
PHYSICAL REVIEW RESEARCH 4, 033186 (2022)

Fractons, non-Riemannian geometry, and double field theory
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We initiate a systematic study of fracton physics within the geometric framework of double field theory. We
ascribe the immobility and large degeneracy of the former to the non-Riemannian backgrounds of the latter,
in terms of generalized geodesics and infinite-dimensional isometries. A doubled pure Yang-Mills or Maxwell
theory reduces to an ordinary one coupled to a strain tensor of elasticity theory and thus rather remarkably
provides a unifying description of photons and phonons. Upon a general double field theory background, which
consists of Riemannian and non-Riemannian subspaces, the dual photon-phonon pair becomes fractonic over
the non-Riemannian subspace. When the elasticity displacement vector condenses, minimally coupled charged
particles acquire an effective mass even in the purely Riemannian case, yielding predictions for polaron physics
and time crystals. Furthermore, the immobility of neutral particles along the non-Riemannian directions is lifted
to a saturation velocity for charged particles. Utilizing the differential geometry of double field theory, we also
present curved spacetime extensions which exhibit general covariance.
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I. INTRODUCTION

Fractons are novel quasiparticles with properties that chal-
lenge the conventional understanding of topological phases
of matter [1–4]. In modern condensed matter physics, it is
generically expected that any lattice model with local inter-
actions admits a well-defined continuum field theory limit in
the far-infrared regime. However, fractons defy this doctrine
and appear to require ingenious or exotic field theories with
some manner of UV-IR mixing [5–12]. Fractons have further
characteristic properties such as immobility, infinite ground-
state degeneracy in the continuum limit, and higher-moment
conservation laws. We refer readers to Refs. [13,14] for re-
views and Refs. [15–48] for further significant developments.

Recent advances have shown further that the immobility
can be explained in terms of certain subsystem symmetries
or conserved higher multipole moments. As symmetry has
been a successful guiding principle in modern physics, the
characteristics of fracton physics can be grasped through the
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underlying (though rather exotic) symmetry laws. For ex-
ample, a charged particle with both monopole and dipole
conservation in specific directions explains the immobility of
the monopole in the corresponding subspace.

Parallel to the endeavors to find continuum field theory lim-
its of all known fracton lattice models, it may be worthwhile
to have a formalism which allows us to construct systemati-
cally and geometrically new types of quantum field theories
featuring fractons.

In this paper, we launch a systematic top-down approach
to fracton physics by employing the geometric framework
of double field theory (DFT), assuming the O(D, D) sym-
metry therein as the first principle. Historically, O(d, d;Z)
was an “emerging” discrete symmetry for string theory com-
pactified on a torus background T d [49]. However, from the
modern DFT point of view, string theory itself “knows” the
O(D, D) = O(D, D;R) symmetry regardless of the chosen
background, with D now denoting the full spacetime dimen-
sion. The theory is ab initio “covariant” (rather than invariant)
under O(D, D) symmetry rotations. Only a specific individual
background breaks it spontaneously, either fully or partially,
such as O(D, D;R) → O(d, d;Z) upon the aforementioned
toroidal compactification.

We shall demonstrate in this paper that fracton physics
may arise from such fully O(D, D)-symmetric theories when
the background is non-Riemannian, meaning that an invert-
ible metric gμν is not defined even locally. Analogous to
general relativity (GR), which describes physics on Rieman-
nian geometries, the (stringy) gravitational theory for more

2643-1564/2022/4(3)/033186(14) 033186-1 Published by the American Physical Society

https://orcid.org/0000-0001-8849-9552
https://orcid.org/0000-0003-4815-2698
https://orcid.org/0000-0002-8309-7850
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.033186&domain=pdf&date_stamp=2022-09-06
https://doi.org/10.1103/PhysRevResearch.4.033186
https://creativecommons.org/licenses/by/4.0/


ANGUS, KIM, AND PARK PHYSICAL REVIEW RESEARCH 4, 033186 (2022)

general geometries, including both Riemannian and non-
Riemannian ones, is DFT. By embedding fracton physics into
DFT, it becomes readily possible to further address fermionic
extensions, supersymmetrizations, and curved spacetime gen-
eralizations, while likely maintaining consistency with string
theory or quantum gravity.

DFT was originally conceived [50–55] to make manifest
the hidden symmetry of D-dimensional supergravity underly-
ing the so-called “Buscher rule” [56,57]. In order to do so,
the theory demands that the coordinates be formally doubled,
xA = (x̃μ, xν ), ∂A = (∂̃μ, ∂ν ), and redefines the notion of gen-
eral covariance: Under infinitesimal doubled diffeomorphisms
δxA = ξA(x), a covariant tensor density of weight w trans-
forms through a generalized Lie derivative,

L̂ξ TA1···An = ξB∂BTA1···An + w∂BξB TA1···An

+
n∑

j=1

(
∂Aj ξ

B − ∂BξAj

)
TA1···B···An . (1)

Here, A, B = 1, 2, . . . , D + D are O(D, D) indices which are
raised and lowered by an O(D, D) invariant metric,

JAB =
(

0 1
1 0

)
. (2)

Closure of (1) requires imposing the so-called “section condi-
tion,”

∂A∂A = 0, (3)

which enforces that the contraction between any pair of
derivatives should be trivial. Decomposing this as ∂A∂A =
∂μ∂̃μ + ∂̃μ∂μ, the condition is conveniently solved by switch-
ing off any tilde-coordinate dependence, ∂̃μ = 0. In this way,
the theory is not truly doubled: Rather, it packages various
component fields into a unifying O(D, D) multiplet.

