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Chemical thermodynamics for growing systems
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We consider growing open chemical reaction systems (CRSs), in which autocatalytic chemical reactions are
encapsulated in a finite volume and its size can change in conjunction with the reactions. The thermodynamics
of growing CRSs is indispensable for understanding biological cells and designing protocells by clarifying the
physical conditions and costs for their growing states. In this paper, we establish a thermodynamic theory of
growing CRSs by extending the Hessian geometric structure of nongrowing CRSs. The theory provides the
environmental conditions to determine the fate of the growing CRSs; growth, shrinking, or equilibration. We
also identify thermodynamic constraints: one to restrict the possible states of the growing CRSs and the other to
further limit the region where a nonequilibrium steady growing state can exist. Moreover, we evaluate the entropy
production rate in the steady growing state. The growing nonequilibrium state has its origin in the extensivity
of thermodynamics, which is different from the conventional nonequilibrium states with constant volume. These
results are derived from general thermodynamic considerations without assuming any specific thermodynamic
potentials or reaction kinetics; i.e., they are obtained based solely on the second law of thermodynamics.
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I. INTRODUCTION

Self-replication is a hallmark of living systems by which
they are differentiated from nonliving ones. Since von Neu-
mann’s formulation of self-reproducing automata [1,2], the
physical and chemical basis of self-replication has been
pursued theoretically and experimentally to understand and
synthesize living systems [3–25]. Of the various components
necessary for self-replication, autocatalytic reaction cycles,
thought of as the driving engine, form a central part [26–32].
However, the presence of cycles is not sufficient for self-
replication. Because the cycles should be confined in an
encapsulating volume which defines the replication unit, the
size of the volume should also grow in accordance with the
production of chemicals by the cycles.

In spite of the active investigation of autocatalytic reaction
cycles in the last decades [26–32], the growth of volume and
its coupling with the autocatalytic cycles have not been thor-
oughly investigated so far. Although the recent rediscovery of
growth laws of bacteria [33] initiated a surge of coarse-grained
autocatalytic models [10–13,34–39], the volume growth in
these models is considered only heuristically [5,40–43], e.g.,
by representing it with a linear function of chemicals in it.

In the light of chemical thermodynamics, the change in
volume and the influx and outflux of chemicals driven by
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the cycles are mutually dependent and should be thermody-
namically consistent. This interdependence of reactions and
volume inevitably constrain their possible states and dynam-
ics. In addition, the cycles themselves may not always proceed
in the forward direction to grow, depending on the environ-
mental conditions. If it proceeds in the reverse direction, it
can result in shrinking. It is nontrivial under what thermo-
dynamic conditions a coherent forward cycle dynamics and
volume growth can be achieved. Moreover, a steady cycling
and growth should accompany the thermodynamic cost. How-
ever, we lack a theoretical basis to address these fundamental
problems of growing systems.

In this paper, we establish the thermodynamics for growing
systems. The difficulty in developing it lies in the fact that
the change in the volume affects all reactions in it. In the
conventional theory of chemical reactions, reaction fluxes are
described as functions of densities of chemicals (concentra-
tions) [44–51], which presumes a constant volume. However,
if the volume changes, the densities can change even though
the number of chemicals remains unchanged. Hence, it is
necessary to return to a thermodynamic formulation in which
the number of chemicals and the volume are treated sepa-
rately. In other words, we have to explicitly take account of
the extensivity of thermodynamic functions, which is scaled
out when the densities alone are considered. Nevertheless,
we should also retain the density representation and its dual
representation by the chemical potentials to appropriately
characterize steady growing states and the conditions imposed
by the intensive variables of the environment.

We clarify this entangled relation among the triad of
chemical numbers, densities, and potentials by identifying
the geometric structure they form. This structure is built on
the recently discovered Hessian geometric structure between
chemical densities and potentials in a constant volume [52,53]
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by additionally introducing the space of the numbers of chem-
icals. Based on the second law of thermodynamics, our theory
classifies the thermodynamic conditions under which the sys-
tem grows, shrinks, or equilibrates. It also reveals the region in
which the chemical density is constrained to a steady growth.
Furthermore, it enables us to evaluate the entropy produc-
tion rate, i.e., the physical cost of the steady growth. Our
nonequilibrium system with volume growth has its origin in
the extensivity of thermodynamics, which is different from the
conventional nonequilibrium systems with constant volume
[44–51].

We emphasize that our derivation is performed based on
a purely thermodynamic argument [52–55]. As a result, it
does not depend on any particular form of thermodynamic
potentials or reaction kinetics [56]. Thus, our theory is widely
applicable and contributes to understanding the origins of life
and constructing protocells [14–25] as well as seeking the
universal laws of biological cells [10–13,33–39]. Moreover, a
more realistic thermodynamic cell model may be constructed
by integrating various other components such as active trans-
port, responsive kinetics of the membrane, metabolism, etc.

This paper is organized as follows. We devote Sec. II to
outline our main results without showing the details of their
derivation. From Sec. III onward, we start with the derivation
of our main results. In Sec. III, we analyze the behavior of
the total entropy function with respect to time for chemical
reaction dynamics. We devote Sec. IV to the preparation for
the geometric structure of growing systems. In Sec. V, we
classify the environmental conditions to determine the fate of
the system based on the form of the total entropy function. In
Sec. VI, we consider the steady growing state and evaluate
the entropy production rate in this state. We illustrate our
theory in Sec. VII for the ideal gas as a specific example of
thermodynamic potentials. In Sec. VIII, we numerically verify
our theory by considering a specific example of a chemical
reaction system (CRS) composed of the ideal gas and obeying
mass action kinetics. Finally, we summarize our work with
further discussions in Sec. IX.

II. OUTLINE OF THE MAIN RESULTS

A. Thermodynamic setup

Let us start with the presentation of the setting of the
system (Fig. 1). Consider a growing open CRS surrounded
by a reservoir. We assume that the system is always in a well-
mixed state (a local equilibrium state), and therefore we can
completely describe it by extensive variables (E ,�, N, X ).
Here, E and � represent the internal energy and the volume;
N = {Nm} denotes the number of chemicals that can move
across the membrane between the system and the reservoir
called open chemicals; meanwhile, X = {X i} is the number of
chemicals confined within the system; the indices m and i run
from m = 1 to NN and from i = 1 to NX , respectively, where
NN and NX are the numbers of species of the open and con-
fined chemicals. The reservoir is characterized by intensive
variables (T̃ , �̃, μ̃), where T̃ and �̃ are the temperature and
the pressure; μ̃ = {μ̃m} is the chemical potential correspond-
ing to the open chemicals. Also, we denote the corresponding
extensive variables by (Ẽ , �̃, Ñ ).

FIG. 1. Diagrammatic representation of open CRSs. The chem-
ical reactions occur with the reaction fluxes J (t ) = {Jr (t )}, the rth
reaction of which is represented as the chemical equation at the
bottom. Here, A = {Ai} are the labels of the confined chemicals and
B = {Bm} are the ones of the open chemicals which can move across
the membrane with the diffusion fluxes JD(t ) = {Jm

D (t )}. The num-
bers of the confined and open chemicals in the system are denoted by
X = {X i} and N = {Nm}, respectively. Also, (S+)i

r and (O+)m
r denote

stoichiometric coefficients of the reactants in rth reaction, whereas
(S−)i

r and (O−)m
r are the ones of the products. The stoichiometric

matrices are given as Si
r = (S−)i

r − (S+)i
r and Om

r = (O−)m
r − (O+)m

r .
For theoretical simplicity, we ignore the tension of the membrane and
assume that it never bursts.

In thermodynamics, the entropy function is defined on
(E ,�, N, X ) as a concave, smooth and homogeneous function
�[E ,�, N, X ]. We write the entropy function for the reservoir
as �̃T̃ ,�̃,μ̃[Ẽ , �̃, Ñ], and therefore the total entropy can be
expressed as

�tot = �[E ,�, N, X ] + �̃T̃ ,�̃,μ̃[Ẽ , �̃, Ñ], (1)

where we use the additivity of the entropy. Furthermore, due
to the homogeneity of the entropy function for the system,
without loss of generality, we can write it as

�[E ,�, N, X ] = �σ [ε, n, x], (2)

where σ [ε, n, x] is the entropy density and (ε, n, x) :=
(E/�, N/�, X/�). Since this work only treats a situation
without phase transitions, we assume that σ [ε, n, x] is strictly
concave.

Next, we define the dynamics for the system as

dE

dt
= JE (t ),

d�

dt
= J�(t ),

dNm

dt
= Om

r Jr (t ) + Jm
D (t ),

dX i

dt
= Si

rJr (t ), (3)
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where JE (t ), J�(t ), JD(t ) = {Jm
D (t )} and J (t ) = {Jr (t )} rep-

resent the energy, the volume, the chemical diffusion and
the chemical reaction fluxes, respectively; S = {Si

r} and O =
{Om

r } denote stoichiometric matrices for the confined and the
open chemicals (see Fig. 1). The index r runs from r = 1 to
NR, where NR is the number of reactions. Also, in Eqs. (3),
we employed Einstein’s summation convention for notational
simplicity. The dynamics of the reservoir is given as

dẼ

dt
= −JE (t ),

d�̃

dt
= −J�(t ),

dÑm

dt
= −Jm

D (t ). (4)

In this paper, we assume that the timescale of the re-
actions is much slower than that of the others [that is,
JE (t ), J�(t ), JD(t ) � J (t )]. Therefore, our dynamics is effec-
tively governed only by the reaction flux J (t ) (see Sec. III
for details). It means that we focus on the simplest ther-
modynamic setting in which the size of the volume is
thermodynamically determined [see Eq. (9)]. Thus, the active
transport of material and responsive membrane kinetics are
ignored for simplicity. In addition, we assume the regularity
of the stoichiometric matrix S for the confined chemicals, i.e.,
NX = NR = Rank[S]. This regularity was recently employed
to identify minimal motifs of autocatalytic cycles, which were
proposed in Ref. [27] (see Appendix A for details). We note
that the regularity of S is just a sufficient condition of the
minimal motifs. Thus, our theory based only on the regularity
of S can be applied to a wider class of autocatalytic cycles
than the minimal motifs.

B. Thermodynamic potentials, duality, and total entropy
characterizing the growing systems

With the above setup, we obtain a conjugate pair of ther-
modynamic potentials, ϕ(x) and ϕ∗(y), which play pivotal
roles in our theory. The partial grand potential density ϕ(x) =
ϕ[T̃ , μ̃; x] is defined as

ϕ[T̃ , μ̃; x] := min
ε,n

{ε − T̃ σ [ε, n, x] − μ̃mnm} (5)

(see Sec. IV for details). The function ϕ∗(y) = ϕ∗[T̃ , μ̃; y]
is the full grand potential density obtained by the Legendre
transformation of ϕ(x) as

ϕ∗[T̃ , μ̃; y] := max
x

{yix
i − ϕ(x)}. (6)

In conventional chemical thermodynamics with a constant
volume, ϕ(x) and ϕ∗(y) characterize the system completely.
They also work as the dual convex functions inducing the Hes-
sian geometric structure of chemical thermodynamics [52,53].
Because of the one-to-one correspondence of the Legendre
transformation induced by ϕ(x) and ϕ∗(y), we can equiva-
lently specify a state of the system either by the density x
or by its Legendre transform y = ∂ϕ(x). The thermodynamic
interpretation of y is the corresponding chemical potential to
x. This dualistic representation is central to our theory. In
addition, ϕ∗(y) can be interpreted as the pressure of the system
at state y whose corresponding density is x = ∂ϕ∗(y).

