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Management of breather interactions
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We propose theoretically and confirm experimentally a general approach to manage multiple nonlinear
interactions of coherent solitary wave structures on an unstable background—breathers. It allows adjusting
the initial positions and phases of more than two moving breathers to observe various desired wave states at
controllable moments of wave evolution. Our theoretical framework relies on exact multibreather solutions to
the one-dimensional focusing nonlinear Schrödinger equation and asymptotic expressions describing shifts of
breather positions and phases acquired by them in mutual collisions. As proof-of-principle, we consider a couple
of separated pairs of breathers initially synchronized in a small-amplitude patterns; meanwhile, our approach can
be generalized to other breather types and wave states. We obtain an explicit expression for the separation interval
between the pairs so that the interactions of the breathers from the neighboring patterns lead to the formation of
an extreme amplitude wave or recurrence to the initial small-amplitude state. Experiments are carried out on a
light wave platform with a nearly conservative optical fiber system, which accurately reproduces the predicted
dynamics and proves the viability of our nonlinear wave theory.
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I. INTRODUCTION

Coherent nonlinear solitary wave structures on an unstable
background such as breathers, have received much attention
in theoretical and experimental studies over the past several
decades, see e.g., Refs. [1–3]. Breathers being a generalization
of the soliton concept, exhibit an exciting picture of propaga-
tions and collisions, thanks to the instability features of the
background [4–6]. The key nonlinear model to describe the
breathers behavior in nonlinear media is the focusing one-
dimensional nonlinear Schrödinger equation (NLSE), which
in dimensionless form reads as

iψξ + 1
2ψττ + |ψ |2ψ = 0. (1)

Here ψ (ξ, τ ) describes complex-valued wave field, ξ and τ

are the scaled propagation distance and time, respectively.
The NLSE represents a universal model of nonlinear physics,
which describes the propagation of weakly nonlinear waves
in various media ranging from optical fibers and fluids to
Bose-Einstein condensates [2,7,8]. As typically done, the un-
stable background is modeled by a simple solution of Eq. (1)
ψ0 = AeiA2ξ , where A is the background amplitude, which we
set to unity. The wave field ψ0 is modulationally unstable to
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long-wave harmonic perturbations having wave vectors k ∈
(−2, 2), see [9–11] for more information on the modulation
instability (MI) phenomena. Note that we write the NLSE in
the fashion of optical studies so that the propagation distance
plays the role of the evolution variable.

The NLSE, completely integrable using inverse scattering
transform (IST) technique [12], allows finding exact single
and multiple breather solutions [13–18]. Among various so-
lutions of Eq. (1), the most widely known are breathers
of Akhmediev, Kuznetsov, Peregrine, and Tajiri-Watanabe
[13–18]. While Akhmediev breathers represent periodic in τ

solutions, the general breathers are oscillating coherent local-
ized structures moving on the unstable background. Single
breathers have been thoroughly studied and now have be-
come classical models of nonlinear wave motion, in particular,
the development of MI and formation of extreme amplitude
(rogue) waves [1,13,17,19–22]. On the other hand, multi-
breathers exhibit more complex behavior, which includes
formation of high-order rogue waves, molecule bound states
and the so-called superregular scenario of the MI development
[5,6,23–26]. In addition, the interest in propagation of sponta-
neously generated waves, brings to the agenda the problem of
breathers with random parameters [27–30]. Most importantly,
the nonlinear dynamics described by breather solutions can
be observed in nature, which pioneering experimental studies
[20,21,31–33] on single Peregrine and Kuznetsov breathers
have been confirmed in nonlinear optics, hydrodynamics, and
plasma physics. Later on, other types of breathers, including
high-order breathers and their interactions, have been inves-
tigated in different experimental settings, thus unveiling the
rich physics of these pulsating nonlinear waves [6,24,34–38].

Stable propagations and nontrivial interactions are two
sides of one coin in nonlinear coherent structures. For exam-
ple, governing by relative phase, the NLSE solitons exhibit
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a broad family of interaction profiles different from those
emerging in linear wave fields interference. In particular, the
so-called “in-phase” synchronization leads to a local nonlin-
ear wave field compression with a peak power corresponding
to the sum of the interacting solitons amplitudes. Mean-
while, the high-order (nonintegrable) corrections to the NLSE
model, which always occur in real-life experiments, trigger
such nonelastic effects as soliton fusions and annihilations,
energy exchange, and supercontinuum generation [39–43]. In
the matter of breathers, the ratio of the amplitudes between
the collision profile and the background wave is the focus
of studies. Collisions of breathers can produce both small-
amplitude background perturbation and high amplitude wave
field amplification, depending on the relative phase [5,23,36].
When these states follow each other, one can see it as a
fascinating nonlinear effect—the sudden formation of extreme
waves from a calm background.

One usually distinguishes and observes experimentally the
following three typical breather collision profiles: superreg-
ular (SR, minimum amplitude), rogue wave (RW, maximum
amplitude), and ghost (GH, intermediate amplitude) (see
Refs. [6,26,34,36]). Here we put forward to the agenda the
problem of the theoretical and experimental management of
these wave states in multiple subsequent breather collisions.
In principle, the exact N-breather solution of the NLSE, where
N is the number of breathers, see, e.g., [26,44], solves this
issue as soon as they describe all the possible interaction
pictures. However, multibreather complexes with N > 2 pro-
duce too intricate nonlinear dynamics that challenge us to
find a simpler description. Here we analyze the asymptotic
states of breathers before and after the collisions. Similar
to conventional solitons (see, e.g., [45]), moving localized
breathers interact elastically in the sense that after the col-
lision, the number of breathers and their characteristics are
the same as before, except specific position and phase shifts
[46,47]. The asymptotic expressions describing the breather
shifts have been found recently in Ref. [46], and later also
derived in Refs. [47] and [48]. They allow one to configure the
properties of the multibreather wave field, which lies down the
theoretical background for the present paper. In particular, we
derive a new theoretical expression for temporal separation
between breather pairs, corresponding to the scenario when
at certain (controllable) points of the propagation, the wave
field represents either SR, GH, or RW profile. For example,
the configuration, which we denote as SR → RW represents
initial (for example, at ξ = 0) SR state of four breathers (two
SR pairs separated by the time interval τsh, where sh stands
for “synchronized”), which leads to the formation of synchro-
nized collision in the RW phase at certain distance ξ = ξsh.
Our theory provides exact expressions for the synchronized
separation time and propagation distance τsh and ξsh. Based on
the developed approach, we perform experiments in a nearly
conservative optical fiber system for the configurations SR →
RW and SR → SR, which accurately reproduces the obtained
theoretical predictions. The presented examples show how
multibreather complexes can be adjusted to form desired wave
states at different moments of their evolution, introducing the
concept of breather interactions management.