In DFT the “dilaton” d and the “generalized metric” HAB

are the two fundamental variables that constitute the gravita-
tional sector, in analogy with the Riemannian metric gμν in
GR. While the former exponentiates to a unit-weight scalar
density e−2d , the latter satisfies its own defining properties,

HAB = HBA, HA
CHB

DJCD = JAB. (4)

This implies that det HAB = ±1; hence the generalized met-
ric alone cannot produce any integral measure like

√
g in

GR. Instead, combined with the O(D, D) invariant metric,
it generates a pair of mutually orthogonal projectors, PAB =
1
2 (J + H)AB and P̄AB = 1

2 (J − H)AB, satisfying

PA
BPB

C = PA
C, P̄A

BP̄B
C = P̄A

C, PA
BP̄B

C = 0.

Parallel to general relativity (GR), DFT has its own Christoffel
symbols �ABC , scalar, Ricci, and Einstein curvatures, etc., all
arising from {d,HAB} [58,59]. Moreover, when coupled to ex-
tra “matter” O(D, D) symmetrically, DFT satisfies “Einstein
equations” [60],

GAB = TAB, (5)

which unifies the equations of motion of d and HAB. The
left-hand side and right-hand side satisfy a Bianchi iden-
tity and on-shell conservation, respectively: ∇AGAB = 0 =
∇AT AB, with ∇A = ∂A + �A. The extra matter can be quite

generic [61–69], such as point particles [70,71], strings
[72,73], and the standard model [74].

In the early days of the development of DFT, the general-
ized metric was simply assumed to be of the form

HAB =
(
Hμν Hμ

λ

Hκ
ν Hκλ

)
=

(
gμν −gμρBρλ

Bκρgρν gκλ − Bκρgρσ Bσλ

)
.

(6)
In this case, the D-dimensional diagonal blocks roughly
correspond to the inverse metric gμν and metric gμν , with
additional components generated by a skew-symmetric ten-
sor “B field,” Bμν . Together with the decomposition of the
DFT volume element as e−2d = e−2φ

√−g, the resulting fields
{gμν, Bμν, φ} constitute the gravitational multiplet in the su-
pergravity theory which arises as the low-energy effective
description of the massless modes of the closed string prop-
agating in Minkowskian spacetime.

However, this is not the most general parametrization of the
generalized metric that satisfies the two defining conditions
(4). Surprisingly, it turns out that DFT describes not only the
Riemannian geometries given in (6) but also non-Riemannian
ones where an invertible Riemannian metric cannot be defined
even locally [72]. Namely, with respect to the section choice
∂̃μ = 0, the upper-indexed D × D block matrix Hμν can be
degenerate. From the most general solutions to the condi-
tions (4), all possible DFT geometries have been classified
by two non-negative integers (n, n̄), with dim(kerHμν ) =
n + n̄ [75]. Only those of type (0,0) are Riemannian, while
others are intrinsically non-Riemannian. In particular, the
maximally non-Riemannian cases of (D, 0) or (0, D) corre-
spond to HAB = ±JAB, and thus they are the two perfectly
symmetric vacua of DFT, preserving the entire O(D, D) sym-
metry with no moduli [76]. Intriguingly then, the Riemannian
spacetime (6) may arise after the spontaneous breaking of
O(D, D) symmetry, which identifies gμν and Bμν as the mass-
less Nambu-Goldstone bosons [77]. Some intermediate types
of non-Riemannian geometries, such as (1,1), (D−1, 0), etc.
[75,77–79], have also been identified as nonrelativistic or
ultrarelativistic gravities and/or strings [80–86].

Splitting the coordinates into three parts,

xμ = ( xa, yi, ȳı̄ ), ∂μ = ( ∂a, ∂i, ∂̄ı̄ ), (7)

where 1 � a � D−n−n̄, 1 � i � n, 1 � ı̄ � n̄, a flat (n, n̄)
background is given by constant d and, with a subdimensional
(Minkowskian) metric ηab [87],

Hμν= ηabδμ
a δν

b , Hμν= δa
μδb

νηab, Hμ
ν= δi

μδν
i − δ ı̄

μδν
ı̄ ,

(8)
while Hμ

ν= Hν
μ and �ABC = 0; hence ∇A = ∂A. Here, “flat”

means simply being constant: Unlike GR, it appears that
there is no four-indexed “Riemann curvature” in DFT [58,88].
Nevertheless, any constant background of {d,HAB} solves
the vacuum Einstein equations GAB = 0; hence in contrast to
GR the constant flat geometries are not unique in DFT. The
fact that Hμν and Hμν are degenerate D × D matrices with
n + n̄ �= 0 characterizes the non-Riemannianity.

In this paper, we will further establish connections between
double field theory and fracton physics, for generic (n, n̄) �=
(0, 0). We will identify two main points of contact with known
fracton models. The first is the key idea that mobility re-
strictions arise naturally from non-Riemannian geometry à la
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(generalized) geodesics, with infinite-dimensional isometries
playing the role of higher-multipole conservation laws, as
will be explained in detail in the next section. In addition,
we reveal that the DFT generalization of Yang-Mills theory,
to be discussed in Sec. IV, secretly contains an elasticity
theory. Theories of elasticity are known to be related to fracton
models via a duality transformation [26]. Since the elasticity
theory is present even for purely Riemannian geometries, this
represents a second, independent link to fractons.