If the volume is fixed, the internal pressure ϕ∗(y) al-
ways balances with the external pressure �̃ incurred by the
boundary to keep the volume �̃ constant [see Fig. 2(a)].
Furthermore, the internal pressure ϕ∗(y) = �̃ converges to

FIG. 2. Diagrammatic representation of (a) isochoric and (b) iso-
baric situations. (a) In the isochoric case, the external pressure �̃

varies to keep the volume � constant. The internal pressure ϕ∗(y),
which always balances with �̃, can converge to the chemical equilib-
rium pressure ϕ∗(yEQ) = �̃EQ. (b) In the isobaric case, the volume �

varies to keep the internal pressure ϕ∗(y) always equal to the constant
external pressure �̃. Consequently, the internal pressure ϕ∗(y) = �̃

may not balance with the chemical equilibrium pressure ϕ∗(yEQ),
which is specified by the chemical potentials μ̃ in the reservoir. This
imbalance drives growth or shrinking of the volume.

the pressure ϕ∗(yEQ) = �̃EQ at the chemical equilibrium state
yEQ. The state yEQ is given by the solution to the simultaneous
equations,

yEQ
i Si

r + μ̃mOm
r = 0, (7)

which describe the balances of chemical potentials between
reactants and products at the chemical equilibrium [52]. Since
S is regular, Eq. (7) has the unique solution

yEQ
i = −μ̃mOm

r (S−1)r
i , (8)

where S−1 is the inverse of the stoichiometric matrix S [57].
In the density representation, the system converges to the
chemical equilibrium state xEQ = ∂ϕ∗(yEQ).

By contrast, in growing systems under isobaric conditions,
the volume can change. Due to the fast timescale of the vol-
ume flux J�(t ), the internal pressure ϕ∗(y) is fixed by the
external (reservoir) one �̃ [see Fig. 2(b)]. As a result, the
volume at X is variationally determined as

�(X ) = arg min
�

{
�ϕ

(
X

�

)
+ �̃�

}
. (9)

Also, the chemical density x is a nonlinear function ρX (X ) of
X as x(X ) = X/�(X ) =: ρX (X ).

In this case, the internal pressure ϕ∗(y) is restricted to the
constant external pressure �̃, whereas the chemical equilib-
rium pressure ϕ∗(yEQ) is specified by the chemical potentials
μ̃ in the reservoir. If ϕ∗(y) = �̃ does not balance with
ϕ∗(yEQ), the system cannot converge to the equilibrium state,
and this imbalance drives growth or shrinking of the volume.
Whether growth or shrinking occurs is determined by the
second law and the functional form of total entropy, which
is represented for growing systems as

�tot (X ) = �(X )

T̃
KY (y(X )) + const, (10)
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where KY (y) is defined as

KY (y) := ϕ∗(yEQ) − �̃ − DY [yEQ||y]. (11)

Here, DY [y′||y] is the Bregman divergence [58–60] induced
by ϕ∗(y), and y(X ) = ρY (X ) = ∂ϕ(ρX (X )) is a nonlinear
map to associate the number of chemicals X with a chemical
potential y.

C. The conditions for growth, shrinking, and equilibration

Our first claim provides the condition that determines the
fate of the system, i.e., growth, shrinking, or equilibration.

Claim 1. The fate of the system is classified by the sign of
ϕ∗(yEQ) − �̃ as follows:

(1) If and only if ϕ∗(yEQ) − �̃ = 0, equilibrium states
exist and the system converges to one of them.

(2) If and only if ϕ∗(yEQ) − �̃ < 0, the system eventually
shrinks and finally vanishes.

(3) If and only if ϕ∗(yEQ) − �̃ > 0, the system is growing.
(See Sec. V and Theorem 1 for details.)
This result indicates that the system equilibrates only if the

pressure �̃ specified by the reservoir happens to coincide with
the chemical equilibrium pressure ϕ∗(yEQ) determined by the
reservoir chemical potentials μ̃. Otherwise, the system shrinks
or grows.

Example 1. To give an intuitive demonstration, we consider
a minimal motif of autocatalytic cycles [see Fig. 3(a)]. Here,
two confined chemicals A = (A1, A2) and two open chemicals
B = (B1, B2) are involved in the two reactions R1 and R2. We
can regard the open chemicals B1 and B2 as a resource and a
waste, respectively, because they are consumed and produced
when the reactions forwardly progress. The stoichiometric
matrices can be represented as

S =
( R1 R2

A1 −1 1

A2 2 −1

)
, O =

( R1 R2

B1 −1 0

B2 0 1

)
. (12)

The regularity of the matrix S is confirmed by det[S] = −1 �=
0. Denoting the number of A = (A1, A2) by X = (X 1, X 2), the
reaction dynamics for the confined chemicals is written as

dX i

dt
= Si

rJr (t ). (13)

In this example, we employ mass action kinetics with the local
detailed balance condition [44,45,52,53,61] for the reaction
flux J (t ) (see Sec. VIII for details). Furthermore, we assume
the ideal gas potential: the functional form of ϕ∗(y) is obtained
as

ϕ∗(y) = RT̃

[∑
i

e
yi−νo

i (T̃ )

RT̃ +
∑

m

e
μ̃m−μo

m (T̃ )
RT̃

]
, (14)

[see Eq. (61) in Sec. VII for a derivation]. Then, by substitut-
ing the Legendre transformation of Eq. (14) into Eq. (9), we
can calculate the volume �(X ) as

�(X ) = RT̃
∑

i X i

�̃ − RT̃
∑

m ñm
, (15)

[see Eq. (69) in Sec. VII for details] [62]. This expression of
the volume corresponds to the equation of state. In Fig. 3(b),
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FIG. 3. (a) A graph representation and chemical equations of
a minimal motif of autocatalytic cycles. Two confined chemicals
A = (A1, A2) and two open chemicals B = (B1, B2) undergo the two
reactions R1 and R2. (b) The time evolution of the volume of the
system for different parameter sets (see the caption in Fig. 8 for
specific values of the parameters). The fate of the system is classified
by the sign of ϕ∗(yEQ) − �̃. (c) The time evolution of the densi-
ties (x1, x2) of the confined chemicals (A1, A2) for the growth case
ϕ∗(yEQ) − �̃ > 0. The evolutions are shown for two different initial
conditions 1 and 2. (d) The trajectories of the system in the density
space. They are constrained to the isobaric manifold IX (�̃, μ̃). In
this example, the system converges to a steady growing state xSG

(green square), irrespective of the initial conditions. Such a steady
growing state must be in the region RX (�̃, μ̃) ⊂ IX (�̃, μ̃), high-
lighted by the red dashed rectangle.

we verified Claim 1 by numerical simulation. Indeed, the fate
of the system is classified by the sign of ϕ∗(yEQ) − �̃.

For the example of the ideal dilute solution, it is sufficient
to just modify the standard chemical potentials νo(T̃ ) and
μo(T̃ ) in Eq. (14) [44,54] because the solvent can be regarded
as the background of the CRS. Then, Eq. (15) can be read as
van’t Hoff’s law and �̃ corresponds to the osmotic pressure.�

D. Thermodynamic constraint of isobaric dynamics

Under isobaric conditions with a fast volume flux J�(t ),
the pressure of the system should balance with the pressure
of the reservoir. This constraint naturally defines the isobaric
manifold in the chemical potential space:

IY (�̃, μ̃) := {y|ϕ∗(y) − �̃ = 0}. (16)

Its Legendre transform IX (�̃, μ̃) := ∂ϕ∗(IY ) is a hypersur-
face in the density space. Thus, IX (�̃, μ̃) and IY (�̃, μ̃)
characterize the thermodynamically admissible submanifolds
in the density and chemical potential spaces, respectively.

Example 2. For the autocatalytic motif in Fig. 3(a), the
time evolution of x(t ) is shown in Fig. 3(c) for the growth
case in Fig. 3(b). This time evolution is actually constrained to
the isobaric manifold IX (�̃, μ̃) as shown in Fig. 3(d). Since
we have assumed ideal gas potentials, the isobaric manifold
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(c)(a) (b)

FIG. 4. Transition from the shrinking to the growing case. The isobaric manifold IY (�̃, μ̃) and the region ZY (μ̃) in the chemical potential
space are indicated by the solid curve and the light pink color, respectively. (a) When ϕ∗(yEQ) − �̃ < 0 holds (i.e., the shrinking case),
the intersection does not exist. (b) When ϕ∗(yEQ) − �̃ = 0 holds (i.e., the equilibrating case), transition from shrinking to growing occurs.
(c) When ϕ∗(yEQ) − �̃ > 0 holds (i.e., the growing case), the intersection RY (�̃, μ̃) = IY (�̃, μ̃) ∩ ZY (μ̃) exists, which is highlighted by
the curved red rectangle.

IX (�̃, μ̃) reduces to a simplex by the equation of state (see
Sec. VII for details). �

E. The constraints and thermodynamic properties associated
with the steady growing state

Finally, we clarify the additional constraint imposed on
the steady growing state xSG. The steady growing state is
defined as a state such that the density remains constant with
time whereas the volume keeps increasing [40–43]. For the
autocatalytic motif shown in Fig. 3(a), such a state xSG exists
and x(t ) converges to a steady growing state as in Figs. 3(c)
and 3(d).

At this state, the entropy production rate can be expressed
as

�̇tot (�(t )xSG) = �̇(t )

T̃
KY (ySG), (17)

where ySG is the Legendre transform of xSG by ∂ϕ. Because
�̇(t ) > 0 at the growing state, KY (ySG) should be positive by
the second law. This requirement implies that ySG should lie
in the region RY (�̃, μ̃) = IY (�̃, μ̃) ∩ ZY (μ̃). Here,

ZY (μ̃) := {y|ϕ∗(yEQ) − ϕ∗(y) − DY [yEQ||y] > 0}, (18)

designates the region in which the positivity of entropy pro-
duction rate is guaranteed. By transferring this condition into
the density space by the Legendre transformation, we have the
following claim for xSG:

Claim 2. When ϕ∗(yEQ) − �̃ > 0 and a steady growing
state xSG exists, the state xSG must be in the region RX (�̃, μ̃),
where RX (�̃, μ̃) = ∂ϕ∗(RY ). The entropy production rate
at state xSG is represented as Eq. (17). (See Sec. VI and
Theorem 2 for the details.)

Example 3. For the autocatalytic motif in Fig. 3(a), the
steady growing state xSG is indeed located within the region
RX (�̃, μ̃) [see Fig. 3(d)].

Moreover, we can verify that the transition from the shrink-
ing to the growing case occurs when the intersection between
IY (�̃, μ̃) and ZY (μ̃) appears [see Fig. 4(b)]. In Fig. 4,
the isobaric manifold IY (�̃, μ̃) and the region ZY (μ̃) are
indicated in the chemical potential space. For the shrinking

case [Fig. 4(a)], the intersection is empty. By contrast, for the
growing case [Fig. 4(c)], the intersection exists. �

This concludes the outline of all our main results, which
consist of the condition of growth, the constraints of growing
systems and steady growing states, and the forms of total
entropy and entropy production rate at the steady growing
state.

III. THERMODYNAMICS FOR GROWING SYSTEMS

From this section onward, we work on the derivation of our
main claims introduced in Sec. II. In this section, we derive
the form of the total entropy, Eq. (1), more specifically by
employing timescale separation. As a result, we will obtain
the total entropy function for the reaction dynamics, Eq. (25).
Also, we will show that, given the number of the confined
chemicals X , the volume � of the system is determined by
the variational form, Eq. (21), with the partial grand potential,
Eq. (20).