This paper is laid out as follows: in Sec. II, we show a
general multibreather solution to the NLSE (1), explaining

the meaning of all the solution parameters, and end up with
a brief analysis of a single breather behavior. Then, in Sec. III
we describe the collision of two NLSE breathers, demon-
strate the emerging SR, GH, and RW profiles and provide
the space-phase shifts formulas. In Sec. IV we present the
theoretical background of the breather management, i.e., we
configure phases and positions of the breathers to observe the
desired states, such as SR, GH, or RW, at certain controllable
moments of the wave field evolution. Finally, in Sec. V, we
report the realization of the predicted breather collision dy-
namics in optical fiber experiments proving the viability of
our theory. We summarize and discuss the results of the paper
in Sec. VI. Additionally, in the Appendix we present details
on the space-phase shifts formulas derivations, allowing one
to reproduce the full theoretical scheme of the breather inter-
action management.

II. BREATHER SOLUTIONS OF THE NLSE

In this section we outline the basic theoretical informa-
tion on the NLSE model of breathers. Each breather is
characterized by four real valued parameters R, α, τ0, θ

and the background amplitude, which we set to unity, A =
1. As such, the general N-breather solution ψNB has 4N
real valued parameters {R1, α1, τ0,1, θ1; ...; RN , αN , τ0,N , θN },
where the subscripts distinguish each of the N breathers. It
fully describes propagations and interactions of the breathers
and can be represented in the following closed form (see,
e.g., [5]):

ψNB(R1, α1, τ0,1, θ1; ...; RN , αN , τ0,N , θN )

= eiξ

⎧⎪⎪⎨⎪⎪⎩1 + 2det

⎛⎜⎜⎝
0 q1,2 · · · qN,2

q∗
1,1
...

q∗
N,1

M̂T

⎞⎟⎟⎠(detM̂ )−1

⎫⎪⎪⎬⎪⎪⎭,

(2)

where the matrix M̂ has the following elements:

M̂nm = (qn · q∗
m)

2
(
Rneiαn + e−iαn

Rn
− Rme−iαm − eiαm

Rm

) . (3)

In expressions (2) and (3) the subscripts n = 1, .., N , m =
1, .., N ; while det stands for matrix determinant, index T
means matrix transpose and the vectors qn = (qn,1, qn,2) have
the following components:

qn1 = e−φNB
n − eφNB

n −iαn

Rn
, qn2 = eφNB

n − e−φNB
n −iαn

Rn
, (4)

with the phase function

φNB
n = ηn(τ − τ0,n) + γnξ + i

(
knτ + δnξ − θn

2

)
. (5)
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In the latter expression the coefficients are

ηn = −1

2

(
Rn − 1

Rn

)
cos αn,

kn = −1

2

(
Rn + 1

Rn

)
sin αn,

γn = −1

4

(
R2

n + 1

R2
n

)
sin 2αn,

δn = 1

4

(
R2

n − 1

R2
n

)
cos 2αn. (6)

Without loss of generality, we consider −π/2 < α < π/2
and R � 1, since other values of these parameters describe the
same class of solutions. Each nth breather has characteristic
size ln, such that

l−1
n = |2ηn| =

(
Rn − 1

Rn

)
| cos αn|, (7)

group velocity Vgr,n and frequency Wn,

Vgr,n = −γn

ηn
= − sin αn

(
R4

n + 1
)

Rn
(
R2

n − 1
) , (8)

Wn = −2δn = −1

2

(
R2

n − 1

R2
n

)
cos 2αn. (9)

To get a feeling of the behavior of breathes, we consider
the simplest exact single-breather solution of the NLSE ψ1B.
We omit the subscripts everywhere in Eq. (2) and for N = 1
obtain

ψ1B(R, α, τ0, θ, θg)

=
(

1 + 2

(
R + 1

R

)
cos α

q∗
1q2

|q1|2 + |q2|2
)

eiξ e−iθg . (10)

Note that, we added a general phase θg to the solution (10)
multiplying it by e−iθg [Eq. (1) is invariant to it], which is
useful for further analysis. For the further derivations, we
define the function (5) without subscripts as

φ(R, α, τ0, θ ) = η(τ − τ0) + γ ξ + i

(
kτ + δξ − θ

2

)
. (11)

The main parameters of the breather that are R and α

control its shape, group velocity and frequency, see Eqs. (8)
and (9). The other two parameters τ0 and θ describe breather
temporal position and phase, respectively. Note that θ can-
not be written as a common multiplier (similar to θg) of the
breather solution, being its internal phase, which affects the
temporal profile |ψ1B(τ )|, see Eq. (10).

In general case when R > 1 and α �= 0, solution (10)
describes temporally localized nonlinear coherent structure
propagating on constant background—see Fig. 1 where its
spatial-temporal plot and temporal profile at ξ = 0 are pre-
sented. The breather changes the background phase, so that
the wave field has the following temporal asymptotics:

ψ1B(ξ, τ ) → −ei(∓2α−θg ) at τ → ±∞, (12)

as shown in Fig. 1. The group velocity of the breather is
proportional to sin α following Eq. (8). At α = 0 it be-
comes a standing oscillating object—the Kuznetsov breather

FIG. 1. General one-breather solution obtained from Eq. (10)
at R = 1.35, α = −1.0, θ = π , τ0 = 0, and θg = 0. (a) Spatial-
temporal evolution of |ψ |. (b) Temporal profile at ξ = 0 correspond-
ing to the cross section shown in (a): |ψ | (blue line), Re[ψ] (real part
of the wave field, red line), Im[ψ] (imaginary part of the wave field,
green line). Horizontal black-dashed lines and expressions on the left
and right sides of the plot (b) demonstrate asymptotic values of the
wave filed according to Eq. (12).

[14–16]. For R = 1, solution (8) represents temporally pe-
riodic Akhmediev breather [13,23,49], which we do not
consider in our paper since we focus on temporally localized
objects.

III. INTERACTIONS OF TWO BREATHERS

Here we describe the interactions of two breathers, i.e., the
solution (2) with N = 2. For moving breathers, the interaction
process represents their collision followed by a temporal sep-
aration. Similar to solitons on zero background, the breathers
interact elastically. After the collision, they restore their shape
asymptotically (at large separation times) but acquire specific
space and phase shifts. In contrast to soliton theory, where the
shifts formulas were obtained together with the construction
of the IST integration schemes [12,50], the breather shifts had
been missed for a long time and were found recently in [46]
and then in [47].

