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Optomechanical response of a strongly interacting Fermi gas
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We study a Fermi gas with strong, tunable interactions dispersively coupled to a high-finesse cavity. Upon
probing the system along the cavity axis, we observe a strong optomechanical Kerr nonlinearity originating from
the density response of the gas to the intracavity field and measure it as a function of interaction strength. We find
that the zero-frequency density response function of the Fermi gas increases by a factor of two from the Bardeen-
Cooper-Schrieffer to the Bose-Einstein condensate regime. The results are in quantitative agreement with a
theory based on operator-product expansion, expressing the density response in terms of universal functions of
the interactions, the contact, and the internal energy of the gas. This provides an example of a driven-dissipative,
strongly correlated system with a strong nonlinear response, opening up perspectives for the sensing of weak
perturbations or inducing long-range interactions in Fermi gases.
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I. INTRODUCTION

Cavity optomechanics allows for the sensing of mechanical
displacements with ultimate sensitivity [1–3], by translating
the position of an object into the resonance frequency of an
optical cavity. This framework naturally describes collective
displacements of atoms within a cloud dispersively coupled
to light in a high-finesse cavity [4]. The mode of the cavity
singles out a particular collective mode of the atomic medium,
the amplitude of which directly controls the effective cavity
length. The high sensitivity implies that upon injecting light
in the cavity, the weak collective displacement induced by the
photons feeds back on the cavity resonance position, yielding
a Kerr nonlinearity for the cavity or equivalently an effec-
tive nonlinearity for the atomic displacement. This hallmark
of cavity optomechanics has been observed in the context
of cold atoms for tightly confined, thermal clouds [5,6] and
homogeneous Bose-Einstein condensates (BECs) [7–9]. Its
counterpart for ideal Fermi gases has been predicted [10] but
has yet to be observed.

The feedback between the atomic displacement and the
intracavity photons is connected by a response function, de-
scribing the ability of the gas to adapt its density to an
external lattice potential. For weakly interacting bosons, the
response is essentially that of a harmonic oscillator, with
a frequency directly set by the recoil energy [7] or the
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external trap [5]. In contrast, the response of a strongly in-
teracting quantum system depends on the complex interplay
between interactions, geometry, and quantum statistics. Al-
though its direct calculation represents a theoretical challenge,
it was found in the last decade that many dynamical re-
sponse functions of the strongly interacting Fermi gas have
a universal character captured by Tan’s relations [11–14]
as observed with a wide variety of spectroscopic probes
[15–19].

In this paper, we report on the observation of the op-
tomechanical Kerr nonlinearity of a degenerate, strongly
interacting Fermi gas in a high-finesse cavity and mea-
sure its dependence on interaction strength in the crossover
between the BEC and Bardeen-Cooper-Schrieffer (BCS)
regimes [20,21]. In our experiments, the photon wave vector
kc exceeds the Fermi wave vector kF , so that the response
function underlying the nonlinearity has a universal charac-
ter inherited from the short-range physics of the Fermi gas.
We use an operator product expansion (OPE) of the static
response function to relate it to two thermodynamic proper-
ties of the gas, the contact and the internal energy, and find
that it quantitatively describes the scaling of the nonlinearity
with interaction strength. This shows that, even though the
system is both strongly correlated and driven in the pres-
ence of a large feedback, its state remains controlled by a
small number of universal parameters, similar to equilibrium
properties.

II. OPTOMECHANICAL RESPONSE

The connection between many-body physics in the gas and
the optomechanical nonlinearity originates from the structure
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FIG. 1. Concept of the experiment. A weak laser beam dis-
persively interacts with a Fermi gas held within the mode of a
high-finesse cavity. (a) When the probe intensity is low, the dipole
force exerted by the intracavity light field is negligible and the atomic
density is unperturbed. (b) In that case, the cavity spectrum features
a symmetric, Lorentzian shape. (c) For larger probe intensities, the
lattice formed by the intracavity light imposes a weak static density
modulation on the atoms, modifying the mode overlap with the cavity
mode, thus the effective cavity length. (d) The lineshape acquires an
asymmetry typical of the Kerr effect. The distinctive sharp edge on
the red side of the resonance is due to the onset of bistability.

of the dispersive light-matter coupling Hamiltonian [22,23]

Ĥlm = �â†â
∫

d3rn̂(r) cos2 kcr = �â†â
(N

2
+ M̂

)
, (1)

where � is the dispersive coupling strength, â annihilates a
photon in the cavity with a mode function cos kcr, n̂ is the
atomic density operator, and N is the fixed total atom number.
We have supposed that the transverse size of the cloud is much
smaller than the cavity mode waist. The first part of Eq. (1)
represents an average dispersive shift of the cavity while the
second describes both a shift of the cavity resonance fre-
quency originating from a collective displacement M̂ and an
optical lattice with spacing π/|kc| and depth �â†â imprinted
onto the atoms.