Since we have assumed that JE (t ), J�(t ), JD(t ) � J (t ), we
can analyze the dynamics, Eqs. (3) and (4), by separating the
slow one J (t ) from the fast ones JE (t ), J�(t ), JD(t ). By solv-
ing the fast dynamics using the second law (see Appendix B),
we obtain the effective slow dynamics (the reaction dynamics)
as

dX i

dt
= Si

rJr (t ),
dẼ

dt
= −dEQEQ(X )

dt
,

d�̃

dt
= −d�QEQ(X )

dt
,

dÑm

dt
= Om

r Jr (t ) − dNm
QEQ(X )

dt
,

(19)

where (·)QEQ represents the value at the equilibrium state
of the fast dynamics. We call this the quasiequilibrium state
because it is not the equilibrium state of the slow dynamics.
By using the partial grand potential,

�[T̃ , μ̃; �, X ] := min
E ,N

{E − T̃ �[E ,�, N, X ] − μ̃mNm},
(20)

the volume at the quasiequilibrium state with the number of
the confined chemicals X can be evaluated by the variational
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form:

�QEQ(X ) = arg min
�

{�[T̃ , μ̃; �, X ] + �̃�}. (21)

In addition, the other extensive variables can be calculated by
differentiations of �[T̃ , μ̃; �QEQ, X ] as

�QEQ(X ) = −∂�[T̃ , μ̃; �QEQ, X ]

∂T̃
,

Nm
QEQ(X ) = −∂�[T̃ , μ̃; �QEQ, X ]

∂μ̃m
,

EQEQ(X ) = �[T̃ , μ̃; �QEQ, X ] − T̃
∂�[T̃ , μ̃; �QEQ, X ]

∂T̃

− μ̃m
∂�[T̃ , μ̃; �QEQ, X ]

∂μ̃m
, (22)

where �QEQ(X ) is the abbreviation of
�[EQEQ,�QEQ, NQEQ, X ]. The details of the derivation are
shown in Appendix B. The formal solution of Eqs. (19) with
the initial condition (X0, Ẽ (0), �̃(0), Ñ (0)) is represented as

X i(t ) = X i
0 + Si

r�
r (t ),

Ẽ (t ) = Ẽ (0) − EQEQ(X (t )),

�̃(t ) = �̃(0) − �QEQ(X (t )),

Ñm(t ) = Ñm(0) + Om
r �r (t ) − Nm

QEQ(X (t )), (23)

where �(t ) = {�r (t )} is the integration of J (t ) with the initial
condition �(0) = 0; this is known as the extent of reaction
in chemistry. Since we have assumed that S is regular, there
are no stoichiometric constraints that restrict attainable state
of X (t ) by its initial state X (0); i.e., the stoichiometric com-
patibility class [51–53] becomes RNX

>0 . Furthermore, by using
the inverse matrix S−1, the last equation in Eqs. (23) can be
rewritten as

Ñm(t ) = Om
r (S−1)r

i X i(t ) − Nm
QEQ(X (t )) + const, (24)

where we substitute �r (t ) = (S−1)r
i {X i(t ) − X i

0} into the last
equation and abbreviate the terms composed of the initial
condition to const. The representation of Eq. (24) implies that
our reaction dynamics can be completely described only by
the time evolution of the confined chemicals, X (t ).

Next, we consider the time evolution of the total entropy
during the reaction dynamics. By substituting Eqs. (23) and
(24) into Eq. (1), we obtain

�tot (X ) = �QEQ(X ) − 1

T̃
EQEQ(X ) − �̃

T̃
�QEQ(X )

+ μ̃m

T̃
Nm

QEQ(X ) − μ̃m

T̃
Om

r (S−1)r
i X i + const

= − 1

T̃

{
�[T̃ , μ̃; �QEQ, X ] + �̃�QEQ(X ) − yEQ

i X i
}

+ const, (25)

where we employ the Taylor expansion for �̃T̃ ,�̃,μ̃ and the
partial grand potential, Eq. (20); for simplicity, we also define

yEQ
i := −μ̃mOm

r (S−1)r
i . (26)

The details of the derivation for Eqs. (25) and (26) are shown
in Appendix B.

According to the second law, the system must climb up
the landscape determined by the concave function �tot (X )
[63] and finally converge to its maximum, which is called the
equilibrium state, if it exists. Therefore, to elucidate the fate of
the system, it is important to analyze the form of the concave
function �tot (X ). We can briefly classify the form of �tot (X )
into the following three cases: (1) If �tot (X ) is bounded above
and the points attaining its maximum are in the interior of
the domain of X , i.e., arg maxX {�tot (X )} ∈ RNX

>0 , equilibrium
states exist and the system converges to one of them. (2) If
�tot (X ) is bounded above and the maximum of �tot (X ) is at
X = 0, the volume �QEQ(X (t )) eventually shrinks and finally
vanishes. (3) If �tot (X ) is not bounded above, X (t ) diverges
in the reaction dynamics. Also, the volume �QEQ(X ) diverges
for X → ∞, because of the homogeneity of the volume. This
situation corresponds to the growth of the system. The main
aim of this paper is to reveal what condition distinguishes
these three cases. In the remaining part of this paper, we will
address this problem by employing Hessian and projective
geometry.

IV. PREPARATION FOR A GEOMETRIC
REPRESENTATION OF ISOBARIC
CHEMICAL REACTION SYSTEMS

We devote this section to preparation for the geometric
representation of our system. As a result, it is revealed that
any thermodynamic state is constrained to the isobaric man-
ifolds IX (�̃, μ̃) and IY (�̃, μ̃) in the density space X and
the chemical potential space Y , respectively. Furthermore,
we find a one-to-one correspondence between a density x ∈
IX (�̃, μ̃), a chemical potential y ∈ IY (�̃, μ̃), and a ray r in
the number space X, as illustrated in Fig. 5.

As mentioned in Sec. II, the homogeneity of the system
entropy function allows us to write it as

�[E ,�, N, X ] = �σ [ε, n, x], (27)

where σ [ε, n, x] represents the entropy density and
(ε, n, x) := (E/�, N/�, X/�); also, we have assumed that
σ [ε, n, x] is strictly concave. We introduce the number and
the density spaces of the confined chemicals as X ∈ X = RNX

>0

and x ∈ X = RNX
>0 , respectively. Also, we define the

partial grand potential density as ϕ(x) = ϕ[T̃ , μ̃; x] :=
�−1�[T̃ , μ̃; �, X ] = �[T̃ , μ̃; 1, X/�], where we use the
homogeneity of �. From the definition of �, Eq. (20),
ϕ[T̃ , μ̃; x] can be represented by a variant of the Legendre
transformation of σ [ε, n, x] as

ϕ[T̃ , μ̃; x] = min
ε,n

{ε − T̃ σ [ε, n, x] − μ̃mnm}, (28)

and therefore ϕ(x) is strictly convex. By using ϕ(x), we can
rewrite Eq. (21) as

�(X ) = �QEQ(X ) = arg min
�

{
�ϕ

(
X

�

)
+ �̃�

}
. (29)

For notational simplicity, we omit the subscript (·)QEQ, here-
after. Due to the strict convexity of ϕ(x), the volume �(X )
uniquely exists for any given X (see Appendix C).

Equation (29) implies that any possible state in the density
space X is constrained to a submanifold as follows. The
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FIG. 5. Diagrammatic representation of the triad of spaces
(X,PX), X , and Y . (a) The top space, X = RNX

>0 , represents the
number of the confined chemicals X . We also define the set of rays
in X as PX. An element r ∈ PX is a ray, which is a subset of X.
The spaces on the left and right bottom represent the density space
X = RNX

>0 and the chemical potential space Y = RNX , respectively.
A ray r ∈ PX and a point x in the isobaric manifold IX (�̃, μ̃) ⊂ X
are mapped to each other by ρ̄X (r) and ρ̄−1

X (x). Similarly, a ray r and
a point y in the isobaric manifold IY (�̃, μ̃) ⊂ Y are mapped to each
other by ρ̄Y (r) and (ρ̄Y )−1(y). The spaces, X and Y , are mapped to
each other by ∂ϕ and ∂ϕ∗. (b) The map ρ̄X from PX to X and its
inverse ρ̄−1

X can be represented by the composition of two maps via
the space Y (top line). Similarly, the map ρ̄Y from PX to Y and its
inverse (ρ̄Y )−1 are expressed by the composition of two maps via the
space X (bottom line).

critical equation of Eq. (29) is given by

ϕ

(
X

�

)
− X i

�
∂iϕ

(
X

�

)
+ �̃ = 0, (30)

where ∂iϕ(X/�) = ∂ϕ(x)/∂xi|x=X/�. Therefore, any possible
state lies in an isobaric manifold:

IX (�̃, μ̃) := {x|ϕ(x) − xi∂iϕ(x) + �̃ = 0} ⊂ X . (31)

In other words, the time evolution of the density x(t ), given
by Eqs. (19), is constrained to this submanifold [see the left
bottom panel in Fig. 5(a)].

Next, we relate the number X with the density x. To do
this, we define a map from the number space X to the isobaric

manifold IX (�̃, μ̃):

ρX : X ∈ X �→ ρX (X ) = {xi(X )} =
{

X i

�(X )

}
∈ IX . (32)

This map gives the density of the confined chemicals at a
quasiequilibrium state with X . Note that the map ρX is not
injective because of the homogeneity: �(αX ) = α�(X ) (α >

0), which is guaranteed by Eq. (29). This means that the map
ρX satisfies

ρX (αX ) = ρX (X ), (33)

and thus any point X on a ray r in the number space X gives
the same density x = ρX (X ) [see the top panel in Fig. 5(a)].
The mathematical expression of the ray is given in Ref. [64].

Here, the geometric representation of the map ρX is clari-
fied by regarding the number space X as a collection of rays;
that is, we denote the projective space of X as PX. Elements
of the space PX are rays r ⊂ X. Due to Eq. (33), the map ρX
descends to a well-defined map from PX to IX (�̃, μ̃):

ρ̄X : r ∈ PX �→ ρ̄X (r) = ρX (X ) ∈ IX , for X ∈ r. (34)

This map ρ̄X become injective [65]. For a later analysis, we
also define the inverse map of ρ̄X as ρ̄−1

X : IX (�̃, μ̃) → PX,
which gives the corresponding ray to a given density x ∈
IX (�̃, μ̃) [see Fig. 5(a)].

Finally, we introduce the dual space of the density space X
as y ∈ Y = RNX . It is thermodynamically interpreted as the
space of chemical potentials. Also, we define a map from X
to Y by using the convex function ϕ(x) as

∂ϕ : x ∈ X �→ ∂ϕ(x) = {∂iϕ} =
{

∂ϕ

∂xi

}
∈ Y, (35)

which outputs the value of chemical potential at a state x.
Since ϕ(x) is strictly convex, the map ∂ϕ is injective. To
construct the inverse map of ∂ϕ, we define the strictly convex
function ϕ∗(y) on the dual space Y by the Legendre transfor-
mation,

ϕ∗(y) := max
x

{yix
i − ϕ(x)}, (36)

which corresponds to the full grand potential density and gives
a pressure of the system at a state y. Employing ϕ∗(y), we can
represent the inverse map as

∂ϕ∗ : y ∈ Y �→ ∂ϕ∗(y) = {∂ iϕ∗} =
{

∂ϕ∗

∂yi

}
∈ X . (37)

These two spaces, X and Y , together with the pair of convex
functions, ϕ(x) and ϕ∗(y), constitute the Hessian geometric
structure of chemical thermodynamics [52]. The structure is
fundamental to capture a geometric relation between the two
dual spaces and will be used intensively in the following
sections.

