of different frequency contributions. Population imbalances are fitted in the time interval
[0.05 : 0.72] s either by two-frequency fits when two components are clearly predominant (outside the gray band), or by a combination of two-
and three-frequency fits in the intermediate region (within the gray band): in the latter case, depicted values and error bars are extracted by
averaging over values obtained by the independent two- and three-frequency fits.

capture the transition from ν1 to ν2 with increasing temper-
ature, and to avoid introducing any bias to our results, the
analysis in a narrow region around kBT ∼ V0 is extended to
three-frequency fits (νJ , ν1, and ν2) to provide some continuity
to our analysis.

Beyond characterizing the oscillation frequencies and
damping rates, we also investigate the relative contributions,
A., of each component defined for the two-component fits as

AJ = aJ

aJ + ai
and Ai = ai

aJ + ai
(10)

(with ai in the denominator replaced by
∑

i=1,2 ai for the case
of three-frequency fits). Finally, we investigate the phases φ.

of the different contributions.
Such information is plotted in Fig. 3 for both (a) the con-

densate fractional population imbalance zBEC(t ) (top plots),
and (b) the corresponding total fractional imbalance ztot (t )
(bottom panels). In each case, we show the dominant frequen-
cies [left column, (i)], their relative contributions [middle,
(ii)], and their individual phases [right, (iii)].

Let us now analyze our findings, focusing initially on the
zBEC(t ) oscillation frequencies [Fig. 3(a)]: At low kBT �
V0, the dominant Josephson dynamics (labeled by green
circles) occurs at the frequency νJ ≈ 14 Hz [panel (i)],
with a relative weighting exceeding 97% [panel (ii)], and
occurring—as expected—without any initial phase delay, i.e.,
φBEC

J = 0 [panel (iii)]. As temperature increases towards V0

(corresponding here to a condensate fraction reduction of
∼30%), the Josephson frequency exhibits a small monotonic

decrease on the few % level. The low-temperature frequency
ν1 ≈ 30 Hz (blue squares) detectable thus far, with a relative
amplitude of a few % and a phase offset of ∼π , is gradu-
ally supplemented by an additional frequency ν2 ≈ 15 Hz,
which becomes dominant as temperatures increase beyond
kBT/V0 ∼ 1 (indicated by the vertical dashed gray line). At
the highest temperature probed here (kBT/V0 ∼ 3.1, T/Tc =
0.81), with NBEC/N tot = 0.1, the Josephson plasma frequency
contribution to the condensate fractional imbalance decreases
to about 70%, with the relative phase difference |φBEC

J −
φBEC

2 | � π/4. We note that the presence of the ν1 ≈ 2νJ fre-
quency component in zBEC(t ) even at T = 0 with an initial
phase −π with respect to the νJ component is consistent with
the presence of a second-order (nondissipative) term with an
opposing (negative) sign in the current-phase relation. The
contribution of such a double Josephson plasma frequency
oscillation term [38,55] was previously found to be only a few
percent for V0 � μ [64], consistent with our current picture.

The above analysis was based entirely on the condensate
motion, and the backaction that the thermal cloud has on it.
Although we have also separately analyzed the thermal cloud
population imbalance dynamics, a more complete picture of
the coupled system dynamics can be obtained by looking
at the imbalance of the total population, ztot (t ), with results
shown in Fig. 3(b). Again, the same three frequencies are
found (νJ , ν1, and ν2) appearing in the same temperature
ranges, but there is a critical difference: in our simulations,
based on keeping the condensate particle number fixed, the
increase in temperature leads to an increase in the number
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FIG. 4. Temperature dependence of (a) dominant frequencies, and (b) damping rates of the condensate component corresponding to the
parameters of Fig. 3(a). These are shown for (i) the dominant, Josephson plasma, frequency νBEC

J (plotted over the entire temperature range),
and (ii),(iii) the other arising secondary frequencies over their respective regions of importance, i.e., (ii) νBEC

1 , corresponding to the frequency
around 30 Hz, and (iii) νBEC

2 , corresponding to the frequency around 15 Hz (which is also the trap frequency along the x axis). The right axes
of the frequency plots in (a) also show the % change of each frequency, which reveals a notable 18% lowering for νBEC

J , but a much weaker,
few %, dependence for νBEC

1 and νBEC
2 . (b) Josephson frequency damping rates [(i), γ BEC

J ] increase monotonically with increasing temperature,
and remain moderate over the entire probed regime, compared to γ BEC

1 and γ BEC
2 , which, respectively, increase with increasing/decreasing

temperature as they approach the crossover temperature T ∼ V0/kB, labeled by the vertical dashed line.

of thermal cloud particles: as such, while the Josephson
frequency is not significantly affected, its relative contribution
decreases rapidly as the total population becomes more depen-
dent on the increasing thermal contribution: at T/Tc ∼ 0.81
the Josephson plasma mode contributes only about 20% of the
total amplitude, while the phases of the two dominant contri-
butions approach each other, indicating initial phase-locking.
The increasing relative contribution of ν2 with T , combined
with the fact that the value of ν2 is close to that of νJ , causes
the relative total population imbalance to exhibit beating be-
tween these two components with a beating frequency given
by fbeat = |ν tot

2 − ν tot
J |: its inverse identifies a characteristic

beating timescale, as indicated by an arrow in the ztot (t ) profile
in Fig. 2(b). The beating frequency increases with higher T ,
as the ν tot

2 value tends towards the trap frequency while the ν tot
J

becomes even smaller. Moreover, we note that fbeat becomes
larger even in the case of fixed T and larger barrier height
as νJ decreases with V0 [31]. Thus the beating effect, which
is a consequence of the effect of the thermal cloud, could be
visible at shorter time (τbeat = 1/ fbeat) for relatively large T in
the case of fixed V0 or for relatively large barrier height (but
still not in the self-trapping regime) at fixed T .