For an empty cavity or frozen atoms, 〈M̂〉 = 0, so that
probing the cavity with vanishingly small probe power yields
a symmetric, Lorentzian shaped transmission spectrum with
width κ , the inverse photon lifetime, as illustrated in Figs. 1(a)
and 1(b). Upon increasing the probe power, the finite intracav-
ity photon number n̄ = 〈â†â〉 imprints a density modulation
on the atoms, depicted in Fig. 1(c), which yields to first order
a displacement

〈M̂〉 = N�

8
n̄χR(2kc, 0), (2)

where χR(q, ω) is the retarded density response function of
the gas at frequency ω and wave vector q [24]. Its imagi-
nary part is connected to the dynamical structure factor via
detailed balance and has been measured with high precision
[17,25,26]. However the zero-frequency (static) response,
which is purely real, has never been measured due to the im-
possibility to directly observe weak, short-wavelength density
perturbations in a strongly interacting system. In the strong

dispersive coupling regime �N � κ , the cavity converts the
weak, perturbative displacement into a dispersive shift with
a large gain, modifying significantly the transmission of the
atom-cavity system, as illustrated in Fig. 1(d).

Accounting for the displacement induced by the probe,
described by Eq. (2), as well as the external driving and cavity
dissipation in the equations of motion for the intracavity field
yields a Kerr optical nonlinearity. Starting from the Hamil-
tonian (1) and using the input-output formalism in the frame
rotating at the drive frequency, the mean-field equations of
motion for the intracavity field read

〈 ˙̂a〉 = −
(

i� + κ

2

)
〈â〉 − i�

(N

2
+ 〈M̂〉

)
〈â〉 − √

κbin, (3)

where � is the drive-cavity detuning and bin is the driving
amplitude. In the steady state, the atomic degrees of freedom
are described by Eq. (2), and the intracavity photon number
reads (see Appendix A)

n̄ = n̄0

1 + 4
κ2 (δ + ηn̄)2

, (4)

where n̄0 = 4|bin|2/κ is the maximum photon number,
δ = � + �N/2 is the detuning with respect to the dis-
persively shifted cavity resonance, and η = �〈M̂〉/n̄ =
N�2χR(2kc, 0)/8 measures the strength of the Kerr nonlin-
earity. This describes both the intracavity field self-amplified
via the atomic medium and the atomic density fluctuations
interacting via the cavity field.

III. EXPERIMENT

A. Observation of the optomechanical response

We perform experiments on degenerate balanced two-
components Fermi gases of 6Li typically comprising 6 ×
105 atoms and held in a crossed dipole trap with frequen-
cies (ωx, ωy, ωz ) = 2π × (187, 565, 594) Hz along the x,
y, and z directions, respectively. A homogeneous magnetic
field B oriented along the z axis is tuned in the vicinity of
a broad Feshbach resonance at 832 G, where the gas ex-
plores the BEC-BCS crossover. The gas has a temperature of
T = 0.08(1)TF , with TF = h̄(ωxωyωz3N )1/3 being the Fermi
temperature.

The atoms are prepared in the mode of the cavity ori-
ented along x with a finesse of 47′100(700) and κ = 2π ×
77(1) kHz [27]. We probe the system using light linearly
polarized along the z axis and matched to the TEM00 mode
of the cavity. The cavity resonance frequency is detuned by
−2π × 13.9 GHz from the D1 π transition of 6Li at 832 G,
yielding � = 2π × 11.2 Hz. With �N/2κ ≈ 45, the system
operates deeply in the strong dispersive coupling regime. The
probe frequency is dynamically swept from the blue to the
red side of the cavity resonance frequency over a range of
2π × 3 MHz in 3 ms during a single experimental run, and
the photon arrival times are recorded with a single photon
counting module. The sweep rate was chosen to be slow
enough compared with the typical dynamical timescales of
the system to ensure that we probe its steady state and fast
enough to minimize atomic losses during the probe process.
Losses lead to a change of the dispersive coupling during the
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FIG. 2. Optomechanical nonlinearity for the unitary Fermi gas.
(a) Transmission spectra of the cavity for increasing probe power
(light blue n̄0 = 300, blue n̄0 = 700, and dark blue n̄0 = 1300). For
weak probes we observe symmetric Lorentzian profiles (light blue).
As the probe power increases, the lineshape is distorted and features
a sharp edge on the red side of the resonance (dark blue). δ = 0 is
the frequency of the unperturbed, dispersively shifted, atom-cavity
resonance. The spectra are averaged 20 times. (b) Aggregated trans-
mission spectra (blue triangles) and individual measurements (gray
lines) taken at fixed probe intensity (n̄0 = 1300), in logarithmic scale.
Dashed orange line is a fit of Eq. (4) to the averaged curve. The error
bars represent the standard deviation over 20 realizations.