The isobaric manifold IX (�̃, μ̃) in X is mapped via ∂ϕ to
the chemical potential space Y as

IY (�̃, μ̃) := ∂ϕ(IX ) = {y|ϕ∗(y) − �̃ = 0}, (38)

which is a level hypersurface for the dual convex function
ϕ∗(y) [see the right bottom panel in Fig. 5(a)]. In addition,
we define the map from X to IY (�̃, μ̃) ⊂ Y as ρY (X ) :=
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∂ϕ ◦ ρX (X ) = y(X ), which also induces the map:

ρ̄Y : r ∈ PX �→ ρ̄Y (r) = ρY (X ) ∈ IY , for X ∈ r. (39)

Since this map is injective, we define inverse map as
(ρ̄Y )−1(y) = ρ̄−1

X ◦ ∂ϕ∗(y) [see Fig. 5(b)]. The fact that the
isobaric manifold is identical to a level hypersurface for a
potential function is one of the fundamental constituents in
the Hessian geometry.

V. FORM OF THE TOTAL ENTROPY FUNCTION
AND THE FATE OF THE SYSTEM

With the preparation in the previous section, we are in
the position to reveal the form of the total entropy function,
Eq. (25), and predict the fate of the system.

For this purpose, we introduce the Bregman divergence
[58–60] on Y ,

DY [y||y′] := {ϕ∗(y) − ϕ∗(y′)} − ∂ iϕ∗(y′){yi − y′
i}, (40)

which measures the deviation at point y between the convex
function ϕ∗(y) and the tangent plane at point y′. This diver-
gence has the following property: DY [y||y′] � 0, the equality
holds if and only if y = y′ and therefore it acts as an asymmet-
ric distance from y′ to y. The Bregman divergence is also one
of the fundamental constituents of Hessian geometry.

We rewrite the total entropy function Eq. (25) by using
the divergence as follows. Using the partial grand potential
density ϕ(x), Eq. (25) can be rewritten as

�tot (X ) = −�(X )

T̃

{
ϕ(x(X )) − yEQ

i xi(X ) + �̃
}
, (41)

where x(X ) = ρX (X ) is defined in Eq. (32) and we neglect
the constant term. This equation is further rearranged as

�tot (X ) = �(X )

T̃

{
yEQ

i − ∂iϕ(x(X ))
}
xi(X )

= �(X )

T̃

{
yEQ

i − yi(X )
}
∂ iϕ∗(y(X )). (42)

To derive the first line, we used Eq. (31); in the second line, we
employed the fact that the density x and the chemical potential
y are mapped to each other by ∂ϕ and ∂ϕ∗ (see Fig. 5). Finally,
using the Bregman divergence from y(X ) to yEQ, we obtain

�tot (X ) = �(X )

T̃
{ϕ∗(yEQ) − �̃ − DY [yEQ||y(X )]}, (43)

where we employ ϕ∗(y(X )) = �̃ because y(X ) = ρY (X ) ∈
IY (�̃, μ̃) [see Eq. (38)]. Here, we note that the first two
terms in Eq. (43), ϕ∗(yEQ) − �̃, are calculated by the intensive
variables of the reservoir because yEQ is given by its chemical
potential μ̃ as in Eq. (26). In the following, we will show that
the sign of ϕ∗(yEQ) − �̃ determines the fate of the system.

For convenience, we also denote terms in the bracket in
Eq. (43) by

KY (y) := ϕ∗(yEQ) − �̃ − DY [yEQ||y], (44)

that is, �tot (X ) = {�(X )/T̃ }KY (y(X )). Here, we emphasize
that the value KY (y(X )) is kept constant on each ray r in the
number space X, because y(X ) = ρY (X ) = const for X ∈ r ∈
PX.

First, let us consider the case ϕ∗(yEQ) − �̃ = 0, which
corresponds to the situation that equilibrium states exist and
the system converges to one of them. In this case, since
KY (y) = −DY [yEQ||y] and �(X ) > 0, the entropy function
in Eq. (43) satisfies �tot (X ) � 0, the equality holds if and
only if y = yEQ. Furthermore, from Eq. (38), yEQ ∈ IY (�̃, μ̃),
and therefore y(X ) = ρY (X ) can reach yEQ. Hence, the max-
imum of the entropy function is achieved on the ray given
by (ρ̄Y )−1(yEQ), which represents a set of the equilibrium
states. Since the second law imposes that the total entropy
function increases in the time evolution of the system, it will
converge to a point on the equilibrium ray, depending on the
initial condition and the functional form of the reaction flux
J (t ) in Eqs. (19). We should note that the equilibrium state is
identified by a unique point in the density space X . However,
in the number space X, the equilibrium states form a ray and
the equilibrium point to which the system converges is one of
the points on the ray.

Example 4. Consider the autocatalytic motif shown in
Fig. 3(a) and the intensive variables �̃ and μ̃ in the reservoir
satisfy ϕ∗(yEQ) − �̃ = 0. In this case, the isobaric manifold
IY (�̃, μ̃) in the chemical potential space Y is shown in
Fig. 6(a), and yEQ lies on IY (�̃, μ̃). Furthermore, the max-
imum of the entropy function �tot (X ) is achieved on the ray
given by (ρ̄Y )−1(yEQ) [see the right panel of Fig. 6(a)]. �

Second, we show that the system eventually shrinks if
ϕ∗(yEQ) − �̃ < 0. In this case, KY (y) is negative for all y ∈
Y . Thus, on a ray in X given by (ρ̄Y )−1(y) for any y, the
value KY (y(X )) is a negative constant. In addition, �(X ) is
an increasing function on the ray because of its homogeneity.
Thus, the entropy function �tot increases when X approaches
the origin along the ray. Accordingly, the maximum of the
entropy function (to be more precise, the supremum of the
entropy function) is located at X = 0; that is, the system
eventually shrinks and finally vanishes.

Example 5. For the autocatalytic motif shown in Fig. 3(a)
under the condition ϕ∗(yEQ) − �̃ < 0, the isobaric manifold
IY (�̃, μ̃) in Y is shown in Fig. 6(b). In this case, yEQ does not
exist on IY (�̃, μ̃). For every y ∈ IY (�̃, μ̃), the correspond-
ing ray in X is given by (ρ̄Y )−1(y) (see the examples yA, yB, yC

and the corresponding rays in X in the right panel). On each
ray, the entropy function �tot increases when X approaches
the origin as shown in the right panel of Fig. 6(b). �

Finally, we investigate the case ϕ∗(yEQ) − �̃ > 0, in which
the growth of the system is realized. In this case, a region
RY (�̃, μ̃) ⊂ IY (�̃, μ̃) exists such that KY (y) is positive:

RY (�̃, μ̃) := {y|y ∈ IY (�̃, μ̃), KY (y) > 0}. (45)

Also, by taking into account the definitions of IY (�̃, μ̃) and
KY (y), given in Eqs. (38) and (44), this region can be repre-
sented by the intersection,

RY (�̃, μ̃) = IY (�̃, μ̃) ∩ ZY (μ̃), (46)

where ZY (μ̃) is the larger region:

ZY (μ̃) := {y|ϕ∗(yEQ) − ϕ∗(y) − DY [yEQ||y] > 0}. (47)

The existence of RY (�̃, μ̃) is proved in Appendix D. Con-
sequently, a ray (ρ̄Y )−1(y) for any y ∈ RY (�̃, μ̃) also exists
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FIG. 6. For the autocatalytic motif shown in Fig. 3(a), we de-
scribe the isobaric manifold IY (�̃, μ̃) in Y (left panels) and the
corresponding rays (right panels) in X given by the map (ρ̄Y )−1 =
ρ̄−1
X ◦ ∂ϕ∗. The heat maps in the right panels indicate values of the

entropy function �tot (see the caption in Fig. 8 for specific values
of the parameters). (a) When ϕ∗(yEQ) − �̃ = 0, the point yEQ lies
in IY (�̃, μ̃) and KY (yEQ) = 0; for the other y ∈ IY (�̃, μ̃), the
value of KY (y) is negative. Thus, the maximum �tot = 0 is achieved
on the ray given by (ρ̄Y )−1(yEQ). (b) When ϕ∗(yEQ) − �̃ < 0, the
point yEQ does not exist on IY (�̃, μ̃) and KY (y) is negative for
all y ∈ IY (�̃, μ̃). Then, on a ray in X given by (ρ̄Y )−1(y), the
value of KY (y) is negative and constant. Thus, on each ray, the
entropy function �tot increases when X approaches the origin. As
a guide, we display typical points yA, yB, and yC and the corre-
sponding rays in X. (c) The region ZY (μ̃) is indicated by light pink
color in the left panel. Only when ϕ∗(yEQ) − �̃ > 0, the intersection
RY (�̃, μ̃) = IY (�̃, μ̃) ∩ ZY (μ̃) appears, where KY (y) is positive
for any y ∈ RY (�̃, μ̃). We highlight RY (�̃, μ̃) by the curved red
rectangle, i.e., within the range between yB1 and yB2 in IY (�̃, μ̃).
Thus, on a ray (ρ̄Y )−1(y) in X for every y ∈ RY (�̃, μ̃), the entropy
function �tot increases when X diverges along the ray. We also show
the points yB1 and yB2 at which KY (y) = 0, and the corresponding
rays on which �tot = 0.

in X; and, on every ray (ρ̄Y )−1(y), the value KY (y(X )) is a
positive constant. Furthermore, since �(X ) is an increasing
function on the ray, the entropy function �tot increases when
X diverges along the ray. Accordingly, the entropy function is
not bounded above, and the system is growing in this case.

Example 6. Consider the autocatalytic motif shown in
Fig. 3(a) and assume that ϕ∗(yEQ) − �̃ > 0. The region
ZY (μ̃) in Y is indicated by light pink color in the left panel

of Fig. 6(c). Then, the region RY (�̃, μ̃) is given by the inter-
section between the region ZY (μ̃) and the level hypersurface
(the isobaric manifold) IY (�̃, μ̃). For any y ∈ RY (�̃, μ̃),
the value KY (y(X )) is a positive constant. Thus, on a ray
(ρ̄Y )−1(y) in X for every y ∈ RY (�̃, μ̃), the entropy function
�tot increases when X diverges along the ray.

The region ZY (μ̃) exists irrespective of the sign of
ϕ∗(yEQ) − �̃ as in Figs. 6(a) and 6(b). However, in the cases
ϕ∗(yEQ) − �̃ � 0, the intersection with the isobaric manifold
IY (�̃, μ̃) does not exist. �

The above three situations are summarized as follows:
Theorem 1. If and only if the reservoir condition satisfies

ϕ∗(yEQ) − �̃ = 0, where yEQ = −μ̃OS−1, equilibrium states
exist and the system converges to one of them. Furthermore,
if and only if ϕ∗(yEQ) − �̃ < 0, the system eventually shrinks
and finally vanishes. By contrast, if and only if ϕ∗(yEQ) −
�̃ > 0, the system is growing.

Based on physical intuition, one expects that the fate of
the system is classified by a gradient induced by the intensive
variables (�̃, μ̃) in the reservoir. The above theorem makes
this intuition precise in the sense that ϕ∗(yEQ) − �̃ plays
the role of this gradient. In fact, ϕ∗(yEQ) − �̃ is represented
by the intensive variables (�̃, μ̃) because yEQ is determined
only by the chemical potential μ̃ in the reservoir through
Eq. (26). Furthermore, when the gradient is balanced, i.e.,
ϕ∗(yEQ) − �̃ = 0, the system converges to an equilibrium
state. By contrast, when the gradient is not balanced, i.e.,
ϕ∗(yEQ) − �̃ �= 0, the system never reaches an equilibrium
state.