More information on the properties of the dominant con-
tributions to zBEC(t ) can be found in Fig. 4, which focuses
on the dependence of the frequencies νJ, ν1, and ν2 (top row)
and corresponding damping rates (bottom row) as a function
of scaled temperature T/Tc. We clearly see the monotonic
decrease of νBEC

J over the entire temperature range probed,
accompanied by a monotonic increase of the damping. For,
e.g., T � 0.1Tc, the damping extracted by the fit has a value
broadly comparable to the one calculated from the Arrhenius-
Kramers formula. Frequency ν1 also decreases with increasing
temperature, and its contribution damps at a faster rate than
the νJ-term, whereas ν2 displays a less clear dependence
and a corresponding large damping, which increases with
decreasing temperature, eliminating that mode for kBT � V0:
this somewhat counterintuitive behavior can be understood
from the fact that at such lower temperatures, the thermal

cloud cannot on its own move across the barrier, but can
only do so mediated by the condensate, which drags it along.
Since the analysis here focuses on behavior extracted from
the condensate imbalance dynamics, and the small thermal
component does not drag the condensate at low temperatures,
it is understandable that no ν2 contribution can be found at
such low temperatures. These results are also confirmed by
examining the discrete Fourier transform (DFT) of the con-
densate, thermal, and total population imbalance time series
defined as

z̃(νm) =
M−1∑
m=0

zme−i2πνM m/M, (11)

where M is the number of samples, which are shown in Fig. 5
for (a) a low temperature, T = 0.31Tc � V0/kB, and (b) a
much higher one, T = 0.76Tc 	 V0/kB. In the former case
[Fig. 5(a)], the DFT shows a large amplitude peak at νJ and
a very small component at ν1 which can be just resolved
in the appropriate zoomed-in plot. As a consequence, even
the thermal imbalance spectrum shows a component at the
dominant condensate frequency νJ . At high T instead, the
thermal imbalance spectrum’s main frequency is close to ν2,
i.e., around 15 Hz, which is different from the Josephson
frequency νJ . Moreover, the total imbalance (light green) has
two main components, one close to the dominant condensate
frequency and one close to the thermal imbalance main com-
ponent, and due to their comparable relative contributions,
the ztot shows beating between these two frequencies at such
high T .

C. T > 0 vortex-induced dissipative regime

We now consider the temperature dependence of the dy-
namics in the other dynamical regime of the junction, namely
the vortex-induced dissipative regime [38,39], induced by an
initial condensate population imbalance zBEC

0 which exceeds
the corresponding critical value for plasma oscillations, i.e.,
zBEC

0 > zBEC
cr .
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FIG. 5. The discrete Fourier transform (DFT) of the different
population imbalance dynamics corresponding to the parameters of
Fig. 3 (zBEC

0 < zBEC
cr ) at two temperatures chosen such that (a) T =

40 nK = 0.31Tc � V0/kB, and (b) T = 160 nK = 0.76Tc 	 V0/kB.
Depicted in each case are the contributions arising from the oscil-
lating dynamics of the condensate zBEC(t) (black line), the thermal
component zth(t) (red), and the total population imbalances ztot(t)
(green). The y axis is the amplitude of the components of the DFT |z̃|,
while the x axis is the frequency, exhibiting a numerical resolution of
1.3 Hz. The inset in (a) plots a zoomed-in version, which reveals
the importance of the emerging ν1 frequency across the different
components analyzed.

The effect of temperature on such dynamics can be seen
through characteristic (a) low-temperature, (b) intermediate-
temperature, and (c) high-temperature plots of the cor-
responding condensate/thermal/total fractional population
imbalances shown in Fig. 6.

At low temperatures where there is only a small thermal
component, the total population imbalance is again dominated
by the corresponding condensate one [Fig. 6(a)]; as such, they
both reveal the characteristic early-time signature of vortex
ring generation (black/green curves) through the two kinks in
the early dynamical evolution of zBEC(t ), around 15 and 20
ms (see also zoomed-in plot). Although such vortex genera-
tion dynamics is practically indistinguishable from the pure
superfluid T = 0 case (shown by dashed gray line), differ-
ences do arise in the longer-term evolution in the form of
thermally induced damping. In this limit, the small thermal
cloud dynamics is largely due to the condensate motion, with
a small phase shift between them due to the repulsive in-
teraction between condensate and thermal particles. At such
low T , the thermal particles cannot pass over the barrier,

FIG. 6. Population imbalance oscillations for the condensate
(black), thermal (red), and total (green) populations imbalance
in the vortex-induced dissipative regime (i.e., for z0 = 0.11 >

zcr = 0.08) at different temperatures: (a) T = 40 nK = 0.31Tc,
(b) T = 100 nK = 0.63Tc, and (c) T = 160 nK = 0.76Tc for
the case of a fixed condensate number NBEC = 5.04 × 104 and a
Gaussian barrier with V0 = 104h̄ωx = 0.97μ(T = 0) and w = 3.8ξ .
Corresponding insets zoom into the early-time behavior to reveal
the characteristic kinks in the condensate dynamics consistent with
vortex generation; the importance of such dynamics in the total
population imbalance clearly decreases with increasing temperature.
The plots in (a) also show the pure superfluid (T = 0) results by a
dashed gray line, revealing that the vortex ring generation process oc-
curring at early times [inset to (a)] at low temperatures is practically
indistinguishable from the corresponding T = 0 results, although the
coupling to the thermal cloud induces more damping at later times.
Beating emerges already for the case considered in (b), but becomes
clearly pronounced (as indicated) on the probed timescale in (c).