sweep representing a systematic error on the nonlinearity (see
Appendixes D and F).

Typical transmission lineshapes acquired for a unitary
Fermi gas are depicted in Fig. 2(a). For low probe intensity, we
record symmetric Lorentzian profiles, with a fitted linewidth
of 2π × 116(2) kHz, enlarged compared with the inverse
photon lifetime by technical fluctuations. As the intracavity
photon number is increased, the Kerr nonlinearity originating
from atomic displacements distorts the profiles. For the largest
probe power, we observe a distinctive sharp edge towards
the red side of the cavity resonance, due to the onset of
bistability predicted by Eq. [28]. The accurate determination
of η, which quantifies the Kerr nonlinearity, requires a high
signal-to-noise ratio that we obtain by aggregating multiple
traces taken in similar experimental conditions and averaging
them (see Appendix E). A fit of Eq. (4) to the averaged profiles
then yields a precise value of η. Figure 2(b) displays 20
individual traces, their average and its fitted profile, showing
excellent agreement with the model of Eq. (4) over two orders
of magnitude of dynamic range.

B. Response in the BEC-BCS crossover

We now observe the variations of the Kerr nonlinearity,
and thus of χR(2kc, 0) with interaction strength in the BEC-

FIG. 3. Optomechanical nonlinearity in the BEC-BCS crossover.
(a) Averaged transmission spectra and their fit using Eq. (4) for
1/kF a = −0.48, 0, 1.42 (olive, red, and blue, respectively) for fixed
atom number and probe power, showing an increase of the nonlin-
earity with increasing 1/kF a. (b) Density response extracted from
fits to the distorted transmission profiles, normalized by the value
measured at unitarity, as a function of the interaction parameter
across the BEC-BCS crossover (red circles). The prediction of
Eq. (5) is shown including the internal energy contribution (solid
line), based on the contact calculated in Ref. [17]. The horizontal
dotted and dash-dotted lines represent values of the density response
computed on the BCS side obtained by canceling the contact term
of Eq. (5) and on the BEC side by considering the response of a
BEC comprising N/2 molecules [29], respectively. The error bars
represent the uncorrelated combination of statistical fluctuations of
the measurement fit uncertainties and systematic effects due to atom
losses.

BCS crossover, by repeating this measurement at different
magnetic fields around the Feshbach resonance, keeping the
other conditions identical. Typical observations are presented
in Fig. 3(a) for B = 710 , 832, 950 G, corresponding to inter-
action parameters 1/kF a = −0.48, 0, 1.42, respectively, with
a being the scattering length, together with the fit to Eq. (4)
showing a large increase of the response as the gas crosses
over from the BCS to the BEC regime.

In our regime, where 2kc ≈ 2.5kF , the response function
χR(2kc, 0) depends on the short-range physics of the gas. This
can be exploited to connect the observations of Kerr non-
linearity to the universal thermodynamics of the many-body
ground state of the Fermi gas. To this end, we perform an oper-
ator product expansion (OPE) of χR(q, 0) up to second order
in kF /q, leading to the expression [30–32] (see Appendix B)

χR(q, 0) = − 2

εq
− π Ĩ

εqq

[
1 − 8 + 24π − 6π2

3π2qa

]
− 8H̃

3ε2
q

, (5)

where εq = h̄2q2/2m and m is the mass of 6Li. The expression
relates χR(q, 0) to two universal functions of the interaction
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parameter: the total contact Ĩ and total internal energy H̃
per particle of the cloud. A similar expression at nonzero
frequency has been used to relate the dynamical and static
structure factors to Ĩ [30–33]. Compared with the structure
factor results, the presence of the internal energy contribution
is specific to the real part of the response function. Both Ĩ and
H̃ have been computed and measured accurately in the low-
temperature regime in the BEC-BCS crossover [15,16,34–39].
The presence of H̃ in the expansion is necessary in order
for the left-hand side of Eq. (5) to match the response of
a noninteracting Fermi gas given by Lindhard function in
the BCS regime, to second order in kF /q. On the far BEC
side, the OPE suffers from an intrinsic singularity at qa = 2
(see Appendix B). There, Eq. (5) should be interpreted as an
extrapolation from the large-qa limit to effectively circumvent
the singularity in the BEC regime.

