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B2 to B-linear magnetoresistance due to impeded orbital motion
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Strange metals exhibit a variety of anomalous magnetotransport properties, the most striking of which is a
resistivity that increases linearly with magnetic field B over a broad temperature and field range. The ubiquity
of this behavior across a spectrum of correlated metals—both single- and multiband, with either dominant spin
and/or charge fluctuations, of varying levels of disorder or inhomogeneity, and in proximity to a quantum critical
point or phase—obligates the search for a fundamental underlying principle that is independent of the specifics
of any material. Strongly anisotropic (momentum-dependent) scattering can generate B-linear magnetoresistance
but only at intermediate field strengths. At high enough fields, the magnetoresistance must eventually saturate.
Here, we consider the ultimate limit of such anisotropy, a region or regions on the Fermi surface that impede all
orbital (cyclotron) motion through them, but whose imposition can be modelled nonetheless through a modified
Boltzmann theoretical treatment. Application of the proposed theorem suggests that the realization of quadratic-
to-linear magnetoresistance requires the presence of a bounded sector on the Fermi surface possibly separating
two distinct types of carriers. While this bounded sector may have different origins or manifestations, we expect
its existence to account for the anomalous magnetotransport found in a wide range of correlated materials.
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I. INTRODUCTION

It is well understood from semiclassical theories that
isotropic single-band metals exhibit no magnetoresistance
(MR) [1]. The introduction of a weak and T -independent
anisotropy results in a positive MR and Kohler’s scaling
whereby plots of �ρ/ρ(0) vs B/ρ(0) collapse onto a sin-
gle curve [2]. Here, �ρ = ρ(B, T ) − ρ(0, T ) is the MR and
ρ(0, T ) = ρ(0) is the T -dependent zero-field resistivity. This
scaling describes the observed MR in most metals and forms
one of the key successes of Boltzmann transport theory.

Kohler’s rule may be violated in systems containing mul-
tiple bands, T -dependent anisotropy [3], a separation of life-
times [4,5], or open orbits [6,7]. In addition, a lack of satura-
tion in the MR can occur in perfectly charge-neutral semimet-
als [8]. None of these known violations, however, accounts
for the quadrature MR first reported in BaFe2(As1−xPx )2

(Ba122) near its antiferromagnetic (AFM) quantum crit-
ical point (QCP) [9]. The specific form of quadratic
to nonsaturating and nonaccidental linear MR (QLMR)
found in Ba122 can be viewed either as an equivalence
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of B and T , or as B/T scaling:

ρ = ρ0 +
√

(αT )2 + (γ B)2,

(ρ − ρ0)/T = α
√

1 + (γ B/αT )2. (1)

Here, α and γ are fitting parameters used to describe the MR
over the full temperature and magnetic field range studied
while ρ0 = ρ(0, 0) is the (extrapolated) zero-field residual
resistivity. We emphasize that Eq. (1) is empirical in nature
and not a theoretical form, but that where deviations have been
observed, a clear universal characteristic remains [9,15,16],
which will be referred to as QLMR.

Since its discovery in the pnictides, QLMR has been ob-
served in iron chalcogenides near a nematic QCP [10,11],
in heavy fermions near a Kondo QCP [9,12], in CrAs near
a double helical endpoint [13], and in the electron- [14] and
hole-doped cuprates both inside [15] and outside [16] of the
pseudogap regime. In almost all cases, ρ(T ) also exhibits a
dominant T -linear dependence at low T and zero field that
has been linked to Planckian dissipation—the maximum dis-
sipation allowed by quantum mechanics [10,17–21].

The pervasiveness of QLMR among strange and quantum
critical metals is striking and explanations involving quantum
MR [22,23], sharp Fermi surface corners [1,24], or Zeeman
splitting [9,15,25] seem unlikely given the widely differing
scattering rates, Fermi surface geometries, and magnetic field
orientation dependencies encountered. Realistic theoretical
explanations for this behavior thus far fall into two cate-
gories. The first, based on random resistor networks [26,27],
attributes QLMR to the presence of disorder, either through
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real space binary distributions [28], real space patches [29], or
doping inhomogeneity [30]. The second is intrinsic and driven
by cyclotron orbits in combination with nesting fluctuations
or peaks in the density of states arising through hot spots [31],
turning points [32], magnetic breakdown [33], or van Hove
singularities [34].

Beyond its striking universality, a number of fundamental
challenges confront the search for a coherent explanation of
QLMR. One mystery is the separation of the residual resistiv-
ity from the MR of Eq. (1), which has proven to be more than
merely suggestive. Indeed, in pnictides, chalcogenides, and
cuprates, large variations in ρ0 appear to have limited or no
influence on the magnitude of the B-linear slope or the char-
acteristic (quadratic-to-linear) turnover point [11,15,16,35].
Such insensitivity to disorder is rare in correlated electron
systems [36] and presents a serious challenge to theory.

Another key aspect to address is the fact that many of
these systems exhibit signatures of two-component behav-
ior in their magnetotransport, manifest as two fluids (in a
multiband material) [11], two charge sectors (in a single-band
material) [16,37] or two (or more) lifetimes [3,38]. Despite
being well established experimentally, it has proven difficult
to determine whether these different contributions or lifetimes
couple in series or in parallel, or to explain how the addition
of a secondary (inelastic) scattering mechanism influences
magnetotransport already at the Planckian limit.

Besides the role of disorder and the coupling paradox,
the sensitivity of the QLMR to magnetic field orientation
introduces another level of complication. In the longitudinal
configuration with field and current parallel to one another,
QLMR is still observed in cuprates [16], yet is absent in
Ba122 [39]. The first observation is incompatible with con-
ventional cyclotron motion in two dimensions, the second
incompatible with the theory that QLMR emerges as the ad-
dition of thermal and Zeeman energy scales in a variational
sense. As far as we are aware, no current theory can satisfac-
torily explain such symmetry differences.

