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Influence of the triangular Mn-O breathing mode on magnetic ordering
in multiferroic hexagonal manganites
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We use a combination of symmetry analysis, phenomenological modeling, and first-principles density func-
tional theory to explore the interplay between the magnetic ground state and the detailed atomic structure
in the hexagonal rare-earth manganites. We find that the magnetic ordering is sensitive to a breathing mode
distortion of the Mn and O ions in the ab plane, which is described by the K; mode of the high-symmetry
structure. Our density functional calculations of the magnetic interactions indicate that this mode particularly
affects the single-ion anisotropy and the interplanar symmetric exchanges. By extracting the parameters of
a magnetic model Hamiltonian from our first-principles results, we develop a phase diagram to describe the
magnetic structure as a function of the anisotropy and exchange interactions. This in turn allows us to explain
the dependence of the magnetic ground state on the identity of the rare-earth ion and on the K; mode.
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I. INTRODUCTION

The hexagonal manganites, h-RMnOj3, where R = In, Sc,
Y, and Dy to Lu, are a class of multiferroic materials that
show a combination of improper ferroelectricity and antifer-
romagnetism. Their hexagonal symmetry results in almost
degenerate free energy surfaces in the hexagonal ab plane
for both the improper ferroelectric distortion [1-4] and the
magnetic order [1,5,6]. As a consequence of these quaside-
generate ferroelectric and magnetic energy surfaces, small
changes in the crystal chemistry lead to different structural
and magnetic ground states. For example, in InMnO3, small
variations in the defect concentration favor either the improper
ferroelectric state or a related antipolar phase [7,8]. The mag-
netic energy surface in hexagonal manganites is even flatter.
While all members of the series have a frustrated in-plane
antiferromagnetic (AFM) arrangement of the Mn>* spin mag-
netic moments, the exact magnetic ground state varies with no
obvious trend from compound to compound [9].

The goal of this work is to rationalize the evolution of the
magnetic ground state across the hexagonal manganite series.
We achieve this by decomposing the structural ground states
into their distortions from the high-symmetry prototype struc-
ture and determining the effects of these distortions on the
magnetic interactions. We show that the magneto-structural
coupling is significant, consistent with previous studies on
the magnon-phonon coupling in h-RMnOs; [10,11]. Our main
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finding is that the crystallographic K; mode, which consists
of an in-plane triangular inwards or outwards breathing of
the Mn and O ions, has a strong effect on the interplanar
exchanges and single-ion anisotropies, and ultimately deter-
mines the magnetic ground state of each material. Uncovering
the details of this particular magneto-structural coupling sets
the stage for engineering the magnetic order in this family of
compounds.

II. STRUCTURE

The h-RMnOj structure consists of layers of corner-sharing
MnOs trigonal bipyramids alternating in the ¢ direction with
triangular layers of R-site cations. All members of the series
adopt the nonpolar P63/mmc space group at high temper-
ature and undergo a structural phase transition at a critical
temperature 7, that ranges from 1200-1600 K, depending
on the radius of the R site [12,13]. At T, the crystal sym-
metry lowers from nonpolar P63 /mmc to polar P6;cm, with
the corresponding structural distortion consisting primarily
of a K3 mode, accompanied by a polar I'; mode [14], of
the high-symmetry structure. An additional smaller structural
distortion, corresponding to a K| mode, can also occur and has
been associated with the onset of magnetic ordering at lower
temperature [15,16]. We describe these distortion modes in
detail next, reporting their contributions to both the exper-
imentally observed structures and the Landau free energies
which we extract using the INVARIANTS software from the
group theoretical ISOTROPY Software Suite [17].

A. K3 and I'; modes

The primary order parameter driving the structural
phase transition at 7, describes a zone boundary mode at
k = (13, 1/3, 0), belonging to the K3 irreducible representa-
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FIG. 1. Structural distortions associated with the coupled K3, I';, and K; modes and their respective order parameters O, P, and K.
(a) K5(Q). Black arrows represent the buckling of the R ions as well as the direction of the bipyramidal tilts, the latter characterized by the
angle ¢ (in this example, ¢ = 2%). (b) I'; (P). Pink arrows show the vertical displacement of the R ions associated with a negative polarization
along the ¢ axis. Note that displacements of O and Mn sites along c¢ also occur within I'; but are not represented here. (c) K, (K). Blue arrows
indicate planar Mn and apical O displacements, their direction described by a characteristic angle 6 (in the above example, & = 2%). Shaded
blue triangles show stacked triangular Mn trimers breathing in, relative to the high symmetry position Mn trimers (shown in dotted black lines),

as a result of a negative §xy, displacement.

tion of the high-symmetry P6;/mmc structure [1,2,4,14]. The
distortion, illustrated in Fig. 1(a), consists of triangles of
MnOs trigonal bipyramids tilting towards or away from their
corner-shared O site, accompanied by a buckling of the R-ion
plane along the ¢ axis, and results in a trimerization of the
lattice. We write the associated primary order parameter as
0 = 9O(cos(¢), sin(¢)), with Q giving the amplitude of the
tilt and the angle ¢ its phase, as illustrated in Fig. 1(a). The
tilt angles have sixfold symmetry with ¢ = n% and the integer
n=1,...,6. The ferroelectric polarization P results from
a net displacement of the R ions along ¢ belonging to the
'y irreducible representation of the P63/mmc structure. P
emerges through a coupling to Q, established to be of the form

for o QP cos (3¢)

to lowest order in the Landau expansion of the free energy
[1,2,14].