The remainder of this paper is organized as follows. In
Sec. II, we present three key motivators for our proposal of
studying fractons via DFT. In Sec. III, as elementary warm-up
exercises, we consider a particle action and scalar field theory
on the non-Riemannian (n, n̄) constant background and verify
their fractonic behaviors. We then turn to our main example,
doubled pure Yang-Mills theory, in Sec. IV. We show that
it reduces to ordinary Yang-Mills theory coupled to an elas-
ticity theory of a non-Abelian strain tensor, and we spell out
its infinite-dimensional Noether symmetries originating from
the non-Riemannian isometries. We subsequently couple its
Abelian version, i.e., doubled Maxwell theory, to charged par-
ticles in Sec. V and study the resulting dynamics. In particular,
we observe that the elasticity displacement vector, once con-
densed, changes the effective mass of the particle. In Sec. VI
we extend our results to curved (n, n̄) backgrounds through
the DFT formalism. We conclude with comments including
a connection to polarons in Sec. VII, and we display some
technical formulas in the Appendix.

While our primary goal was to explore the fractonic nature
of field theories on non-Riemannian DFT backgrounds, dur-
ing the investigation of the doubled pure Yang-Mills theory,
as well as Maxwell theory and its coupling to point par-
ticles, we uncovered some remarkable properties genuinely
valid even for Riemannian backgrounds, or on Riemannian
subspaces. One is that the doubled pure Yang-Mills theory
(30) reduces to an ordinary (undoubled) Yang-Mills theory
coupled to a (non-Abelian) strain tensor theory (41), such
that its Abelian version provides a unifying description of
photons and phonons. Furthermore, when minimally coupled
to a point particle (53), the particle will acquire an effective
mass through the condensation of the displacement vector of
phonons (60), suggesting a potential application to polaron
physics.

II. THREE KEY MOTIVATORS

The three key motivators for our proposal of studying
fractons via DFT are (a) geodesic immobility, (b) infinite-
dimensional isometries, and (c) induced Noether currents. All
of these assume non-Riemannian constant backgrounds (8).

A. Geodesic immobility

The geometric meaning of the section condition (3)
advocated in Ref. [89] is that half of the doubled co-
ordinates, e.g., x̃μ, are actually gauged as DxA = (dx̃μ −
aμ, dxν ). This enables us to define an O(D, D)-symmetric,
doubled-diffeomorphism-invariant, proper length [90] and

consequently a particle action [70,71],

Sparticle =
∫

dτ
1

2
e−1Dτ xADτ xBHAB − 1

2
em2, (9)

where e (einbein) and aμ in Dτ xA are auxiliary variables.
After Gaussian integration of the aa’s along the Riemannian
directions, the above doubled particle action reduces upon the
constant (n, n̄) background (8) to an undoubled one [75] (cf.
Ref. [22]),

S(n,n̄)
particle =

∫
dτ

1

2
e−1ẋaẋa − 1

2
em2 + �iẏ

i + �̄ı̄ ˙̄yı̄ . (10)

Here, �i and �̄ı̄ originate from the field redefinitions of the
gauge components ai and aı̄ , respectively, and crucially play
the role of Lagrange multipliers, enforcing immobility along
the non-Riemannian directions,

ẏi = 0, ẏı̄ = 0. (11)

Similarly, on a string worldsheet [72,73], yi and ȳı̄ become
chiral and antichiral, respectively [75].

B. Infinite-dimensional isometries

Our second observation is that the isometry of the (n, n̄) �=
(0, 0) non-Riemannian constant background (8) is infinite
dimensional [87]: The most general solution to the twofold
Killing equations,

L̂ξHAB = 0, L̂ξ e−2d = 0, (12)

is, with ξA = (λμ, ξν ),

ξ a = wa
bxb + ζ a(y) + ζ̄ a(ȳ), λa = ζa(y) − ζ̄a(ȳ),

ξ i = ωn̄yi + ζ i(y), λi = ρi(y),

ξ̄ ı̄ = −ωnȳı̄ + ζ̄ ı̄ (ȳ), λ̄ı̄ = ρ̄ı̄ (ȳ). (13)

Here, wab (Lorentz symmetry, wab = −wba) and ω are con-
stants. All other parameters are arbitrary functions of the
non-Riemannian coordinates yi or ȳı̄ , as displayed in (13).
Furthermore, ζ i(y) and ζ̄ ı̄ (ȳ) should be divergenceless,

∂iζ
i(y) = 0, ∂̄ı̄ ζ̄

ı̄ (ȳ) = 0, (14)

which ensures that ∂μξμ = 0, a requirement following from
the Killing equation of the dilaton d (12).

C. Induced Noether currents

The third point of interest relates to the energy-momentum
tensor in DFT [60],

T AB = −e2d

[
8P[A

CP̄B]
D

δSmatter

δHCD
+ 1

2
J AB δSmatter

δd

]
. (15)

By construction, for arbitrary ξA, it satisfies the off-shell rela-
tion

∂A(e−2d T A
BξB) = e−2dξB∇AT A

B + 1

2D
T A

AL̂ξ e−2d

− 1

2
e−2d (PT P̄)ABL̂ξHAB. (16)
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Thus, for the constant background (8) with the Killing vector
(13), we acquire an on-shell conserved current,

Jμ = T μ
AξA = T μ

νξ
ν + T μνλν, ∂μJμ = 0, (17)

where we have decomposed T μ
A = (T μν, T μ

ν ). Note that
there is no special relation between the independent energy-
momentum tensor components T μν and T μ

ρ : In particular,
T μν �= T μ

ρgρν , not to mention the absence of an invertible
metric gμν in non-Riemannian geometry. Explicitly, as a col-
lection of independent currents,

Jμ = (T μ
a+ηabT μb)ζ a(y) + (T μ

a−ηabT μb)ζ̄ a(ȳ)

+ω(n̄T μ
iy

i−nT μ
ı̄ ȳ

ı̄ ) + T μ
iζ

i(y) + T μ
ı̄ ζ̄

ı̄ (ȳ)