In this paper we focus on the pairs of temporally localized
breathers with

R1 = R2 = R > 1; α1 = −α2 = α > 0, (13)

that corresponds to the two-breather solution
ψ2B(R, α, τ0,1, θ1; R,−α, τ0,2, θ2). Let us call the breathers
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as first and second, following their subscripts 1 and 2. The
solution in general has no symmetry in τ since the phase and
position parameters are arbitrary. However the breathers have
the same R and modulus of α, i.e., their main characteristics
are similar. In particular the group velocity and breather
frequency [see Eqs. (8) and (9)] can be written as

Vgr = Vgr,1 = −Vgr,2 < 0, W = W1 = W2. (14)

For the coefficients (6) we can also use the following simpli-
fied notations:

η = η1 = η2, k = k1 = −k2,
(15)

γ = γ1 = −γ2, δ = δ1 = δ2,

so that the solution phases for the first and second breather
[see Eq. (5)] can be written as

φ2B
1 = η(τ − τ0,1) + γ ξ + i(kτ + δξ − θ1/2),

φ2B
2 = η(τ − τ0,2) − γ ξ + i(−kτ + δξ − θ2/2). (16)

The two breathers with parameters (13) move towards each
other, then collide and separate. At large propagation dis-
tances ξ → ±∞ before and after the collision, the solution
represents a single breathers ψ1B

1 and ψ1B
2 (in this case, we

apply the subscripts 1 and 2 to the solution ψ1B, as before, to
distinguish the first and second breather) with shifted τ0 and θ

parameters and shifted general phase,

ψ2B(R, α, τ0,1, θ1; R,−α, τ0,2, θ2)

→
{
ψ1B

1 , at τ ∼ Vgrξ,

ψ1B
2 , at τ ∼ −Vgrξ,

ψ1B
1 = ψ1B(R, α, τ0,1 ∓ �τ0, θ1 ∓ �θ,∓�θg),

ψ1B
2 = ψ1B(R,−α, τ0,2 ± �τ0, θ2 ± �θ,∓�θg). (17)

Here the shifts �τ0, �θ , �θg can be obtained by simplifica-
tion of the general formulas from [46] under the conditions
(13) as

�τ0 =
R ln

[ (R2−1)2

sin2 α(R4+2R2 cos 2α+1)

]
2(R2 − 1) cos α

, (18)

�θ = Arg

[
2iR(R2 − 1) tan α

(1 + R2)2 cos α + i(R4 − 1) sin α

]
, (19)

�θg = (2α + π ), (20)

see Appendix for the details. The asymptotic approximation
(17) implies that the phases of the single-breathers (from the
right hand side of the approximation expression) at ξ → ±∞
can be written as

φ1B
1 = φ(R, α, τ0,1 ∓ �τ0, θ1 ∓ �θ ),

φ1B
2 = φ(R,−α, τ0,2 ± �τ0, θ2 ± �θ ). (21)

Note that in expressions (21) and below, we also use the
subscripts 1 and 2 for the single breather phases to distin-
guish them. To illustrate how the formulas (17)–(20) work,
we approximate graphically the wave field profile of the sec-
ond breather from ψ2B at large propagation distances using
the one-breather solution ψ1B

2 = ψ1B(R,−α, τ0 + �τ0, θ +
�θ, θg + �θg). In Fig. 2 one can see that the one-breather
solution accurately reproduce both the wave field absolute

FIG. 2. Two-breather solution and its asymptotic state.
(a) Spatial-temporal evolution of |ψ |. The numbers 1 and 2 denote
the first and second breather. [(b), (c)] Temporal profiles of |ψ |
and the wave field phase argument Arg[ψ] for the cross section at
ξ = 10 shown in (a). Red dashed lines in (b) and (c) show the
single-breather solution (10) approximating the asymptotic state of
the second breather using formulas (17)–(20). Thin black-dashed
line in (b) shows how the second breather would have looked like
if it had been traveling alone. Breather parameters correspond
to Eq. (13) with R = 1.35, α = 1.0, and τ0,1 = τ0,2 = 0, θ1 =
θ2 = 0.025.

value |ψ2B(τ )| and its phase argument Arg[ψ2B(τ )] in the
vicinity of the second breather. In the next section, we will use
similar approximations to manage multibreather interactions.
In addition, Fig. 2(b) shows how the second breather would
have looked like if it had been traveling alone, i.e., �τ0 = 0,
�θ = 0. Our comparison confirms both effects—the shifts of
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FIG. 3. Dependence of space (a) and phase (b) shifts �τ0 and
�θ on the parameters R and α according to Eqs. (18) and (19).
Vertical black-dashed lines in (a) show the points R0 and Rmax,
where the curve for α = 0.2 reaches zero and maximum values
correspondingly.

the breather temporal position and the phase. The latter effect
leads to the change of the profile |ψ2B(τ )|.

Now let us briefly analyze the shifts formulas. According
to Eqs. (18) and (19), �τ0 and �θ depend only on R and
α. Figure 3 shows the functions �τ0(R) and �θ (R) for a set
of α values. In contrast to soliton theory, where the temporal
shift is strictly positive, here it can be positive, negative, and
even precisely zero, which means that breather can move
forward or backward relative to its initial trajectory or remain
on it see Fig. 3(a). To illustrate this issue in more detail, we
design three representative collision scenarios characterized
by positive, zero and negative temporal shifts and α = 0.2, see
Fig. 4. For the positive shift case we find numerically the point
Rmax = 1.596 corresponding to the maximum of the function
�τ0(R) (i.e., to the most pronounced temporal shift), while
for the zero-shift case we find numerically R0 = 1.218, such
that �τ0(R0) = 0, see Figs. 4(a) and 4(b). The negative value
of the temporal shift is unbounded at R → 1, i.e., when the
characteristic size l of the breather goes to infinity, see Eq. (7).
In this case we choose R = 1.1 < R0, that corresponds to a
reasonable characteristic size l of the breathers, see Fig. 4(c).