Finally, no signs of saturation of the B-linear MR nor of
Shubnikov-de Haas oscillations have been reported (within
current magnetic field ranges) in any material exhibiting
quadrature scaling. Collectively, these four challenges beg the
question: Is there any hope of finding a universal explanation
of quadrature scaling as an alternative to Kohler’s rule?

The purpose of this article is to suggest the groundwork to
affirmatively answer this question by considering the essen-
tial role of pronounced anisotropy; the key postulate being
that QLMR stems from a strong impedance to cyclotron
motion somewhere on the Fermi surface. This impedance
can result from the presence of hot spots [31] or van Hove
singularities [34], hot lines [40], Fermi surface sectors [37],
or partially gapped Fermi surfaces [41–43] caused, e.g., by
AFM or charge density wave (CDW) correlations [24,35].
We propose that an effective boundary of as yet unknown
origin may emerge between two k space separated regions
within a single Fermi sheet to explain the observation of
QLMR and a reduced Hall conductivity in overdoped cuprates
[16,44]. The most surprising aspect, however, is that quadra-
ture scaling can be captured at all through orbital effects and
Boltzmann theory. Despite the long standing successes of
Boltzmann theory, it is by no means obvious that it could be

used to describe the nonquasiparticle behavior associated with
Planckian dissipation. Nevertheless, recent success in using
Boltzmann theory to describe the phenomenology of strange
metals [34,35] justifies a careful consideration. We reiterate
that the focus of this paper is not towards microscopics, but
rather towards establishing a phenomenology.

In the following section, we discuss the assumptions that
underpin the use of Boltzmann theory to describe impeded
cyclotron motion. While Sec. II provides some insight into
the consequences of Fermi surface boundaries, it lacks critical
details such as the precise quadrature form and the condi-
tions for unsaturated MR. To deal with these challenges, we
provide in Sec. III the simplest quantitative example of the
proposed theorem using an isotropic two-dimensional (2D)
Fermi cylinder with azimuthal boundaries at multiples of π/2.
We study the effects of shorting and disorder in Secs. IV and
V, respectively, while Sec. VI is reserved for discussion and
outlook.

II. IMPEDED CYCLOTRON MOTION

In a conventional metal, the conductivity is defined as
the current-current correlation over time 〈�j(0)| �j(−t )〉, where
the average is taken over all charge present. Given the wide
range of microscopics that could be responsible for the
boundary, we will assume information about their specific
origins—while necessary for explaining why cyclotron mo-
tion is impeded—is not relevant for describing the qualitative
features of QLMR. As a result, the conductivity simplifies to
the velocity-velocity correlation over time 〈�v(0)�v(−t )〉 at the
Fermi level and we focus here on the Lorentz contribution.

While self-evidently valid in the case of conventional
quasiparticles, the applicability of Boltzmann transport theory
to strange metals exhibiting nonquasiparticle behavior is not
immediately apparent. Boltzmann transport theory itself is not
predicated on the presence of quasiparticles, however. It has
long been asserted that in the limit of long wavelengths and
low frequencies, Boltzmann theory follows more generally
from conservation laws [45,46]. Recent theoretical work af-
firms this view more concretely through the generalization of
quasiparticles to quanta [47,48]. The two conditions for the
definition of quanta are (1) the existence of lattice translational
symmetry such that a Brillouin zone is defined and (2) micro-
scopic charge conservation, or more formally in the 2D case,
the net time invariance in equilibrium of n(φ). Because the
symmetry operator for translation and the charge density n(φ)
for a given wave vector direction φ are connected through an
effective �k(φ), this �k(φ) can be used to define an ersatz Fermi
surface. We apply Boltzmann theory to the leading order out-
of-equilibrium occupation level of this Fermi surface under
electric fields in the relaxation time approximation. The Boltz-
mann transport equation incorporating anisotropic scattering
can then be expressed through the Shockley-Chambers tube
integral formalism (SCTIF) [49,50]:

σi j = e2

4π3h̄

∫
FS

d2k
∫ ∞

0
dt

vi(0)

vF (0)
v j (−t ) exp

(
−

∫ t

0

dt ′

τ0(−t ′)

)

(2)

where FS is the Fermi surface, σ the conductivity, i, j ∈
{x, y, z} (though we will focus here on σxx and σxy in 2D),
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e the elementary charge, h̄ Planck’s constant, and t time. The
velocity v is defined through ∇kε/h̄ where ε is energy while τ0

is the anisotropic zero-field scattering rate. For simplicity, we
assume an isotropic cylindrical Fermi surface. By enforcing
the Fermi surface to be continuously connected [47] inde-
pendent of the chemical potential, we naturally arrive at an
isotropic effective mass through 1

m∗ := 1
h̄2

d2ε
dk2 .

Central to our hypothesis is the notion of impedance to
orbital motion due to boundaries at discrete locations on
the Fermi surface. Without magnetic field, these barriers are
obsolete as no quanta encounter them. In the presence of a
magnetic field, orbital motion is impeded for quanta close
enough to the boundary [see Fig. 1(a) for a schematic rep-
resentation]. At sufficiently high magnetic field, quanta can
traverse a full sector between two boundaries. As a result,
almost all charge correlation will end at the boundaries, rather
than by scattering through their usual scattering channels such
as disorder, phonons, magnons, other electrons, etc.

Conventionally, local impedance to cyclotron motion can
arise via two mechanisms: through a local reduction in τ0

(e.g., at a scattering hot spot) or through a local enhancement
of m∗ (density of states), which we argue are equivalent in
this context. In the low-field limit, the conductivity is set
by the curl of the mean free path over the Fermi surface
[51,52], which is given at every k point by l = vF τ0 ∼ τ0/m∗.
In contrast, the high-field limit is defined by the variation of
ωcτ0(= qBτ0/m∗) over the Fermi surface, where ωc is the
cyclotron frequency and q = ±e the fundamental charge. In
either case, the ratio τ0/m∗ is critical and boundaries arising
from a local decrease in τ0 or increase in m∗ are deemed
to be equivalent. The third possibility is impedance through
a partial gapping of the Fermi surface or a suppression of
spectral weight. In all cases, velocity correlation effectively
terminates at specific points on the Fermi surface.