+ T μiρi(y) + T μı̄ ρ̄ı̄ (ȳ) + T μ
aw

a
bxb. (18)

Evidently, power-series expansions of the local parame-
ters in the coordinates yi and ȳı̄ generate infinitely many
higher-multipole conservation laws. This includes dipole con-
servation laws generated by the parameter ω and other linear
terms from {ζ a(y), ζ̄ a(ȳ), ζ i(y), ζ̄ ı̄ (ȳ)}, modulo so(n) ⊕ so(n̄)
rotations. Among them, the (D − n − n̄)(n + n̄) linear terms
of ζ a(y) and ζ̄ a(ȳ) correspond to conventional dipole con-
servations in the non-Riemannian directions, arising from
isometries along the Riemannian subspace. Meanwhile,
the linear terms in ζ i(y) and ζ̄ ı̄ (ȳ) generate further non-
Riemannian dipole symmetries. In all, mobility is restricted
in the (n + n̄) non-Riemannian directions. In the special cases
where n = 1 or n̄ = 1, the divergenceless condition (14) ac-
tually enforces ζ i or ζ̄ ı̄ simply to be constant, which implies
the absence of all higher-multipole conservation laws along
the non-Riemannian directions. In particular, (1,1) allows only
dipole conservation, corresponding to the finite scale transfor-
mation

y → eωy, ȳ → e−ωȳ, (19)

where the two non-Riemannian directions are inversely re-
lated. Note that the symmetry is still “supertranslational” in
the Riemannian directions for any (n, n̄) �= (0, 0), as ζ a(y)
and ζ̄ a(ȳ) appearing in (13) are arbitrary functions.

Meanwhile, for the global translational symmetries gener-
ated by the constant terms in ξμ and λν , the conservation of the
current (17) reduces to that of the energy-momentum tensors,

∂μT μ
ν = 0, (20)

for the untilde xμ directions, and further, inequivalently,

∂μT μν = 0, (21)

for the tilde x̃μ directions. The latter can be nontrivial even
after switching off the tilde coordinates, i.e., setting ∂̃μ = 0
as our choice of section: As we shall see later, a scalar field
theory has trivial T μν (27), whereas it is nontrivial for Yang-
Mills theory (50).

The three points, motivators (a), (b), and (c), imply that
any (double field theorizable) field theory should feature the
fractonic properties of higher-multipole conservation [18,91]
and a huge degeneracy of quantum states, as there are in-
finitely many conserved quantities. Intriguingly, the (1,1)
non-Riemannian background, corresponding to the nonrela-
tivistic string [80], allows only dipole conservation along the
pair of non-Riemannian directions y, ȳ (19), which alludes to

UV-IR mixing of these two directions. This property is com-
parable to known fracton field theory models [6,7,15,16]. We
stress that all of these are direct consequences of the under-
lying constant non-Riemannian background. In the following
we verify these properties explicitly for several examples,
such as particles, scalar fields, doubled Yang-Mills theory, and
a strain-Maxwell theory minimally coupled to charged parti-
cles. The advantage of embedding fracton physics into DFT
is that generalizations to curved geometries, supersymmetry
à la Ref. [62], and consistent string backgrounds are readily
available, by setting D = 10 or 26 and n = n̄ [92].

III. PARTICLE AND SCALAR FIELD

The doubled energy-momentum tensor of the point parti-
cle (10) was obtained in Ref. [60] from the variation of the
covariant particle action (9) following the prescription (15),

T μν = 0, T μ
ν (x) =

∫
dτ ẋμ(τ )pνδ

D(x − x(τ )), (22)

where the delta function is defined for the untilde coordi-
nates xμ − xμ(τ ) and pμ = (e−1ẋa,�i, �̄ı̄ ) is the conjugate
momentum of xμ, of which all components are constant on
shell. Thus conservation indeed holds,

∂μT μ
ν = −

∫
dτ pν

d

dτ
δD(x − x(τ )) = 0. (23)

Furthermore, from the on-shell relations

T a
cη

cb = T b
cη

ca, T i
ν = 0 = T ı̄

ν, (24)

the conservation of the current (18) readily follows. The cor-
responding Noether symmetries of the reduced particle action
(10) inherited from the doubled particle action (9) read, with
(13),

δxa = ξ a, δyi = ξ i, δȳı̄ = ξ̄ ı̄, δe = 0,

δ�i = −eẋa∂iζa(y) − ωn̄�i − � j∂iζ
j (y),

δ�̄ı̄ = −eẋa∂̄ı̄ ζ̄a(ȳ) + ωn�̄ı̄ − �̄j̄ ∂̄ı̄ ζ̄
j̄ (ȳ). (25)

As a target-spacetime counterpart to the particle action, we
turn to a scalar field theory with Lagrangian (density) e−2d L�

(cf. Refs. [6,7]),

L� = − 1
2H

AB∂A�∂B� − V (�) = − 1
2ηab∂a�∂b� − V (�).