Now we describe the family of the wave field profiles,
which appear at the moment of breather collision and show
how to manipulate them with the solution parameters. First let
us note, that the two-breather wave field value taken at a point
(ξ, τ ), can be viewed as a single-valued function on its phases

FIG. 4. Spatial-temporal evolution of |ψ | for colliding breathers
with (a) positive, (b) zero, and (c) negative temporal shifts �τ0(R).
In all three cases α = 0.2, while in (a) R = Rmax = 1.596, in (b) R =
R0 = 1.218, and in (c) R = 1.1. Straight-solid lines show trajectories
of the second breather (red lines are used before the collision and
white lines after) and red dashed-straight lines show which trajectory
the breather would have been if the it had been traveling alone.

(5), i.e., ψ2B = ψ2B(φ2B
1 , φ2B

2 ) with the following symmetry:

ψ2B
(
φ2B

1 , φ2B
2

) = ψ2B
(
φ2B

2 , φ2B
1

)
. (22)

On the other hand, the linear algebraic system

φ2B
1 (ξ, τ ) = a1,

(23)
φ2B

2 (ξ, τ ) = a2,

where a1 and a2 are complex constants, is always nondegen-
erate with respect to variables ξ and τ since the corresponding
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FIG. 5. Amplitude profiles at ξ = 0 for the basic cases of two-
breather collision: superregular (SR, blue line), rogue wave (RW, red
line), and ghost (GH, black line) phase synchronizations. The main
breather parameters R = 1.5 and α = 0.5, see Eq. (13); the collision
point is (ξc, τc ) = (0, 0) and the phases θ for each synchronization
case are defined by (28).

determinant det = 2η(−γ + iδ) �= 0. This means that in
general, the same value of the wave field can be reached in
two different points on the (ξ, τ ) plane. At the same time
by setting a1 = a2 we determine a distinctive point of the
solution, i.e., a point with unique value of the wave field (like
absolute maximum), since the symmetry (22) degenerates.

In our formalism the key role plays the distinctive point
of the two-breather solution collision, which is defined as
coordinates (ξc, τc), where the both phase functions have the
value −iθ/2,

φ2B
1 (ξc, τc) = φ2B

2 (ξc, τc) = −iθ/2. (24)

One can check that when the position-phase parameters obey
the conditions

τ0,1 = τ0,2 = 0, θ1 = θ2 = θ, (25)

the solution is temporally symmetric, i.e., ψ2B(ξ, τ ) =
ψ2B(ξ,−τ ), and its collision point is

(ξc, τc) = (0, 0), (26)

as expected for a solution with a symmetric choice of param-
eters and zero-temporal shifts.

In this case the phase θ represents a single degree of free-
dom for the two-breather solution with fixed parameters R and
α. In particular, θ fully controls the collision profile ψ2B

θ (0, τ )
at ξc = 0. At the center the profile reaches its maximum am-
plitude, which we call as collision amplitude ac,

ac = |ψ2B(ξc, τc)|. (27)

We distinguish superregular (SR), ghost (GH), and rogue
wave (RW) collision patterns (see e.g., [36]) that corresponds
to the following choices of the phase:

θSRI,II = {π/2; 3π/2}, θGH = π, θRW = 0. (28)

The SR and RW patterns exhibit minimum and maximum
values for the collision amplitude ac, and we also refer to
them as annihilation and amplification scenarios, while the
GH pattern correspond to an intermediate case, see Fig. 5.
The SR pattern is also called “in-phase” synchronization. In

the GH case the wave field amplitude profile is close to those
for a single breather with parameters R and α. The all three
fundamental scenarios of the two-breather interactions have
been studied in detail theoretically [5,23,38] and experimen-
tally [36,38]. Note that ψ2B

SRI
(0, τ ) and ψ2B

SRII
(0, τ ) are complex

conjugate to each other, what means that the evolution for SRI

is in reverse to those for SRII.
We use the term rogue wave profile here in a general

sense, namely as a wave of the maximum possible amplitude
amplification for the chosen breathers. Meanwhile, a more
specific term—rational rogue waves—corresponds to a class
of exact solutions of the NLSE expressed in terms of a ratio
of polynomial functions. Depending on the order j of the
rational solution, its maximum amplitude can reach the values
3, 5, ... 2 j + 1, while the number of zeros of the wave field is
2, 4, ... 2 j, see [51]. The Peregrine solution is the first mem-
ber of this family having j = 1. Rational RWs are benchmark
solutions of the NLSE. As studied in [23,49,52,53], collisions
of NLSE breathers or collisions of NLSE solitons lead to a
local formation of close to rational ones wave field profiles
with the number of zeros as in the rational case. In other
words, for each rational rogue wave exists an infinite family
of solutions exhibiting similar profiles at certain moments of
evolution. The GH and RW profiles belong to the families
of solutions close to the first and second-order rogue waves.
Indeed, the number of zeros is 2 and 4, while the amplitude of
the wave field maximum is near 3 and 5 correspondingly, see
Fig. 5.

When ε = R − 1 � 1, the supperregular pattern represent
a low-amplitude perturbation of the background, which can be
approximated by the following formula (see [26]):

ψ (τ ) ≈ 1 + 4iε
cos α cos 2ητ

cosh(2ε cos α)
. (29)

From Eq. (29) we estimate the characteristic size of superreg-
ular pattern as

lSR = (2ε cos α)−1. (30)

We do not have explicit estimations, similar to (30) for the
characteristic sizes lRW and lGH corresponding to the RW and
GH patterns. However, one can evaluate them by plotting the
wave fields as in Fig. 5.

One can translate the two-breather solution in (ξ, τ ) plane,
moving its collision point from (0,0) to nonzero coordi-
nates (ξc, τc) by the following choice of the position-phase
parameters:

τ0,1 = τc − Vgrξc, τ0,2 = τc + Vgrξc,

θ1 = θ + 2kτc − W ξc, θ2 = θ − 2kτc − W ξc. (31)

We obtain these expressions by solving Eq. (23) with a1 =
a2 = −iπ/2 and (ξ, τ ) = (ξc, τc) with respect to τ0,1, τ0,2,
θ1 and θ2. The parameters defined by Eqs. (13) and (31)
correspond to a general two-breather solution symmetric in
τ with respect to the point τc.

IV. MANAGEMENT OF BREATHER INTERACTIONS:
THEORY

In this section, we present the theoretical concept of the
management of more than two interacting moving breathers.
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Our goal is to configure phases and positions of the breathers
so that during evolution, the multibreather complex represents
certain phase synchronization patterns, such as SR, RW, or
GH. When dealing with N > 2, the mutual shifts acquired
by the breathers change the simple phase synchronization
conditions (28), so that an additional theoretical consideration
is required.