so they exhibit incoherent tunneling. In the vortex-induced
dissipative regime, the thermal imbalance oscillates around a
nonzero value for longer time with respect to the Josephson
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FIG. 7. Temperature dependence of oscillatory dynamics of (a) the condensate, and (b) the total population imbalance across a Josephson
junction for a system of fixed condensate particle number, barrier amplitude V0/μ ∼ 0.97, and initial condensate imbalance z0 > zcr . Shown in
each case are (i) the dominant oscillation frequencies, (ii) their relative amplitudes [extracted Eqs. (9) and (10)], and (iii) their corresponding
initial phases [extracted through the fits of Eq. (9)] as a function of scaled temperature. This figure is closely related to the earlier Fig. 3,
with all parameters/analysis/plotted lines having the same meaning, except that here z0 > zcr, so that the superfluid is in the vortex-induced
dissipative regime (as opposed to the Josephson dynamical regime considered in Fig. 3).

plasma regime. This could be understood by noticing that in
the former, vortex rings are generated at the barrier position
whose core is filled by the thermal cloud, i.e., it acts like a
local “trapping” potential for the thermal particles, making it
even harder for thermal particles to tunnel through the barrier.
We note that for the chosen barrier height value, the vortex
rings shrink within the barrier region without propagating
[39]. After the shedding of the generated vortex rings, the
condensate and therefore the total imbalance oscillate about
a zero mean value at two frequencies (which will be shown to
correspond to νJ and ν1), exhibiting damping.

As the temperature increases to values higher than the
barrier [already visible in Fig. 6(b)], the thermal cloud (red
line) exhibits its own dominant oscillatory decaying dynamics
across the barrier. Interestingly, the condensate mode exhibits
enhanced damping (due to the relative motion through the
dynamical thermal cloud) and very quickly the condensate
starts oscillating with a single dominant frequency, driven
by the oscillating thermal component. The total imbalance
profiles become more similar to the thermal one as the ther-
mal fraction (i.e., as T ) increases, and the presence of kinks
during its initial decay becomes less visible in them with
increasing T .

An interesting emerging feature here is the appearance of
a third kink in the condensate population dynamics in the
high-temperature region [see Fig. 6(c) and the corresponding
inset], i.e., a third vortex ring is generated. We can trace
this back to a small shift in zBEC(t = 0) with temperature:
even though our temperature-dependent analysis fixed a linear
tilted potential parameter ε and a condensate particle number,
such a value of zBEC(t = 0) is indirectly affected by the fact
that the thermal component dominates at the edges of the
condensate density, thus slightly reducing (through mean-field

repulsion) the condensate extent (and thus volume). We have
indeed confirmed that if instead of fixing ε with varying tem-
peratures we had explicitly chosen to fix zBEC(t = 0) in this
T > 0 case to exactly the same value as for T = 0, the number
of vortex rings being generated initially would be practically
identical, even though differences would then emerge in the
subsequent condensate dynamics. This is further discussed in
Appendix E. Furthermore, we also note that the early-stage
dynamics of the condensate imbalance (the initial decay) is
slightly affected by the thermal particles, with the main dis-
sipative mechanism being the generation/dynamics of vortex
rings and associated sound waves.

At relatively high T [subplots (b) and (c)], the condensate
and total imbalance show beating, whose frequency fbeat (pe-
riod τbeat) becomes larger (smaller) at higher T . An analysis
(similar to Fig. 3) of the dominant frequencies, relative con-
tributions, and initial phases as a function of temperature is
shown in Fig. 7 for both (a) the condensate fractional pop-
ulation imbalance oscillations zBEC(t ) (top) and (b) the total
population imbalance ztot (t ) (bottom). In the vortex-induced
dissipative regime, the fit is performed after the initial decay.

Remarkably, the same three frequencies emerge, as found
previously in the case of the Josephson regime both for the
condensate [Fig. 7(a)(i)] and total imbalance [Fig. 7(b)(i)].
However, an important distinction becomes immediately ap-
parent: although the dominant frequencies are the same as
before, their relative contributions and initial relative phases
of oscillations are not. Specifically, Figs. 7(a)(ii) and 7(b)(ii)
show clearly that the Josephson plasma frequency term is no
longer dominant at low temperatures, contributing less than
30% to the total amplitude at low temperatures in both con-
densate (a) and total imbalance (b). The generation of vortices
and sound waves leads to significant interaction between the
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FIG. 8. Temperature dependence of (a) dominant frequencies, and (b) damping rates of the condensate component corresponding to
the parameters of Fig. 7(a). These are shown for (i) the Josephson plasma, frequency νBEC

J (plotted over the entire temperature range, but
subdominant contribution for T � V0/kB), and (ii),(iii) the other arising frequencies over their respective regions of importance: these are (ii)
νBEC

1 , corresponding to the frequency around 30 Hz, which becomes dominant in the low-temperature regime due to the importance of acoustic
emission during superflow dissipation, and (iii) νBEC

2 , corresponding to the frequency around 15 Hz (which is also the trap frequency along
the x axis). The right axes of the frequency plots in (a) also show the % change of each frequency, which reveals a notable 16% lowering for
νBEC

J , but a much weaker, few %, dependence for νBEC
1 and νBEC

2 . (b) Josephson frequency damping rates [(i), γ BEC
J ] increase monotonically

with increasing temperature (within error bars), while γ BEC
1 and γ BEC

2 , respectively, increase with increasing/decreasing temperature as they
approach the crossover temperature T ∼ V0/kB, labeled by the vertical dashed line.

condensate and its excited sound waves, which affects the con-
densate imbalance spectrum even at T = 0. We note here that
the frequency ν1 is related to the presence of sound waves, as
will be evident in the following section. Moreover, the initial
phase of such a component is shifted around π/2 with respect
to φJ (at relatively low T ). This would cause the presence of
a dissipative component at the condensate current, which is
finite even at T = 0, consistent with the results in Ref. [55].