A more precise explanation of the gradient is as follows.
On the one hand, the chemical reactions in the system aim to
achieve the state yEQ, the pressure at which is ϕ∗(yEQ). On the
other hand, the internal pressure ϕ∗(y) of the system always
balances with �̃, owing to the fast dynamics. The gradient
ϕ∗(yEQ) − �̃ represents the difference between them. When
ϕ∗(yEQ) − �̃ = 0, the target pressure ϕ∗(yEQ) coincides with
the reservoir pressure �̃. Then, the system converges to an
equilibrium state. In the case that the target pressure is smaller
than �̃ [i.e., ϕ∗(yEQ) − �̃ < 0], the chemical reactions at-
tempt to decrease the internal pressure ϕ∗(y) from �̃ in each
time step, but the system immediately regains ϕ∗(y) = �̃.
This infinitesimal and instantaneous pressure gap between
the system and the reservoir leads to the shrinking and the
vanishing of the system. By contrast, if the target pressure is
larger than �̃ [i.e., ϕ∗(yEQ) − �̃ > 0], from the same argu-
ment, the system eventually grows (expands) in each time step
and finally diverges.

VI. STEADY GROWING STATE

In this section, we consider the steady growing state and
evaluate the entropy production rate at the state. Since the
system is assumed to grow, we focus on the case ϕ∗(yEQ) −
�̃ > 0. The steady growing state xSG is defined as a state such
that the density x(t ) = X (t )/�(t ) is kept constant in the time
evolution and �̇(t ) is positive, where the dot denotes the time
derivative. At this state, the number of confined chemicals
X (t ) evolves only on a ray ρ̄−1

X (xSG) because X (t ) = �(t )xSG.
For xSG to be the steady growing state, the entropy pro-

duction rate at this state must be positive, �̇tot (�(t )xSG) > 0,
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and, at the same time, the volume must be increasing, i.e.,
�̇(t ) > 0. By substituting X (t ) = �(t )xSG into Eq. (42), we
get

�tot (�(t )xSG) = �(t )

T̃

{
yEQ

i − ∂iϕ(xSG)
}
xi

SG, (48)

where we use x(�(t )xSG) = ρX (�(t )xSG) = xSG. By rear-
ranging Eq. (48) as in Eq. (43), we have

�tot (�(t )xSG) = �(t )

T̃
KY (ySG), (49)

where ySG := ∂ϕ(xSG) and KY (ySG) is defined in Eq. (44).
Since KY (ySG) is kept constant with time, the entropy pro-
duction rate can be represented as

�̇tot (�(t )xSG) = �̇(t )

T̃
KY (ySG) > 0. (50)

Because �̇(t ) > 0 for the steady growing state, KY (ySG) must
be positive. Accordingly, the chemical potential for the con-
fined chemicals at the steady growing state, ySG, must lie in
the region RY (�̃, μ̃) ⊂ Y [see Eqs. (45)–(47)].

To clarify the region of possible xSG in the density space
X , we map the region RY (�̃, μ̃) to X . First, we introduce the
Bregman divergence on X :

DX [x||x′] := {ϕ(x) − ϕ(x′)} − ∂iϕ(x′){xi − (x′)i}. (51)

This divergence is related to the one in Y , Eq. (40), as
DY [y||y′] = DX [∂ϕ∗(y′)||∂ϕ∗(y)]. Then, the term KY (y) de-
fined by Eq. (44) is transformed as

KX (x) = ϕ∗(yEQ) − �̃ − DX [x||xEQ], (52)

where xEQ := ∂ϕ∗(yEQ). Thus, the region in the density space
X can be represented as

RX (�̃, μ̃) := ∂ϕ∗(RY )

= {x|x ∈ IX (�̃, μ̃), KX (x) > 0}. (53)

Rewriting this region as the intersection of two submanifolds
as in Eq. (46), we obtain

RX (�̃, μ̃) := ∂ϕ∗(RY ) = ∂ϕ∗(IY ) ∩ ∂ϕ∗(ZY )

= IX (�̃, μ̃) ∩ ZX (μ̃), (54)

where the region ZX (μ̃) in X is represented as

ZX (μ̃) = {x|xi{∂iϕ(xEQ) − ∂iϕ(x)} > 0}. (55)

The argument in this section is summarized by the follow-
ing theorem:

Theorem 2. When ϕ∗(yEQ) − �̃ > 0 and a steady growing
state xSG exists, the state xSG must lie in the region RX (�̃, μ̃).
Then, the entropy production rate at the state xSG is repre-
sented as

�̇tot
SG(t ) = �̇(t )

T̃
KX (xSG)

= �̇(t )

T̃
{ϕ∗(yEQ) − �̃} − �̇(t )

T̃
DX [xSG||xEQ]. (56)

The above theorem only identifies the region of possible
steady growing states. The existence and uniqueness of such
states are not guaranteed. In addition, which states would be

FIG. 7. The isobaric manifold IX (�̃, μ̃) in X , corresponding to
the case in Fig. 6(c). If the system is composed of ideal gas, then
IX (�̃, μ̃) is a simplex. The region ZX (μ̃) is indicated by light pink
color. The region RX (�̃, μ̃) is the intersection between IX (�̃, μ̃)
and ZX (μ̃), which is enclosed by the dashed red rectangle. If a
steady growing state exists, it must be in this region.

chosen in this region is not determined. These details can be
analyzed and determined once we specify the functional form
of the reaction flux J (t ). For example, we assume that J (t )
of the CRS given in Fig. 3(a) obeys mass action kinetics and
observe that the steady growing state exists as in Fig. 3(d).
However, if the functional form of the kinetic law is different
from mass action, the existence of the steady growing state is
not guaranteed even in the CRS.

By rearranging Eq. (56), we obtain

T̃
�̇tot

SG(t )

�̇(t )
= {ϕ∗(yEQ) − �̃} − DX [xSG||xEQ]. (57)

The left-hand side of this expression represents the thermo-
dynamic cost for the volume growth, whereas the right-hand
side can be interpreted as follows. The first term represents
the external contribution, which is the gradient ϕ∗(yEQ) −
�̃ induced by the reservoir. The second term characterizes
the internal contribution, which is the Bregman divergence
DX [xSG||xEQ] from the equilibrium state xEQ to the steady
growing state xSG. It gives the total entropy increment during
an isochoric relaxation xSG → xEQ (see Ref. [52] for details).
This fact suggests that we can interpret the second term as
the relaxation contribution by the chemical reactions in the
system. Moreover, on the right-hand side, only the steady
growing state xSG depends on the reaction flux J (t ). As a
future perspective, when one designs the reaction flux J (t ) to
optimize the thermodynamic cost, the expression, Eq. (57),
may play an important role.

Furthermore, from Eq. (56), we can evaluate the heat
dissipation and the work done by the system in the steady
growing state based on the first law of thermodynamics. In
Appendix E, we summarize the first law in our framework. In
Appendix F, we derive expressions for the heat and the work.

Example 7. For the example shown in Fig. 6(c), in which
ϕ∗(yEQ) − �̃ > 0 holds, the region ZX (μ̃) exists in X ,
as indicated by the light pink color in Fig. 7. Under the
ideal gas assumption, the isobaric manifold IX (�̃, μ̃) is a
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simplex in X as we will show in the next section. Then, the
intersection RX (�̃, μ̃) = IX (�̃, μ̃) ∩ ZX (μ̃) exists as the
dashed red rectangle in Fig. 7, where KX (x) is positive for any
x ∈ RX (�̃, μ̃). If a steady growing state xSG exists, it must be
in the region RX (�̃, μ̃). �

VII. IDEAL GAS

In this section, we demonstrate our framework for CRSs
under the ideal gas assumption. To be more precise, we as-
sume that both the system and the reservoir are composed of
ideal gas.

To write Theorem 1 in this situation, we first evaluate the
full grand potential density ϕ∗(y). The form of the Helmholtz
free-energy density for the ideal gas is known as

f [T̃ ; n, x] = nmμo
m(T̃ ) + RT̃

∑
m

{nm log nm − nm}

+ xiνo
i (T̃ ) + RT̃

∑
i

{xi log xi − xi}, (58)

where R represents the gas constant; μo(T̃ ) = {μo
m(T̃ )} and

νo(T̃ ) = {νo
i (T̃ )} denote the standard chemical potentials of

the open and confined chemicals, respectively. Since the par-
tial grand potential density ϕ[T̃ , μ̃; x] can be represented by a
variant of the Legendre transformation,

ϕ[T̃ , μ̃; x] := min
n

{ f [T̃ ; n, x] − μ̃mnm}, (59)

we get

ϕ[T̃ , μ̃; x] = ϕ(x) = xiνo
i (T̃ ) + RT̃

∑
i

{xi log xi − xi}

− RT̃
∑

m

e{μ̃m−μo
m (T̃ )}/RT̃ . (60)

Also, from the Legendre transformation, Eq. (36), the full
grand potential density ϕ∗(y) can be expressed as

ϕ∗(y) = RT̃
∑

i

e{yi−νo
i (T̃ )}/RT̃

+ RT̃
∑

m

e{μ̃m−μo
m (T̃ )}/RT̃ . (61)

Furthermore, since we have assumed that the reservoir also
consists of the ideal gas, the chemical potential μ̃ can be
represented as

μ̃m = μo
m(T̃ ) + RT̃ log ñm, (62)

where ñ = {ñm} is the density of the open chemicals in the
reservoir. In addition, for notational simplicity, we define
the standard density for the confined chemicals as xi

o :=
e−νo

i (T̃ )/RT̃ [66]. Then, Eq. (61) is rearranged to

ϕ∗(y) = RT̃
∑

i

xi
oeyi/RT̃ + RT̃

∑
m

ñm. (63)

Next, we calculate the gradient ϕ∗(yEQ) − �̃ in
Theorem 1. By defining the standard density for the open
chemicals as nm

o := e−μo
m (T̃ )/RT̃ , we get μ̃m = RT̃ log(ñm/nm

o ).

Hence, yEQ = −μ̃OS−1 in Eq. (26) can be rewritten as

yEQ
i = RT̃ log

∏
m

(
nm

o

ñm

)(OS−1 )m
i

. (64)

By substituting yEQ into Eq. (63), we obtain

ϕ∗(yEQ) − �̃ = RT̃
∑

i

∏
m

xi
o

(
nm

o

ñm

)(OS−1 )m
i

−
(

�̃ − RT̃
∑

m

ñm

)
. (65)

Here, we note that the second line in Eq. (65) represents the
partial pressure that is produced by compositions other than
the open chemicals in the reservoir. For the ideal gas, Eq. (65)
determines the fate of the system.