B. K; mode and its coupling to K3 and I';

In addition to the K3 and the I'; modes, a third struc-
tural distortion is reported at temperatures below T, although
with much smaller amplitude [16,18-21]; group theoretical
analysis of the minimum energy structure of YMnOs3, cal-
culated using density functional theory (DFT), indicated that
its corresponding ionic displacements are one and two or-
ders of magnitude smaller than those of the I'; and Kj
modes, respectively [14]. The mode belongs to the K; irre-
ducible representation of the P63 /mmc structure at the same
k = (1/3,1/3,0) value as Kj. K, involves collective planar
displacements of the Mn ions and their apical O (O,p) ions
parallel to the directions of the bipyramidal tilts projected
onto the ab plane, as depicted in Fig. 1(c). Within this mode,
the displacements of the O, ions are much smaller than

those of the Mn ions [14]. Therefore, K; is discussed in
terms of displacements xy, of the Mn ions away from their
high symmetry positions at their Wyckoff site (1/3,0,0) [16].
Throughout this work, éxpmy, is expressed in units of fractional
coordinates of the in-plane lattice parameters. Movements of
Mn sites away (xpyp > 0) or towards (6xm, < 0) their corre-
sponding trimerization centers lead to a triangular breathing
inwards and outwards of Mn sites that belong to the same
trimer, as depicted by the respective contraction and expan-
sion of blue triangles in Fig. 2. The K; mode can also be
described within the Landau free energy expansion by its
order parameter K = /C(cos (6);sin (6)), where 6 describes
the direction of the Mn and apical O displacements and K
is their amplitude. The K; mode is like the I';” mode in that it
is stable in the high symmetry structure and it differs in that it
is constrained by a threefold symmetry:

fic = B1K? + BoKC3 cos (30). 1)

- -

4 &

Ay, <0
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FIG. 2. Planar breathing in (left) and out (right) of Mn sites,
corresponding to, respectively, a negative and positive §xyy, displace-
ment within the K; mode.
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TABLE 1. Diffraction measurements of dxyy, displacements in the hexagonal manganites above (first stub column row) and below (second
row) the Néel temperature, Ty. The Shannon radii (for eight-coordinated 3+ states) are shown to indicate the radial trend [28].

Sc Lu Yb

Radius [A] 0.87 0.977 0.985

Er Ho Y
1.004 1.015 1.019

—0.0155(4)" [25]
—0.0125(2)" [22]

T> Ty —0.0001(72)" [22]
0.0008(85)* [23]  —0.001* [20]  —0.0063(18)* [23]  —0.020° [24]  —0.0072(12)* [23]  —0.00861% [26]
—0.005" [12] 0.002(8) [16] —0.0003(16)* [20]
0.004(8)*¢ [16]
T <10K —0.0029(16)* [23]  —0.003*[20]  —0.0023(19)* [23]  — —0.003(2)* [16] 0.0001(7)" [27]

0.0025(86)" [23] 0.0089* [20]

Powder sample.
bSingle crystal sample.

“Sample contained oxygen deficiency of 0.29(3) per formula unit. —: No data available.

Since K3 is the primary order parameter [14], the two cou-
pling strengths 8, and B, are positive and K; emerges through
its coupling to the K3 and I';” modes. These are third-order
terms in the Landau free energy, with the form

frop = 11KQ*cos (8 +2¢) + y,PKQcos (8 — ¢), (2)

which is linear quadratic between K| and K3 and trilinear be-
tween I';, K, and K3. K; emerges improperly with y; , < 0.
Given the six possible values of ¢ and that P alternates sign
between consecutive values of n [1], Eq. (2) is minimized
for0 = 1 — 2¢ or 6 = —2¢. Thus, the movement of the Mn
and apical O sites within the K; mode is restricted along the
direction defined by ¢ as illustrated in Fig. 1.

In Table I we list reported measured room-temperature
and sub-Ty values of xy, for six hexagonal manganites. The
data illustrate three points. First, dxy, is small and therefore
difficult to quantify, reflected in a spread of reported values.
Second, there is no obvious trend in §xyy, across the series. Fi-
nally, studies that measure Mn positions above and below Ty
report trimers of Mn sites expanding below Ty for YbMnOj3
and YMnOj but contracting for ScMnO3 and LuMnO3, with
no clear difference for HoMnOj3. Low-temperature measure-
ments have not been made for ErMnQOs3. These observations
lead to three open questions, which we address in this work:
First, is dxy, nonzero? Second, is there a trend in xyg, across
the series? Third, what is the mechanism behind any activa-
tion of the K; mode, and is it temperature-dependent [20] or
temperature-independent [16]?