According to the relaxation time approximation, the
velocity-velocity correlation decays over time as exp(−t/τ0)
and is integrated to t = ∞. The fundamental change intro-
duced here is that this correlation terminates at the k-space
boundaries, manifesting as an upper limit on the time integral
in Eq. (2):

σi j = e2

4π3h̄

∫
FS

d2k
∫ bound

0
dt

vi(0)

vF (0)
v j (−t ) exp

(
− t

τ0

)
. (3)

This termination of correlation is the only non-Drude
component, illustrating the minimal nature of the model.
Additionally, the bound time diverges in the limit B → 0
and the Drude result is recovered. In the high-field limit,
ωcτ (B) tends towards a constant equal to the sector size W
in radians [see Fig. 1(a)]. In this regime, the magnetic field
determines through ωc ∼ B how quickly the boundaries are
reached, ultimately guaranteeing τ (B) ∼ 1/B. The resulting
conductivity scales through the termination of the correlation
function as σ ∝< v(0)|v(−t ) >∝ 1/B for both diagonal and
off-diagonal elements. This scaling is distinct from σxx ∼
1/B2 and σxy ∼ 1/B in conventional theory. Through matrix
inversion, we thus find simultaneous B-linear resistivity and
Hall resistivity as limiting high-field behavior, as observed.
Furthermore, the traversal time for a sector (∼W/ωc subject
to further anisotropy) does not vary with temperature thereby

FIG. 1. Quadrature scaling in a one-fluid model with a δ-function
impedance. (a) Schematic representation of cyclotron motion on a
2D electron-like Fermi surface with four boundaries. The magnetic
field direction is orthogonal to the plane and the motion repre-
sents electrons from the past or holes to the future terminating at
the impedance. W indicates the sector size. (b) In-plane resistivity
ρ(B, T ) computed using n = 8 × 1027 m−3, c = 10 Å, m∗ = 5me,
parameters based loosely on a typical cuprate. The boundaries are
δ functions and the T -dependent (isotropic) scattering rate is given
by τ0 = h̄/kBT , i.e., with no impurity scattering. (c) The QLMR
and scaling collapse is most evident in a derivative plot. With
the infinitely sharp boundaries considered here, a residual B-linear
term—persisting down to the lowest fields as indicated by the black
dot—is also found. As shown elsewhere, this residual B-linear term
is unstable to the introduction of “soft” boundaries or the inclusion
of a second fluid. The green-horizontal line represents Eq. (9) and
the green-vertical line Eq. (11). Note that B∗ is considerably higher
than the bending point usually assigned as the field scale through
the quadrature form. Despite the simplicity of the model, the scaling
collapse, the turnover scale and the magnitude of the B-linear slope
are all found to be in good agreement with experimental observation.

ensuring that the magnitude of the B-linear slope is T inde-
pendent.

Note that this regime does not exist when the anisotropy
is weak, as in the standard treatment of MR that leads to
Kohler’s scaling. In that circumstance, quanta can traverse the
high scattering regions well before cyclotron motion between
high scattering regions is possible. As a result, no effective
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boundary is realized and the anisotropy gradually washes out
with increasing field strength, resulting in conventional high-
field saturation of the MR.

Empirically, strange metals are characterised by a ubiq-
uitous T -linear scattering rate often linked to the Planckian
limit. Through the relation �E�t � h̄ with kBT for the en-
ergy uncertainty and τ for uncertainty in time [17], we arrive
at τ0 ∼ 1/T . Combining the Planckian ansatz with impeded
cyclotron motion results in the observed resistivity scaling
throughout the entire (B, T ) phase diagram. We stress, how-
ever, that impeded cyclotron motion and Planckian dissipation
are two independent ingredients. In the absence of a QCP,
such as in most CDW systems, impeded orbital motion can oc-
cur without Planckian dissipation. Consequently, B/T scaling
is seen to be only one manifestation of QLMR. Conversely,
while QLMR can result from the presence of quantum critical
fluctuations, it is not a prerequisite for its observation.

III. SPECIFIC MODEL

In order to demonstrate the effect of impeded cyclotron
motion on the MR, we consider here the simple example of
an isotropic 2D Fermi cylinder of radius kF with tetragonal
symmetry and azimuthal boundaries at multiples of π/2. No
further anisotropy is introduced, the pocket can be of arbitrary
size, and energy broadening through the Fermi-Dirac distri-
bution is neglected. We emphasize that the introduction of a
specific dimensionality, single-fluidity and boundary location
are arbitrary and not in any way necessary for the realisation
of QLMR, but a common scenario for real systems exhibiting
quadrature scaling. The quanta are assumed to have charge
q = −e, spin degeneracy and an effective mass m∗, which
for simplicity equals their cyclotron mass mc. Throughout, we
will assume that the field is applied along the symmetry axis
and drives quanta into the boundaries through cyclotron mo-
tion with frequency ωc = qB/m∗ < 0. Restricting ourselves
to the first quadrant, we obtain the following contribution to
σxx for azimuthal angle φ ∈ [0, π/2]:

σxx = e2k2
F

2π2h̄c

∫ π/2

0
dφ

∫ −φ/ωc

0
dt

vx(0)

vF (0)
vx(−t ) exp(−t/τ0),

(4)

where c is the c-axis lattice parameter. The introduction of
the upper bound in the time integral here is equivalent to the
introduction of a delta function in the scattering rate every
φ = π/2 in an otherwise isotropic 2D Fermi surface. The
time dependence of the quantum’s position on the Fermi sur-
face is given by semiclassical equations of motion, meaning
φ(−t ) = φ(0) + ωct . We repeat the same procedure for the
second quadrant and find quadrants 1 and 3 are by symmetry
equal to 2 and 4. Introducing the carrier density n = k2

F /2πc
and repeating the procedure for hole-like carriers, we obtain:

σxx = ne2τ0

m∗
1

1 + ω2
cτ

2
0

(
1 − 2|ωc|τ0

π

1 − ω2
cτ

2
0

1 + ω2
cτ

2
0

− 4ω2
cτ

2
0

π
(
1 + ω2

cτ
2
0

)e−π/2|ωc|τ0

)
. (5)

The same derivation can be repeated but replacing
vx(0)vx(−t ) with vy(0)vx(−t ) in Eq. (4) to obtain σyx = −σxy.

