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Tensor-network approach to work statistics for one-dimensional quantum lattice systems
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We introduce a tensor-network approach to calculate the statistics of work done on one-dimensional quantum
lattice systems initially prepared in thermal equilibrium states. In this approach, the dynamics is simulated with
time-evolving block decimation (TEBD), and the initial thermal equilibrium state is prepared either directly with
TEBD or with minimally entangled typical thermal states, which generates a set of typical states representing
the Gibbs canonical ensemble. As an illustrative example, we apply this approach to the Ising chain in mixed
transverse and longitudinal fields. Under a prescribed protocol, the moment generating function for work
distribution can be calculated, from which the quantum Jarzynski equality and the generalized quantum work
relation involving a functional of an arbitrary observable are tested.
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I. INTRODUCTION

Microreversibility, a fundamental symmetry of nature, dic-
tates various nonequilibrium relations, which are nowadays
collectively known as fluctuation theorems [1-9]. Among
these relations, the Jarzynski equality attracts considerable
interests. It is a parameter-free, model-independent relation,
and allows us to express the free-energy difference between
two equilibrium states by a nonlinear average over the re-
quired work to drive the system in a nonequilibrium process
from one state to another. Over the last decades, extensive
efforts were devoted to proving and experimentally testing
the Jarzynski equality or its closely related Crooks fluctua-
tion theorem in various systems [10-27]. However, what is
more informative is the detailed probability distribution of
work under an arbitrary protocol (instead of a sudden quench
[28,29]), since it encodes essential information about not only
the equilibrium properties but also the nonequilibrium driving
processes [19,20,30-38].

For quantum many-body systems, the reality is that it is
formidably challenging to calculate the work statistics un-
der an arbitrary driving protocol. Previous studies mainly
focus on analytical methods and are restricted to few exactly
solvable models which are studied case by case. Examples
include harmonic oscillators [39-44], piston systems [45-47],
one-dimensional (1D) diatomic Toda lattice [48], 1D quan-
tum gases [47,49-51], quantum fields [52,53], and quantum
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systems of quadratic Hamiltonians [54-58]. The quantum
Feynman-Kac equation [59] and the phase-space formulation
[60-62] have been proposed, but they are practically limited
to single-particle systems and difficult to extend to many-
body systems. Nonequilibrium Green’s function approach
[63], group-theoretical approach [55,56], and path-integral
approach [39,45,64-66] have been proposed, but they are
only applicable to perturbative driving protocols and/or sys-
tems with quadratic Hamiltonians. Despite these efforts, a
systematic method for calculating the work distribution of
a quantum many-body system under an arbitrary driving
protocol is still lacking. Thus, developing numerical ones be-
comes a natural consideration. The tensor-network approach
[67,68] is an ideal candidate and drastically decreases the
computation complexity associated with the exponentially
large Hilbert space intrinsic to quantum many-body systems.
Although originally developed in the context of condensed-
matter physics, the tensor-network approach is increasingly
being applied to tackle problems in other fields of research.
In quantum thermodynamics, for example, the tensor-network
approach has recently been used to simulate strongly inter-
acting quantum thermal machines [69] and to study the heat
transfer in non-Markovian open quantum systems [70].

In this Letter, we introduce a numerical approach to cal-
culate the work statistics for 1D quantum lattice systems
in nonequilibrium processes. Two tensor-network techniques
are used, namely, time-evolving block decimation (TEBD)
[71] and minimally entangled typical thermal states (METTS)
[72]. The quantum Ising chain in the presence of transverse
and longitudinal fields is chosen to benchmark this approach.

II. TWO-POINT MEASUREMENT SCHEME

In the nanoscopic world, the extension of classical Jarzyn-
ski equality to quantum systems can be realized through a
proper definition of work introduced in the year 2000 [10,11].
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In this scheme, a measurement of energy is initially per-
formed on the system in a thermal equilibrium state. In the
sequel, the system evolves under an external driving proto-
col before another measurement of energy at the final time
7. The fluctuating work is defined as the energy difference
between the two eigenenergies, W, , = E}, — E{. The joint
probability of observing such measurement outcome is given
by P(n, m) = P,| (m(7)|U|n(0)) |*, where |n(t)) is the nth
instantaneous energy eigenstate of the system at time ¢, P,, =
(n(0)|p|n(0)) the initial probability of |n(0)), p = e PHO )z
the initial canonical density matrix of the system at the inverse
temperature § = 1/(kgT ), and kg the Boltzmann’s constant.
Besides, U denotes the unitary evolution operator, which is
expressed in terms of the time-dependent Hamiltonian H (¢)
and the time-ordering operator 7,

U=Texp [—i/ H(t)dt] )
nJo
The work distribution is therefore given by P(W) =
YomnSW =W, ,)P(m,n). We define the moment-
generating function of the work distribution,
G(s) = / PW)edw, )

then the moment generating function can be expressed as
G(s) = Tr[U Oy e=H O p]. 3)
The moments of work can be obtained by taking successive
derivatives,
d"G(s)

W) =
(W) Iy

“

s=0
The moment-generating function (3) is the quantity that we
will numerically calculate with the tensor-network approach.

