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Andreev bound states in junctions formed by conventional and PT -symmetric
non-Hermitian superconductors
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We study theoretically a junction composed of a PT -symmetric non-Hermitian superconductor (PTS) placed
between two conventional superconductors. We show that due to non-Hermitian electron-electron interaction
in the PTS region and the combination of symmetries, only discrete values of phases of the conventional
superconductors yield solutions for Andreev bound states. Remarkably, in the case of phases 0 and π , we obtain
Andreev bound states that are growing and decaying in time. For π/2 and 3π/2, there is a Majorana zero mode
penetrating through the junction in only one direction forming a quasiparticle supercurrent.
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Introduction. Hybrid superconducting structures contain-
ing normal parts, such as semiconducting nanowires or
insulating layers, are platforms for numerous theoretical and
experimental investigations often related to the study of An-
dreev bound states [1–6]. The high interest in this field
partially follows from the fact that Andreev bound states are
largely controlled by the phases of superconductors. Recently,
the topic of Andreev molecules has arisen because of their po-
tential use in metrology, quantum information, and quantum
manipulations [7–9].

Unconventional and exotic superconductors yield new
physical phenomena and states, e.g., high-Tc superconduc-
tors [10], spin-triplet superconductors [11], heavy-fermion
superconductors [12], flat-band superconductivity [13], and
superconducting Leggett modes [14]. Taking into account that
the obtained data stemming from certain superconducting ma-
terials often lack a clear theoretical explanation, it is desirable
to be able to induce or enhance particular types of supercon-
ductivity dynamically, e.g., via light or strain [15–17]. In these
cases, the obtained superconductivity is a nonequilibrium phe-
nomenon. Nonequilibrium dynamics can be considered in
frames of different formalisms, e.g., Keldysh Green’s func-
tions. One of the most recent related theoretical approaches
involves non-Hermitian systems, where non-Hermiticity is
likely to be a consequence of external influence such as a
connection to an external bath.

Non-Hermitian superconductors are not well understood
yet. They are mainly studied in relation to Majorana zero
modes [18–21]. However, there are particular properties
that they exhibit, e.g., odd-frequency pairing [22] or a dis-
tinct response in angle-resolved photoelectron fluctuation
spectroscopy [23]. PT -symmetric (parity-time-symmetric)
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FIG. 1. Setup under study: a PT -symmetric non-Hermitian
superconductor of width d is placed between two conventional
superconductors (SCs) with superconducting phases ϕ1 and ϕ2,
respectively.

non-Hermitian superconductors are a separate class in this
field. PT symmetry allows for real or complex-conjugate
energy eigenvalues of non-Hermitian Hamiltonians [24–29].
PT -symmetric systems are of high interest in optics due to
the vast number of possible applications [30].

In this paper, we study Andreev bound states in a junc-
tion between a PT -symmetric non-Hermitian superconductor
(PTS) and two conventional superconductors with phases ϕ1

and ϕ2 [31] (referred to as an S-PTS-S junction); see Fig. 1.
We find that Andreev bound states in this S-PTS-S junction
exist only for certain discrete values of ϕ1 and ϕ2 in con-
trast to conventional superconductor-normal-superconductor
(SNS) junctions, where the spectrum is continuous with re-
spect to the phase difference ϕ1 − ϕ2. This striking difference
can be attributed to the absence of Hermiticity in a PTS
and the combination of symmetries in the S-PTS-S junction.
Remarkably, we discover decaying and growing (with respect
to time) Andreev bound states at phases 0 and π . The growth
and decay occur due to non-Hermitian electron-electron in-
teraction in the PTS. For the phases π/2 and 3π/2, we find
a Majorana zero mode that moves through the PTS in the
direction of the superconductor with the phase π/2. This
implies that there is a supercurrent between superconductors
at the phase difference π , which reminds us of a π junction in
Hermitian systems.
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Model. We consider a system of three one-dimensional
(1D) superconducting leads: two conventional superconduc-
tors and a PTS of width d between them; see Fig. 1. The
experimental realization of it can, for instance, be a super-
conducting nanowire in the presence of external driving in
the center region in order to induce non-Hermitian super-
conductivity. This nanowire shall then be attached to two
loops threaded by magnetic fluxes in order to vary the phase
differences between the conventional superconductors and the
PTS.