σxy = ne2τ0

m∗
ωcτ0

1 + ω2
cτ

2
0

(
1 + 2

π

1 − ω2
cτ

2
0

1 + ω2
cτ

2
0

e−π/2|ωc|τ0

− 4

π

|ωc|τ0

1 + ω2
cτ

2
0

)
(6)

σxy is antisymmetric and σxx is symmetric under both charge
and time reversal symmetry (reversing the sign of q or B), as
required. The low-field behavior of ρxx and ρxy can be found
from a Taylor expansion of the resistivity as follows:

lim
B→0

ρxx = m∗

ne2τ0
+ 2|B|

neπ
+ O(B2), (7)

lim
B→0

ρxy = B

nq

(
1 + 8e|B|τ0

πm∗

)
+ O(B3). (8)

Here, q = ±e is the charge of a quantum. Similarly, the
high-field regime is extracted using a Laurent series and re-
sults in a linear MR and Hall resistivity:

lim
B→∞

ρxx = 2π

4 + (π − 2)2

|B|
ne

+ O(B0), (9)

lim
B→∞

ρxy = π (π − 2)

4 + (π − 2)2

B

nq
+ O(B0). (10)

Figure 1(b) shows a series of ρ(B) curves generated for
such a 2D Fermi surface loosely based on a typical cuprate,
including a scattering rate τ0 = h̄/kBT . The corresponding
derivative curves are shown in Fig. 1(c). Equations (7) and
(8) confirm that the Drude result is recovered in the zero-field
limit. The low-field B-linear regime is not seen experimen-
tally. As we show below, however, this low-field B linearity is
found to be unstable to shorting effects and smoothness of the
boundary. In line with experiment, Eq. (9) shows that the slope
of the high-field B-linear MR is independent of τ0 (and m∗)
and therefore independent of temperature. Indeed, as it turns
out, the high-field MR is determined solely by the boundary
(set by geometry through W = π/2). As shown in Fig. 1(c),
the form of the MR also scales with B/T . Thus, many aspects
of the quadrature MR behavior are reproduced with the simple
introduction of an infinite barrier and a Planckian scattering
rate. We reiterate that no MR emerges for the Drude result; all
MR is generated solely by the presence of the boundaries.

The high-field B-linear MR regime is reached at a magnetic
field B∗, defined by the field strength where a quantum can
travel between boundaries. This emerges theoretically through
a characteristic exponent exp(−W/|ωc|τ0) in Eqs. (5) and (6).
The turnover scale B∗ depends on microscopic details and is
given by

B∗ = W m∗/eτ0. (11)

The derivative plot in Fig. 1(c) shows that this scale cor-
responds to the field at which B linearity is, to all intents and
purposes, fully established. Experimentally, the relevant field
scale is usually defined as either the turning point (the knee
in the derivative) or the point of deviation from a quadratic
MR at low fields. The crossover is therefore typically assigned
to significantly lower values than the intrinsic field scale of
the problem as defined here. We also note that B linearity
can be observed at considerably lower fields than those at
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which quantum oscillations would be expected. Firstly, since
typical materials satisfy or are close to C3, C4, or C6 sym-
metry, multiple boundaries are expected on a Fermi surface,
considerably lowering the relevant field scale compared to
the full orbits required for quantum oscillations. Secondly,
once quanta travel between boundaries, the derivative dρ/dB
reaches B linearity as shown in Fig. 1(c). These two effects
allow for the onset of B-linear MR in the regime ωcτ0 < 1
and does not require ωcτ0 > 2π , a necessary criterion for a
large number of explanations for B-linear MR [24].

The obtained high-field regime is entirely unexpected from
a traditional perspective. Again, Drude conductivity shows
zero MR, while in the conventional Boltzmann scenario,
anisotropy is eventually washed out leading to MR saturation
at the highest fields. Here, without breaking the boundaries,
the MR does not saturate and is nonaccidental, as shown by
the infinite field limit in Eq. (9).

For the δ-function barrier considered above, the low-field
MR also contains a residual linear component that is not
seen experimentally. Indeed, as we now show, this particu-
lar feature of the minimal model is found to be unstable to
the introduction of arbitrary smoothness in the boundary. We
emphasize that low-field B linearity is an artifact of singular
boundaries and not a central part of the phenomenology of
impeded cyclotron motion. Following Ref. [31], we model a
smooth boundary by incorporating a locally enhanced scatter-
ing rate of Lorentzian shape on top of an isotropic background
scattering rate. A similar smoothness of singularities was
adopted in Refs. [24,34]. For these computations, we use the
SCTIF formalism of Eq. (2) to account for the continuously
changing scattering rate around the Fermi surface. We show
in panels (a)–(c) of Fig. 2 that this scenario leads to a sup-
pression of the linear low-field MR and a form that is highly
consistent with the quadrature expression given in Eq. (1) [and
shown as a dashed line in Fig. 2(c)]. In effect, smoothness
of the boundary enables quanta to travel slightly beyond the
impedance and prevents macroscopic charge from terminating
at infinitesimal magnetic field, thereby shifting the influence
of the boundary to finite fields and suppressing the initial B
linearity. One can interpret these findings as a gradual (as
opposed to discontinuous) suppression of the effective scat-
tering rate τ (B) near the boundary with increasing magnetic
field. At the same time, the high-field B linearity is dominated
by the interboundary distance and is largely unaffected as
the boundaries themselves remain impenetrable. We therefore
find that even a minor softening of the boundary leads to a
recovery of the quadrature MR.