Once again the behavior changes around kBT/V0 ∼ 1,
where the frequency ν2 emerges, due to the oscillations of
the increasing thermal cloud in the underlying axial harmonic
trap. Interestingly, the primary role of the thermal cloud on
the condensate motion initially appears to be to damp out the
acoustic component with frequency ν1: thus, perhaps some-
what counterintuitively, at higher temperatures the condensate
reverts to single-frequency plasma oscillations, and so the
Josephson contribution becomes more important, i.e., it be-
comes the dominant (∼80%) contribution to the condensate
imbalance oscillations at higher temperatures.

The absolute phase difference between the Josephson and
ν1 contributions is now found to be reduced to about π/2
up until kBT/V0 ∼ 1, a feature apparently also visible in the
total population oscillations. In the latter case, the strong
driving of the total particle number by the oscillating thermal
cloud leads to approximately equal amplitudes for Joseph-
son plasma and ν2 contributions to the total population at
T = 0.59Tc. Moreover, for even larger T the frequency ν tot

2
[Fig. 7(b)(ii)], originating from the effect of the thermal cloud,
becomes the dominant total imbalance component.

Looking into more detail at the three emerging frequen-
cies, and the damping of the corresponding modes in Fig. 8,
we note again the similar νJ and ν1 frequency dependence
on T/Tc as found earlier in the Josephson plasma regime
(Fig. 4); their values decrease with increasing T while the
corresponding damping increases with T , with ν1 being
damped faster. Meanwhile, ν2 frequency increases by tending

to the x-axis trap frequency, while the corresponding damping
decreases.

Figure 9 shows the DFT spectrum of the condensate,
namely the total and the thermal imbalance for a low T =
0.31Tc (a) and a high T = 0.76Tc (b) temperature. At low T
the thermal imbalance spectrum has the same components as
the condensate one and the total imbalance spectrum is the
same as the condensate one. At high T instead, the ν1 fre-
quency disappears from the spectrum and ν2 ≈ 15 Hz appears.
It originates from the dominant thermal imbalance dynamics,
and manifests itself in both the condensate and the total imbal-
ance spectrum. Moreover, at such high T the total imbalance
spectrum is close to the thermal one instead.

Figure 10(i) shows “carpet plots” of the renormalized con-
densate density ñ along the x-direction at (a) T = 0 and
(b) T = 0.63Tc, with the corresponding population imbal-
ance time evolution shown in Fig. 10(ii). In subplots (i), the
density ñ is evaluated by subtracting from the instantaneous
density along the x axis its equilibrium value. In both cases,
V0 � μ(T = 0) and thus the vortex rings disappear within
the barrier and only the resulting sound waves propagate.
Moreover, at relatively long-time evolution, sound waves are
attenuated due to the presence of the thermal cloud. Thus, the
disappearance of ν1 from the condensate imbalance spectrum
coincides with the total damping of sound modes, and this
confirms the relation between ν1 and sound waves. We note
that the temperature T at which sound waves are damped
due to the thermal particles depends on the value of V0, and
thus such an effect could also occur at smaller T for lower
values of V0, such that the thermal energy exceeds the barrier
amplitude.1

1For example, for V0/μ = 0.6 the sound mode is damped already
at T = 60 nK.
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FIG. 9. The discrete Fourier transform (DFT) of the zBEC(t )
(black line), zth (t ) (red line), and ztot (t ) (green line) for V0 = 104h̄ωx

and zBEC
0 � 0.11 > zBEC

cr in the frequency domain for T = 40 nK =
0.31Tc (a) and T = 160 nK = 0.76Tc (b). The y axis is the amplitude
of the components of the DFT |z̃| while the x axis is the frequency.
The DFT resolution is 1.3 Hz.

Our analysis so far has focused on the role of temperature
in a system of fixed condensate particle number—and thus
fixed condensate chemical potential μ—which amounts to a
variable total particle number. Next, we consider the role of
temperature at fixed total particle number.

IV. DYNAMICAL REGIMES AT A FIXED TOTAL NUMBER

When fixing instead the total number in the system, the
effect of temperature is to decrease the condensate number
with increasing temperature, due to the increasing presence of
particles in the thermal cloud. This in turn implies that the
chemical potential becomes temperature-dependent, μ(T ),
with a decreasing condensate particle number corresponding
to a smaller μ(T ) and smaller spatial extent, both of which
significantly affect the system dynamics (see also Appendix A
for details).

This is reflected by the density slices along the main axis
(in the y = z = 0 transversal plane) for both the condensate
and the thermal cloud at two different temperatures shown
in Fig. 11(a) for fixed N tot = 106 000. While the condensate
density maxima decrease with T , the thermal cloud max-
ima instead (at the edges of the condensate) increase. Due
to the presence of more thermal particles at the edges of
the condensate and due to the repulsive interaction between

the condensate and thermal particles, the condensate density
extension along the x axis decreases. Moreover, the thermal
cloud density at the barrier position increases, causing a type
of repulsive potential at the center for the condensate parti-
cle, and as a consequence the condensate density at x = 0
decreases.