As proof-of-principle we build a four-breather complex,
exhibiting at the initial (sub- and superscripts i) and final
(sub- and superscripts f) stages of its evolution the wave field
patterns with θi and θf . More specifically we linearly add to
each other two identical two-breather patterns with θ = θi

separated by τsh � li, where sh stands for “synchronized” and
li is the characteristic size of the pattern. We take advantage of
the significant initial separation between the patterns, which
allows us to independently apply the breather shifts formulas
to each breather pair. Note that in terms of the IST theory, the
initial condition we build is close to a degenerate case when
the main breather parameters coincide (but not precisely it
since we have the patterns overlapping), see, e.g., [54,55]. The
degenerate limit in the phase-shift formulas is an interesting
mathematical question, which we leave for further studies.

The first pattern has the collision point (0,0), while the sec-
ond one corresponds to the collision point (0, τsh ). We chose
τsh large enough to observe emerging of individual breathers
from the initial conditions, so that at certain propagation dis-
tance ξsh, a couple of breathers from the neighboring patterns
collide. Our goal is to find τsynch, so that the colliding breathers
generate the new patterns with θ = θf at ξ = ξsh. According
to the solution symmetry in τ , the breather 2 from the first
pattern, and the breather 1 from the second pattern, produce
two breathers moving symmetrically towards each other and
then collide at τ = τsh/2.

When the breathers emerged from the initial patterns pro-
nouncedly separate, one can describe the colliding ones by the
two-breather solution with the phase θf and the collision point
(ξsh, τsh/2). The idea of the breather interaction management
is to choose δτsh so that the single breathers 2 and 1 from
the first and second initial patterns are precisely the same
as the breathers 2 and 1 from the desired final pattern, see
our illustration of the synchronization process in Fig. 6. The
same breathers means the same solution phases. According to
Eq. (21) taken at ξ → +∞, the solution phase for the second
breather from the first initial pattern is

φ1B,i
2 = φ(R; −α; �τ0; θi + �θ )

= η(τ − �τ0) − γ ξ + i(−kτ + δξ − (θi + �θ )/2).

(32)

Meanwhile, the solution phase for the second breather from
the final pattern for the collision point (ξsh, τsh/2), see Eq. (21)
at ξ → −∞ and Eq. (31), is

φ1B,f
2 = φ(R; −α; τsh/2 + Vgrξsh − �τ,

× θf − kτsh − W ξsh − �θ )

= η(τ − τsh/2 − Vgrξsh + �τ ) − γ ξ

+ i(−kτ + δξ − (θf − kτsh − W ξsh − �θ )/2).
(33)

FIG. 6. Illustration of the breather interaction management. The
initial SR patterns (i = SR) located at ξ = 0 (SR1) and τsh (SR2),
see panel (a), blue lines. The final (desired) state represents collision
of the breathers producing the RW pattern (f = RW) at ξ = ξsh,
see panel (b), red lines. The black lines in (a) and (b) show single
breathers from the patterns at an intermediate (between the initial and
final state) propagation distance, while horizontal arrows indicate the
breather propagation direction. We choose δτsh according to Eq. (35),
so that the single breathers 2 and 1 from the first and second initial
patterns are precisely the same as the breathers 2 and 1 from the
final pattern, what formally writes as equality (34). The vertical-gray
band highlight this correspondence. Breather parameters correspond
to Eq. (13) with R = 1.7, α = 0.5; the initial separation computed
using formula (35) for θi = θSR, θf = θRW and m = 3.

According to our assumption, the second breather from the
first initial pattern and the second breather from the final
pattern are identical, so that

φ1B,i
2 (ξ, τ ) ≡ φ1B,f

2 (ξ, τ ). (34)

Finally, from equality (34) we obtain the following synchro-
nization formulas:

ξsh = θf − θi − 2�θ − 4k�τ0 − 2πm

W − 2kVgr
, (35)

τsh = 4W �τ0 − 2Vgr (θf − θi − 2�θ − 2πm)

W − 2kVgr
, (36)

where m is an integer number, which we chose so that τsh �
li (the other choices are nonphysical). One can interpret the
proposed approach as follows. The second breather from the
first pattern, see Fig. 6, acquires a phase-position shift when
interacting with its neighbor (breather 1 in the first pattern),
which we compensate by adjusting the distance to the second
pattern in such a way that the subsequent breather collision
appears in the desired phase.

Using the above synchronization formulas, we can gener-
ate the initial multibreather states and predict the propagation
distance where we observe the synchronized collision. To test
our theory, we construct the initial conditions for i = SR and
f = RW/SR with a negligible overlapping between the initial
SR patterns. Then we run numerical simulations of the wave
field evolution using the standard split-step Fourier method
for the NLSE (1) with periodic boundary conditions related to
τsh. The application of the periodic boundary conditions does
not change the behavior of the colliding breathers at the center
of the simulation interval since the initial patterns are identical
and symmetric. Figure 7 shows the simulation results, which
accurately verify our synchronization procedure. In the case,
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FIG. 7. Numerical simulations of the synchronized breather interactions. The initial SRII patterns correspond to Eq. (13) with parameters
R = 1.7 and α = 0.7. The separation between them computed using formula (35) with θi = θSRII , and [(a), (b)] θf = θRW, m = 2; [(c),(d)]
θf = θSR, m = 3. Panels (a) and (c) show evolution diagram ranged from 0 to ξsh, while panels (b) and (d) show the corresponding initial
(ξ = 0, blue line) and final (ξ = ξsh, red line) wave field patterns.

f = RW we observe the formation of the rogue wave profile
[see Figs. 7(a) and 7(b)], while in the case f = SR we observe
the recurrence to the initial SR state.