In a real material, of course, hot spots have nonzero scat-
tering lifetime [31,32], van Hove singularities host a finite
density of states [34] and even true gaps can experience mag-
netic breakdown [33]. In all cases, the probability to tunnel
through the boundary scales as exp(−Bt/B) where Bt cor-
responds to a second field scale at which the MR saturates
exponentially in accordance with a diminishing anisotropy.
This situation is illustrated in panels (d)–(f) of Fig. 2 for a
slightly modified parametrization in which the depth of the
scattering time at the hot spots is reduced. In all cases, we
find that linear MR is achieved at B = B∗, when quanta can
traverse (on average) the entire region between boundaries,
and is broken at B = Bt when the boundaries themselves are

FIG. 2. Lorentzian boundary model. (a) Scattering rate around
the Fermi surface. The hot spots have a Lorentzian shape with char-
acteristic half-width of 0.1 rad. The cold scattering rate is given by
τ0 = h̄/kBT at T = 10 K. (b) The resistivity and Hall effect using
kF = 7e9 m−1, c = 6.5 Å, and m∗ = 5m0, again based loosely on
single-layer cuprates. The field scale B∗ = 58 T for impeded orbital
motion is indicated in green across panels. (c) The derivative shows
QLMR behavior consistent with the quadrature form with a reduced
field scale of 0.93 T/K as well as a linear high-field Hall effect.
Varying the temperature shows a perfect scaling collapse in B/T ,
shown here for the temperature range 1 K (cyan) to 200 K (purple).
(d) Second model with reduced depth of the hot spots to illustrate the
effect of penetration through the barrier and the irrelevance of the ex-
act height of the scattering peak for the B-linear slope at intermediate
field strengths. (e) The corresponding resistivity to extremely high
field shows saturation occurs when magnetic breakdown manifests.
Shared with panel (f), the characteristic tunneling field Bt ∼ 1500 T
is indicated in red (see Supplemental Material [53] for a derivation).
(f) dρxx/dB shows a low-field quadrature form with the same charac-
teristics as in panel (c). At high field, the barrier is penetrable and the
MR saturates. The dashed line is an exponential fit with characteristic
scale ∼400 T above which the conventional Hall slope recovers and
the MR saturates.

penetrated, at which point the MR asymptotically approaches
saturation. Analytically for a hot spot, this “breakdown” field
can be understood as the probability of a quantum maintaining
velocity-velocity correlation having reached a boundary and
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can be arbitrarily high. This contrasts with Ref. [33], where
B linearity can only be reached through magnetic breakdown,
whereas here B linearity persists as long as breakdown does
not occur.

In those materials that have been shown to exhibit quadra-
ture scaling, no violation of linearity has been observed to the
highest B/T values attained thus far: up to B/T = 35 T/K in
electron-doped cuprates with an estimated turnover scale of
2–3 T/K [14] and up to 25 T/K in hole-doped cuprates with a
turnover scale of 0.2 T/K [16]. This unwavering B linearity up
to the highest B/T is one of the hallmarks of quadrature scal-
ing. Intriguingly, SCTIF analysis of recent angle-dependent
c axis MR measurements on Nd-LSCO [34] led to a very
similar parametrization to the one shown in Figs. 2(d)–2(f), a
parametrization that also generates a B-linear in-plane MR ex-
tending well beyond the experimentally available field scale.

We now turn to consider the influence of impeded cy-
clotron motion on the Hall response. The geometrical factors
in Eq. (10) lead to a marked reduction in the Hall conduc-
tivity compared to the Drude result. For a sector of general
size, we derive in the Supplemental Material [53] that σxy is
renormalized by a factor 1 − sin(W )/W in the high-field limit.
This implies that in cases where less than half of the charge
is in nonquasiparticle states and separated across four sectors
(W < π/4), the Hall response can be suppressed by up to an
order of magnitude. This geometrical factor may justify the
approximation σxy = 0 for the incoherent sector in overdoped
cuprates used in Ref. [37]. Thus, we find that boundaries
on the sector could simultaneously explain quadrature MR
scaling and a suppression of σxy.

The similarity between the obtained high-field linear slope
of ρxx and ρxy in Eq. (9) and (10) should also be noted. The
high-field MR slope is found to be directly given by the car-
rier density (multiplied by a geometrical factor). There is no
dependence upon τ0 (and therefore nor upon T ), nor upon the
effective mass (and therefore nor upon the energy dispersion
or typical correlation effects). Intuitively, the τ0 independence
emerges because only scattering on the boundary is relevant in
the high-field limit. The independence of m∗ emerges because,
although heavier carriers are harder to move, this effect is
canceled by the ability to survive longer until they encounter a
boundary. The independence of a multitude of normally com-
plicating factors suggests an insensitivity to material-specific
parameters that reconciles the experimental fact that the mag-
nitude of the high-field slope is highly robust as well as T
independent.

IV. SHORTING EFFECTS

For the model presented thus far to be universal, it has to
be robust to a number of generalizations. We discuss general
CN symmetry in the Supplemental Material [53]. Here, we
focus on shorting effects, which relate directly to the ro-
bustness of the results. To this end, we consider a two-fluid
scenario whereby the Brillouin zone hosts two disparate Fermi
pockets, one without borders (the conventional part) and one
containing bounded sectors (the “strange” part). This may be
relevant to multiband systems in which boundaries only reside
on a single sheet, or to circumstances in which a subset of
quanta are, for whatever reason, unable to traverse a boundary

unimpeded. In the latter case, one can define two sectors on
a single Fermi sheet. In either case, the conductivity σc of
the conventional sector is modelled within a Drude frame-
work and is assumed to couple as a parallel resistor to the
less conductive strange or bound contribution σb. In the limit
σc  σb, we expect shorting effects to suppress the quadrature
MR, but as shown in Fig. 3(a), this is not observed. In fact,
the derivative of the MR is unchanged, i.e., the result strongly
resembles series MR coupling, despite the model in question
being strictly parallel.