III. MAGNETO-STRUCTURAL COUPLING

Having described the relevant structural distortions, we
now turn to the magnetic properties and thus to the main
objective of this study: the coupling between the magnetic
order and the crystallographic structure.

A. Magnetic symmetry and properties

The small trigonal-bipyramidal crystal field splitting com-
bined with exchange interaction favors the high-spin state
on the formally d*, L=0 Mn>" ions [5]. These Mn>* mag-

netic moments order at a Néel temperature, 7y =~ 70-90 K,
with higher Ty values corresponding to smaller R-site radii
[18,25,29]. The first nearest-neighbor interaction is strongly
AFM and geometrically frustrated because of the triangular
arrangement of the Mn ions [9].

There are four symmetry-allowed candidate magnetic ir-
reducible representations (irreps), labeled A;, and B 5, all
of which have 120° first nearest-neighbor in-plane configu-
rations. These irreps are generated under the zone boundary
magnetic modes mK, or mKj3 described by the following re-
spective order parameters: M, = M;(cos(y,); sin (¢,)) and
M35 = Ms(cos(y3);sin (¥3)) as shown in Fig. 3 [15]. The

(a) mK; (M)
\ /7 > 2 S
—B&| & A
7\ fl N
(') /2 ‘|’2
(b) mK3 (M3)
A S \ /
ULBll | > & =A==
~NA N7 7\
1 a2 W,

FIG. 3. Planar magnetic configurations associated with the two
magnetic modes mK, and mKj, corresponding to order parameters
M, and M;. The magnetic moments on each Mn site are repre-
sented by teal arrows. Consecutive planes are colored in different
shades. (a) v, describes the evolution from B; (¢, =0) to A
(Y = 7) via an out-of-phase rotation of spins belonging to two
consecutive planes. (b) Y3 describes the evolution from B, (3 = 0)
to Ay (Y3 = 7) via an in-phase rotation of spins belonging to two
consecutive planes.
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amplitudes M, 3 reflect the amount of correlation of mag-
netic moments on symmetry-equivalent magnetic sites, and
the angles v, 3 describe the local direction of the Mn magnetic
moments as sketched in Figs. 3(a) and 3(b). Within the four
irreps, magnetic moments order either radially (A, and By)
or tangentially (A; and B,). The radial irreps A, and B; also
allow for a weak out-of-plane ferromagnetic (FM) and AFM
canting, respectively [5,15]. Spins belonging to consecutive
layers along the ¢ axis can order with even (A) or odd (B)
symmetry under the twofold screw rotation 2¢ [1]. This re-
sults in two magnetic moments aligned along the same axis
but belonging to consecutive planes pointing either parallel
or antiparallel to each other, corresponding respectively to a
B- or A-type ordering. All the orders generated under mK,
and mKj3; would have the same magnetic energy in the high
symmetry structure. This energy degeneracy is broken as the
structural symmetry is lowered to P63cm.

B. Coupling between K3, I';, and mK; ; modes

Magnetic order sets in on the low symmetry structure, and
this is expressed by a coupling between the primary order pa-
rameter and the magnetic order at fourth order in the Landau
free energy expansion of the form [1,5,6,30]

foa,y 0 M3 5Q% cos® 2¢ — 29 3). 3)

As a consequence of this coupling, there are two types of
in-plane nearest-neighbor interactions: those between two Mn
ions that share a trimerization center (Jsame trimer (st)) (s0lid gray
lines in Fig. 4) and those occupying neighboring trimerization
centers (Jgifferent rimer (dt)) (S0lid black lines in Fig. 4). The low
symmetry P6scm structure also has two different interplanar
second nearest-neighbor exchanges, J;, and J,. A total of six
second nearest-neighbors interact with each given site i either
via Ji,; or Jp,, the former mediated by two equivalent (both
gray in Fig. 4) R sites and the latter by two nonequivalent
(one gray and one teal in Fig. 4) R sites. Finally, trigonal
bipyramids have easy-plane single-ion anisotropy (SIA), with
the hard axis tilted away from the c direction by the K3 mode.
Note that, for a fixed 6xm,, we calculate that the magnitudes of
the I';” and K3 modes are not influenced by different magnetic
orders (see Table S1 in the Supplemental Material [31] for
amplitudes of the I';” and K3 modes for different magnetic
orders). Therefore we can conclude that mKj_, 3 do not affect
the values of y; » (defined in Eq. (2)) and that the magnetic
order couples only to K3 through Eq. (3).