To compare with theory, we systematically measure η̃ =
η/�2N as a function of B. Here, N is determined inde-
pendently for each experimental realization before and after
the nonlinearity measurement using nondestructive cavity-
assisted methods [27]. Converting directly η into an absolute
measurement of χR(2kc, 0) requires the knowledge of the
photon detection efficiency, which is prone to systematic er-
rors. Instead, we normalize the results by the strength of
the nonlinearity measured at unitarity η̃∞, allowing for the
precise determination of the relative variations of the response
function in the BEC-BCS crossover. This amounts to using the
unitary gas data to calibrate the intracavity photon number.
The variations are presented in Fig. 3(b), showing a smooth
increase by a factor of two from the BCS to the BEC regime.

We calculate χR(q, 0) from Eq. (5) using the values of Ĩ
for harmonically trapped gases in the BEC-BCS crossover
calculated by Monte Carlo methods [17] and successfully
compared with various experimental observations [17,34,39].
We also infer from it the variations of H̃ using the adiabatic re-
lation [13] (see Appendix B). The results are shown as a solid
line in Fig. 3(b). The agreement with the experimental data is
good over the whole range of interaction strength, confirming
the deep connection between the optical nonlinearity and the
universal, many-body physics of the Fermi gas. This adds the
static optomechanical response to the set of response func-
tions experimentally accessible following Tan’s relations. The
agreement with Eq. (5) indicates that the increase of nonlin-
earity towards the BEC regime originates predominantly from
the increase of the contact. On the BEC side, the agreement
validates our extrapolation of expression (5) and calls for a
deeper understanding of the singularities of the OPE.

IV. DISCUSSION AND CONCLUSION

The amplifying ability of the cavity is striking consid-
ering that the maximum depth of the probe-induced lattice
throughout the entire measurement process is only 0.2ER, with
ER = h × 73.7 kHz being the recoil associated with the cavity
photons, producing a density modulation with a relative depth
of the order of a few percent. The accuracy of our method is
mostly limited by atomic losses in the trap, especially on the
BEC side, and by probe-induced losses which limit the mea-
surement time and usable probe strength (see Appendix C).
While losses are partially of technical origin, we also expect

a fundamental contribution originating from instabilities on
the red side of the cavity and amplification due to dynamical
backaction on the blue side [40]. Including losses in the mi-
croscopic description could be performed in the framework of
non-Hermitian perturbation theory [41].

Compared with spectroscopic probes also sensitive to the
contact, the optomechanical coupling operates in the static
limit where driving the cavity changes the properties of the
steady-state of the system. In fact, the correspondence estab-
lished by Eq. (2) also translates the optical nonlinearity into
an interaction between the density fluctuations mediated by
light, repulsive on the blue side of the cavity resonance and
attractive on the other, similar to cavity-induced squeezing in
spin ensembles [42]. Our experiment shows that this effect
is controlled by the contact, opening fascinating perspectives
for the study of the interplay between contact interactions and
long-range correlations.

Last, we could extend our optomechanical response mea-
surement to the vicinity of a photo-association transition,
where the dispersive shift acquires directly a contribution
proportional to the contact [39]. Correspondingly, the optome-
chanical response functions such as the contact-density and
contact-contact responses, describing three- and four-body
effects, which to our knowledge have never been observed
experimentally.
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APPENDIX A: PHOTON NUMBER EXPRESSION

We consider the coupling of a Fermi gas to light in an
optical cavity in the dispersive limit, where the light-matter
coupling is given as Eq. (1) in the main text. In the presence
of such a coupling, the Heisenberg-Langevin (input-output)
Eq. for the photon field in the frame rotating at a driving
frequency, is given by [22,23]

˙̂a = −
(

i� + κ

2

)
â − i�

(
N̂

2
+ M̂

)
â − √

κ b̂in, (A1)

where � is the detuning with respect to the empty cavity,
b̂in is the input field, and κ is the cavity decay rate. We
then consider the case of the coherent-state input where the
coherent-state description for the photon field is reasonable
and the corresponding c number field a obeys the following
Eq. [22,23]:

ȧ = −
(

i� + κ

2

)
a − i�

(N

2
+ 〈M̂〉

)
a − √

κbin. (A2)
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Here we note that the average 〈M̂〉 contains the light-matter
coupling Hamiltonian Ĥlm. In the small light-matter coupling
limit where the linear-response analysis is allowed, we obtain

〈M̂〉 ≈ N�

8

∫ ∞

−∞
dt ′χR(2kc, t − t ′)n̄(t ′). (A3)

Here we define the retarded density response function
per atom,

χR(q, t ) = 1

N

∫
d3RχR(R, q, t ), (A4)

which can be written as the spatial integral of the following
local retarded density response function:

χR(R, q, t )

= −iθ (t )
∫

d3re−iq·r〈[n̂(R + r/2), n̂(R − r/2)]〉0, (A5)

with n̂ being the density operator of the gas, and 〈· · · 〉0 de-
noting the average in the absence of light-matter coupling.
To obtain Eq. (A3), we used the local density approximation
where the system is locally uniform with translational and
inversion symmetries.1

We now assume the steady-state solution of a where time
dependence of the cavity field can be neglected. In this case,
〈M̂〉 is reduced to

〈M̂〉 = N�

8
n̄χR(2kc, 0), (A6)

where χR(2kc, 0) = χR(2kc, ω = 0). By substituting (A6)
into (A2) under ȧ = 0, we have

a = −2bin/
√

κ

1 + 2i
κ

(δ + ηn̄)
. (A7)

By using above the coherent state property n̄ = |a|2, Eq. (4)
in the main text is obtained.

APPENDIX B: ASYMPTOTIC RETARDED RESPONSE
FUNCTION EXPRESSION FROM THE OPERATOR

PRODUCT EXPANSION

We discuss the asymptotic form of the density response
function in terms of the operator product expansion (OPE).
Since the detailed analysis on corresponding time-ordered
Green’s function has already been done in Refs. [30–32], here
we focus on the essential idea and result.

The OPE is a standard approach of quantum field theory
which states that the product of local operators at different
points in space and time can be expanded in terms of local
operators. In the case of the density response function, we can
consider the following relation:

n̂(R + r/2, t )n̂(R − r/2, 0) =
∑

m

cm(r, t )Ôm(R, 0), (B1)

1To be precise, the local translational symmetry ensures that the
local density response function is expressed with the Fourier compo-
nent of the relative coordinate (A5), and the local inversion symmetry
ensures χR(R, −2kc, t ) = χR(R, 2kc, t ).

where Ôm is a local operator and cm(r, t ) is a function of the
relative coordinates. For generic space-time points, the above
operator identity may be useless, since the sum in the right-
hand side is taken over infinitely many local operators. In the
short-range regime that is shorter than mean particle distance
(≈1/kF ) and the inverse of the thermal de Broglie length but
is longer than a cutoff length of the effective theory (e.g., van
der Waals length in cold gases); however, the OPE becomes
a powerful tool in that the first few terms with low scaling
dimensions in the operator sum dominate the identity [21].

To proceed with the OPE calculation in terms of quantum
field theory, it is convenient to work with the following time-
ordered Green’s function:

χT (q, ω) = −i

N

∫
d3R

∫
d3r

∫
dteiωt−iq·r

×〈T [n(R + r/2, t )n(R − r/2, 0)]〉0, (B2)

where T denotes time ordering. By using Eq. (B1), the time-
ordered function obeys the following relation:

χT (q, ω) =
∑

m

cm(q, ω)
∫

d3R
〈Ôm(R)〉0

N
. (B3)

As defined before, 〈· · · 〉0 is the average without Ĥlm, and
therefore 〈Ôm〉0 is essentially the equilibrium average of a
Fermi gas. By using the Feynman diagram technique, we can
determine the so-called Wilson coefficient cm and χT . Up to
(kF /q)2, χT has been obtained as follows [31,32]:

χT (q, ω) ≈ Ncn(q, ω) + cI (q, ω)Ĩ + cH(q, ω)H̃. (B4)

Here we define

cn(q, ω) = 2εq

ω2 − ε2
q

, (B5)

cH(q, ω) = 4εq

3

[
1

(ω − εq)3
− 1

(ω + εq)3

]
, (B6)

cI (q, ω) = −
[

A(q, ω)

{
I1(q, ω) + 2

A(0)

1

ω − εq

}2

+ A(−q,−ω)

{
I1(−q,−ω) + 2

A(0)

1

−ω − ε−q

}2

− [I2(q, ω) + I3(q, ω)]