Note that parity (or space-inversion) symmetry P in-
verts the sign of momentum and time-inversion symmetry
T inverts the signs of momentum, spin, and imaginary i.
As a result, PT -symmetric Hamiltonians of a single-band
superconductor must obey the relation HPT = H∗

PT , i.e., all
mean fields must be real. In order to obtain a non-Hermitian
superconductor, we take the particle mean field with the
opposite sign to the hole mean field, �PT = −�̄PT [23].
This choice implies that the electron-electron interaction
U = ∑

p,q ψ
†
p+q,↑ψ

†
−p−q,↓V (q)ψ−p,↓ψp,↑, where ψ are elec-

tron field operators, is non-Hermitian and has an asymmetric
interaction potential V (q) = −V (−q), meaning that when
electrons interact attractively the corresponding holes interact
repulsively and vice versa [23]. This can happen due to the
external influence on the system; for example, in Ref. [23]
we propose how to induce it via spatiotemporal modula-
tions. In this case, the spatiotemporal modulations induce an
asymmetry of the phonon spectrum, leading to asymmetric
electron-electron interaction mediated by the phonons.

We assume that all leads form good contacts at the in-
terfaces and there is no normal scattering there. In order
to consider Andreev scattering in this junction, we repre-
sent the electron field operators for all superconductors as
quasiparticles close to Fermi wave vectors kF and −kF :
(�α

σ (x))† = (�α
+,σ (x))†eikF x + (�α

−,σ (x))†e−ikF x, where α is
an index denoting the type of superconductor, σ denotes
spin, and x is the coordinate along the junction. In the bases
(�α

l )† = {(�α
+,↑(k))†, �α

−,↓(−k), (�α
−,↓(k))†, �α

+,↑(−k)}, the
linearized Hamiltonians for PTS and conventional supercon-
ductors are

HPT = vF kτz ⊗ σz + �PT iτ0 ⊗ σy, (1)

H1,2 = vF kτz ⊗ σz + �τ0 ⊗ (eiϕ1,2σ+ + e−iϕ1,2σ−), (2)

respectively. Here, vF is the Fermi velocity, and ⊗ denotes the
Kronecker product. In this paper, we assume for simplicity
that all three leads have the same Fermi velocity and Fermi
wave vector. As we consider spin-singlet superconductivity
and assume for simplicity that �PT is even in frequency, then
�PT must be odd in momentum due to the fact that V (q) is odd
[23]. This is in contrast to the conventional case, where the
interaction potential is even and even-frequency spin-singlet
pairing requires even parity in order to obey Fermi statistics.
Taking into account that we consider scattering around ±kF

and |k| � kF , we approximate the mean fields as �PT (k ±
kF ) ≈ �PT (±kF ) = ±�PT .

In order to obtain eigenvectors of the Hamiltonians for
a given excitation energy, we first find the wave vectors
k via the equations det[Hα − E ] = 0. For a PTS, kPT =

FIG. 2. Scattering of the quasiparticles of a PTS around kF at
the boundaries with conventional superconductors. The right-moving
quasiparticle (black solid circle) scatters into the right-moving quasi-
particle in a conventional superconductor (gray solid circle) and a
left-moving quasiparticle in the PTS (black open circle). The left-
moving quasiparticle in the PTS scatters at x = −d/2 back into
the right-moving quasiparticle in the PTS and into a left-moving
quasiparticle in a conventional superconductor (gray open circle).
Here, we show the case where the spectrum of the PTS is real and
the excitation energy of quasiparticles is chosen above the gap.√

E2 + �2
PT /vF , and for conventional superconductors we

have kc = √
E2 − �2/vF . Note that k denotes a small devi-

ation of the wave vector of the quasiparticle from ±kF (see
Fig. 2).