Finally, we specify Theorem 2 for the ideal gas. The iso-
baric manifold IX (�̃, μ̃) in Eq. (31) is rewritten as

IX (�̃, μ̃) :=
{

x|RT̃
∑

i

xi −
(

�̃ − RT̃
∑

m

ñm

)
= 0

}
,

(66)
which implies the equation of state, �̃ = RT̃ (

∑
i xi +∑

m ñm), and defines a simplex in the density space X . Also,
by using Eq. (60), the region ZX (μ̃) in Eq. (55) can be
expressed as

ZX (μ̃) =
{

x|RT̃
∑

i

xi log

(
xi

EQ

xi

)
> 0

}
, (67)

where xi
EQ=∂ϕ∗(yEQ)=xi

oeyEQ
i /RT̃ . Note that

∑
i xi log(xi

EQ/xi )
can be negative because x and xEQ are not normalized. Thus,
the region RX (�̃, μ̃) is given by the intersection between
Eqs. (66) and (67). In addition, the Bregman divergence in
the density space X , Eq. (51), reduces to the generalized
Kullback-Leibler divergence [44–46,51]:

DX [x||xEQ] = RT̃
∑

i

[
xi log

xi

xi
EQ

− {
xi − xi

EQ

}]
. (68)

Accordingly, the entropy production rate �̇tot
SG(t ) is evaluated

by substituting Eqs. (65) and (68) into Eq. (56). To obtain the
entropy production rate in Eq. (56), we still need to calculate
the growth rate �̇(t ) and the steady growing state xSG. To
compute them, we must determine the functional form of
the reaction flux J (t ). We should recall that Theorem 2 only
identifies the region of possible steady growing states xSG.

Example 8. The geometric representations of the exam-
ples shown in Figs. 6 and 7 are obtained as follows for the
ideal gas. Before presenting the geometry, we list the given
parameters: (1) the stoichiometric matrices S and O; (2) the
intensive variables (T̃ , �̃, μ̃) in the reservoir; (3) the stan-
dard densities {no, xo} or equivalently the standard chemical
potentials {μo(T̃ ), νo(T̃ )} for the open and the confined chem-
icals, which are related to each other as nm

o = e−μo
m (T̃ )/RT̃ and

xi
o = e−νo

i (T̃ )/RT̃ ; and (4) the density ñ for the open chemicals
in the reservoir, which leads to the chemical potential as
μ̃m = μo(T̃ ) + RT̃ log ñm.
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First, we determine the isobaric manifolds IX (�̃, μ̃) and
IY (�̃, μ̃). By using the given T̃ , �̃ and ñ, we obtain the
isobaric manifold IX (�̃, μ̃) in the density space X from
Eq. (66) as the simplex in Fig. 7. Also, we can describe the
isobaric manifold IY (�̃, μ̃) in the chemical potential space
Y by substituting Eq. (63) into Eq. (38), as shown in the left
panels of Fig. 6.

Second, we determine the regions ZX (μ̃) and ZY (μ̃). By
employing Eq. (64), we can calculate yEQ, and by applying the
map ∂ iϕ∗(y) = xi

oeyi/RT̃ to yEQ, we get xEQ. The substitution of
xEQ into Eq. (67) leads to ZX (μ̃) (see the light pink region in
Fig. 7). We also obtain ZY (μ̃) by substituting Eqs. (63) and
(40) into Eq. (47) (see the light pink regions in the left panels
of Fig. 6).

Third, we determine the region RX (�̃, μ̃) for possible
steady growing states xSG by Eq. (54). It is given by the
intersection between IX (�̃, μ̃) and ZX (μ̃), i.e., the dashed
red rectangle in Fig. 7.

Finally, the entropy function �tot (X ) on X is calculated
from Eq. (43). Here, the volume �(X ) is obtained from
Eq. (29) with Eq. (60), i.e., from the equation of state:

�(X ) = RT̃
∑

i X i

�̃ − RT̃
∑

m ñm
. (69)

Also, the chemical potential [i.e., the map ρY (X )] can be
calculated as

yi(X ) = ρY
i (X ) = ∂iϕ ◦ ρX (X ) = RT̃ log

(
X i

�(X )xi
o

)
. (70)

The heat maps of the right panels of Fig. 6 are plotted using
these equations. �

VIII. NUMERICAL VERIFICATION

To numerically verify our theory, we deal with the minimal
motif of autocatalytic cycles as given in Sec. II, where we
assume ideal gas conditions and mass action kinetics.

The chemical equations of the motif have been represented
by two reactions R1 and R2 that involve two confined chemi-
cals A = (A1, A2) and two open chemicals B = (B1, B2):

R1 :A1 + B1 � A2 + A2,

R2 :A2 � A1 + B2. (71)

Also, the stoichiometric matrices are

S =
( R1 R2

A1 −1 1

A2 2 −1

)
, O =

( R1 R2

B1 −1 0

B2 0 1

)
. (72)

The regularity of the matrix S is checked as det[S] =
−1 �= 0. Denoting the number of A = (A1, A2) by X =
(X 1, X 2), the reaction dynamics for the confined chemicals is
written as

dX i

dt
= Si

rJr (t ). (73)

Furthermore, we assume mass action kinetics for the reaction
flux J (t ):

J1(t ) = w1
+X 1 N1

�
− w1

−X 2 X 2

�
,

J2(t ) = w2
+X 2 − w2

−X 1 N2

�
, (74)

where N = (N1, N2) denotes the number of B = (B1, B2) in
the system. The rate constants wr

+ and wr
− satisfy

log
wr

+
wr−

= − 1

RT̃

{
ν0

i (T̃ )Si
r + μo

m(T̃ )Om
r

}
, (75)

which is known as the local detailed balance condition
[44,45,52,53,61].

To solve Eq. (73), we need to elucidate the behavior of
N and �. For the ideal gas, the density N/� of the open
chemicals in the system coincides with the density ñ in the
reservoir, which is a constant in time (see Appendix G). In
addition, � is given by the equation of state as Eq. (69). Thus,
Eqs. (74) can be rearranged as

J1(t ) = ŵ1
+X 1 − ŵ1

−
(X 2)2

�(X )
,

J2(t ) = ŵ2
+X 2 − ŵ2

−X 1, (76)

where we absorb the constant densities of the open chemicals,
Nm/�, into the rate constants as ŵr

+ and ŵr
−. Then, the local

detailed balance condition in Eq. (75) can be written as

log
ŵr

+
ŵr−

= − 1

RT̃

{
ν0

i (T̃ )Si
r + μ̃mOm

r

}
, (77)

and, for our specific example, it reduces to

ŵ1
+

ŵ1−
= x2

ox2
oñ1

x1
on1

o

,
ŵ2

+
ŵ2−

= x1
on2

o

x2
oñ2

. (78)

Also in this case, yEQ in Eq. (64) is written as

yEQ
1 = RT̃ log

(
n1

o

ñ1

)−1(
n2

o

ñ2

)2

,

yEQ
2 = RT̃ log

(
n1

o

ñ1

)−1(
n2

o

ñ2

)1

. (79)

Then, the gradient, Eq. (65), is represented as

ϕ∗(yEQ) − �̃ = RT̃

{
x1

o

(
n1

o

ñ1

)−1(
n2

o

ñ2

)2

+ x2
o

(
n1

o

ñ1

)−1(
n2

o

ñ2

)1
}

−{�̃ − RT̃ (ñ1 + ñ2)}. (80)

By using this expression, we obtain the following results.
In Fig. 8, we show the trajectories of the system, from two

initial conditions 1 and 2, in the spaces X, X and Y .
When the equality ϕ∗(yEQ) − �̃ = 0 holds [see Fig. 8(a)],

the total entropy function is increasing as the system moves
on X and converges to a point, denoted by the square, on the
equilibrium ray. The point depends on the initial conditions.
In the spaces X and Y [Figs. 8(b) and 8(c)], the system
moves on the isobaric manifolds IX (�̃, μ̃) and IY (�̃, μ̃),
respectively, and converges to the equilibrium points xEQ and
yEQ, irrespective of the initial conditions.
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FIG. 8. Trajectories of the system in the spaces of the number of confined chemicals X [left panel: (a), (d), (g)], the density space X
[middle panel: (b), (e), (h)], and the chemical potential space Y [right panel: (c), (f), (i)] for different pressures �̃ satisfying [top: (a)–(c)]
ϕ∗(yEQ) − �̃ = 0; [middle: (d)–(f)] ϕ∗(yEQ) − �̃ = −5.75, and [bottom: (g)–(i)] ϕ∗(yEQ) − �̃ = 4.25. For our simulation, xEQ = (9, 5.25) and
yEQ = (0.118, −0.288). The parameters of the simulation are fixed as follows: R = T̃ = 1, x1

o = 8, x2
o = 7, n1

o = 2, ñ1 = 1, n2
o = 3, ñ2 = 2,

ŵ1
− = ŵ2

− = 1. The rate constants of forward reactions, ŵ1
+ and ŵ2

+, are computed by Eqs. (78). For the initial conditions 1 and 2, we set
(X1, X2) = (10, 60) and (90, 5), respectively.

When ϕ∗(yEQ) − �̃ < 0 (see Fig. 8(d)), the system first
converges to a ray, and then moves on the ray toward the origin
of X, driven by the increase of the entropy function. In the
spaces X and Y [Figs. 8(e) and 8(f)], the system moves on the
isobaric manifolds IX (�̃, μ̃) and IY (�̃, μ̃), respectively, and
converges to the points denoted by the squares. These points
correspond to the ray on which the system moves toward the
origin in X. Therefore, the system finally vanishes.

Finally, when ϕ∗(yEQ) − �̃ > 0 [Fig. 8(g)], the system first
converges to a ray and then moves on the ray away from the
origin of X with the increase of the entropy function. In the
spaces X and Y [Figs. 8(h) and 8(i)], the system moves on
the isobaric manifolds IX (�̃, μ̃) and IY (�̃, μ̃), respectively,
and converges to points xSG and ySG = ∂ϕ(xSG), denoted by
the squares. These points correspond to the ray on which the
system moves in X, and are indeed located in RX (�̃, μ̃) and
RY (�̃, μ̃) [see also Figs. 6(c) and 7].

IX. SUMMARY AND DISCUSSION

We have established the thermodynamics of growing CRSs
by employing Hessian and projective geometry. In this paper,
we have classified the environmental conditions to distinguish
the fate of the CRSs. Furthermore, under the growing condi-
tion, we have identified the region in the density space where
a steady growing state can exist. We have also evaluated the
entropy production rate in this state. It is emphasized again
that our results are derived by a general thermodynamic struc-
ture without assuming any specific thermodynamic potentials
or reaction kinetics; i.e., they are obtained based solely on the
second law of thermodynamics.

In this paper, we have assumed that the stoichiometric ma-
trix S is regular. This implies that the system can always relax
to the chemical equilibrium state when the volume is fixed,
i.e., in the isochoric situation [52]. In other words, the system
never reaches a state that continuously produces entropy with
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constant volume, namely, the conventional nonequilibrium
steady state (NESS) [44–51]. Accordingly, the nonequilib-
rium states treated here, notably the steady growing state, are
realized due to the change of the volume. This nonequilibrium
state with changing volume originates in the extensivity of
thermodynamics and should be distinct from the conventional
NESS with constant volume.

If the matrix S has a nontrivial right null space
(dim Ker[S] �= 0), the system may relax to the NESS even for
a constant volume situation. Such a nongrowing but nonequi-
librium state is also biologically relevant, for example, the
stationary phase of cells [13,67–70]. It is a major challenge
for the future to clarify how the nonequilibrium state caused
by volume growth and the conventional NESS without growth
are compatible and related to each other.

By contrast, if the matrix S has a nontrivial left null
space (dim Ker[ST ] �= 0), the system has conservation laws
[44,45,52,53]. In our framework, it remains an open problem
whether steady growth of the system is possible and realized
with the conservation laws.

In this paper, we have assumed the isobaric condition and
that the timescale of chemical reactions is the slowest. There
may be cases with a different hierarchy of the timescales, e.g.,
slow JE , J�, and/or JD. Yet, our theoretical framework can
still be analogously applied, and how our results change is an
important topic for future work.