2

− [I2(−q,−ω) + I3(−q,−ω)]

2
− 4

A(0)

1

ω2 − ε2
q

− 2

A(0)

{
1

(ω − εq)2
+ 1

(ω + εq)2

}

− 4εq

3A(0)

{
1

(ω − εq)3
− 1

(ω + εq)3

}]
, (B7)

with εq = q2/(2m), A(0) = − 4πa
m ,

A(q, ω) =
4π
m

− 1
a +

√
−m[ω − q2/(4m)] − i0+ , (B8)

I1(q, ω) =
∫

d3k

(2π )3

1

εk

1

ω − εk − εk+q + i0+ , (B9)
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I2(q, ω)

=
∫

d3k

(2π )3

1

ε2
k

[
1

ω − εk − εk+q + i0+ − 1

ω − εq + i0+

]
,

(B10)

I3(q, ω) =
∫

d3k

(2π )3

1

εkεk+q

1

ω − εk − εk+q + i0+ .

(B11)

We now apply the above result for the retarded density
response function. To this end, we focus on the spectral rep-
resentation of Green’s function [24], which allows us to relate
χT to χR. By using this, it is straightforward to show

Re[χR(q, ω)] = Re[χT (q, ω)], (B12)

χR(q, 0) = Re[χR(q, 0)]. (B13)

Thus, it turns out that χR(q, 0) can directly be determined
from Eq. (B4). To obtain a simpler expression, we finally
perform integrals in I1, I2, and I3. First, by using

1

AB
=

∫ 1

0
dx

1

[Ax + B(1 − x)]2
, (B14)∫

d3k

(2π )2

1

[k2 + α2 − i0+]2
= 1

8πα
, (B15)

we can show

I1(±q, 0) = −m2

4q
. (B16)

In addition,

I2(±q, 0) = −2m3

πq3
, (B17)

can be shown by using

1

AB2
= 2

∫ 1

0

1 − x

[Ax + (1 − x)B]3
, (B18)

∫
d3k

(2π )2

1

[k2 + α2 − i0+]3
= 1

32πα3
. (B19)

Finally, by using

1

ABC
= 2

∫ 1

0
dx

∫ 1−x

0
dy

1

[Ax + By + C(1 − x − y)]3
,

(B20)∫ 1

0
dx

∫ 1−x

0
dy

1

{1 − (x − y)2}3/2
= 1, (B21)

we obtain

I3(±q, 0) = −2m3

πq3
, (B22)

and we also obtain

A(±q, 0) = 8π

mq
(
1 − 2

qa

) , (B23)

such that the OPE expansion for χR(q, 0) reads

χR(q, 0) = −2N

εq
− 8H̃

3ε2
q

− π Ĩ
2εqq

[
1

1 − 2
qa

− 8

πqa
(
1 − 2

qa

) + 16

π2(qa)2
(
1 − 2

qa

) − 8

3π2qa

]
. (B24)

This expression diverges for qa = 2, such that in the BEC
regime it becomes uncontrolled. However, close to the unitary
regime qa � 1, the expression above reduces to Eq. (4) in the
main text

χR(q, 0) = −2N

εq
− 8H̃

3ε2
q

− π Ĩ
2εqq

[
1 − 8 + 24π − 6π2

3π2qa

]
.

(B25)

which is regular in the BEC regime. The OPE results with and
without the large-qa limits are presented in Fig. 4.

APPENDIX C: EXPERIMENTAL PROCEDURE

We prepare a quantum degenerate, strongly interacting
Fermi gas of 6Li following the method described in Ref. [27].
At the end of the all-optical preparation, we perform trans-
mission spectroscopy while holding the Fermi gas in a
crossed optical dipole trap with trapping frequencies of 2π ×
(187, 565, 594) Hz along the longitudinal and transversal
directions of the cavity.

The spectroscopic measurement consists of four probe
pulses with π polarization, during which we sweep the fre-
quency of the probe beam across the cavity resonance. First,

we perform a pulse with fast sweep rate to determine the
resonance of the dispersively shifted cavity, allowing us to
infer the atom number in a nondestructive way [27]. This is
followed by a second pulse to measure the optomechanical
response of the Fermi gas as described in the main text. The
third and fourth pulses measure the dispersively shifted cavity
resonance after the response measurement to infer losses and
the cavity resonance without atoms, respectively.