The eigenvectors of the Hamiltonians yield the basis for
wave functions (we omit the spin index for brevity, as there
are no spin interactions in this paper):(


e,+
PT


h,−
PT

)
R,L

=
(

∓
√

E2+�2
PT −E

�PT

1

)
e±ikPT x, (3)

(

e,−

PT


h,+
PT

)
R,L

=
(

±
√

E2+�2
PT −E

�PT

1

)
e±ikPT x, (4)

(

e,+

1,2


h,−
1,2

)
R,L

=
(

±
√

E2−�2
1,2+E

�1,2
eiϕ1,2

1

)
e±ikcx, (5)

(

e,−

1,2


h,+
1,2

)
R,L

=
(

∓
√

E2−�2
1,2+E

�1,2
eiϕ1,2

1

)
e±ikcx. (6)

Here, indices L and R denote left- (at −kc and −kPT ) and
right-moving (at kc and kPT ) quasiparticles, respectively.
Equations (3) and (5) describe quasiparticles near kF , while
Eqs. (4) and (6) describe quasiparticles near −kF .

Spectrum. Assuming that the interfaces between the
superconductors are ideal, we write the continuity equa-
tions for the wave functions. We consider Andreev scattering:
right-moving quasiparticles in the PTS are reflected into left-
moving quasiparticles. They penetrate into the conventional
superconductors as evanescent modes, if their excitation en-
ergy E is smaller than �. This gives two equations with
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unknown coefficients α, β, and two transmission coeffi-
cients t1 and t2 at the boundaries x = −d/2 and x = d/2,
respectively, for scattering of quasiparticles close to kF and
close to −kF . For an illustration of scattering processes in an
S-PTS-S junction with excitation energies of quasiparticles
above the gap, see Fig. 2. The equations for scattering of
quasiparticles near kF are(

α

(

e,+

PT


h,−
PT

)
R

+ β

(

e,+

PT


h,−
PT

)
L

)∣∣∣∣∣
x=∓d/2

= t1,2

(

e,+

1,2


h,−
1,2

)
L,R

∣∣∣∣∣
x=∓d/2

. (7)

From these equations, we obtain the spectrum of Andreev
bound states determined by

e−ikd (kPT vF � − eiϕ1�PT kcvF + E (eiϕ1�PT + �))
kPT vF � + eiϕ1�PT kcvF − E (eiϕ1�PT + �)

= eikd (kPT vF � + eiϕ2�PT kcvF + E (eiϕ2�PT + �))
kPT vF � − eiϕ2�PT kcvF − E (eiϕ2�PT − �)

. (8)

The equations for scattering of quasiparticles near −kF

have the same form as Eq. (7), but with the corresponding
wave functions from Eqs. (4) and (6).

Taking into account that we consider a composite non-
Hermitian system, the energy of Andreev bound states can be
complex. One way to solve Eq. (8) is to divide it into real and
imaginary parts and find common roots for real and imaginary
parts of the energy. Remarkably, in contrast to conventional
SNS junctions, there are only certain discrete values of phases
ϕ1 and ϕ2 with valid solutions. We have found that pairs {0, π}
and {π/2, 3π/2} give solutions.

Phases 0 and π . For the short junction, �d/vF � 1, and
ϕ1 = 0 and ϕ2 = π , we obtain E = i�PT �d/vF for scat-
tering close to kF and the complex conjugate of it, E =
−i�PT �d/vF , for scattering close to −kF . Once we reverse
the phases, ϕ1 = π and ϕ2 = 0, we obtain the opposite re-
sults: E = i�PT �d/vF for scattering close to −kF , and E =
−i�PT �d/vF for scattering close to kF . This means that the
phases define which scattering process dominates, because
negative imaginary energy implies decay and positive imag-
inary energy implies growth or pumping of the state with
respect to time.