(26)
The doubled energy-momentum tensor is, from Ref. [60],

T μν = 0, T μ
ν = δμ

a ∂a�∂ν� + δμ
ν L�, (27)

which is conserved on shell as

∂μT μ
ν = [∂a∂

a�−V ′(�)]∂ν� = 0. (28)

The infinite-dimensional Noether symmetries for the Killing
vector (13) are given simply by δ� = ξμ∂μ�. In partic-
ular, when the scalar theory is free with a Lagrangian
L� = 1

2�(ηab∂a∂b� − m2�) which vanishes on shell, its
energy-momentum tensor also satisfies (24). Thus the usual
agreement between a spinless particle and a scalar field
generalizes to generic (n, n̄) constant non-Riemannian back-
grounds. It is also worthwhile to note that massless scalar
fields propagate through subdimensional Riemannian space-
time only: ∂a∂

a� = 0.
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IV. DOUBLED YANG-MILLS THEORY

Our next example is a doubled generalization of Yang-
Mills theory. This turns out to be a rich theory in its own right
(even for purely Riemannian geometries): In the Abelian case,
it reduces to a theory of photons and phonons and thus may
itself be applicable to systems of lattice vibrations interacting
with light. Moreover, this suggests a second pathway linking
DFT to fracton physics: Established fracton models such as
symmetric tensor gauge theories are known to be dual to
phonon systems via fracton-elasticity duality [26].

For a doubled vector potential VA, the fully covariant field
strength (PF P̄)AB = PA

CP̄B
DFCD is projected from the “semi-

covariant” one [58,93],

FAB = ∇AVB − ∇BVA − i[VA,VB]. (29)

The doubled pure Yang-Mills Lagrangian e−2d LYM then takes
the form [64]

LYM = Tr[PACP̄BDFABFCD]. (30)

With DA = ∇A − i[VA, · ], the equations of motion are [59]

DA(PF P̄)[AB] = 1
2DA[(PF P̄)AB + (P̄FP)AB] = 0, (31)

while the energy-momentum tensor is [60]

TAB = −4P[A
CP̄B]

DTr[(FHF )CD + DE (FCDVE )]

+JABLYM. (32)

We now compute the Lagrangian explicitly on the constant
(n, n̄) non-Riemannian background (8), which we denote us-
ing {Hμν, Kμν, Zμ

ν} as

Hμν = ηabδμ
a δν

b = Hμν,

Kμν = δa
μδb

νηab = Hμν,

Zμ
ν = δ j

μδν
j − δj̄

μδν
j̄ = Hμ

ν. (33)

Parametrizing the doubled vector as

VA = (ϕμ, Aν ), (34)

the projectors and the semicovariant Yang-Mills field strength
(29) read

PA
B = 1

2
(δA

B+HA
B) = 1

2

(
δμ

ν + Zν
μ Hμσ

Kρν δρ
σ + Zρ

σ

)
,

P̄A
B = 1

2
(δA

B−HA
B) = 1

2

(
δμ

ν − Zν
μ −Hμσ

−Kρν δρ
σ − Zρ

σ

)
,

FAB = 2∂[AVB] − i[VA,VB] =
(−i[ϕμ, ϕν] −Dσ ϕμ

Dρϕ
ν fρσ

)
,

(35)

respectively, where Dμ = ∂μ − i[Aμ, · ] and

fμν = ∂μAν − ∂νAμ − i[Aμ, Aν] (36)

is the field strength of ordinary undoubled Yang-Mills theory.
From these ingredients we obtain the fully covariant field
strength,

(PF P̄)AB =
(

(PF P̄)μν (PF P̄)μσ

(PF P̄)ρν (PF P̄)ρσ

)
,

(PF P̄)μν = − 1
4 f̃ κλ(δκ

μ + Zκ
μ)(δλ

ν − Zλ
ν ),

(PF P̄)μσ = 1
4 [Hμκ (δσ

λ − Zσ
λ) f̂κλ − ϒσ

μ],

(PF P̄)ρ
ν = − 1

4 [(δρ
κ + Zρ

κ )H νλ f̂κλ − ϒ̄ρ
ν],

(PF P̄)ρσ = 1
4 (δρ

κ + Zρ
κ )(δσ

λ − Zσ
λ) f̂κλ. (37)

Here, we have introduced the shorthand notation

f̃ μν = f abδa
μδb

ν + i[ϕμ, ϕν] − (δa
μDaϕν + δa

νDaϕμ),

f̂μν = fμν + iδμ
aδν

b[ϕa, ϕb] − (δμ
aDνϕa + δν

aDμϕa),

ϒμ
ν = 2δμ

aD−
a ϕiδi

ν + 4δμ
ı̄Dı̄ϕ

iδi
ν,

ϒ̄μ
ν = 2δμ

aD+
a ϕ ı̄δı̄

ν + 4δμ
iDiϕ

ı̄δı̄
ν, (38)

and defining A±
a = Aa ± ϕa, we further set

D±
a = ∂a − i[A±

a , · ],

f ±
ai = ∂aAi − ∂iA

±
a − i[A±

a , Ai] = fai ∓ Diϕa,

f ±
aı̄ = ∂aAı̄ − ∂̄ı̄A

±
a − i[A±

a , Aı̄] = faı̄ ∓ Dı̄ϕa. (39)

Substituting these expressions into the Lagrangian (30), after
expanding as

LYM = 2Tr
[
(PF P̄)μν (PF P̄)μν + (PF P̄)μν (PF P̄)μ

ν
]
, (40)

one arrives at the undoubled Lagrangian,

L(n,n̄)
YM = Tr

⎡
⎢⎣

− 1
4 ( fab+i[ϕa, ϕb])( f ab+i[ϕa, ϕb])

− 1
4 uabuab − f −

ai D−aϕi + f +
aı̄ D+aϕ ı̄

−2Diϕ
ı̄Dı̄ϕ

i − 2i fiı̄[ϕi, ϕ ı̄]

⎤
⎥⎦, (41)

where we have defined a symmetric tensor

uab = Daϕb + Dbϕa. (42)

Identifying ϕμ as the displacement vector in elasticity theory,
uab corresponds to a strain tensor which now interacts with
the undoubled Yang-Mills theory. The symmetric strain tensor
originates essentially from the projection

4(PF P̄)ab = fab+i[ϕa, ϕb]−uab = ∂aA−
b −∂bA+

a −i[A+
a , A−

b ].
(43)

Since Aμ and ϕμ are dual to each other à la Buscher [56,57],
so are their (Abelian) elementary quanta, photon and phonon
(cf. Ref. [94]).