V. MANAGEMENT OF BREATHER INTERACTIONS:
EXPERIMENT

This section reports the experimental realization of the
breather interactions management concept. We perform ex-
periments in a nearly conservative optical fiber system
described by the NLSE model. Our experiment setup is de-
picted in Fig. 8, which is based on commercially available
equipment of the telecommunication industry. A home-made
frequency-comb source with 20-GHz line spacing centered
near 1550 nm is launched into a silicon-based programmable
filter (wave shaper), which performs accurate line-by-line
spectral shaping, including intensity attenuation and phase

FIG. 8. Experimental setup based on a light wave platform with a
nearly conservative optical fiber system. EDFA: erbium-doped fiber
amplifier; SMF: single-mode fiber; OSA: optical spectrum analyzer;
OSO: optical sampling oscilloscope

delay. The resulting periodic shaped pulse train is amplified
by a high-power erbium-doped fiber amplifier to achieve the
exact excitation of the multibreather solution of the NLSE
in terms of average power for nonlinear propagation into a
standard single-mode fiber (SMF). The nonlinear propaga-
tion is investigated throughout different lengths of the same
fiber, and the output waveforms are characterized by means
of a sub-ps-resolution optical sampling oscilloscope (OSO)
in time domain and a high dynamic range optical spectrum
analyzer (OSA) in spectral domain. Our standard fiber used
for breather propagation exhibits the following features: an
anomalous group-velocity dispersion β2 = –21 ps2/km, lin-
ear losses α = 0.2 dB/km, and a nonlinear coefficient γ =
1.1/W/km. Fiber characteristics were chosen in accordance
with both spectral bandwidth and peak power of the wave
evolving into the fiber in order to avoid any detrimental
higher-order dispersive or nonlinear effect. The correspon-
dence between theory and experiment can be retrieved by
recalling that the dimensional distance z (m) and time t (s)
are related to the previous normalized parameters by z = ξLnl

and t = τ t0. Here the characteristic (nonlinear) length and the
time scale are Lnl = (γ P0)−1 ∼ 1335 m and t0 = √|β2|Lnl ∼
5.16 ps, respectively. The dimensional optical field A(z, t ) (in
unit of W

1
2 ) is A = √

P0ψ , P0 being the average power of the
perturbed continuous wave, here is about 0.63 W.

For experimental verification of the breather management
theory we consider the synchronized scenarios with i = SR,
while f = RW/SR. We adjust parameters R, α, and m, such
that both the temporal separation between the initial patterns
τsh and the propagation distance ξsh fit our experimental setup,
see Table I. For the found parameters the overlapping be-
tween the breather patterns is more pronounced than those
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TABLE I. Parameters of experimentally studied breathers. The
temporal separation between the initial patters τsh, the distance
between the formations of the initial and final patterns ξsh, and
the collision amplitude ac are presented in three variants: theo-
retical (“theory”), obtained in numerical simulations of the NLSE
(“simul. 1”), and obtained in numerical simulations of the NLSE with
losses (“simul. 2”). The latter has been used for the optical signal
generation.

– i = SR, f = RW i = SR, f = SR

R 1.57 2.0
α 0.65 0.65
m 0 1
τsh, theory 9.65 9.56
τsh, simul. 1/2 9.60/9.67 9.56/9.69
ξsh, theory 2.85 2.67
ξsh, simul. 1/2 2.80/2.92 2.67/2.72
ac, theory 4.51 2.59
ac, simul. 1/2 4.38/3.91 2.53/2.61

considered in Fig. 7, leading, together with fiber losses, to
corrections of the synchronization formulas (35) and (36).

To investigate the corrections, we perform optimization
procedures through numerical simulations of the standard
NLSE (1) and the following modified NLSE, which accounts
for the fiber losses:

iψξ + 1
2ψττ + |ψ |2ψ = −iκψ/2, (37)

where the dimensionless loss parameter is κ = αLnl . First,
we run numerical simulations of the NLSE (1) for a set of
values of the temporal separations between the initial patterns
(simulation 1), which are close to the theoretical one. For the
case i = SR, f = RW we find numerical values of τsh and
ξsh as maximum amplification amplitude during the breathers
collision process. Meanwhile, for the case i = SR, f = SR
we find numerical values of τsh and ξsh as minimum of the
maximum wave field annihilation amplitudes. In addition, for

both cases, we measure numerical values of the collision am-
plitudes ac. Then we repeat equivalent simulations within the
modified model with fiber losses (simulation 2) [see Eq. (37)],
and summarize the obtained results in Table I. We find, that
numerical values of τsh and ξsh in both simulations 1 and 2 are
always close to their theoretical counterparts. Meanwhile, the
collision amplitude for the pattern f = RW in the simulation 2
decreases by ∼ 13% due to the loss effect. We use the values
obtained from the simulation 2 with included fiber losses to
investigate experimental propagation.

Figure 9 shows the corresponding dynamical evolution of
both the amplification and the annihilation scenarios resulting
from the collision phenomenon of moving breathers (see false
color maps). We are able to create experimentally a periodic
train of localized perturbations that subsequently evolves into
pairs of breathers propagating in opposite directions. Adjacent
moving breathers of the periodic pattern then collide. One can
also observe in more details some of the selected wave profiles
along the propagation [see Figs. 9(a) and 9(d)] that reproduce
the desired snapshots towards the final RW and SR states.
Measured experimental wave profiles are in excellent agree-
ment with numerical predictions. Note that our segmented
approach of wave evolution measurement (see Fig. 8) does
not allow to measure precisely the final pattern at ξsh, but in
its small vicinity.

VI. CONCLUSIONS

In this paper, we have shown how to configure theoretically
and observe experimentally synchronized interactions of the
NLSE breathers. First, we developed a theoretical framework
based on the exact multibreather solutions to the NLSE and
asymptotic expressions describing shifts of breather positions
and phases acquired by them in mutual collisions. Then, using
the shift formulas, we computed breather phases and positions
such that during evolution, the wave field represents desired
wave states, such as a small amplitude background pertur-
bation or an opposite—nonlinear wave of high amplitude.
Finally, we performed experiments on light breathers in a

FIG. 9. Experimental measurements of the synchronized breather interactions. Left panels correspond to the case i = SR, f = RW; right
panels to the case i = SR, f = SR. Snapshot in top rows [(a)–(d)] show wave field profiles at certain propagation distances. Numerical
simulations of the NLSE with fiber losses are shown in blue dashed lines, while corresponding experimental measurements in tiny red dots.
Color maps on the bottom rows [(e),(f)] show the space-time evolutions based on numerical simulations and experimental measurements. For
the full set of the breather parameters see Table I.
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nearly conservative optical fiber system, accurately reproduc-
ing the predicted wave field nonlinear dynamics.

Our approach is required when the number of manag-
ing breathers is more than two. Indeed, in the case N = 2,
only one parameter—the relative phase, controls the pairwise
breather interactions so that all the possible configurations,
such as SR, RW, and GH, are well studied, see Sec. III.
However, as soon as more breathers come into the game,
the number of independent parameters increases by two addi-
tional parameters (phase and position with respect to the first
pair) for each extra structure. Besides, when the interactions
follow each other, the previous one changes the phase of
the breather with which it enters the subsequent collision. In
principle, a fitting of the multibreather solution parameters
solves this issue. However, the increased number of param-
eters makes it unpractical and, at large N , even not possible.
On the other hand, our approach provides an exact universal
answer for the desired parameters of the multibreather com-
plexes.