We can draw an analogy to Andreev bound states in
conventional SNS junctions. At the phase difference π and
transparent interfaces, the processes of scattering around kF

and −kF yield degenerate states at E = 0. However, if 0 <

ϕ2 − ϕ1 < π , the states for E > 0 are formed by the scattering
at −kF , and if π < ϕ2 − ϕ1 < 2π , the states for E > 0 are
formed due to scattering at kF . For E < 0, it is vice versa.
Thus, in conventional SNS junctions, the phases also define
which process dominates at a certain energy. The striking
difference compared with our junction is that in the S-PTS-S
case, the degeneracy at phase difference π is lifted because
we obtain nonstationary states that decay or grow. Moreover,
in contrast to conventional SNS junctions, the electron and
hole contents of the Andreev bound states at the edges of the
junction are not equal.

Let us discuss in more detail what growth and decay of
these bound states mean physically in our system. The process
of growth and decay occurs within the PTS. If we look at a
very narrow layer of the PTS, d → 0, we can see that E → 0,
corresponding to the value of energy at the phase difference
π in clean conventional SNS junctions without normal scat-
tering. This happens because at d → 0 electrons penetrate
through the PTS region quickly and do not experience the in-
fluence of its properties. Formation of an Andreev bound state
at energy εn in a conventional SNS junction can be understood
as an interference effect, where the phase difference between
an electron and a hole in one scattering cycle between the
interfaces of superconductors matches the phase difference
of superconductors plus 2 arccos (εn/�) + 2πn [32]. In our
case, it can also be understood as interference, but of decaying
and growing wave functions. The decaying and growing states
appear in the PTS in the k gaps (see Fig. 2), where the eigenen-

ergies ±
√

(k2/(2m) − μ)2 − �2
PT (before linearization) are

imaginary. Microscopically, we understand the processes of
decay and growth of the state as the decay and formation of
quasiparticles in the PTS due to non-Hermiticity of electron-
electron interaction, i.e., (anti)correlation of electrons and
holes. This happens because they interact attractively or
repulsively depending on the direction of the momentum
transferred during electron-electron interaction [23]. Note that
the spectrum of the PTS is gapless. Hence it costs no energy
to add (remove) quasiparticles to (from) it.

Perturbation theory. We now verify that the allowed phases
are restricted to discrete values via perturbation theory in
�PT . We assume that �PT is the smallest energy scale in our
system. This means that we should exclude E = 0.

Let us consider the case of scattering at −kF for concrete-
ness. We note that the upper term in the left-mover eigenvector
equation (4) diverges in the limit �PT → 0. This happens
because we have put all normalizations into the factors α, β,
and t1,2 in Eq. (7). Consequently, we obtain lim�PT →0 β = 0.
Therefore, in order to analyze this limit, we need to multiply
β by 
e,−

PT , expand in �PT , and then equalize the factors ob-
tained from the equations describing scattering at x = −d/2
and at x = d/2 [analogous to Eqs. (7), but for scattering close
to −kF ]. Retaining only linear terms in �PT and assuming
short junctions, Ed/vF � 1, we express �PT in terms of E
and the phases ϕ1 and ϕ2:

�PT = iE (1 − ei(ϕ2−ϕ1 ) ) − √
�2 − E2(ei(ϕ2−ϕ1 ) + 1)

v−1
F �d (e−iϕ1 − eiϕ2 )

. (9)

We know that in order to have a PTS, �PT must be real. This
can happen for |E | < �, if E is purely imaginary, E = iE ′ and
E ′ ∈ Re, and ϕ2 − ϕ1 = (2n + 1)π , ϕ1 = mπ , and ϕ2 = lπ ,
where n, m, and l are integer numbers.

Thus we substitute E = iE ′ into Eq. (9). We also assume
that E ′ � �, as we treat the PTS perturbatively. We obtain

E ′ = i� cot
(ϕ1 − ϕ2

2

)
+ �PT �

d

vF

sin
(

ϕ1+ϕ2

2

)
sin

(
ϕ1−ϕ2

2

) . (10)

We can see that in order for E ′ to be real and finite, we need
ϕ1 − ϕ2 = (2n + 1)π . If we exchange the phases ϕ1 and ϕ2,
the sign of E ′ changes. For instance, we obtain E ′ < 0 for
ϕ1 = 0 and ϕ2 = π , as stated in the previous section.
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Phases π/2 and 3π/2. For these phases, we obtain E = 0
from the full calculation using Eq. (8) and an analogous
equation for scattering around −kF . Let us first discuss why
there is no pumping or decay in this case.