Moreover, in the low-field limit, we find that the B-linear
component—already shown in Fig. 1(c) to vanish in the
presence of smooth boundaries—is also unstable to shorting
effects. The key is in the inversion of the conductivity tensor
to obtain the resistivity tensor (here we consider ρxx). In full:

ρxx = σxx,b

(σxx,b + σxx,c)2 + (σxy,b + σxy,c)2

+ σxx,c

(σxx,b + σxx,c)2 + (σxy,b + σxy,c)2
. (12)

For σxx,b � σxx,c, we find that the leading contribution of
the bounded sector to the MR in the low-field limit is through
σxx,b/σ

2
xx,c. This term is shorted out, thereby explaining the

instability of the low-field B-linear component to shorting.
The more interesting scenario, however, is the high-field

regime. Surprisingly, the high-field B-linear MR is found to
be robust no matter how much more conductive σc becomes.
The underlying reason for this is that in the high-field limit
σxx,c ∼ B−2 fades away much faster than σxx,b ∼ B−1 as well
as both σxy ∼ B−1 components. (In Drude theory, the condi-
tion σxx,c � σxy,c is satisfied when ωcτ0 > 1.) The dominant
σ ∼ B−1 scaling leads to robust B linearity. Thus, we find that
the low-field regime is dominated by σxx,c, whereas the high-
field regime is dominated by the remaining three components.

The first term in Eq. (12) is responsible for quadrature scal-
ing while the second term defines the zero-field limit through
the term 1/σxx,c and represents approximately conventional
MR. Strikingly, approximate series coupling emerges in the
high-field limit between the two components despite strictly
parallel coupling underlying the model. For the Hall effect in
the strongly shorted regime, we show in Fig. 3(c) that the Hall
contribution is dominated by the coherent sector (where we
have assumed ncoh = ntot/2). Mathematically, the incoherent
contribution is suppressed because σxy,b is diminished by geo-
metrical factors as derived in the Supplemental Material [53].

The shorting argument presented above is extremely gen-
eral, though in the intermediate regime where the difference
between σxx,c and σxx,b become less severe, the field derivative
dρxx/dμ0H is observed to go through a maximum before
reaching the high-field plateau. Note that this is a rule of
thumb and that a generalized treatment of this regime remains
an open question and the relevance of these deviations are
likely to depend on the situation in specific materials given
the number of degrees of freedom involved. Nevertheless, the
general result is that the high-field response is determined by
σxx,b, σxy,b and σxy,c, which are all defined by carrier density,
carrier sign and geometry alone. By contrast, the zero-field
resistivity is defined solely by σxx,c and is dependent on both
τ and m∗. As a result of this decoupling between the zero-
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FIG. 3. Impact of the introduction of multiple sectors on the
QLMR. (a) Resistivity with the same parametrization as in Fig. 1,
but with eight sectors. Four sectors are unbounded and host a 10 000
times smaller scattering rate to represent the extreme shorting limit.
Dashed lines indicate the dominant power law in the high- and low-T
limit. (b) The derivative shows a scaling collapse. The dashed red
lines are a fit to Eq. (1) and the associated field scale. The green
vertical (horizontal) line represents the characteristic field scale B∗

(the theoretical saturation slope in the high-field limit), respectively.
(c) The corresponding Hall effect shows that the effective Hall
number nH is strongly reduced. Though the Hall effect remains B
linear, nH is closer to ncoh (= ntot/2), the number of coherent carriers
(red-dashed line), than ntot (green-dashed line).

and high-field limits, an effective series coupling between the
zero-field resistivity and the MR emerges from fundamentally
parallel coupling. We note that such series coupling between
quadrature and conventional MR may have been observed in
the iron chalcogenide family FeSe1−xSx across its putative
nematic QCP [11].

V. IMPURITY SCATTERING

The lack of a residual resistivity component in the MR scal-
ing in strange metals [9,16,35] is one of the most striking and
unusual features of their magnetotransport. Residual resistiv-
ity is usually incorporated via Matthiessen’s rule, which for
a Planckian metal can be expressed as 1/τ0 = αkB(T + T0),
where T0 originates from elastic impurity scattering and acts
to reduce the velocity-velocity correlation decay time relative
to the actual lifetime [54]. Experimentally, T0 can be as high
as 200 K [16], making the distinction between quadrature
B/T scaling and conventional Kohler scaling through ωcτ0 ∼
B/(T + T0) unmistakable.

In cuprates, the need to incorporate two lifetimes into the
magnetotransport emerged early on following the discovery
of a distinct T -dependence of the inverse Hall angle cot θH =
ρxx/ρxy = aT 2 + b [5,55]. Original interpretations for such
behavior included the spin-charge separation picture of An-
derson [4] and T -dependent anisotropic scattering [56]. The
coefficient b was initially linked to the residual resistivity.
Later MR measurements suggested that �ρ/ρ(0) ∝ tan2θH

[25,52], implying that b was also a relevant parameter in the
MR response. In cleaner cuprates, however, �ρ/ρ(0) was
found to follow a pure power law [25] or an adjusted form of
Kohler scaling whereby plots of �ρ/(ρ(0) − ρ0) as a function
of B/(ρ(0) − ρ0) collapse onto a single curve [57], suggesting
a possible disconnect between the MR and the Hall angle. The
origin of this behavior is still unknown.

The current model invokes a contribution to the conductiv-
ity which is activated by the application of a magnetic field
and returns a B-linear slope of the resistivity that is indepen-
dent of τ0, as highlighted in Eq. (9). It is thus not immediately
obvious that Matthiessen’s rule will hold in this case since τ

is B dependent despite the underlying scattering rate on the
Fermi surface being unchanged. Usually, Fermi’s golden rule
can explain the robustness of Matthiessen’s rule for a wide va-
riety of scattering types, but it is not immediately applicable.
Not only is the boundary scattering induced by a magnetic
field without changing any underlying scattering probabili-
ties, impeded cyclotron motion also terminates carriers after
a significant time period tbound, whereas Fermi’s golden rule
concerns scattering over an infinitesimal time window.