Regarding the IST theory, the breathers represent an impor-
tant class of solutions of the NLSE, which corresponds to the
discrete spectrum of the so-called auxiliary Zakharov-Shabat
system [45,54]. The parameters of main breathers R and alpha
are the coordinates of the discrete spectrum eigenvalue of
the Zakharov-Shabat system, while the phase and position
comprise the so-called norming constant. Together, the eigen-
values and norming constants form the scattering data—the
nonlinear wave field’s IST spectral portrait. Other classes of
the scattering data are represented by degenerate eigenvalues,
continuous spectrum (nonlinear dispersive waves) and finite
bands (various quasi-periodic waves), which are also under
active studies [2,55,56]. In this light, the management of
breather interactions allows one to manipulate the properties
of the nonlinear wave field by adjusting scattering data. Sim-
ilar ideas have recently emerged in related areas of research
of the IST studies; see the papers on the generation of soliton
and breather gases with controllable scattering data (nonlin-
ear spectral synthesis of soliton/breather gases) [30,57,58],
nonlinear spectral engineering of rogue waves [59], and on-
demand generation of dark-bright solitons trains [60].

In this paper, we focused on identical temporally symmet-
ric pairs of breathers, which allowed us to take advantage
of the temporal periodicity of the light source in the experi-
ment and observe the full breather collision dynamics in the
available time slot. One can straightforwardly generalize our
approach to other cases, such as synchronized collisions of
moving breathers with the standing breathers of Peregrine
and Kuznetsov. Our preliminary estimations show that ex-
perimentally a large temporal domain is needed to observe
such interactions; what can be provided by hydrodynamical
experimental setups for gravitational waves, see e.g., [36].
One can also generalize the breather interaction management
concept to other integrable systems with breather solutions,
such as vector NLSE model, where the breathers represent
even richer family of nonlinear configurations [61–64]. Fi-
nally, we note that using the conditions on breather solution
phases, see Eq. (34), allows one, in principle, to synchro-
nize interactions of an arbitrary number of breathers of any
type. In this case, an easy-to-solve system of linear algebraic
equations on the solution phases [see Eq. (34)] appears. Its

solution provides the desired parameters of the breathers.
Note that synchronization of a large ensemble of breathers
is an important issue in studies of spontaneous modulation
instability development, where the role of coherent structures
in the wave field features is on the agenda of recent theoretical
and experimental studies [28,65–69]. Also, one can similarly
synchronize interactions of conventional solitons as the latter
represents a limiting case of breathers on zero background.
In summary, we believe that the proposed strategy will con-
tribute to the studies of complex nonlinear phenomena by the
design of novel synchronized multibreather and multisoliton
configurations that significantly extend the known examples
of phase synchronized interactions of the coherent structures
[46,70–73].
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APPENDIX

This Appendix provides supplementary information on the
derivation of the breather position and phase shifts formulas,
which we extensively use in the main part of the paper, see
Eqs. (17)–(20). They represent two particular cases of the
general expressions obtained previously in [46]. Note, that in
our paper we use breather parameters R and α, meanwhile
Ref. [46] characterizes breathers using complex parameters λ

and ζ , which are connected to R and α as

λ = iA

2

(
Reiα + e−iα

R

)
, (A1)

ζ = iA

2

(
Reiα − e−iα

R

)
=

√
λ2 + A2. (A2)

Note that λ and the combination of R and α represent
two major ways to parametrize discrete eigenvalues of the
Zakharov-Shabat system. One can consider only the upper
half of the λ plane, i.e., Im[λ] > 0 (or, equivalently, −π/2 <

α < π/2 and R � 1, see Sec. II), since other values of λ

correspond to the same class of solutions. As typically done,
we make the function ζ = √

λ2 + A2 branch cut on the in-
terval [−iA, iA], which differs from the automatic choice
{[−i∞,−iA] ∪ [iA,∞i]} implied in software packets such as
Wolfram Mathematica. In our case the branch cut is agreed
with the parametrization (A2), so that for all considering val-
ues of λ we have Im[ζ ] > 0.

To make the present paper fully self-sufficient, we briefly
explain the general derivations in variables λ and ζ , since the
work [46] reports only the final answer and misses the details.
Then we explain how to obtain the Eqs. (17)–(20) in variables
α and R as a particular case of the general answer.
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We begin with writing the general two-breather solution in
variables λ and ζ (see [46]),

ψ2B(λ1, τ0,1, θ1; λ2, τ0,2, θ2)

= eiξ

⎧⎨⎩A + 2det

⎛⎝ 0 q1,2 q2,2

q∗
1,1

q∗
2,1

M̂T

⎞⎠(detM̂ )−1

⎫⎬⎭, (A3)

where the matrix M̂ has the following elements:

M̂ =
( (q1·q∗

1 )
λ1−λ∗

1

(q1·q∗
2 )

λ1−λ∗
2

(q2·q∗
1 )

λ2−λ∗
1

(q2·q∗
2 )

λ2−λ∗
2

)
, (A4)

and the vectors qn = (qn,1, qn,2), n = 1, 2, have the following
components:

qn1 = e−φn + iA

λn + ζn
eφn ,

(A5)

qn2 = iA

λn + ζn
e−φn + eφn ,

with the phases

φ2B
n = un + ivn, (A6)

where

un = Im[ζn](τ − Vgr,nξ − τ0,n), (A7)

vn = −Re[ζn]τ − Re[λnζn]ξ − θ/2. (A8)

The group velocity Vgr,n in variables λ and ζ is

Vgr,n = − Im[λnζn]

Im[ζn]
. (A9)

We compare the asymptotic states of the two-breather so-
lution (A3) and the single-breather solution, which in the
variables λ and ζ reads as (we omit the subscript indexes)

ψ1B(λ, τ0, θ, θg)

=
(

A + 2i(λ − λ∗)
q∗

1q2

|q1|2 + |q2|2
)

eiξ e−iθg . (A10)

One can find that the background phase the following limit at
τ → ±∞,

A + 2i(λ − λ∗)
q∗

1q2

|q1|2 + |q2|2

→
⎧⎨⎩

ζ ∗+λ∗
ζ+λ

, if sign(τ ) < 0

ζ+λ

ζ ∗+λ∗ , if sign(τ ) > 0,

(A11)

which allows one to find the asymptotics of the breather (A10)
as

ψ1B → e∓2iArg[ζ+λ]−iθg , at τ → ±∞. (A12)

One can check that the latter expression coincides with
Eq. (12) after the variables changes (A1) and (A2).