For ϕ1 = 3π/2 and ϕ2 = π/2, we obtain

β = 0, (11)

t1 = e(�−i�PT )d/(2vF ), (12)

t2 = e(�+i�PT )d/(2vF ). (13)

This implies that the eigenvectors in all three superconductors
are the same with the exception of the factors e±ikPT x, e±ikcx,
meaning that if we put x = 0, they are equal. For the scattering
close to kF and putting x = 0, they are(


e,+
PT


h,−
PT

)
R

=
(


e,+
1,2


h,−
1,2

)
L

=
(


e,+
1,2


h,−
1,2

)
R

=
(−1

1

)
. (14)

For the subspace close to −kF , the corresponding eigenvectors
are (1 1)T . This means that there is only a right-moving quasi-
particle in the PTS. It propagates through the PTS obtaining
a phase �PT d/vF . This quasiparticle penetrates through the
whole junction without reflection because the eigenmode is
the same in all three superconductors. It becomes an evanes-
cent mode in the conventional superconductors, as its energy
is zero, i.e., less than �.

In the inverse case, ϕ1 = π/2 and ϕ2 = 3π/2, the quasi-
particle is left moving, because α vanishes in Eq. (7). This
implies that there is only a left-moving quasiparticle in the
PTS part of the S-PTS-S junction for these phases. The gen-
eral effect is analogous to the previous case: A quasiparticle
obtains a phase −�PT d/vF within the PTS. It does not scatter
at the interfaces and becomes an evanescent mode within the
conventional superconductors. Its eigenvector is (1 1)T in the
subspace close to kF and is (−1 1)T for the subspace close to
−kF .

This nonreciprocal behavior can be understood as a super-
current of quasiparticles. In conventional SNS junctions, the
supercurrent oftentimes follows the sinusoidal current-phase
relation I ∝ sin (ϕ1 − ϕ2). Hence the phase difference π gives
zero current. However, in our S-PTS-S junction, there is a
supercurrent of quasiparticles with net zero charge. The di-
rection of the current is defined by the phases: It moves in
the direction of the superconductor with phase π/2. As these
quasiparticles are at zero energy and all superconductors obey
particle-hole symmetry (see the next section), these states are
Majorana zero modes according to the definition for non-
Hermitian Hamiltonians [18].

Symmetry considerations. We now argue why the phases
{0, π} and {π/2, 3π/2} allow for solutions and why they are
physically different in terms of symmetry considerations.

In conventional superconductors, quasiparticles have
particle-hole symmetry defined as CcH∗

1,2(k)C−1
c =

CcHT
1,2(k)C−1

c = −H1,2(−k), where Cc is a unitary
transformation and the superscript T denotes transposition.
Particle-hole symmetry of non-Hermitian systems has
two definitions due to the fact that H∗ �= HT [18].
The PTS obeys the particle-hole symmetry defined
as CHT

PT (k)C−1 = −HPT (−k), where C is a unitary
transformation. Both types of particle-hole symmetries

require pairs of eigenvalues {E ,−E}, while the first one also
requires either Re{E} = 0 or pairs {E ,−E∗}. This means that
in order to satisfy all symmetries of the constituents of the
junction, the energies must be either purely real or purely
imaginary and must appear with both signs in the spectrum.

In the case of phases {0, π}, we obtain a purely imaginary
spectrum. When we have phases {π/2, 3π/2}, the energy
is zero. In principle, obtaining a real energy spectrum in a
non-Hermitian system is nontrivial. It was considered to be
not feasible for a long time, until it was shown by Ben-
der and Boettcher for PT -symmetric systems in 1998 [24].
Let us consider the effect of PT symmetry on an S-PTS-S
junction. The conventional superconductors are transformed
as PT H1,2(PT )−1 = H∗

1,2. Taking into account that we have
phases π/2 and 3π/2, H1 and H2 exchange with each other
under this transformation. However, P symmetry is by def-
inition x → −x, which means that if we act on the whole
S-PTS-S junction with PT symmetry, we have to exchange
the conventional superconductors. Thus P and T effectively
exchange the conventional superconductors twice, and we
obtain the same junction. This means that S-PTS-S junctions
with phases π/2 and 3π/2 are PT symmetric as a whole, and
real energy of the Andreev bound state can be expected.