By construction from (30), the Lagrangian (41) enjoys
“supertranslational” Noether symmetries given a priori by
δVA = L̂ξVA (1) with the Killing vector (13), which reduce
in terms of the ordinary Lie derivative to

δAμ = Lξ Aμ + 2∂[μλρ]ϕ
ρ, δϕμ = Lξϕ

μ. (44)

In particular, under the transformations (44) with the Killing
vector (13), (PF P̄)AB transforms covariantly as

δ(PF P̄)μν = Lξ (PF P̄)μν,

δ(PF P̄)μν = Lξ (PF P̄)μν + 2∂[νλρ](PF P̄)μρ,

δ(PF P̄)μ
ν = Lξ (PF P̄)μ

ν + 2∂[μλρ](PF P̄)ρν,

δ(PF P̄)μν = Lξ (PF P̄)μν + 2∂[μλρ](PF P̄)ρν

+ 2∂[νλρ](PF P̄)μ
ρ, (45)

from which the invariance of the action, or (40), follows
straightforwardly,

δLYM = ξμ∂μLYM = ∂μ(ξμLYM). (46)
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Note that although (45) can be verified directly by brute force,
it can be understood simply as a natural consequence of the
O(D, D)-symmetric general covariance of the doubled Yang-
Mills field strength (37), encoded via (1).

The equations of motion DA(PF P̄)[AB] = 0 (31) are, ex-
haustively,

0 = Db
(
F b

a + i[ϕb, ϕa]
) − D−

a Diϕ
i + D+

a Dı̄ϕ
ı̄

+ i[ϕb, ub
a] + 2i[ϕi, f −

ai ] − 2i[ϕ ı̄, f +
aı̄ ],

0 = D−
a D−aϕi + 4i[ϕ ı̄, Dı̄ϕ

i] − 2i[ϕi, Dı̄ϕ
ı̄],

0 = D+
a D+aϕ ı̄ − 4i[ϕi, Diϕ

ı̄] + 2i[ϕ ı̄, Diϕ
i],

0 = Dbub
a+D−

a Diϕ
i+D+

a Dı̄ϕ
ı̄−2i

(
[ϕi, f −

ai ] + [ϕ ı̄, f +
aı̄ ]

)
,

0 = D−a f −
ai + 2DiDı̄ϕ

ı̄ + 4i[ fiı̄, ϕ
ı̄],

0 = D+a f +
aı̄ − 2Dı̄Diϕ

i + 4i[ fiı̄, ϕ
i]. (47)

We directly verified the conservation ∂μJμ = 0 (17) by
checking, first of all, the conservation of the doubled energy-
momentum tensor itself [up to the Bianchi identity, the
on-shell equations (31), and the section condition],

∂BT B
A = Tr[6(PF P̄)BCD[AFBC] − 4FACDB(PF P̄)[BC]]

+ 4∂CTr[∂CVB(PF P̄)[BA] − VCDB(PF P̄)[BA]] = 0,

(48)

and, secondly, the vanishing of each of{
T i j, T ı̄ j̄ , T ia + ηabT i

b, T ı̄a − ηabT ı̄
b, T iı̄ + T ı̄i

}
as consequences of the orthogonal projections performed in
(32), with T i

j = δi
jLYM and T ı̄

j̄ = δ ı̄
j̄ LYM; cf. (24). Unlike

the previous particle and scalar field theory cases, both T μν

and T μ
ν turn out to be nontrivial in Yang-Mills theory: See

the Appendix for the full expression, or the upcoming equa-
tion (50) for the simple (0,0) Abelian case.

As already mentioned, it is a rather unexpected and re-
markable result of the DFT formalism that the doubled
Yang-Mills theory produces a unifying description (41) of
ordinary Yang-Mills theory and a non-Abelian elasticity the-
ory. We emphasize that this holds true even upon genuine
Riemannian backgrounds, i.e., (n, n̄) = (0, 0). The Abelian
reduction of (41) on a flat Minkowskian spacetime is simply
the sum of Maxwell and strain tensor theories describing free
photons and phonons, respectively,

L(0,0)
Maxwell-strain = − 1

4 fab f ab − 1
4 uabuab. (49)

The corresponding energy-momentum tensors are

T ab = 2∂cϕ
[a f b]c + ∂c( f abϕc),

T a
b = f ac fbc + ∂aϕc∂bϕc − ∂cϕ

a∂cϕb + ∂c(ϕcua
b)

− 1
4δa

b
(

fcd f cd + ucd ucd
)
. (50)

While clearly T ab �= T a
cη

cb, these satisfy the off-shell rela-
tions

∂aT ab = 2∂c
(
∂a f a[bϕc]

)
,

∂aT a
b = fbd∂c f cd− 3

2 f cd∂[b fcd]+∂bϕ
d∂cuc

d+∂d (ϕd∂cuc
b)
(51)

and thus become conserved on shell due to the equations of
motion, ∂a f ab = 0 = ∂auab.