In order to confront this problem, we have modeled impu-
rity scattering for the simplest case using Boltzmann theory
and isotropic impurity scattering, as described in the Supple-
mental Material [53]. Incorporating this impurity scattering,
we find that Kohler’s rule is in fact recovered. We thus neces-
sarily conclude that the reason why the residual resistivity is
absent in the quadrature MR scaling lies beyond conventional
Boltzmann theory.

VI. DISCUSSION AND OUTLOOK

We begin this section by highlighting the key differences
between impeded cyclotron motion and comparable alterna-
tive models for QLMR involving square Fermi surfaces [1],
hot spots [31] and magnetic breakdown [33]. We proceed by
considering other possible candidates for the Fermi surface
boundary before concluding with a brief discussion of QLMR
in the high-Tc cuprates, the archetypal strange metal [58].
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It has long been known that Fermi surfaces with sharp
corners or turning points can give rise to B-linear MR. Even
at small values of ωcτ0, charge may be forced to turn through
a large angle (π/2 in the tetragonal case). Since the MR is
driven by the mean-free-path orbit [52], these sharp corners
will dominate the MR and since the turning angle is fixed, i.e.,
independent of field, the MR acquires a B-linear dependence.
The sharper the turning point, the lower the value of ωcτ0 at
which this B linearity emerges. Conversely, a softening of the
sharp corners (e.g., from a square to a rounded square) results
in quadratic behavior at low fields and hence QLMR. The
same mechanism has been utilized in other models that invoke
turning points [32] and was recently proposed in favor of a
myriad of alternatives requiring ωcτ0  1 in CDW materials
[24]. In these scenarios, the scattering rate crucially remains
unchanged in the vicinity of the turning point.

Experimentally, it is doubtful whether such features are
sufficiently general to be a universal explanation of QLMR.
The Fermi surfaces of NbSe2 [42,43], pnictides [59,60], and
certain hole-doped cuprates [61–63], for example, do not
appear to contain such abrupt turning points. Only inside a
phase of finite Q-nested order can such turning points emerge,
although it is likely that these would also constitute strong
scattering centers. Secondly, and perhaps more importantly,
even for the perfectly square Fermi surface of Ref. [1], the
B-linear MR turns out to be accidental, as shown in the Sup-
plemental Material [53]. Quadrature MR, on the other hand,
exhibits nonaccidental B linearity. Moreover, as shown here,
impeded orbital motion can occur even on an isotropic Fermi
surface with an anisotropic scattering rate. Finally, the field
scale B∗ for impeded orbital motion is determined by the inter-
boundary distance W , rather than the sharpness of the turning
points. As a consequence, B∗ cannot be made arbitrarily small.
Clearly, there are a number fundamental differences between
the two pictures.

Many strange metals are located in the vicinity of a QCP
of magnetic origin. The associated nonzero �Q fluctuations
can give rise to hot spots on the Fermi surface as well as
non-Fermi-liquid T -linear resistivity. Hence, both ingredients
necessary for the realization of QLMR with B/T scaling are
present in such systems. Our model is distinct from the previ-
ous treatment of quadrature scaling in Ba122 [31,32,35]—that
attributes QLMR to the intrinsic response of isolated hot spots
beyond the relaxation time approximation—in that here, the
B-linear MR is tied to interactions between hot spots and the
intrinsic response is shorted out [40].

This difference manifests itself in a number of ways.
Firstly, the intrinsic hot-spot model predicts ρxy ∝ B2 [31],
whereas the current model correctly reproduces the observed
B-linear Hall response. Secondly, the role of disorder in the
temperature scaling is distinct for each model. In Ref. [35],
impurity scattering must remain negligible compared to the
scattering rate near the hot spot or the hyperbolic scaling
breaks down. At the highest B/T , Kohler scaling is expected,
but no deviations from B linearity (let alone recovery of
Kohler scaling) have ever been observed experimentally.

Another model that is conceptually similar to ours was
proposed in Ref. [33] to explain the observation of B-linear
MR in NbSe2. There, the B linearity was claimed to originate
from magnetic breakdown due to the fact that the rate at

which CDW gaps on the Fermi surface are encountered scales
with ωc. In our theorem, however, the effective anisotropy is
washed out when magnetic breakdown occurs [see Figs. 2(d)–
2(f)] and B-linear MR can only occur in the absence of
magnetic breakdown. This argument is further supported in
Ref. [64] (and cited in [33]) which shows MR saturation once
perfect charge compensation is lost.

As it turns out, our theorem may be equally applicable to
materials like the dichalcogenides that undergo CDW forma-
tion. Partial gaps have been detected in TaSe2 [41] and NbSe2

[42] through ARPES and reproduced theoretically [43], while
B-linear MR is known to exist just above the superconducting
dome [33,65]. It is indeed likely that cyclotron motion is
impeded as quantum oscillations from the pockets affected
by the CDW have never been observed [66,67]. We thus
speculate that impeded cyclotron motion is also responsible
for the observation of QLMR in both these diselenides.

Another possible source of impeded orbital motion is prox-
imity to a vHs. In the single-layer cuprate La2−xSrxCuO4

(LSCO), the Fermi surface undergoes a Lifshitz transition at
a doping level p ∼ 0.20 as the Fermi level crosses the vHs,
resulting in enhanced density of states at the zone boundary
and a pronounced scattering rate anisotropy. QLMR has now
been reported in both LSCO [15] and Nd-doped LSCO [34] at
or near this doping level. Interestingly, the recent interlayer
angle-dependent MR (ADMR) study in Ref. [34] also re-
vealed that Nd-LSCO possesses the two key elements required
for QLMR with B/T scaling: a locus on the Fermi surface
in which scattering is extremely large (thereby providing the
boundary) and an isotropic Planckian scattering rate, thereby
providing the quadrature scaling. Moreover, state-of-the-art
optical conductivity measurements have indicated that the
scattering rate in LSCO increases with increasing B [68], a
possible direct manifestation of impeded cyclotron motion.
The QLMR observed in electron doped cuprates [14], on the
other hand, is unlikely to originate from proximity to a vHs.
Instead, hot spots associated with the proximate AFM order is
the most likely source of impeded orbital motion [69,70].