III. TIME-EVOLVING BLOCK DECIMATION

TEBD is an algorithm that relies on the Trotter-Suzuki de-
composition [73] and subsequent approximation of the exact
evolution operator U®**(8) for the small quantity §. The full
Hamiltonian H can be split into Ny parts, H = ZN” H,,
where each part H, is a sum, H, = szvul hk, such that hk
can be diagonalized efficiently and are mutually commuting,
[k, h!] = 0. The exact evolution operator can be decomposed
to any order. Here, we give the second-order one,

Uexact(s) — e—B ng, H,

Ny
s
a=1

as it is commonly used. Figure 1 depicts the TEBD algorithm
with diagrammatic notations.

1
[T e + o, (5)

a=Ny

IV. MINIMALLY ENTANGLED TYPICAL THERMAL
STATES

METTS is a finite-temperature algorithm for generating a
set of typical states representing the Gibbs canonical ensem-
ble. For a quantum lattice system, starting from a product state

O—-CO0—C0C0-0

e—%hfm

e*§h1 2

e—[shzyg e_éhvl,ﬁ

e*ghl‘z e*ghsA

FIG. 1. Diagrammatic representation of the TEBD algorithm for
a quantum lattice system of five sites with nearest-neighbor interac-
tions. The full Hamiltonian is split into two parts, H = Hyaq + Heven
with Hoga = b1 + h34 and Heyen = ha3 + 5. The odd and even
numbered two-site local evolution operators are alternatively applied
to the wave function represented by a matrix product state (MPS)
[74].

|i), we can generate a typical state called metts |y (7)) with the
imaginary time evolution,

[y (i) = e PHI2 i) ©)

1
VP@)
where P(i) = (ile P |i). Here, the evolution is realized using
TEBD. A set of metts satisfy the typicality condition,

(i
= —ZQW() ) (WD) @)

where Z denotes the partition function, and P(i)/Z is there-
fore the weight of |1/ (i)). The expectation value of an arbitrary
static observable O can be calculated as

1
= EZP(i) (WDOIOlY @), ®)

To sample the metts ensemble randomly according to the
probability distribution P(i)/Z, we construct a Markov chain
of the product state by first obtaining a metts |y (i)) from
a product state |i), second collapsing the metts [y (7))
into a new product state |j) with the probability P(i —
7)=1(jl¥ ()| and third repeating this procedure. |i) is
henceforth referred to as a collapsed product state (cps). Con-
sidering the ensemble of all cps |i) initially distributed with
probability P(i)/Z, it can be checked that the detailed balance
condition is satisfied,

m7’( - )= wP( — i), €))

guaranteeing the stability of the Markov chain. See Fig. 2 for a
brief illustration of the METTS algorithm. Detailed accounts
can be found in Ref. [75].

V. ILLUSTRATIVE EXAMPLE

We now consider a spin one-half quantum Ising chain of
L sites with nearest-neighbor interactions in the presence of
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FIG. 2. Schematic representation of the METTS algorithm
whose procedure consists of the following steps: (i) choose a cps |i);
(ii) evolve it to a metts | (i)) in imaginary time according to Eq. (6)
and calculate quantities of interest; (iii) collapse | (i)) into a new
cps | j) with the probability P(i — j) = | (j|¥(i)) |* and then return
to (ii).

=
~

transverse and longitudinal fields. The Hamiltonian is given
by

H=—J Y S8, —h Y S—h Y S,  (10)
(J.j+1h) J j
where S% and S¥ denote the spin operators at the jth site
defined in terms of Pauli matrices,
0
_1), (11)

. o 1/0 1 Z_O'Z_l 1
S.f—7—5<1 o)’ Sf‘?‘i(O

and J is the exchange constant. i, (h;) is the magnetic field
in x (z) direction controlled externally in time according to a
prescribed protocol, thus making the Hamiltonian time depen-
dent. Different from the transverse-field Ising chain, the Ising
chain in mixed fields cannot be solved exactly. We have to
resort to a numerical approach for a detailed investigation.