Measurement of the exact magnetic ground state in the
hexagonal manganites via scattering techniques is compli-
cated by the issue of homometry [15]; magnetic symmetries
obtained within one of the mK;_; , modes lead to near equal-
ity of their magnetic structure factors in scattering data if
Sxym = 0 [15,21]. This is because the high symmetry position
of the Mn sites [at Wyckoff position (x ~ %,0,0), correspond-
ing to Sxyy =~ 0] lies in a mirror plane, m  [120] [16]. One
way to address this issue is by using polarized neutron scat-
tering [27], since the polarized character of the incident beam
allows the different v, and 3 values to be distinguished, or
second harmonic generation techniques [9], which are directly
sensitive to the symmetry. B; and B, configurations (framed
in black in Fig. 3) have been observed for different members

O

FIG. 4. Symmetric exchanges of a magnetic site i (orange) in the
low symmetry P63 cm structure. Teal R sites indicate trimerization
centers (the trimerization center of site i, above and to its right, has
a darkened border); nearest-neighbor sites i; and i, occupy the same
trimer as site i, whereas sites i3, is, i5, and i occupy different trimers.
Solid gray and black lines represent same trimer (J;,) and different
trimer (J,;;) nearest-neighbor exchanges, respectively. Dashed black
and gray lines represent the interplanar J;, (with site i;) and J,, (with
sites iy and iy ), respectively.

of the series using optical second harmonic spectroscopy, with
no evidence of A-type order [9].

C. Coupling between K; and mK, ; modes

Next, we review the experimental evidence for a sub-Ty
Sxyn structural distortion that motivates our investigation of a
K;-mKj 3 coupling [18,20,21]. In YMnOs3, powder diffraction
measurements indicate that the experimental crystal volume
deviates from the Einstein-Griineisen volume predicted for
a nonmagnetic system [21,32]. Additionally, resonant ultra-
sound spectroscopy detects an elastic stiffening in YMnO3
as the crystal is cooled through Ty [18]. Both experimental
techniques show that lattice strain scales with the square of the
magnetic order parameter [18,21]. The measured onset of this
strain slightly above Ty [18] alludes to a magneto-structural
coupling that coincides with the emergence of short-range
correlations between spins.

We will now motivate the K;-mK;3 coupling using
symmetry arguments. The lowest order magneto-structural
coupling term that appears in the Landau free energy expan-
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FIG. 5. Magnetic ground state in the phase space of the K;-
mK, 5 coupling parameters o, 3. Diagonal lines indicate |ot2| = |os3].

sion and that remains invariant under the symmetry operations
of the P63 /mmc phase is at third order between the K; and the
mKj, 3 modes:

T Myy = @2KCM3 cos (0 + 2y12)
+ a3 M3 cos (8 + 23), )

where «; 3 are the coupling strengths. For a given K; dis-
placement direction 9, these coupling terms are minimized for
i =2, 3, by solving

0 fK.M»
3% 0,9
= —20;KM?sin (6 + 2¢;) = 0. (5)

Using Eq. (5), we calculate the ground-state magnetic
phase diagram in the phase space of the two K;-mK, and
K;-mKj; coupling parameters («; and «3), shown in Fig. 5.

D. Model magnetic Hamiltonian

Next, in order to gain a microscopic understanding of the
dependence of the magnetic ordering on the K; mode, we
write a model Hamiltonian and calculate the interaction pa-
rameters as a function of the size and orientation of K. We
describe the energy of the magnetic moment on site i using
the following Hamiltonian:

Hi=é - | Ja Z i, +Jar Z é;; (6)

Ist nearest-neighbor exchange

+éi~2<leé,-1/ +he Y a,) )

=23

2nd nearest-neighbor exchange

+ Acos® (¥ 5) - 8)
SIA

Here ¢; = (e}, e'l.V , ') is the normalized magnetic moment

of a site i where i = 1,...,6 designates one of the six magnetic
sites of the unit cell and the indices i; and i; run over the
first and second nearest neighbors of site i, respectively, as
sketched in Fig. 4. The nearest-neighbor coupling (mediated
by the Jy; and J;; interactions) contribute equally to the energy
in all four magnetic configurations, as can be seen by the
120° arrangement between nearest-neighbor sites in Fig. 3.
The difference in energy between the A- and B-type configu-
rations results from the interplanar ordering and is described
by the second term of #;, where J;, and J,, are the interplanar
exchanges illustrated in Fig. 3. The third term (8) gives the
in-plane SIA, where A is defined as the energy difference
between a spin pointing towards its trimerization center (local
x axis) and perpendicular to it (local y axis); Wﬁ, 5 is the angle
describing the magnetic order within the two magnetic modes
mK, 3 following the description in Figs. 3(a) and 3(b) and
projected onto the Mn site’s local coordinate system. Since
the out-of-plane canting is known to be small we neglect any
contribution to the total energy from rotation into the hard axis
(see the Methods section for further details).