Intriguingly, with the decomposition of the displacement
vector into temporal and spatial components, ϕa = (ϕt , ϕa),
where a = 1, 2, . . . , D−1, if we truncate the temporal compo-
nent by setting ϕt = 0, the strain tensor part in (49) becomes

− 1
4 uabuab = 1

2 ϕ̇aϕ̇
a − 1

4 uabuab, (52)

where the dots denote time derivatives d
dt . This is precisely

the elasticity theory considered in Ref. [26], shown therein to
be dual to a U(1)-symmetric tensor gauge theory. The topo-
logical defects of the former map onto charges of the latter,
with disclinations and dislocations corresponding to fractons
and dipoles, respectively. Our result is in some sense (orthog-
onally) complementary to Ref. [26], as we are principally
focusing on the fracton physics that arises geometrically from
non-Riemannian backgrounds. Nevertheless, we remark that
both non-Riemannian spaces and topological defects are, after
all, singular configurations from a conventional perspective.

V. DOUBLED MAXWELL THEORY COUPLED TO
CHARGED PARTICLES

We now consider the doubled Maxwell theory (30) mini-
mally coupled to particles (9) with charge q,∑

α

∫
dτ 1

2 e−1Dτ xA
αDτ xB

αHAB − 1
2 em2 − qDτ xA

αVA, (53)

where α denotes a (negligible) particle index. On the constant
(n, n̄) background (8), the single-particle Lagrangian becomes

Lq = 1
2 e−1Dτ xADτ xBHAB − 1

2 em2 − qDτ xAVA

= 1
2 e−1ẋaẋa − 1

2 e
(
m2 + q2ϕaϕa

) − qẋμAμ

+ 1
2 e−1

(
˙̃xa − aa − eqϕa

)(
˙̃xb − ab − eqϕb

)
ηab

+ (e−1ẏi − qϕi )( ˙̃yi − ai ) − (e−1 ˙̄yı̄ + qϕ ı̄ )( ˙̄̃yı̄ − aı̄ ).
(54)

The corresponding action generalizes (10) to

Sq =
∫

dτ

[
1
2 e−1ẋaẋa − 1

2 e(m2 + q2ϕaϕa) − qẋμAμ

+�i(ẏi − eqϕi ) + �̄ı̄ ( ˙̄yı̄ + eqϕ ı̄ )

]
, (55)

where we have integrated out the auxiliary variables aa

thereby setting the on-shell value Dτ x̃a = eqϕa, and we have
identified �i = e−1Dτ ỹi and �̄ı̄ = −e−1Dτ ˜̄yı̄ . This action
then couples the particle to a strain-Maxwell theory, i.e., the
Abelian reduction of (41),

L0 = − 1
4 fab f ab − 1

4 uabuab − f −
ai ∂

aϕi + f +
aı̄ ∂

aϕ ı̄ − 2∂iϕ
ı̄∂ı̄ϕ

i.

(56)
The Hamiltonian action for (55) is

SH =
∫

dτ pμẋμ − eH,

H = 1

2
(pa + qAa)(pa + qAa) + 1

2 (m2 + q2ϕaϕ
a)

+ q(pi + qAi )ϕ
i − q( p̄ı̄ + qAı̄ )ϕ

ı̄ . (57)
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Integrating out the pa’s from (57), one recovers (55) with the
identification pi = �i − qAi, p̄ı̄ = �̄ı̄ − qAı̄ .

Clearly, from (55) or (57), the immobility is lifted by the
displacement vector to a “saturation velocity,”

ẏi = eqϕi, ˙̄yı̄ = −eqϕ ı̄ . (58)

Furthermore, the Hamiltonian constraint H = 0 (57) leads to
a modified dispersion relation,

kaka + m2 + q2ϕaϕ
a + 2qkiϕ

i − 2qk̄ı̄ϕ
ı̄ = 0, (59)

in which one may identify an effective mass (cf. Refs. [35,36]
for an interpretation in terms of a Higgs mechanism),

m2
eff = m2 + q2ϕaϕa. (60)

We stress that while (58) is a consequence of the non-
Riemannian geometry, (60) holds on the Riemannian sub-
space.

The equations of motion of the photon Aμ are the following
generalized Maxwell equations:

∂b f ba − ∂a∂iϕ
i + ∂a∂̄ı̄ϕ

ı̄ = Ja,

∂b∂
bϕi = Ji, −∂b∂

bϕ ı̄ = J ı̄ .
(61)

Here, Jμ is the usual electric current,

Jμ(x) =
∑

α

∫
dτ qẋμ

α (τ )δD(x − xα (τ )), (62)

which is identically conserved in the manner of (23), ensuring
the consistency of (61) à la Maxwell in 1865.

Meanwhile, the phonon ϕμ has equations of motion

∂bub
a + ∂a∂iϕ

i + ∂a∂̄ı̄ϕ
ı̄ = J̃a,

∂i∂bϕ
b + 2∂i∂̄ı̄ϕ

ı̄ + ∂b f b
i = J̃i,

∂̄ı̄∂bϕ
b + 2∂̄ı̄∂iϕ

i − ∂b f b
ı̄ = J̃ı̄,

(63)

for which we introduce a (by no means conserved) dual “pseu-
docurrent,”

J̃μ(x) =
∑

α

∫
dτ qDτ x̃αμ(τ )δD(x − xα (τ )). (64)

On shell, in terms of ϕa and the conjugate momenta pi, p̄ı̄ of
yi, ȳı̄ , we can express the dual pseudocurrent without explic-
itly invoking the tilde coordinates,

J̃a(x) =
∑

α

∫
dτeq2ϕa δD(x − xα (τ )),

J̃i(x) =
∑

α

∫
dτeq(pαi + qAi ) δD(x − xα (τ )),

J̃ı̄ (x) =
∑

α

∫
dτ (−eq)( p̄αı̄ + qAı̄ ) δD(x − xα (τ )).