The tilted linear potential −εx is initially taken to be the
same at different T . Figure 11(b) shows the corresponding
condensate and thermal imbalance temporal evolution for (i)
T = 0.41Tc and (ii) T = 0.75Tc.

Fixing the total number of particles while increasing the
temperature has two important effects. First, the smaller BEC
number implies that for the given imposed linear potential,
the relative condensate population imbalance increases. Sec-
ond, as μ(T ) decreases with increasing T , the ratio V0/μ(T )
increases (for fixed V0), which is known to decrease the value
of the critical population imbalance (with all other parameters
fixed) marking the transition between Josephson and vortex-
induced dissipative regimes (as shown in Appendix C), even
at the Gross-Pitaevskii level. Thus, for a given external linear
potential, increasing temperature at a fixed total number can
actually lead to a change in the dynamical regime of the con-
densate. This is clearly demonstrated in Fig. 11(b), showing
the condensate population imbalance at T = 0.41Tc (i) and
at T = 0.75Tc (ii): this clearly reveals both that zBEC

0 (T =
0.41Tc) < zBEC

0 (T = 0.75Tc) and most significantly that the
condensate population imbalance dynamics transitions from
the Josephson regime at (i) T = 0.41Tc to the vortex-induced
dissipative regime at (ii) T = 0.75Tc.

Related questions of anticipated experimental relevance
include the role of particle number, and whether one should
be looking at condensate, or total, fractional population im-
balance. For completeness, we also investigate the difference
in the system behavior between the cases of fixing the conden-
sate or the total initial population imbalance. These are shown,
respectively, in Figs. 12(a) and 12(b). It demonstrates clearly
that the transition across Josephson and dissipative regimes
also occurs with changing temperature in the limit of fixed
initial condensate or total population imbalance. The reason
is that at two different temperatures, the ratio V0/μ, which
defines the system’s dynamical regime, is different due to a
different condensate number.

Moreover, we note that, as shown in Appendix C, the
critical imbalance at which the system changes the dynamical
regimes (defined from the condensate imbalance early-time
dynamics) is already determined at the Gross-Pitaevskii level,
with the thermal cloud having no significant effect at ini-
tial condensate imbalance evolution but strongly affecting its
consequent dynamics (long-time evolution), as shown in the
previous sections.

V. DISCUSSION

In this paper, we have analyzed for experimentally relevant
conditions the role of thermal dissipation on the superfluid os-
cillations in the two dynamical regimes found in an elongated
three-dimensional Josephson junction for barrier height close
to the chemical potential and barrier width w/ξ � 4, namely
the Josephson “plasma” and the vortex-induced dissipative
regime. The presence of the thermal cloud leads to relative
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FIG. 10. Carpet plots of renormalized density ñ(x, t ) for zBEC
0 = 0.11 (i) at T = 0 (a) and T = 0.63Tc (b) and the corresponding condensate

imbalance time evolution (ii) for V0 = 104h̄ωx . The vertical gray dashed lines in (ii) indicate the time interval of the carpet plots.

motion between the condensate and the thermal cloud and
thus induces dissipative dynamics. In the Josephson plasma
regime, this takes the form of a gradual damping of the
condensate oscillations, with an associated decrease in the
plasma frequency—with both effects becoming more pro-
nounced with increasing temperature. While such a gradual
decay mechanism is also at play in the dissipative regime,
the short-time evolution in the latter regime exhibits much
more drastic dynamics through the generation (and subse-
quent dynamics) of vortex rings and associated sound waves,

which give a resistance to the junction that remains finite
even at T = 0 [38,55], with the thermal cloud having only
a comparably small effect in the early-stage dynamics. Thus,
to better characterize the role of the thermal cloud on atomic
population dynamics, this work has focused on the analysis of
the long-time evolution of the superfluid dynamics.

Our analysis has revealed the emergence of three domi-
nant frequencies across both probed regimes, with the relative
importance of different modes depending on both dynamical
regime and temperature.

FIG. 11. (a) The condensate and the thermal cloud density profiles along the x axis (y = z = 0) at two different temperatures T = 0.41Tc

(i) and T = 0.75Tc (ii). (b) The time evolution of the condensate and the thermal cloud imbalance for T = 0.41Tc (i) and T = 0.75Tc (ii). The
total particle number is kept fixed at N tot = 106 000. These data are also for fixed barrier height V0 = 104h̄ωx and barrier shift ε along the x
axis.
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FIG. 12. The time evolution of the condensate imbalance (a) and
of the total population imbalance (b) in the case when zBEC

0 and ztot
0

are fixed, respectively, at two different temperatures considered, T =
0.41Tc (black line) and T = 0.75Tc (blue line). The barrier height is
kept fixed at V0 = 104h̄ωx and fixed total number N tot = 106 000.

First, as expected, our study has revealed a Josephson
plasma frequency, νJ , whose value was found to lie slightly
below the axial trap frequency νx. While such a frequency
dominates the low-temperature dynamical behavior in the
Josephson regime, it was found (for the probed experimental
parameters) to be subdominant in the dissipative regime. The
damping of this plasma oscillation was found to increase
monotonically with temperature (within error bars), with an
associated decrease in νJ of up to ∼18% across both Joseph-
son and dissipative regimes.