To fit into the TEBD algorithm, the full Hamiltonian is
split into odd and even parts, H = Hodq + Heven, With Hogq
and H.y, each being the sum of mutually commuting local
two-site operators,

Hoqqa = Z hj jr1,Heven = Z hj st 12)

jeoddset Jj€evenset

as illustrated in Fig. 1. Each local two-site operator /; ;11 is
constructed as follows:

hijo =~ IS ® S5,

A+ 80(hS] ®1j41)
2
(1 +841.0)(1; ® heSY, )
2
(1 +8;1)(hS3 @ 1j41)
2
(14 8j11.0)(1; ® heSj4)
2

where ® stands for the tensor product, §; ; is the Kronecker
delta, and |; is the identity operator at the jth site.

Using the METTS algorithm, we can successively gen-
erate a set of metts {|v,) gzl for the Hamiltonian H(0) at
the initial time. Considering that the occurrence frequency of

; 13)

O—1O01O0-10-0O

FIG. 3. The partition function is calculated by tracing out two
sets of physical indices of the MPO representing exp(—SH ).

|[Y) = | (7)) is asymptotically equal to P(i)/Z as N — oo,
the initial canonical density matrix (7) can be expressed as

N
p=ngICl>oﬁo;Wa)(Wa|- (14)

The moment generating function (3) is therefore given by

1 N
G(s) = Jim > Trllga) (Vo]
a=1

I
=N1Ln;oﬁ2_;<wa|¢a>, (15)
where
po) = UTeHOUHO |y, (16)

is calculated with the TEBD algorithm. It is noteworthy that
this approach is also capable of calculating the work statistics
if the system evolves starting from the ground state. Usually,
the density matrix renormalization group (DMRG) [76,77] is
used to find the ground state of quantum many-body systems.
In our approach, however, the ground state can be obtained
with imaginary time evolution in the low-temperature limit,
i.e., calculated from Eq. (6) in the limit 8 — oo, only if
the initial cps |i) has the component of the ground state.'
It converges exponentially fast and is also computationally
efficient since the ground state is well represented as a MPS.
In addition, there is no need to generate an ensemble of states,
in contrast with the finite-temperature case.

According to the definition of moment generating func-
tion (2), we have (exp(—BW)) = G(—p). To check whether
the numerical approach gives the correct work statistics sat-
isfying the Jarzynski equality, the quantity exp(—BAF) =
Z(hy 1, hy 1)/Z(hy o, h;0) should be calculated differently.
This can be done through the definition of the partition func-
tion, Z = Tr[exp(—BH)], where exp(—BH) is expressed as
a matrix product operator (MPO). We first prepare an initial
identity MPO, 6, 8, j, -+ 6, j;» and then evolve it under
exp(—pBH) with the TEBD algorithm to obtain the desired
MPO. The tracing operation is now transformed into tensor
contraction (see a diagrammatic illustration in Fig. 3).

Now, we perform numerical simulation. We calculate both
G(—p) and Z(hy 1, h; )/Z(hy 0, h; o) for various driving time

'Due to the round-off error in numerical computation, the compo-
nent of ground state is inevitably introduced during imaginary time
evolution.
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FIG. 4. Moment-generating function G(—p) calculated for dif-
ferent time intervals [0, t] during which the system is driven under
the protocol h.(t) =t + 1, h, = 1. The corresponding values of
Z(hyr, hy)/Z(hy o, h, o) are also marked. When there is no driving,
ie., T =0, we have G(—B) =1, as it should be. The system is
composed of L = 20 sites and the parameter values J = g =h =1
are adopted. 10 000 metts are generated in the simulation.

intervals [0, 7] and compare their values. The results are
shown in Fig. 4, from which we see a striking agreement.
Therefore, the quantum Jarzynski equality, (exp(—BW)) =
exp(—BAF), is tested. Here, we would like to emphasize
that the canonical density matrix is represented by a set of
metts for the left-hand side, and constructed directly for the
right-hand side. If the density matrices for both sides were
constructed in the same way, the comparison would be mean-
ingless since the quantum Jarzynski equality is actually an
identity.