Taking advantage of the fact that on a frustrated triangular
lattice é, + é;3 = —&;1, the interactions lifting the magnetic
energy degeneracy between Aj, A,, By, and B, can be reduced
to an effective interplanar exchange term J, = Ji; — J»; and
an effective in-plane anisotropy term A. Thus, we obtain the
following single-spin Hamiltonian, reduced to only two rele-
vant interactions, J, and A, in which the first-nearest-neighbor
AFM contributions have been absorbed into H:

Hi=¢8 -2| Jizeir + Jo (i + 8i3)
—_———

=—¢y

+ Acos® (¥ 5) + Ho ©))

= 2J.8; - & + Acos® (¥} 3) + Ho. (10)

Within this model, the energy, E;, of each spin &; for each
of the four allowed in-plane magnetic configurations is given
by

Ei(Ay) = =2J; + Ho, (11)
Ei(Ay) = —2J. + A + Ho, (12)
E(B))=2].+A+H, and (13)
Ei(By) = 2J. + Ho. (14)

IV. METHODS

Total energies are obtained within DFT [33] based on
the projector augmented-wave method [34] as implemented
in the Vienna Ab initio Simulation Package (VASP 5.4.4)
[35-38]. Calculations are performed using the Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation [39]
combined with an on-site Coulomb repulsion of U =4 eV
[5] and an exchange parameter of J = 1 eV (following the
Liechtenstein approach [40]) on the Mn sites [5,41]. We use
the Y_sv, Er_3, Lu, Mn, and O VASP library pseudopoten-
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tials, with 4d, 5p, Sp, and p electrons in the valence band,
respectively. We compare the computed E(B,) — E(B;) en-
ergy difference with calculated values obtained via a different
approximation, the local density density approximation with
the Ceperley-Alder functional [45,46], and find that the en-
ergy trend stays the same, albeit with an energy difference of
=~ 0.2 meV. The effects of the U and J values on the computed
energies are also evaluated: there is no notable difference
between U =4 and U = 6, while E(B,)—E(B;) presents a
steeper energy trend for J = 1 than for / = 0 with a maximal
difference at big negative dxyy, displacements of the order of
0.1 meV. The trends thus seem robust to our choice of U
and J as well as our choice of pseudopotential. Finally, we
use a cutoff of 700 eV and a gamma-centered k-point grid of
6 x 6 x 3.

Geometries corresponding to the different values of the K
mode are obtained by selective dynamics relaxation of the
cell, in which the Mn ions are fixed at positions away from
their K; = 0 high symmetry position and the other atomic
positions as well as lattice parameters are relaxed. Note that
K; does not change the cell’s symmetry, and the generated
geometries remain P6scm. Within selective dynamics, the
< ratio decreases quadratically and symmetrically around
Sxpmn = 0 as Mn ions breathe inwards or outwards. This lattice
ratio decreases by >~ 0.002 for the computed compounds as
Mn ions shift by 0.01 x a from their high symmetry position.
Note that, although K is the only mode that allows a planar
movement of Mn ions, the control of K; by a constraint on
Mn positions within selective dynamics is not perfect. We
extract mode amplitudes using the AMPLIMODES software
[42,43]. For example, the dxyp, = O geometry still allows
for very small displacements of O,, within K;, and I'; and
K3 are activated, as they couple to K;, when the amplitude
of K is increased. However, the effect of these couplings
is relatively small and will be the object of future works.
For simplicity, we use the terms K; amplitude and dxyp, in-
terchangeably in this work. Important to note is that, even
though Mn ions also relax to §xy, 2~ O in the fully relaxed
geometries, the latter and the selective dynamics Sxyp, = 0
structures differ across the three compounds. The fully relaxed
geometries have higher ¢ ratios, relative to their selective
dynamics relaxed counterparts at dxy, = 0, namely, 1.8788,
1.8654, and 1.8726 compared to 1.8900, 1.8654, and 1.8579
for LuMnOj3, ErMnOj3, and YMnOs3, respectively. Compared
to the Sxy, = O structure, the fully relaxed geometries have
higher displacements corresponding to I';" and K3 (by =~ 0.01
and ~ 0.015 A respectively), as well as lower ", displace-
ments (by =~ 0.002 10\). However, the K; mode amplitude is
similarly small in both geometries. These structural differ-
ences are important to keep in mind when comparing the
results for the fully relaxed and §xyp, = 0 geometries.