The probe power is optimized for the highest signal-to-
noise ratio and is limited by the dynamic range of the single-
photon counter. At high photon flux the detector response
becomes nonlinear, which introduces a bias in the Kerr
effect determination. By recording the position of the cavity
resonance without atoms, we can correct for slow drifts in the
experimental lock chain and exactly determine the dispersive
shifts.

APPENDIX D: ATOM-NUMBER DETERMINATION
AND LOSSES

The atom number is extracted from the dispersive shift of
the cavity resonance with respect to the bare cavity δat = N�

2

with light shift � = g2
0

�a
, atom number N , single photon-atom
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FIG. 4. Comparison of different OPE expressions for χR(q, 0)
as a function of (kF a)−1 for a trap-averaged system of 6 × 105 atoms
and other parameters as in the main text. The OPE expressions show
all very similar behavior in the unitary regime. However, in the BEC
regime the expression without qa � 1 approximation (B24) shows a
divergence approaching qa = 2 (olive dash dotted line), whereas the
OPE expression with qa � 1 approximation (B25) (red solid line)
circumvents the singular behavior and should be interpreted as an
extrapolation from the large-qa limit. For comparison, (B25) without
the internal energy contribution is also shown (blue dashed line).

coupling strength g0, and atom-cavity detuning �a. We take
D1π and D2π transitions into account to infer the total atom
number:

N = 2δat

g2
D1π/�D1π + g2

D2π/�D2π

, (D1)

with the coupling strengths gD1π = 2π × 276 kHz,
gD2π = 2π × 391 kHz and the detunings of the cavity
resonance from the respective atomic transitions at 832 G of
�D1π = −2π × 13.9 GHz and �D2π = −2π × 23.6 GHz.

Using a fast and nondestructive measurement of the disper-
sive shift, we determine the atom number before and after the
optomechanical response measurement and infer the atomic
losses encountered during the measurement. We investigated
the response and losses as a function of the measurement
duration, as shown in Fig. 5 for the unitary Fermi gas. For
durations shorter than 5 ms, the losses are below 2%, while
reaching up to 7.2% for a sweep duration of 30 ms.

Losses originate both from the finite lifetime of the gas in
the trap and from the measurement itself. To disambiguate
between these two effects, we measure the losses due to the
finite lifetime of the gas, depending on interaction strength,
by replacing the slow optomechanical response measurement
between the two dispersive shift measurements by another
dispersive shift measurement. This also allows us to infer the
exact atom number at the position of the slow sweep. The
results for the losses corresponding to an optomechanical re-
sponse measurement duration of 3 ms are presented in Fig. 6,
which shows a strong increase of the loss rate towards the
BEC side due to three-body losses [20]. We find that the total
losses at 832 G are below 2%, matching the value measured
for Fig. 5(b). Therefore, for durations of 3 ms, trap losses
have a small contribution for a unitary gas, and we infer

(b)

FIG. 5. (a) Static response per atom η̃ as a function of the probe
duration over a frequency range of 2π × 2.7 MHz for a unitary Fermi
gas, all other parameters identical to the main text. η̃ is normalized to
the response per atom η̃∞ at 3 ms probe duration used in the exper-
iment at 832 G (olive diamonds). Simulation of the effect of losses
on the fitted static response (light blue line). (b) Total atomic losses
as a function of the sweep duration inferred from two dispersive
shift measurements respectively performed before and after the slow
sweep (olive diamonds). The chosen probe duration of 3 ms mini-
mizes measurement-induced losses to below 1.4%, which would sys-
tematically shift down the static response of the gas for longer sweep
durations. The effect of probe-induced losses becomes more signifi-
cant for longer probe durations, whereas the trap losses remain small
over the time of probing (blue circles).

measurement-induced losses of 1.3%. On the BEC side, we
also infer measurement-induced losses below 2% for 3 ms
duration, hence the choice for the main text data presented in
Fig. 5(a). This ensures that the measurement-induced losses
do not shift the cavity resonance by more than its linewidth
while maintaining a high signal-to-noise ratio of the photon
count rate at all detunings.

Note that the equilibrium condition for the atomic gas is
easily fulfilled since we increase the probe power from the
background to its maximal value in about 1 ms, which is
long compared with the dynamical timescale of atomic motion
given by the recoil time of 13.57 μs.

Even though losses are small compared with the total atom
number, the change of dispersive shift during the measure-
ment yields a systematic decrease of the observed nonlinear-
ity, which we account for in the error bars (see below).