A generalized quantum work relation was proved in
Ref. [78]. It reads

<€f0rA(t)O};‘(t)dte—ﬂHF”(r)eﬁH(O)>F — efﬁAF<ejg )‘(rft)OE(t)dt)R,
(17)

which involves an arbitrary function A(t) and an arbitrary
time-independent observable O. In this relation, HFH(t) =
Uf (t)H ()Ug(t), OR(t) = U{ (1)OUg(t) are respectively the
Hamiltonian and the observable in the Heisenberg pic-
ture for the forward process. OE(I) = Ug(t)OUR(t) is the
observable in the Heisenberg picture for the reversed pro-
cess. The unitary evolution operators for both processes
are given by Up(t) = Texp[fO’H(t’)/(ih)dt/] and Ur(?) =
T explfy H(t —')/(ih)dt’]. The symbols (-)r and (-)r de-
note the average over the initial canonical ensemble for the
forward and the reversed processes, i.e., the density matrices
determined by the Hamiltonian H(0) and H (7), respectively.
It should be noted here that we have neglected the issue
relevant to time reversal, for the sake of convenience in the
subsequent numerical simulation. In other words, all observ-
ables are supposed to be even under time reversal, @00 = O.
When A(¢) = 0, the relation (17) reduces to the familiar quan-
tum Jarzynski equality, (e PHF (D) oPHO) L — o=BAF  where,
in the two-point measurement scheme, the factor inside the
bracket can be interpreted in terms of work performed on
the system during the forward process. With the Ising chain
considered previously, we now numerically test the relation
(17). The observable is chosen to be the magnetization along
the z direction, 0 = )_ j S%, which can be split into odd and
even parts in a similar manner to the case of the Hamilto-

TABLE 1. The numerical results testing the Eq. (17) with three
cases of A(t). A represents the left-hand side, B, C, respectively,
e PAT and the other part of the right-hand side. The system is
composed of L = 20 sites, and is driven in time under the protocol
h()=t+1 [h()=15—1¢], h, =1 from 0 to T = 0.5 for the
forward (reversed) process. The parameter valuesJ = f =1 = 1 are
adopted. 5000 metts are generated for each ensemble.

A B C BC/A
At)=1 254.316 10.596 23.371 0.974
A)=t+1 641.533 10.596 61.366 1.014
M)y=12+1+1 907.979 10.596 85.142 0.994

nian. The initial canonical ensemble for the forward and the
reversed processes are generated with METTS. The operators
inside the brackets of Eq. (17) are calculated with TEBD. The
numerical results are presented in Table I with three cases of
the function A(¢). The last column lists the ratio between two
sides of Eq. (17). The values are approximately equal to 1, in
good agreement with the theory.

The successful tests of the quantum Jarzynski equality
and its generalized version manifest the reliability of our
tensor-network approach. We now calculate G(s) for a specific
protocol (see Fig. 5). To reduce the cost of computational
resources, the initial canonical density matrix is here con-
structed directly. In this way, we can perform simulation for
systems with a large number of lattice sites in a reasonable
time. We here calculate G(s) for the system with 100 lattice
sites. This system size is far beyond the capability of compu-
tation with exact matrix representation. According to Eq. (4),
the work moments are evaluated with numerical differentia-
tion which can be achieved through Lagrange interpolation
[79]. In this way, we can reliably obtain the expected value
and its variance without sampling. A relevant approach for
estimating the expected value based on tensor networks was
reported in Ref. [80].

9.0
N (W) =98] _, = —9.759
7.0 ‘ ,
A (w2 =95 ~101.839
© 1s=0

5.0 '
) .

3.0 S

104 e

it -
-1.0
=0.3 —0.2 —0.1 0 0.1 0.2 0.3

FIG. 5. Moment-generating function G(s). The asterisks are nu-
merical points joined by a dashed line determined from Lagrange
interpolation. It has been checked that to a very high precision
G(0) =~ 1, as expected. The first and the second work moments are
evaluated with numerical differentiation. The system is composed
of L = 100 sites, and is driven in time from ¢t = 0 to t = 0.5 under
the protocol h,(¢) =t + 1, h, = 1. The parameter values J = 8 =
B = 1 are adopted. The initial canonical density matrix is constructed
directly.
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The computer program for numerical simulation is coded
in C++ [81] with the ITensor library [82]. A comprehensive
and up-to-date snapshot of software for tensor computations
is assembled in Ref. [83].

VI. CONCLUSION

In this Letter, we introduced a tensor-network approach for
calculating the work statistics of 1D quantum lattice systems.
This numerical approach enables the detailed investigation of
the work statistics under an arbitrary nonperturbative proto-
col. Therefore, our numerical approach is expected to find
further applications in the design of quantum devices oper-
ating in nonequilibrium regimes. Besides the work statistics,

we can also calculate many other dynamical quantities with
this method, such as Loschmidt echo, information scram-
bling, and density of topological defects associated with
Kibble-Zurek scaling. Extension of the numerical approach
to high-dimensional systems will be considered in the future.
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