A complete description of the SIA can be expressed
through the r; matrix that is of the following form in each
magnetic site’s local coordinate system (defined for each Mn
site with the local x axis pointing towards the trimerization
center):

n=| o0 Ay o |. (15)

We find that the weak out-of-plane canting, allowed in the
A, and B configurations [5], contributes negligibly to the
total magnetic energy: the computed values border on the limit
of the numerical precision of our DFT computations (1073 to
10~* meV). DFT computed out-of-plane cantings as well as
their contributions to the total energy through the DM interac-
tion and SIA can be found in Fig. S1 and Tables S2, S3, and S4
in the Supplemental Material [31]. As a consequence, we do
not include A, and DM interactions in our model Hamiltonian
and absorb A,, and A,, into the factor A defined in Eq. (8):
A=A, — Ay,

Next, we describe how we compute the Hamiltonian pa-
rameters in Eq. (10), following a slightly modified approach
from the Four State method developed by Xiang et al. [44].
From Eqgs. (19) and (20), we see that the J, values can be
obtained by subtracting the energy of configuration A; (A)
from that of B (B;,). We take the J, value that is the average
of the result from the two calculations [as shown in Eq. (18)]:

1
J, = Z[Ei(Bl) — Ei(A)] (16)
1
= Z[Ei(BZ) —Ei(A))] (17)
Loteren

Similarly, the A parameters are obtained by subtracting the
energy of the A; (B;) configuration from that of A, (B,), and
we take the average:

A =E;j(Ay) — Ei(Ay), (19)
= E;(B) — Ei(B>) (20)
—A= %2(20). @1

We then recalculate A and J, for a range of dxy, values
and make a linear fit of their dependence on dxy, using a
least squares method. The magnetic energies as a function of
K, for different magnetic orders are obtained by substituting
the A and J, parameters into the Hamiltonian of Eq. (10). We
verify the accuracy of our model and the extracted parameters
by comparing our model magnetic energy trends following
Eq. (10) with DFT calculated energies. The former are rep-
resented by solid lines in Fig. 6 and show excellent agreement
with our total energy DFT calculations.

V. NUMERICAL RESULTS

We will focus on calculating the magnetic trends for the
following three compounds, in order of increasing radius, R =
Lu, Er, and Y for which the Shannon radii for the octahedrally
coordinated 3+ ions are given in Table I. We begin by ex-
tracting the parameters A and J,, defined in Egs. (18) and (21)
at K; amplitudes dxy, = —0.01, —0.005, 0, 0.005, and 0.01,
which cover the spread of reported dxy, values (Table I).

A. Dependence of in-plane anisotropy on K; mode

Figure 7(a) shows the calculated total energy change as
a function of in-plane spin angle on four different geome-
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LuMnO3 ErMnO3 YMnOs
2
ré . O E(A1)-E(By)
£ E(A;)-E(B1)
E(B1)=0 © E(B3)-E(B1)
-1
-0.01 0.00 0.01 -0.01 0.00 0.01 -0.01 0.00 0.01

O6Xmn [frac. coord.]

FIG. 6. Total energies of the planar magnetic configurations A;, A,, and B,, relative to the energy of B,. Empty circles correspond to DFT
calculated total energies for dxy, € [—0.01, 0.01] fractional coordinates and the dotted lines describe their energy trend. Full lines represent
the model Hamiltonian calculated energies. Full circles are DFT total energies calculated on fully relaxed geometries.

tries: a fully relaxed structure and three selective dynamics
geometries corresponding to dxy, = —0.01, 0, 0.01. Spins lo-
cated in two consecutive planes are rotated in-phase, so that
only the energy contribution of A is varied while keeping
the J; exchange energy constant. Note that this rotation is
different from the ones spanning the mK; 3 modes in Fig. 7,
where both the in-plane anisotropy and interplanar exchange
energies change as a function of the rotation. We see that the
angle dependence of the total energy E has opposite behav-
ior for dxp, = —0.01 and +0.01. E has its minimum value
(=0.79 meV) for By order ( =n%) in the dxyy = —0.01
geometry, whereas the By order (¢ = nm) minimizes E (at

(a)
8Xun = ©—0.01, 0+0.01, 00. -E‘t‘m’cgﬁ'raex
0.69
_ %, 0%,
e OO OO Oo OO ~
I = o o) o (o) S “
ES v 0 @88essssssscsestRedsoocssssssesen®® .z, 2
= 15
[y
-0.79
0 2 n sz 2 Vlrad]
\ ) /- i’ \B/
—B;= !B =B,= B, ¢ B=
T B P Rl P
(b)
0.2
— \ O LMO
% EMO
E 00 « YMO
: fully relax.
structures
-0.2 \

-0.01 0.00 0.01
6xup [frac. coord.]

FIG. 7. SIA energy landscape as a function of dxyy,. (a) Total en-
ergy of YMnOj as a function of i for three different K; geometries
(6xym = —0.01, +0.01, and 0) and for a fully relaxed (fully relax.)
structure. Y describes the angle of an in-phase planar rotation of the
B, configuration. The in-plane anisotropy A is defined by the energy
barrier at the local extrema. A is negative (positive) for dxy, = —0.01
(40.01) and is almost nonexistent for §xy, = 0. (b) A calculated for
R = Lu, Y, and Er for a range of §xy, geometries (circles) and for
their fully relaxed geometries (crosses). The full lines represent a
linear least squares fit of the DFT calculated energies.