Conclusions. In this paper, we consider a junction between
two conventional superconductors and a PT -symmetric non-
Hermitian superconductor. PT -symmetric non-Hermitian
superconductivity can emerge from Dzyaloshinskii-Moriya
interaction in combination with an external bath or the imbal-
ance between electron-electron and hole-hole pairs [33] or via
spatiotemporal modulation of a material with two interacting
phonon bands [23].

We have shown that Andreev bound states are formed in the
S-PTS-S junction. However, the physical properties of these
states are conceptually different from the ones that occur in
ordinary SNS junctions. First of all, solutions exist only for
particular discrete values of phases of the conventional su-
perconductors. Such strong selection can be useful in logical
quantum devices. Remarkably, for phases 0 and π , we obtain
growing and decaying states. These nonequilibrium processes
occur due to non-Hermitian electron-electron interaction in
the PTS. Experimentally, this can lead to the presence of
only one strongly pumped mode. This pumped mode indicates
particular phase differences by growing signal in time. In this
sense, it corresponds to a remarkable feature of a Josephson
junction as an amplifier. For phases π/2 and 3π/2, there is
a unidirectional supercurrent of Majorana zero modes. The
discreteness of ϕ1 and ϕ2 is stable with respect to a change in
the length of the PTS and for moderate temperatures (below
superconducting transition temperatures).
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[30] Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Parity-time
symmetry and exceptional points in photonics, Nat. Mater. 18,
783 (2019).

[31] Physically, the effect of superconductors with phases ϕ1 and ϕ2

occurs due to contact with the PTS. Hence we can understand
the dependence on ϕ1 and ϕ2 as the dependence on the phase
differences between superconductor 1 and the PTS and between
superconductor 2 and the PTS, respectively.

[32] H. Sellier, C. Baraduc, F. Lefloch, and R. Calemczuk,
Temperature-induced crossover between 0 and π states in S/F/S
junctions, Phys. Rev. B 68, 054531 (2003).

[33] A. Ghatak and T. Das, Theory of superconductivity with non-
Hermitian and parity-time reversal symmetric Cooper pairing
symmetry, Phys. Rev. B 97, 014512 (2018).

033201-5

https://doi.org/10.1103/PhysRevB.79.224521
https://doi.org/10.1103/PhysRevLett.95.147001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1038/s41567-020-0952-3
https://doi.org/10.1103/PhysRevB.105.155418
https://doi.org/10.3762/bjnano.10.36
https://doi.org/10.1021/acs.nanolett.9b02686
https://doi.org/10.1103/PhysRevResearch.1.033004
https://doi.org/10.1038/s41586-019-1201-8
https://doi.org/10.1126/science.aav8645
https://doi.org/10.1103/PhysRevB.104.134517
https://doi.org/10.1088/1361-648X/ab8b9d
https://doi.org/10.1002/adma.202206078
https://doi.org/10.1002/adma.202206078
https://doi.org/10.1103/PhysRevLett.127.197002
https://doi.org/10.1103/PhysRevResearch.4.013101
https://doi.org/10.21468/SciPostPhysCore.5.1.005
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevB.101.014306
https://doi.org/10.1103/PhysRevB.103.134507
https://doi.org/10.1088/1361-648X/ac54e2
https://doi.org/10.1103/PhysRevB.105.094502
https://doi.org/10.1103/PhysRevResearch.4.L022018
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1063/1.1418246
https://doi.org/10.1103/PhysRevA.95.053626
https://doi.org/10.1103/PhysRevB.95.174506
https://doi.org/10.1103/PhysRevB.98.085116
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1103/PhysRevB.68.054531
https://doi.org/10.1103/PhysRevB.97.014512