At low temperatures T � V0/kB the thermal cloud is rela-
tively small, and is thus primarily driven by the condensate,
with a characteristic phase lag. In this limit, we found an
additional frequency that we labeled as ν1. For our chosen
parameters, this was found to be ν1 ∼ (2.1 − 2.2)νJ ∼ 2νx.
The presence of a second frequency at twice the Joseph-
son frequency is expected to be found in the current-phase
relation for barrier heights exceeding, but close to, the chem-
ical potential, as already discussed in Refs. [38,55,61,64].
The importance of this mode (which can be interpreted as
a phononlike mode) depends on the dynamical regime. In
the Josephson plasma regime, this component was found to
only play a small, secondary role in the condensate dynamics,
leading to a component oscillating with a relative phase of
−π compared to the plasma oscillation component. Based on
these considerations and knowing that the condensate current
is found from the time derivative of the condensate imbal-
ance, the frequency ν1 is likely to be associated with the
nondissipative second-order term in the current-phase relation
“sin(2�φ)” originating from the tunneling between conden-

sate and noncondensate states, which at T = 0 are represented
by phonon modes.

Interestingly, in the vortex-induced dissipative regime, the
condensate dynamics could be “separated” into short- and
long-time evolution; the former includes the time interval
from the initial time until the time the vortex ring generation
ceases (during which the condensate imbalance decays in
time), while the latter includes the subsequent dynamics (dur-
ing which the condensate imbalance oscillates around a zero
mean value). The short-time evolution defines the maximum
superfluid current flowing into the junction, and, for our ge-
ometry, this was previously shown [38] to depend on the terms
coming from both the condensate-to-condensate state tunnel-
ing and the condensate-to-noncondensate tunneling; thus, the
arising current-phase relation is sinusoidal of the form I =
Ic sin(�φ) − J1 sin(2�φ). The present work instead focused
on the long-time evolution, during which the condensate im-
balance oscillates around zero value and the current-phase
relation is linear. As ν1 ≈ 2νJ and it has an initial relative
phase of π/2 with respect to νJ , this could lead to the presence
of a dissipative component of the form “cos(2�φ)” in the
current-phase relation (due to the presence of a finite chemical
potential difference �μ in our system [55]). However, it is
very difficult to extract the importance of such a term directly
from the current-phase relation. Specifically, at rather low
temperatures, the emergence and propagation of sound waves
(arising from the decay of the flow-induced generated vortices
in the barrier region) lead to large current and phase fluctua-
tions, which make the late-time extraction of a relative phase
across the junction rather unreliable. In the opposite limit of
high temperature (T � V0/kB), the pronounced damping of
the sound waves does lead to smoother phase profiles; how-
ever, in this limit the ν1 frequency no longer contributes, being
practically irrelevant for the condensate imbalance dynamics.
This gives rise to the second frequency ν2 ∼ νx, consistent
with dipole oscillations of the incoherent thermal cloud in
the underlying harmonic trap, when the thermal cloud ac-
quires sufficient energy to overcome the Gaussian barrier.
In fact, in this case, the thermal cloud begins to drive the
condensate dynamics, in stark contract to the low-temperature
dynamics when the condensate is driving the thermal
cloud.

Although the relevant frequencies of condensate oscilla-
tions beyond the plasma one, and the temperature dependence
of their damping and relative phase difference, are similar
across the Josephson plasma and phase-slip-induced dissipa-
tive regimes, we noted a significant difference in their relative
importance at low temperatures kBT � V0. In particular, we
found the ν1 frequency component to dominate the dissipative
regime condensate dynamics at sufficiently low temperatures
T � V0/kB—presumably due to the abundance of sound-wave
excitations during the phase slip and subsequent dynamics.

Notwithstanding the above comments, condensate dynam-
ics on the high-temperature end are in both cases primarily
dominated by plasma oscillations (with a significantly re-
duced frequency), even when the fraction of condensed
particles is on the order of 10%. Once the dynamical thermal
cloud is included, however, the total particle evolution exhibits
a combination of self-driven plasma oscillations and thermal
cloud oscillations in the trap, which lead to noticeable beating
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in both condensate and total population imbalances, an effect
that is within current experimental reach.

To keep a fixed condensate size and ratio of V0/μ(T = 0),
our analysis was conducted for a fixed condensate number,
thus implying a variable critical temperature for condensation.
Our analysis was further extended to the case of a fixed total
particle number, and we showed that having different conden-
sate numbers at different T can cause the condensate or total
population imbalance to be in a different dynamical regime
due to different NBEC and V0/μ values.

VI. CONCLUSIONS

In brief, we characterized through state-of-the-art numeri-
cal simulations the temperature dependence and damping of
dominant dynamical excitation modes of a finite-temperature
superfluid across a thin Josephson junction, which supports
a transition from plasma to dissipative phase-slip-induced
regimes. Beyond the characterization of the plasma mode,
we identified a further relevant low-temperature and high-
temperature mode, distinguished by the ratio kBT/V0 of
thermal to barrier energy; the thermal dynamics were shown
to lead to damping of the condensate motion, with a new
regime identified in which the (dominant) thermal cloud has
enough energy to overcome the axial barrier and thus be-
gins to drive the condensate out of phase, leading to beating
in the condensate and/or total population dynamics. The
additional frequency emerging in the low-temperature limit
in the vortex-induced dissipative (or Josephson “plasma”)
regime was attributed to a second-order dissipative (nondissi-
pative) term in the superfluid current, which derives from the
tunneling between condensate to noncondensate states. Our
findings, based on an established self-consistently coupled ki-
netic model, are within current experimental reach in ultracold
superfluid junctions.