0.69 meV) for dxyp, = +0.01. This indicates that A, as defined
by Eq. (20), has opposite values for opposite dxy, displace-
ments and shows that a linear combination of mK; and mK,
magnetic symmetries is energetically unfavorable. A bigger
in-plane anisotropy for dxy, = —0.01 than for dxy, = +0.01
can be attributed to a bigger K; mode displacement in the
8xpn = —0.01 geometry (by =~ 0.0035 A). Interestingly, the
energy surface flattens for Sxy, = O but not completely as
in the fully relaxed structure; the in-plane anisotropy has
relatively small local minima at ¢ = n% like in the Sxy, =
—0.01 geometry. These local minima can again be attributed
to the imperfect mapping between dxy, and K mentioned in
the Methods section.

We then calculate A following (21) for all three com-
pounds, as shown in Fig. 7(b) (see Table S5 in the
Supplemental Material [31] for more detail on the calculation
of A). Importantly, we see that the size of the single-ion
anisotropy is similar in all three materials, and that the
sign of A changes at approximately K; = 0 in each case. The
sign change indicates a change in the preferred orientation of
the spins within the easy plane.

B. Dependence of interplanar exchange on K; mode

Next, we analyze the dependence of J; on the K; mode and
show the calculated behavior in Fig. 8 (see Table S5 in the
Supplemental Material [31] for more detail on the calculation
of J;). Over the range of K; values studied, J, is negative

-0.04

® LMO
EMO

O YMO

> LFO
fully relaxed
structures

Jz [meV]

-0.08

-0.01 0.00 0.01
6Xun [frac. coord.]

FIG. 8. Circles and crosses represent J, values calculated in this
work using Eq. (18) on dxyi, € [—0.01,0.01] and fully relaxed ge-
ometries, respectively. Gray diamonds connected by dotted lines
show results for LuFeO; from Ref. [41].
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for all three materials. This corresponds to an FM (B-type)
interplanar interaction, with a linear dependence on K; con-
sistent with the configurations observed in second harmonic
generation measurements [9]. As the Mn ions shift away from
their trimerization centers, their apical oxygens shift by a
smaller amount, leading to a decrease in the O,,-Mn orbital
overlap and thus to a weaker interplanar FM interaction. The
displacement of the apical oxygens within the K; mode is
similar across the three compounds, explaining the similarity
in their J [K] gradient. Additionally, the effective interpla-
nar exchange is stronger for systems with smaller radius R
cations and correspondingly bigger trimerization, because J,
reflects the difference between the two different interplanar
exchanges. This difference, illustrated in Fig. 4, is larger for
bigger bipyramidal tilts. Note that the interplanar exchanges
in the fully relaxed structures does not perfectly match the
values for the §,Mn = 0 geometry. The difference could be
due to the slight differences of atomic positions between the
two structures mentioned in the Methods section.

For comparison, we show as gray diamonds in Fig. 8 the J,
values extracted for hexagonal LuFeO3; by Wang et al. [41].
Hexagonal LuFeO; crystallizes in the same structure as the
hexagonal manganites and undergoes an analogous P63 /mmc
to P6scm structural phase transition. Its B-site chemistry dif-
fers from hexagonal manganites in that the Fe** ions are in a
formally d° high-spin state. As a consequence of this extra
electron, LuFeO; has a stronger interplanar interaction [5],
and magnetic order sets in at a higher Néel temperature (=~
150 K). The J,[K] trend of LuFeOs; in Ref. [41] is computed
using the LDA+U method with U = 4.5eV and J = 0.95eV.
Note that our studies using different choices of functionals
(see the Methods section) suggest that this difference in be-
havior is not a result of small differences in the choice of
computational parameters. Figure 8 clearly indicates that a
stronger J, dependence on K; such as that found in LuFeOs,
[41] would be necessary to observe A-type ordering in the
manganites [5,41].

C. R-site dependence

We note that the dependence of J, and A on the
size of the K; mode is sensitive to the R site, with
LuMnOs; showing the strongest variation and YMnOj the
smallest. For —0.015 < xyy < +0.015 the A and J, param-
eters span [Apax — Amin| = (0.43,0.41,0.39) and |/ max —
Jzmin| = (—=0.04, —0.03, —0.02) for LuMnO3, ErtMnOs3, and
YMnO;3, respectively. This trend correlates with the size of
the R-site radius, the smallest radius (Lu3+) having the largest
polyhedral tilts [7] and in turn the largest change of the mag-
netic interactions with K. This effect is captured by the first
term in the Landau free energy expression (2) in which the
K; mode amplitude K is linearly coupled to the square of
the K3 mode amplitude Q, as well as by the coupling of K
to the squares of the two magnetic order parameters M »
in Eq. (4).