In our setup, we have ignored the tension of the mem-
brane and assumed that it never bursts (see the caption in
Fig. 1). However, the membrane does have tension in actual
situations. Even for such cases, our framework can be applied
by effectively incorporating the tension into the pressure �̃.
Furthermore, in biological cells, the membrane molecules
themselves are produced and supplied by the intracellular
CRS. In this case, the tension is coupled and changes with
the CRS, and therefore the effective �̃ changes with time.
Accordingly, our theoretical framework needs to be extended
further.

Our theory surely serves as the basis of all these extensions,
which are important for considering actual and experimental
situations of growing protocells or biological cells and also
for establishing the physics of self-replicating systems.
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APPENDIX A

In this Appendix, we introduce the concept of minimal
motifs for growing systems called autocatalytic cores. It was
originally proposed in Ref. [27] to determine whether a sub-
network embedded in a larger chemical reaction network can
be autocatalytic. Furthermore, the authors of Ref. [27] have
shown that the regularity of the stoichiometric matrices of
the motifs plays an essential role to identify such cores by
providing the following theorem:

Theorem 3. If a chemical reaction network is an auto-
catalytic core, its stoichiometric matrix S for the confined
chemicals must be regular.

In the following part, we will briefly review the proof of
their theorem (Theorem 3) with our notations.

First, we mathematically define several conditions for a
stoichiometric matrix S. All of the following definitions are
introduced in Ref. [27]. The matrix S is productive if Im[S] ∩
RNX

>0 �= ∅. The matrix S is autonomous if all column vectors of
S contain both strictly negative and strictly positive elements.
The matrix S is an autocatalytic core if S is both productive
and autonomous; in addition, S satisfies the following con-
dition: If we remove a row or a column vector from S, the
reduced matrix of S is not both productive and autonomous.
With this final condition, matrix S is referred to as minimal
because it does not contain any smaller motifs satisfying both
productivity and autonomy.

Furthermore, we prepare the following terms for the proof:
If a species is the only reactant of a reaction, we call it
the solitary reactant of the reaction; otherwise, we call it a
coreactant of the reaction.

The above definitions immediately lead to the following
lemmas. Lemma 1: We can remove an arbitrary column vector
from S, while preserving autonomy. Lemma 2: We can remove
an arbitrary row vector from S, while preserving productivity.
Lemma 3: If a species exists such that it is not the solitary
reactant for all reactions in S, we can remove the row vector
corresponding to the species while preserving productivity
and autonomy.

With the above definitions and lemmas, we now prove
Theorem 3. Consider an autocatalytic core S of size NX × NR

with rank λ. If we assume dim Ker[S] �= 0, we can remove a
column vector, while preserving Im[S], that is, preserving pro-
ductivity. This contradicts the condition that an autocatalytic
core S is minimal. Thus, dim Ker[S] must be zero and there-
fore we have λ = NR. Furthermore, for every species, some
reactions exist such that the species is the solitary reactant of
the reactions. Otherwise, because of Lemma 3, we can remove
a row vector and this contradicts the condition again that an
autocatalytic core S is minimal. Thus, we get NX � NR. Since
λ � NX ,NR, it follows that λ = NX = NR. This means that
S is regular.

APPENDIX B

In this Appendix, by employing the second law of thermo-
dynamics, we derive the effective slow dynamics, Eqs. (19),
and the expression of the total entropy function in the slow
timescale, Eq. (25).

Since we have assumed JE (t ), J�(t ), JD � J (t ), we can
ignore the reaction flux J (t ) in Eqs. (3) and (4) for the fast
timescale. Then, we get the effective fast dynamics as

dE

dt
= JE (t ),

d�

dt
= J�(t ),

dNm

dt
= Jm

D (t ),

dẼ

dt
= −JE (t ),

d�̃

dt
= −J�(t ),

dÑm

dt
= −Jm

D (t ). (B1)
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The formal solution of Eqs. (B1) with the initial condition
(E0,�0, N0, Ẽ0, �̃0, Ñ0) can be represented as

E (t ) = E0 + �E (t ), �(t ) = �0 + ��(t ),

Nm(t ) = Nm
0 + �m

N (t ), Ẽ (t ) = Ẽ0 − �E (t ),

�̃(t ) = �̃0 − ��(t ), Ñm(t ) = Ñm
0 − �m

N (t ), (B2)

where (�E (t ),��(t ),�N (t )) are the integrals of the flux
functions (JE (t ), J�(t ), JD(t )) with the initial condition
JE (0) = J�(0) = JD(0) = 0. Note that the number of the con-
fined chemicals, X (t ), is a constant in this dynamics.

By substituting this solution into Eq. (1), we have the time
evolution of the total entropy as

�tot (�E ,��,�N ) = �[E0 + �E ,�0 + ��, N0 + �N , X ]

+ �̃T̃ ,�̃,μ̃[Ẽ0 − �E , �̃0−��, Ñ0−�N ]

= �[E0 + �E ,�0 + ��, N0 + �N , X ]

− 1

T̃
�E − �̃

T̃
�� + μ̃m

T̃
�m

N + const,

(B3)

where we use the properties of the reservoir; i.e.,
�E (t ) � Ẽ0, ��(t ) � �̃0, �N (t ) � Ñ0, and the Taylor
expansion for �̃T̃ ,�̃,μ̃; we also use the thermodynamic
relations: ∂�̃T̃ ,�̃,μ̃/∂Ẽ = 1/T̃ , ∂�̃T̃ ,�̃,μ̃/∂�̃ = �̃/T̃ and
∂�̃T̃ ,�̃,μ̃/∂Ñm = −μ̃m/T̃ . In addition, we abbreviate the con-
stant term �̃T̃ ,�̃,μ̃[Ẽ0, �̃0, Ñ0] to const. According to the
second law, the system must climb up the landscape defined
by the concave function �tot (�E ,��,�N ) in the time evolu-
tion, and finally converge to its maximum, which is called the
equilibrium state. Hence, we get

(�E ,��,�N ) → ((�E )QEQ, (��)QEQ, (�N )QEQ)

= arg max
�E ,��,�N

�tot (�E ,��,�N ), (B4)

where (·)QEQ represents the value at the equilibrium state of
the fast dynamics. However, we call this the quasiequilibrium
state because we later consider the slow dynamics. By using
the argument shift E = E0 + �E , � = �0 + ��, N = N0 +
�N and taking Eq. (B3) into account, we get the extensive
variables at the quasiequilibrium state as

(EQEQ,�QEQ, NQEQ)

= arg max
E ,�,N

{
�[E ,�, N, X ] − 1

T̃
E − �̃

T̃
� + μ̃m

T̃
Nm

}
.

(B5)

The above characterization of the quasiequilibrium state by
the variational form, Eq. (B5), can be rearranged by introduc-
ing thermodynamic potentials as follows. First, we define the
Helmholtz free energy as

F [T̃ ; �, N, X ] := min
E

{E − T̃ �[E ,�, N, X ]}. (B6)

Second, by using the Helmholtz free energy, we introduce the
partial grand potential:

�[T̃ , μ̃; �, X ] := min
N

{F [T̃ ; �, N, X ] − μ̃mNm}. (B7)

With the above two thermodynamic potentials, we can refor-
mulate the variational form, Eq. (B5), as

�QEQ(X ) = arg min
�

{�[T̃ , μ̃; �, X ] + �̃�}. (B8)

The other two values, EQEQ and NQEQ, can be computed as
follows. Since the equality

�[T̃ , μ̃; �QEQ, X ] = −T̃ �[EQEQ,�QEQ, NQEQ, X ]

+EQEQ − μ̃mNm
QEQ (B9)

holds, the partial differentiations of �[T̃ , μ̃; �QEQ, X ] with
respect to T̃ and μ̃ lead to

�QEQ(X ) = −∂�[T̃ , μ̃; �QEQ, X ]

∂T̃
,

Nm
QEQ(X ) = −∂�[T̃ , μ̃; �QEQ, X ]

∂μ̃m
. (B10)

Here, we used the fact that the implicit differentiations of
Eq. (B9) with respect to EQEQ and NQEQ vanish, due to the crit-
ical equations for the variational forms, Eqs. (B6) and (B7).
Note that we did not perform the implicit differentiation with
respect to �QEQ, despite it being a function of (T̃ , μ̃, �̃; X ).
Also we denote �QEQ(X ) = �[EQEQ,�QEQ, NQEQ, X ]. Fi-
nally, by substituting Eqs. (B10) into Eq. (B9), we obtain

EQEQ(X ) = �[T̃ , μ̃; �QEQ, X ] − T̃
∂�[T̃ , μ̃; �QEQ, X ]

∂T̃

−μ̃m
∂�[T̃ , μ̃; �QEQ, X ]

∂μ̃m
. (B11)

By employing the above results in the fast dynamics, we
derive the effective slow dynamics, which is the reaction dy-
namics. The time evolutions of the internal energy E (t ), the
volume �(t ), and the number of the open chemicals N (t ) for
the reaction dynamics are already solved, by using the time
evolution of the confined chemicals X (t ) and Eqs. (B10) and
(B11), as

E (t ) = EQEQ(X ),�(t ) = �QEQ(X ), N (t ) = NQEQ(X ).
(B12)

Substituting these evolutions into Eqs. (3) and taking Eqs. (4)
into account, we obtain the effective slow dynamics as

dX i

dt
= Si

rJr (t ),
dẼ

dt
= −dEQEQ(X )

dt
,

d�̃

dt
= −d�QEQ(X )

dt
,

dÑm

dt
= Om

r Jr (t ) − dNm
QEQ(X )

dt
,

(B13)

which is Eqs. (19) in the main text. Here, we should note
that the initial condition for the reservoir (Ẽ (0), �̃(0), Ñ (0))
in the slow timescale is determined by the fast dynamics
as follows. The slow dynamics starts with the quasiequi-
librium state with X0, which is the initial condition for
the confined chemicals. Thus, (Ẽ (0), �̃(0), Ñ (0)) must be
(ẼQEQ(X0), �̃QEQ(X0), ÑQEQ(X0)). Since (�E )QEQ = EQEQ −
E0, (��)QEQ = �QEQ − �0, and (�N )QEQ = NQEQ − N0, we
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get, from Eqs. (B2),

ẼQEQ(X0) = Ẽ0 − {EQEQ(X0) − E0}
�̃QEQ(X0) = �̃0 − {�QEQ(X0) − �0}
Ñm

QEQ(X0) = Ñm
0 − {

Nm
QEQ(X0) − Nm

0

}
. (B14)

Next, we derive the expression of the total entropy function
in the slow time scale, Eq. (25). By solving Eqs. (B13), we
have

X i(t ) = X i
0 + Si

r�
r (t ),

Ẽ (t ) = Ẽ (0) − EQEQ(X (t )),

�̃(t ) = �̃(0) − �QEQ(X (t )),

Ñm(t ) = Ñm(0) + Om
r �r (t ) − Nm

QEQ(X (t )), (B15)

where �(t ) = {�r (t )} is the integration of J (t ) with the initial
condition �(0) = 0; this is known as the extent of reaction
in chemistry. The substitution of Eqs. (B12) and (B15) into
Eq. (1) enables us to represent the total entropy as

�tot = �QEQ(X ) + �̃T̃ ,�̃,μ̃[Ẽ (0) − EQEQ(X ),

�̃(0) − �QEQ(X ), Ñ (0) + O� − NQEQ(X )]

= �QEQ(X ) − 1

T̃
EQEQ(X ) − �̃

T̃
�QEQ(X )

− μ̃m

T̃

{
Om

r �r − Nm
QEQ(X )

} + const, (B16)

where we again employ the Taylor expansion for �̃T̃ ,�̃,μ̃ and
the thermodynamic relations as in Eq. (B3). By using the
partial grand potential, Eq. (B9), we get the simple expression

�tot = − 1

T̃

{
�[T̃ , μ̃; �QEQ, X ] + �̃�QEQ + μ̃mOm

r �r
}
.