Curiously, neither proximity to a vHs nor to the pseudo-
gap endpoint p∗ can account for the realization of QLMR
in two other hole-doped cuprates Tl2Ba2CuO6+δ (Tl2201)
and La/Pb-doped Bi2Sr2CuO6+δ (Bi2201) [16]. ADMR [62],
ARPES [61], and quantum oscillation [71] studies have all
confirmed the presence of a full Fermi surface in overdoped
Tl2201 (Tc ∼ 15 − 30 K), while a subsequent T -dependent
ADMR study revealed that the mean-free-path becomes
isotropic in the low-T limit [3]. Even though the ADMR
parametrization could account for the T -dependent zero-field
resistivity [3], it was later found to be inconsistent with the
observation of in-plane QLMR and associated B/T scaling
[16]. Instead, both the QLMR [16] and the high-field Hall
effect [44] were interpreted within a scenario in which the
Fermi surface hosts distinct quasiparticle and nonquasiparticle
sectors, the latter being postulated to form the superconduct-
ing condensate [37]. The current work reinforces such a view
by showing that if nonquasiparticle charge is bound to its
sector on the Fermi surface, both QLMR and a reduced σxy

follow.
While the origin of this boundary in overdoped Tl2201

and Bi2201 remains to be identified, the observation of B/T
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scaling within the strange metal regime of both families
suggests that it may be associated with Planckian dissipa-
tion itself. One important question to address here though
is how effective borders can emerge in a system undergo-
ing Planckian dissipation. Such k-space separation requires
a nonquasiparticle quantum state. At the boundary of the
strange sector, the quanta stop being good quantum numbers
to the local Hamiltonian. This enables dissipation within the
electronic system with energy uncertainty E f rather than kBT ,
which allows through the uncertainty relation for fast enough
dissipation to create a boundary. We remark that quanta would
have to couple nonperturbatively to the dissipating degrees of
freedom responsible for driving these states to the Planckian
limit. This nonperturbative aspect is required for borders to
emerge on the Fermi pocket because of simplical homology.
Simply stated, this mathematical theorem shows no border
can emerge on borders, meaning that no sector boundaries can
emerge on the Fermi surface, which itself forms the border be-
tween occupied and unoccupied states. By mixing the degrees
of freedom, we overcome this limitation. Intriguingly, this
scenario can be interpreted as a loss of coherence at the edges
of the strange metal sector. As we have shown, any impedance
to cyclotron motion is sufficient to generate B-linear MR when
solved for a general magnetic field. Suggestively, we point out
a 1/T (rather than 1/B) bound to the temporal coherence of
quanta following the Planckian limit can similarly generate
T -linear resistivity.

As mentioned in the Introduction, a further challenge to
any successful theory of QLMR is to explain the dependence
of the MR on field orientation and its contrasting behavior in
the cuprates and pnictides. Specifically, while the magnitude
of the quadrature MR in Ba122 scales with the field compo-
nent orthogonal to the conducting plane [39], the quadrature
MR in cuprates turns out to be rather isotropic [16]. While the
origin of this distinction is not known, one might speculate
that in the presence of an in-plane field, orbital motion along
kz in cuprates is also impeded while in pnictides, such a barrier
is absent. The strong resistive anisotropy in cuprates—orders
of magnitude larger than in the pnictides—may be one indica-
tion that some form of tunneling barrier along kz does indeed
exist in the former. Within the isotropic 2D limit, the current
theory predicts the resulting characteristic turnover scales to
be related through B∗

c/B∗
ab = 2π/W kF c, where the subscript

indicates the magnetic field direction. This ratio is of order
unity, as observed [16].

Arguably, the strongest evidence against impeded cy-
clotron motion being the origin of QLMR would be the
observation of Shubnikov-de Haas (SdH) oscillations from
the same charge in a region of field and temperature where

the MR is strictly B-linear. In multiband materials, of course,
QLMR and SdH oscillations can coexist on distinct Fermi
pockets. In a single-band material, however, the impedance
cannot be avoided. In this regard, single-layer cuprates offer
a stringent test of the present theorem. Quantum oscillations
have been observed in overdoped Tl2201 [63] in a doping
regime where QLMR has also been detected [16]. At first
sight, this coincidence appears to invalidate the notion of
impeded cyclotron motion. It is important to note, however,
that quantum oscillations have only currently been detected
via torque or interlayer transport [63,71], both of which can
be argued to be single-particle, not particle-particle, probes
[72,73]. For in-plane transport, on the other hand, vertex cor-
rections could well play a key role, even in the formation of
the impedance itself. Thus, an acid test of this theorem would
be a simultaneous search for SdH oscillations in ρzz(B) and
in ρxx(B) (e.g., using suitable microfabrication techniques).
Irrespective of the role of vertex corrections, and despite
demonstrations to the contrary [16,55], the current findings do
appear to support the notion that Boltzmann transport theory
can be applied to strange and other strongly correlated metals.

The present paper sets out to address the question whether
or not there is a universal explanation for the phenomenon
of QLMR in correlated metals. It was shown that impeded
cyclotron motion can generate the quadrature form including
scaling and nonaccidental and nonsaturating H-linear MR
with sufficient universality. Putative origins for such impeded
orbital motion include van Hove singularities, hot spots or
hot lines, partially gapped Fermi surfaces, Fermi surface sec-
tors caused by either AFM or CDW correlations and charge
separation within a Fermi pocket. The resultant scaling is
distinct from conventional Kohler’s rule based on weak and
smooth anisotropy yet remains orbital in nature. The central
outstanding feature of quadrature phenomenology that still
lies beyond Boltzmann theory is the apparent absence of elas-
tic (impurity) scattering in the QLMR scaling. Future studies
into this aspect of strange metals may well be the key to un-
locking the mystery of their normal, i.e., nonsuperconducting,
states.
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