To find the shifts of τ0 and θ it is sufficient to study the de-
terminants in the solutions (A3) and (A10). The determinant
of the single-breather can be written as

|q1|2 + |q2|2 =
(

1 + A2

|λ + ζ |2
)

(e−2u + e2u)

+ iA

(
1

λ + ζ
− 1

λ∗ + ζ ∗

)
(e−2iv + e2iv ).

(A13)

The determinant of the two-breather solution detM̂ we
study asymptotically. We denote one of the two breathers from
the solution (A3) as breather j and another one as l , so that
j = 1 or 2, while l = 2 or 1. Then consider the temporal
region of the breather j at large distances, i.e., such τ and
ξ that

τ ∼ Vgr, jξ, ξ → ±∞. (A14)

In this case the real part of the phase functions of the breather
l has the following behavior:

ul → ±∞, when rlsign(ξ ) = ±1, (A15)

where rl = ±1 is

rl = sign(Vgr,l − Vgr, j ). (A16)

Note, that the expression rlsign(ξ ) in (A15) represent the sign
of ul , see Eq. (A7).

Now let us for definiteness consider the case ul → ∞.
Then

eφl → ∞, e−φl → 0, (A17)

so that the asymptotic components of the vector ql can be
simplified as

ql1 → iA

λl + ζl
eφl , ql2 → eφl . (A18)

The latter allows us to write the following asymptotic combi-
nations as

(ql · q∗
l ) → e2ul

(
1 + A2

|λl + ζl |2
)

, (A19)

and

(ql · q∗
j )(q j · q∗

l ) → e2ul

(
A2

|λl + ζl |2 |q j1|2 + |q j2|2

− iA

λ∗
l + ζ ∗

l

q j1 q∗
j2 + iA

λl + ζl
q j2 q∗

j1

)
.

(A20)

Now we can write the asymptotic determinant of the two-
breather solution as

detM̂ → e2ul

{(
1 + A2

|λl +ζl |2
)
(q j · q∗

j )

(λl − λ∗
l )(λ j − λ∗

j )
+

A2

|λl +ζl |2 |q j1|2 + |q j2|2 − iA
λ∗

l +ζ ∗
l

q j1 q∗
j2 + iA

λl +ζl
q j2 q∗

j1

|λl − λ∗
j |2

}
. (A21)
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In addition, similar to Eq. (A12) one can find asymptotics
of the two-breather solution as

ψ2B → exp{∓2i(Arg[ζ1 + λ1] + Arg[ζ2 + λ2])}
at τ → ±∞. (A22)

Now we look for such combinations in (A21), that
can be transformed into (e−2u + e2u) and (e−2iv + e2iv ) [see
Eq. (A13)] by a change of phase and position parameters. The
first combination in (A21) reads as

e−2u j

√
sa − sc

sb − sd
+ e2u j

√
sb − sd

sa − sc

= e−2u j+ 1
2 ln

(
sa−sc
sb−sd

)
+ e2u j− 1

2 ln
(

sb−sd
sa−sc

)
. (A23)

The second combination is

e−2iv j+iArg[i(pa+pb )] + e2iv j−iArg[i(pa+pb )]. (A24)

The coefficients in Eqs. (A23) and (A24) have the following
form:

sa = (A4 + |λl + ζl |2 · |λ j + ζ j |2) · |λl − λ∗
j |2

+ A2(|λl + ζl |2 + |λ j + ζ j |2) · |λl − λ j |2,
sb = A2(|λl + ζl |2 + |λ j + ζ j |2) · |λl − λ∗

j |2

+ (A4 + |λl + ζl |2 · |λ j + ζ j |2) · |λl − λ j |2,
sc = A2(λl − λ∗

l )(λ j − λ∗
j ) · [(λl + ζl )(λ j + ζ j )

+ (λ∗
l + ζ ∗

l )(λ∗
j + ζ ∗

j )],

sd = −A2(λl − λ∗
l )(λ j − λ∗

j ) · [(λl + ζl )(λ
∗
j + ζ ∗

j )

+ (λ∗
l + ζ ∗

l )(λ j + ζ j )] ,

pa = {A2(λ j + ζ j − λ∗
l − ζ ∗

l ) − |λl + ζl |2(λ∗
j + ζ ∗

j )

+ |λ j + ζ j |2(λl + ζl )}/{|λl − λ∗
j |2},

pb = (A2 + |λl + ζl |2)(λ j + ζ j − λ∗
j − ζ ∗

j )

(λl − λ∗
l )(λ j − λ∗

j )
.

Finally, we compare the computed combinations (A23)
and (A24) with the determinant of the one-breather solution

(A13) and find that the two-breather solution at large distances
before and after the collision point, i.e. at ξ → ±∞, as two
single-breather solutions with shifted τ0 and θ parameters as
follows:

ψ2B(λ1, τ0,1, θ1; λ2, τ0,2, θ2)

→
{
ψ1B

1 , at τ ∼ Vgr,1ξ,

ψ1B
2 , at τ ∼ Vgr,2ξ,

× ψ1B(λ1, τ0,1 ± �τ0,1, θ1 ± �θ1, θg,1 ± �θg,1),

× ψ1B(λ2, τ0,2 ± �τ0,2, θ2 ± �θ2, θg,2 ± �θg,2). (A25)

where the shifts values are

�τ0, j = rl
ln[(sa − sc)/(sb − sd )]

4Im[ζ j]
, (A26)

�θ j = rlArg[i(pa + pb)], (A27)

�θg, j = −2rlArg[λl + ζl ]. (A28)

Note, that we find the general phase shift �θg, j analyzing the
asymptotics (A22) and using that a single breather change
the background phase by 2sign(τ )2iArg[ζ + λ] according to
Eq. (A12). The Eqs. (A25)–(A28) repeat the results obtained
in [46] and in addition cover all the possible configurations of
the breathers velocities by the sign rl (Ref. [46] implied that
the colliding breathers have opposite velocities).

The particular case considered in the main part of the paper
[see Eq. (13)] boils down to the following choice of λ1,2:

λ1 = iA

2

(
Reiα + e−iα

R

)
,

(A29)

λ2 = −λ∗
1 = iA

2

(
Re−iα + eiα

R

)
,

One substitutes (A29) into the general expressions (A25)–
(A28) and after straightforward simplifications ends up with
the formulas (18)–(20).
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