+ const. (B17)

If we use the chemical potential yEQ at the chemical equi-
librium state [see Eq. (7)], the last term in Eq. (B17) can be
rearranged as

�tot = − 1

T̃

{
�[T̃ , μ̃; �QEQ, X ] + �̃�QEQ − yEQ

i Si
r�

r
}

+ const. (B18)

Since we have Si
r�

r = X i − X i
0 from the first equation in

Eqs. (B15), the total entropy in the slow timescale can be
represented by the function of the number of the confined
chemicals X :

�tot (X ) = − 1

T̃

{
�[T̃ , μ̃; �QEQ, X ] + �̃�QEQ(X )

− yEQ
i X i

} + const, (B19)

which is Eq. (25) in the main text. Here, yEQ is calculated as

yEQ
i = −μ̃mOm

r (S−1)r
i . (B20)

Note that, for deriving Eq. (B18), we used the existence of the
equilibrium state yEQ, which is the solution to the simultane-
ous equations, Eq. (7) [57].

APPENDIX C

In this Appendix, we show that the volume �(X ) uniquely
exists for a given X . First, we show the existence of �(X ).
In ordinary thermodynamics, it is known that the system
always relaxes to an equilibrium state in the isothermal, iso-
baric and isochemical-potential situation without chemical
reactions, which is the fast timescale dynamics in this paper.
This physical fact is mathematically rephrased by the fact
that the variational form, Eq. (21), has a minimum for any
pressure �̃ > 0; equivalently, Eq. (29) also has a minimum.
It implies that we have employed the following assump-
tion: the range of the derivative function with respect to �,
∂�(T̃ , μ̃; �, X )/∂�, is R<0 for any T̃ , μ̃, and X .

Next, we prove the uniqueness of �(X ). The critical equa-
tion for the variational form, Eq. (29),

�(X ) = arg min
�

{
�ϕ

(
X

�

)
+ �̃�

}
, (C1)

can be computed as

h(�) := ϕ

(
X

�

)
− X i

�
∂iϕ

(
X

�

)
+ �̃ = 0. (C2)

Here, ∂iϕ(X/�) = ∂ϕ(x)/∂xi|x=X/� and we have defined the
function h(�). The differentiation of h(�) is given as

dh

d�
= �−3X i

[
∂i∂ jϕ

(
X

�

)]
X j . (C3)

Since ϕ is strictly convex, its Hessian ∂i∂ jϕ is positive defi-
nite. Thus, the function h(�) is a strictly increasing function
for � > 0. Accordingly, the critical equation, Eq. (C2), has
a unique solution for �. Therefore, the volume �(X ) is
uniquely determined by a given X .

APPENDIX D

In this Appendix, we prove that the intersection

RY (�̃, μ̃) = IY (�̃, μ̃) ∩ ZY (μ̃) (D1)

exists if and only if �̃ < ϕ∗(yEQ). Here, the isobaric manifold
IY (�̃, μ̃) as given in Eq. (38) and the region ZY (μ̃) as given
in Eq. (47) are

IY (�̃, μ̃) = {y|ϕ∗(y) − �̃ = 0} (D2)

and

ZY (μ̃) = {y|ϕ∗(yEQ) − ϕ∗(y) − DY [yEQ||y] > 0}. (D3)

If �̃ � ϕ∗(yEQ) holds, then ϕ∗(yEQ) − �̃ − DY [yEQ||y] �
0 because of the Bregman divergence DY [yEQ||y] � 0 for any
y. Thus, the intersection RY (�̃, μ̃) is empty.

If �̃ < ϕ∗(yEQ), then the intersection RY (�̃, μ̃) is not
empty by the following argument. First, we note that the level
hypersurface IY (�̃, μ̃) = {y|ϕ∗(y) = �̃} divides the space
Y into two regions: one is the sublevel set {y|ϕ∗(y) < �̃}
and the other is the superlevel set {y|ϕ∗(y) > �̃}. Because
of the convexity of ϕ∗(y), the sublevel set is convex. By
the assumption ϕ∗(yEQ) > �̃, the point yEQ lies in the su-
perlevel set (see Fig. 9). Next, by using the definition of
the Bregman divergence, Eq. (40), the intersection can be
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y|ϕ∗(y) < Π̃

y|ϕ∗(y) > Π̃

FIG. 9. Illustration of the proof for the existence of RY (�̃, μ̃)
for �̃ < ϕ∗(yEQ). The solid curve represents the level hypersurface
{y|ϕ∗(y) = �̃}, which divides the space Y into the convex sublevel
set (lower left) and the superlevel set (upper right). The blue star
denotes yEQ, which is located in the superlevel set. The red vectors
are the normal vectors ∂ϕ∗(y) of the level hypersurface. The black
vectors are (yEQ − y). The dashed curve expresses the sphere cen-
tered at yEQ. By choosing y to be the tangent point between the sphere
and the level hypersurface, the inner product between ∂ϕ∗(y) and
(yEQ − y) is positive. Furthermore, from a similar consideration, the
inner product must be positive for any point y between yB1 and yB2 .
This region corresponds to RY (�̃, μ̃).

rewritten as

IY (�̃, μ̃) ∩ ZY (μ̃)

= {
y|∂ iϕ∗(y)

(
yEQ

i − yi
)

> 0, ϕ∗(y) = �̃
}
. (D4)

The vector ∂ϕ∗(y) represents a gradient of the convex function
ϕ∗(y), which is a normal vector at y of the level hypersurface.
Note that the orientation of the normal vector points to the
superlevel set (see Fig. 9). Also, (yEQ − y) is a vector from
a point y on the level hypersurface to the point yEQ. Thus, we
can choose y in IY (�̃, μ̃) such that the inner product between
∂ϕ∗(y) and (yEQ − y) is positive: Consider the intersection
point between the sphere centered at yEQ which is tangent
to the level hypersurface. This point makes the inner product
positive, see Fig. 9. This represents RY (�̃, μ̃) �= ∅.

APPENDIX E

In this Appendix, we comment on the first law of thermo-
dynamics. The internal energy gain should be represented by
the heat dissipation Q̇ and the work done by the system Ẇ ,

dEQEQ

dt
= d�

dt
− T̃

d

dt

∂�

∂T̃
− μ̃m

d

dt

∂�

∂μ̃m
= −Q̇ − Ẇ , (E1)

where we use Eq. (B11) in Appendix B and the dot represents
the time derivative. Furthermore, for the growing CRSs, the

work is composed of the following two kinds:

Ẇ = Ẇ mech + Ẇ chem, (E2)

where Ẇ mech denotes the mechanical work with which the
system pushes out the reservoir, due to the growth of the
CRSs, and Ẇ chem is the work done by the system through
the injection of chemicals into the reservoir, which is known
as the chemical work. These two quantities are given by

Ẇ mech := �̃�̇QEQ,

Ẇ chem := μ̃m
dÑm

dt
= μ̃mOm

r Jr − μ̃m

dNm
QEQ

dt
, (E3)

where dÑ/dt represents the number of the injected chemicals
into the reservoir per unit time and we use Eqs. (B13). From
Eqs. (E1) and (E3), we can evaluate the heat dissipation as

Q̇ = −dEQEQ

dt
− �̃�̇QEQ − μ̃mOm

r Jr + μ̃m

dNm
QEQ

dt
. (E4)

If we employ the time derivative of the total entropy,
Eq. (B16),

T̃ �̇tot = T̃
d�QEQ

dt
− dEQEQ

dt
− �̃�̇QEQ

− μ̃mOm
r Jr + μ̃m

dNm
QEQ

dt
, (E5)

we obtain another expression of the heat dissipation:

Q̇ = T̃ �̇tot − T̃
d�QEQ

dt
= T̃ �̇tot + T̃

d

dt

∂�

∂T̃
, (E6)

where we use Eqs. (B10). This expression implies the
Clausius inequality: −Q̇/T̃ � d�QEQ/dt , because the total
entropy production rate �̇tot is nonnegative. From this expres-
sion, we also get another expression of the work as

Ẇ = −dEQEQ

dt
− Q̇ = −T̃ �̇tot − d�

dt
+ μ̃m

d

dt

∂�

∂μ̃m
, (E7)

where we use Eq. (E1).

APPENDIX F

In this Appendix, we evaluate the heat dissipation and the
work done by the system in the steady growing state.

From Eqs. (E6) and (E7) in Appendix E and the homogene-
ity of the partial grand potential �[T̃ , μ̃; �, X ], we have

Q̇ = T̃ �̇tot + T̃
d

dt

(
�(t )

∂ϕ(x)

∂T̃

)
,

Ẇ = −T̃ �̇tot − d�(t )ϕ(x)

dt
+ μ̃m

d

dt

(
�(t )

∂ϕ(x)

∂μ̃m

)
, (F1)

where we omit the subscript (·)QEQ for notatinal simplicity as
in Sec. IV. Also, ϕ(x) := ϕ[T̃ , μ̃; x] denotes the partial grand
potential density. By employing Eq. (41), from which Eq. (56)
follows, the work can be rearranged as

Ẇ = −yEQ
i

d

dt
(�(t )xi ) + �̃�̇ + μ̃m

d

dt

(
�(t )

∂ϕ(x)

∂μ̃m

)
. (F2)
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Since the second term corresponds to the mechanical work
[see Eqs. (E3)], the chemical work can be represented as

Ẇ chem = −yEQ
i

d

dt
(�(t )xi ) + μ̃m

d

dt

(
�(t )

∂ϕ(x)

∂μ̃m

)
. (F3)

For the steady growing state xSG, the above equations are
further simplified as follows. Since ϕ(xSG) is constant with
time, we obtain the heat and the work at xSG as

Q̇SG = T̃ �̇tot
SG + �̇T̃

∂ϕ(xSG)

∂T̃
,

ẆSG = −T̃ �̇tot
SG − �̇ϕ(xSG) + �̇μ̃m

∂ϕ(xSG)

∂μ̃m
. (F4)

Also, Eqs. (F2) and (F3) lead to

ẆSG = �̇

[
−yEQ

i xi
SG + �̃ + μ̃m

∂ϕ(xSG)

∂μ̃m

]
,

Ẇ chem
SG = �̇

[
−yEQ

i xi
SG + μ̃m

∂ϕ(xSG)

∂μ̃m

]
. (F5)

If we can experimentally observe the growth rate �̇ and the
density profile of the confined chemicals xSG at the steady

growing state, we can evaluate the heat and the work by
Eqs. (F4) and (F5).

APPENDIX G

In the slow dynamics, the system is always in the
quasiequilibrium state, and therefore the number of open
chemicals N (X ) can be evaluated in Eqs. (22) as

Nm(X ) = −∂�[T̃ , μ̃; �(X ), X ]

∂μ̃m
. (G1)

Dividing both sides of this equation by �(X ) yields

nm(X ) = Nm(X )

�(X )
= ∂ϕ[T̃ , μ̃; X/�(X )]

∂μ̃m

= e{μ̃m−μo
m (T̃ )}/RT̃ = ñm, (G2)

where we use the homogeneity of the partial grand potential
�[T̃ , μ̃; �, X ].
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