APPENDIX E: DATA ANALYSIS

The photon count rate n̄det recorded from transmission
spectroscopy is related to the intracavity photon number n̄ by

n̄det = ε
κ

2
n̄, (E1)
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FIG. 6. (a) Total atom number measured before the nonlinearity
measurement as a function of magnetic field. (b) Total losses during
the nonlinearity measurement as a function of magnetic field (olive
diamonds) compared with trap losses due to the finite atomic lifetime
(red circles) and probe induced losses (blue squares).

with photon-detection efficiency ε and cavity intensity decay
rate κ . Inserting Eq. (E1) into Eq. (A7) yields the model for
the Kerr nonlinear resonator:

n̄det = n̄det
0

1 + (
2 δ

κ
+ 4 η′

κ2 n̄det
)2 (E2)

with the maximal detected photon count rate n̄det
0 = ε κ

2 n̄0

and Kerr nonlinearity η′ = η/ε. Eq. (E2) reduces to a third-
order polynomial in n̄det, which can be solved for each
value of δ. Figure 7 displays the two stable solutions of

FIG. 7. Solution of the cubic polynomial given by Eq. (E2) for
the fitted parameters at 832 G. The two stable solutions of the cubic
polynomial, which are explored by sweeping the frequency from
the blue to the red side (red) and from the red to the blue side
(olive). A sweep direction downward in frequency is chosen in the
experiment to avoid measurement-induced heating resulting from a
sudden increase in intracavity photon number.

the Eq. for a set of parameters reproducing the experi-
mental conditions. In the bistable regime the Eq. has three
real solutions, of which the two shown solutions corre-
spond to the stable branches of the model. We pick the
largest of the two real stable solutions which corresponds to
our procedure of downwards sweeping the probe frequency.
That branch is depicted by the red curve of Fig. 7. The
downward sweep direction is chosen to avoid measurement-
induced heating due to a sudden increase in intracavity photon
number.

The numerical solution is then used as a fit function for
n̄det as a function of δ. We acquire 30 transmission spectra
obtained with the same experimental parameters on different
realizations of the atomic samples. We overlap the spectra on
their sharp edge before averaging them together and fitting
the averaged profile on Eq. (E2) to extract η, as depicted by
Fig. 2(b) of the main text. We found that the fitted value of the
nonlinearity parameter η is sensitive to the shape of the tails of
the transmission profile. To obtain a good agreement between
the fit and the averaged profiles, we fit the logarithm of the
latter, thus equally weighting data points at the peak and in
the wings of the profile. This results in the typical data shown
in Fig. 2(b) of the main text, and their fit with good agreement
over two orders of magnitude. In the procedure, we fix n̄det

0
to the maximal detected number of photons. Moreover, the
effective cavity linewidth is increased compared with the fast
sweep configuration due to technical fluctuations at the slow
sweep rate at which the experiment is operated. Measuring
the linewidth of the cavity with slow sweep rates, we obtain
κ = 2π × 116(2) kHz, which we also set as fixed in the fitting
procedures.

The statistical errors are estimated by using a bootstrap
method. We randomly resample the 30 profiles taken for one
set of experimental conditions to produce 20 datasets, which
are then averaged and fit, yielding 20 statistical realizations of
η for the initial 30 spectra. These realizations are averaged,
their mean used as the measured value of η in the main text,
and their standard deviations used as statistical error esti-
mate. These are combined with estimates for the systematic
error due to atom losses (see below) to produce the error
bars.

APPENDIX F: SYSTEMATIC ERROR DUE TO LOSSES

In Fig. 5(a), we display the effect of losses on the
fitted static response. By assuming a constant atom loss
rate L over the probe duration for the trap and probe-
induced losses as observed in Fig. 5(b), we simulate
the distortion of the Kerr nonlinear profile by modifying
Eq. (E2) to

η′(t ) = η̃′�2(N − Lt ), (F1)

δ(t ) = d�

dt
t + �/2(N − Lt ), (F2)

with the detuning from the bare cavity resonance �. We then
fit the simulated, distorted profiles using Eq. (E2) and use the
result to estimate the effect of losses on the static response
[light blue line Fig. 5(a)]. As expected, we observe that losses
decrease the fitted static response, due to the variations of the
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dispersive shift during the measurement. The result of the loss
simulation reproduces well the tendency of the fitted static
response, as can be seen in Fig. 5(a). For the chosen probe
duration of 3 ms, we perform the simulation for the losses at
each magnetic field. Using this simulation, we estimate the

systematic error of the fitted η′ to be 4% compared with its
undistorted value. This is now included in the error bar for
the data shown in the main text through independent error
combination with the statistical fluctuations inferred from the
bootstrap method (see above).
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