Data supporting this publication are openly available under
an “Open Data Commons Open Database License” [82].
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APPENDIX A: MODELING SCHEME DETAILS

Below, we give a brief summary of the kinetic model used
in our work.

At finite temperature, the system wave function is written
as the sum of a condensate wave function and a thermal cloud.
The condensate wave-function evolution is found by solving
the generalized Gross-Pitaevskii equation, which accounts for
the thermal cloud mean field potential, 2gnth [69]:

ih̄
∂ψ

∂t
=

[
− h̄2∇2

2M
+ Vext + g(|ψ |2 + 2nth )

]
ψ, (A1)

with other symbols defined in the main text.

(a) (b)

FIG. 13. The chemical potential as a function of the temperature
T/Tc for fixed condensate number NBEC � 50 400 (a) and fixed total
number N tot = 50 400 (b). Both plots are obtained for the same
barrier height value V0 = 104h̄ωx .

To initiate the dynamics, we first obtain the equilibrium
solution in a static potential including the harmonic trap,
Gaussian barrier, and linear potential. The equilibrium con-
densate wave function ψ0 is obtained self-consistently via

μ(T )ψ0 =
(

− h̄2

2M
∇2 + Vext + g

(|ψ0|2 + 2nth
0

))
ψ0, (A2)

where nth
0 and nBEC

0 = |ψ0|2 are the equilibrium thermal
and condensate density, respectively, while μ(T ) is the
temperature-dependent system chemical potential accounting
for the thermal cloud equilibrium mean-field potential. Vext (r)
is the trapping potential defined by Eq. (1). As described
in [70–72], the initial thermal cloud density ansatz is based
on a simple Gaussian for the required temperature. We then
iterate those two equations self-consistently, until arriving at
an equilibrium solution with the desired condensate, or total,
particle number at each specified temperature.

The presence of the thermal cloud modifies the value of the
chemical potential μ of the system, which takes into account
also the mean-field potential of the thermal cloud. The main
analysis in this paper is conducted at fixed condensate particle
number NBEC � 5.04 × 104: for such parameters, the depen-
dence of μ on the scaled temperature is shown in Fig. 13(a),
which increases with T due to the increasing thermal fraction.
In the opposite case of fixed total number, the temperature
dependence of the chemical potential is shown in Fig. 13(b),
revealing a decreasing dependence on temperature (due to the
decreasing condensate number).

Changing temperature while keeping NBEC fixed also
changes N tot , and hence the corresponding noninteracting crit-
ical temperature Tc = Tc(N ). In our analysis, we specifically
probe the temperature regime T/Tc � 0.8, for which the con-
densate fraction NBEC/N tot ∈ [0.1, 1].

In the Hartree-Fock limit, and in the presence of an external
potential, the energy of a particle becomes

ε(r, t ) = p2

2m
+ Vext (r) + 2g[nBEC(r, t ) + nth(r, t )]. (A3)

Thus the thermal particle feels a generalized effective poten-
tial:

V th
eff (r, t ) = Vext (r) + 2g[nBEC(r, t ) + nth(r, t )] (A4)
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FIG. 14. The equilibrium effective potential felt by the conden-
sate (black curve) and by the thermal cloud (red curve) at T =
88 nK = 0.58Tc for V0 = 104h̄ωx .

while the condensate atoms feel an effective potential given
by

V BEC
eff (r, t ) = Vext + g[nBEC(r, t ) + 2nth(r, t )]. (A5)

To seed the oscillatory dynamics, at t = 0, the linear
potential is instantaneously removed, and the subsequent dy-
namics of all components are analyzed in detail. To account
for thermal cloud dynamics, we solve this equation self-
consistently with a collisionless Boltzmann equation for the
thermal molecule phase-space distribution, f , obeying

∂ f

∂t
+ p

M
· ∇r f − ∇rV

th
eff · ∇p f = 0, (A6)

where the thermal cloud density is defined by

nth = 1

(2π h̄)3

∫
dp f (p, r, t ). (A7)

Our model corresponds to the collisionless limit of the
Zaremba-Nikuni-Griffin (ZNG) kinetic theory. References
[69,71,72,74,77–79] show that this theoretical model success-
fully describes the collective modes, vortex dynamics, and
evaporative cooling.

APPENDIX B: EQUILIBRIUM STATE

The equilibrium effective potential profile felt by the con-
densate and the thermal particle for a double-well potential are
shown in Fig. 14 by black and red lines, respectively. Due to
repulsive interaction between particles (i.e., g > 0), the ther-
mal cloud feels a larger potential where the condensate density
is larger, which means that the thermal particles would have
lower density. This explains why the thermal cloud density
has local maxima at the barrier position (where the condensate
density is minimum) and at the edges of the condensate.

FIG. 15. The condensate density profile along the x direction
(y = z = 0) for three different temperatures: T = 0 (gray line), T =
40 nK = 0.31Tc (black dashed line), and T = 100 nK = 0.63Tc (red
dashed line) and the thermal cloud density shown as a black solid line
for T = 0.31Tc and as a red solid line for T = 0.63Tc. The barrier
height is fixed at V0 = 104h̄ωx , w/ξ � 4, and NBEC � 5.04 × 104.