D. Ground-state phase diagram

We summarize our calculated parameters and their effect
on the magnetic ground state in the phase diagram of Fig. 9,

LMO O YMO % 0Oxmp,= —0.015
EMO v¢ K1=0 4 6xm,= + 0.015

0.2 *

Pl N
= 01 LB, | 1A
% ~NA ~N&
€ 0
<

-0.1 \ /7 N Z
=B =A==
0.2 7 4 7 \
—-0.08 —-0.06 —0.04 —-0.02 0.00 0.02
Jz [meV]

FIG. 9. Magnetic ground-state phase diagram in the model
Hamiltonian parameter phase space. Circles represent extracted
(J;,A) pairs, and full lines are linear least-square fits plotted for
the range Sxm, € [—0.015, 0.015], going from top left to bottom
right. Points marked by stars are the extracted values for éxy, = 0.
Crosses and plus markers indicate parameters for dxy, = —0.015
and +0.015, respectively.

where we plot the calculated A as a function of the cal-
culated J, over the interval dxym, € [—0.015,0.015] for the
three compounds. Since magnetic order is known unambigu-
ously, this phase diagram allows us to predict the direction of
the manganese displacement for which there is still a large
spread in the experimental data. The fact that the B, state
is measured in YMnOj3 and the B, state in ErMnO3 implies
opposite dxyy, displacements in the two materials. The phase
diagram also sheds light on the possible origin of spin re-
orientations observed in some hexagonal manganites. Any
change in the spin arrangement could potentially be linked
with the change in the Mn position as this creates transi-
tions between A and B type as well as between radial and
tangential magnetic orders. For example, the suggested B,
to B; reorientation in LuMnOj3 [9] as temperature decreases
could be induced by an Mn displacement from negative to
positive Sxy, values. However, Lee er al. reported no sign
of a corresponding elastic signal [20]. Interestingly, hexag-
onal LuFeOs; has a sub-Ty spin reorientation, similarly to
LuMnOs;, but from B, to A, as the temperature is lowered
through 140 K [41]. This translates to not only a change
in the sign of A (which is the case in LuMnOs) but, addition-
ally, to a change in the sign of the interplanar exchange inter-
action. This crossing from the left (B-type order) to the right
(A-type order) part of our phase diagram is attributed to the
steeper J,[K] trend predicted for LuFeO; than for LuMnO; in
Fig. 8.

Finally, in Table I we summarize the mapping between the
A and J, magnetic Hamiltonian parameters to the K;-mKj 3
coupling parameters o, and a3 and to the magnetic ground
state. For example, a radial arrangement of spins combined
with an AFM interplanar order (A;) corresponds to a (A <
0, J, > 0) pair, which is equivalent to the following condi-
tions on the K;-mKj, 3 coupling parameters: |o3| > |orz| and
a3 > 0. We have thus managed to describe the magnetic
ground state of hexagonal manganites in two different spaces:
the phase space of the Landau free energy parameters (o5, o3)
as well as of the magnetic Hamiltonian parameters (A, J;).
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TABLE II. Mapping between Landau K;-mK, ; coupling param-
eters (o, and «3), the model Hamiltonian parameters (J;, A), and the
magnetic ground state.

Hamiltonian Landau Ground state
A>0 o3| > o] B

J. <0 a3 <0 (Y3 = nm)
A<0 loa| > |as] B,

J. <0 a, <0 Yy = nm)
A>0 loa| > o] Ay
J.>0 a >0 (Yn =n7%)
A<0 los| > o] Ay
J.>0 a3 >0 (Y3 = n%

VI. SUMMARY AND OUTLOOK

In summary, this work rationalizes the observed evolution
of the magnetic ground state across the hexagonal manganite
series and shows that A-type magnetic order is energetically
unfavorable as a result of a predominantly inter-planar ferro-
magnetic interaction [9].

To address the questions prompted by the experimental
measurements of the Mn positions presented in Table I, we
have determined, using symmetry arguments, the allowed
coupling terms for dxy, # O by extending earlier expansions
of the Landau free energy [1,5,14]. The extended Landau
expansion reveals a nonlinear coupling of the K; mode to

the K3 and I'; structural distortions, as well as to the mag-
netic order parameters. Furthermore, we have shown how
dxymn # 0 changes the magnetic interactions, using a model
magnetic Hamiltonian with DFT-computed parameters, sin-
gling out the easy-plane anisotropy and the interplanar
symmetric exchange terms as the relevant magnetic interac-
tions that lift the magnetic energy degeneracy between the
Ay, Ay, By, and B, orders. These two findings support experi-
mental measurements of sub-7y magnetoelasticity [18,20,21]
and nonzero, temperature-dependent dxyy, values, and suggest
that the K; mode is responsible for both. In addition, our
calculations indicate that, in materials with smaller R-site
radii (and correspondingly larger K3 distortions), the energy
is more sensitive to changes in §xyy,, motivating more precise
experimental measurements of this quantity.

Our work indicates that the K; mode provides a gateway
to controlling the magnetic order in the h-RMnOs series by
varying its amplitude. We hope that this finding stimulates
future studies investigating how the K; mode can be modified
using external stimuli such as strain or doping.
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