For comparison, Fig. 15 shows the equilibrium condensate
and thermal density along the x axis for y = z = 0 for three
different temperatures: T = 0, 0.31Tc, and 0.63Tc. The nu-
merical data are obtained for V0 = 104h̄ωx � μ(T = 0) and
in the presence of an initial imbalance. In all three case,
the condensate number is kept fixed at NBEC � 5.04 × 104.
We note that the presence of the thermal cloud at the edges
of the condensate causes the condensate density to have a
slightly smaller x axis extension with respect to the conden-
sate at T = 0 where the thermal cloud is not present and thus
a larger maximum density in order to keep the condensate
number fixed. This effect is stronger at a higher temperature
T = 100 nK = 0.63Tc.

APPENDIX C: THE CRITICAL IMBALANCE

Based on the short-time evolution of the condensate popu-
lation imbalance, a critical value of initial imbalance is found
zBEC

cr , which is defined as the value of initial imbalance where
only one phase-slippage occurs and thus only one vortex ring
is generated. Figure 16(a) shows the profile of the critical
imbalance as a function of the barrier height value, and 16(b)

FIG. 16. The critical condensate initial imbalance at T = 0, T =
0.58Tc, and T = 160 nK = 0.76Tc as a function of V0 (a) and
V0/μ(T ) (b). These data are for fixed condensate number when
comparing T = 0 and finite T results. The dashed line in (a) indicates
the chemical potential at T = 0.
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FIG. 17. The condensate (a) and thermal cloud density (b) along
the yz plane and in the presence of a vortex ring. This data are for
T = 0.58Tc and for V0/μ(T = 0) = 0.6.

shows the corresponding plot with the barrier height scaled
to the chemical potential at finite T . In these plots, the con-
densate number is fixed at NBEC � 5.04 × 104, which means
N tot varies with T . We first note that as T increases, and
for fixed V0 [i.e., V0/μ(T = 0)], the critical imbalance is not
affected by the presence of the thermal cloud. If instead the
V0/μ(T ) is fixed, the critical condensate imbalance at finite T
differs from its value at T = 0, and this difference is larger
for larger values of T/Tc. In fact, at T = 0.3Tc as in our
previous studies where the condensate fraction is 90% and
within numerical error bars, zBEC

cr (T = 0.3Tc) � zBEC
cr (T = 0)

for the same V0/μ(T ). Moreover, as T increases, zBEC
cr shifts

more from its corresponding T = 0 value, thus being smaller
for the same value V0/μ(T ).

APPENDIX D: THE VORTEX RING AT FINITE T

In our 3D geometry, every time the superfluid velocity
exceeds a critical value, vortex rings are generated. The vortex
ring has a core that is characterized by a vanishing condensate
density as visible in Fig. 17(a). At finite temperature, the
repulsive interactions between the condensate and thermal
cloud densities can lead the vortex ring core to becomes itself
populated by the thermal cloud, as shown in Fig. 17(b).

APPENDIX E: THE ROLE OF THE THERMAL CLOUD
ON INITIAL CONDENSATE IMBALANCE

As we showed in the main text (Sec. III C and Fig. 6),
for T � 0.58Tc and in the vortex-induced dissipative regime,

there is a third “dip” (or kink) in the initial decay of the
condensate population imbalance, corresponding to the gen-
eration of an additional vortex ring. We also noted that the
concentration of the thermal cloud at the condensate edges
and at the barrier induces a small shift in the condensate
initial imbalance, which slightly increases with temperature.
The first question is whether the new shifted zBEC

0 would have
been large enough at T = 0 to cause the transition to a regime
when another phase slippage happens, or if it comes from
the thermal induced fluctuations of the phase. The second
question is related to the reason why at T = 0.58Tc the νBEC

1
“disappears” from the spectrum of the condensate imbalance
when for T < 0.58Tc its contribution is large, around 60%.

To answer such questions, we consider also the case when
the initial condensate imbalance is fixed between the cases of
T = 0 and the selected T = 0.66Tc, instead of fixing ε of the
lineal potential −εx. Figure 18 shows the condensate popula-
tion imbalance for T = 0 and T = 110 nK = 0.66Tc for two
slightly different initial population imbalances z0 = 0.106 and
0.113. These values of z0 have been chosen such that the first
one produces the same barrier shift as T = 0.66Tc, while the
second one is exactly equal to the initial condensate imbalance
zBEC

0 at T = 0.66Tc.
We observe that at T = 0, the condensate population

imbalance for z0 = 0.113, which is equal to the initial conden-
sate imbalance at T = 0.66Tc, presents a third “dip,” indicated
by the white rectangle in the zoomed-in profile in Fig. 18(b).
Thus this analysis explains the origin of the third generated
vortex ring (for V0 = 104h̄ωx). We note that the initial de-
cay of the condensate imbalance is similar for (T = 0, z0 =
0.113) and T = 0.66Tc. Furthermore, the temporal profile
of the population imbalance at T = 0, after the initial de-
cay, shows different features for z0 = 0.113 with respect to
z0 = 0.106. In particular, in the first case the frequency near
30 Hz, i.e., the νBEC

1 frequency, is less important than the
Josephson “plasma” frequency. As we have shown previously,
the opposite happens for z0 = 0.106, where the ν1 is the
dominant frequency. Thus this answers our second question.
Moreover, from Fig. 18 we observe also that the long-
time evolution differs between (T = 0, z0 = 0.113) and T =
0.66Tc, i.e., for the same initial condensate imbalance between
T = 0 and 0.66Tc, due to the presence of a significant ther-
mal fraction at this temperature that damps the second-order
term.

FIG. 18. (a) The condensate population imbalance time evolution at T = 0 and for two slightly different z0 and at T = 110 nK = 0.66Tc

with a zoomed-in corresponding profile shown in (b). The data are for V0 = 104h̄ωx and fixed NBEC � 50 400.
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