(65)

Evidently, (61) and (63) generalize the usual Maxwell
equations. In particular, in the absence of sources, they
describe electromagnetic-strain waves that propagate ex-
clusively through the Riemannian subspace, and thus are
fractonic,

∂c∂
c fμν = ∂c∂

cϕi = ∂c∂
cϕ ı̄ = ∂c∂

c∂aϕ
a = ∂c∂

c∂[aϕb] = 0.

(66)
The first term vanishes on shell via the Bianchi identity as
∂c∂

c fμν = −2∂[μ∂c fν]c = 0, while the final equality, which

pertains to the “rotation tensor” ∂[aϕb], follows from the more
general relation ∂c∂

cϕa + ∂a∂λϕ
λ = 0.

The consistent matching between the particle action, (9) or
(10), and the scalar field theory (26) generalizes to the inter-
acting theory of a charged particle (54) and a charged complex
scalar field. The Lagrangian of the complex scalar field in
the fundamental representation is, with DA� = (∂A + iqVA)�
and Dμ� = (∂μ + iqAμ)�,

LV,� = − 1
2H

ABDA�DB�† − 1
2 m2��†

= − 1
2Da�Da�† − 1

2 (m2 + q2ϕaϕ
a)��†

− i 1
2 qϕi(�Di�

†−�†Di�)

+ i 1
2 qϕ ı̄ (�Dı̄�

†−�†Dı̄�). (67)

Remarkably, the resulting equation of motion agrees with the
Hamiltonian constraint of the charged particle (57), including
the mass enhancement,

[−DaD
a + m2+q2ϕaϕ

a − iq{Di, ϕ
i} + iq{Dı̄, ϕ

ı̄}]� = 0,

(68)
while it further produces a symmetric “prescription” for the
Hamiltonian constraint at the quantum level,

{pi, ϕ
i} = piϕ

i + ϕi pi, { p̄ı̄, ϕ
ı̄} = p̄ı̄ϕ

ı̄ + ϕ ı̄ p̄ı̄,

after identifying −iDμ = −i∂μ + qAμ, with pμ + qAμ.

VI. ON CURVED NON-RIEMANNIAN BACKGROUNDS

Owing to the geometric O(D, D) formalism applicable to
non-Riemannian geometries that has been developed in the
literature [75,95], all results in the previous sections can be
readily generalized to curved backgrounds. In the context
of DFT this also includes the possibility of a nontrivial B
field and dilaton. Here, we present such curved results in
full generality: In doing so, it is necessary to define many
covariant quantities while carefully distinguishing upper and
lower D-dimensional curved indices, μ, ν. Though this may
at first glance seem overelaborate, we remind and warn the
reader that raising and lowering indices is generically not
possible in the absence of an invertible metric.

Reference [17] and two recent works [96,97] already
considered fracton physics on curved backgrounds using sub-
Riemannian or Carrollian (or Aristotelian) geometries, which
in the present framework would correspond to the (1,0) or
(D−1, 0) non-Riemannian geometries. Such scenarios, not
being organized under the generalized metric, break O(D, D)
symmetry. The consequences of this remain to be seen. Here,
we merely present our O(D, D)-symmetric, curved spacetime
extension of the previous particle, scalar field, and Yang-Mills
theories.

On general curved backgrounds, it is convenient to factor-
ize out the B-field contribution via an O(D, D) transformation,

BA
B =

(
δμ

σ 0
Bρσ δρ

τ

)
, BA

CBB
DJCD = JAB. (69)
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The O(D, D)-covariant generalized metric on a general
curved background then takes the form [75]

HAB = BA
CBB

DH̊CD, H̊AB =
(

Hμν Zλ
μ

Zκ
ν Kκλ

)
, (70)

where, with 1 � i � n, 1 � ı̄ � n̄ as before,

Zμ
ν = X i

μY ν
i − X̄ ı̄

μȲ ν
ı̄ . (71)

The vectors X i
μ, X̄ ı̄

μ and Y μ
i , Ȳ μ

i belong to the kernels of Hμν

and Kμν , respectively,

HμνX i
ν = 0 = Hμν X̄ ı̄

ν , KμνY ν
i = 0 = KμνȲ ν

ı̄ , (72)

and correspond to the n + n̄ non-Riemannian directions.
These objects satisfy a completeness relation,

HμρKρν + Y μ
i X i

ν + Ȳ μ
ı̄ X̄ ı̄

ν = δμ
ν. (73)

From (72), (73), and the linear independence of the null eigen-
vectors, it follows that

X i
μY μ

j = δi
j, X̄ ı̄

μȲ μ
j̄ = δ ı̄

j̄ , X i
μȲ μ

ı̄ = 0 = X̄ j̄
μY μ

j ,

(HKH )μν = Hμν, (KHK )μν = Kμν. (74)

Further from (69) and (70), a similar factorization of the
projectors holds,

PAB = BA
CBB

DP̊CD, P̄AB = BA
CBB

D ˚̄PCD, (75)

where P̊AB = 1
2 (J + H̊)AB and ˚̄PAB = 1

2 (J − H̊)AB.
Remarkably, the doubled metric HAB is invariant under

GL(n) × GL(n̄) local rotations, which act on the unbarred
i, j, . . . and barred ı̄, j̄ , . . . indices, and further under the
“Milne-shift” symmetry—generalizing the “Galilean boost”
in the Newtonian gravity literature [98,99]—which acts with
arbitrary local parameters, Vμi and V̄μı̄ , as [75]

δMHμν = 0, δMX i
μ = 0, δMX̄ ı̄

μ = 0,

δMY μ
i = HμνVνi, δMȲ μ

ı̄ = HμνV̄ν ı̄,

δMKμν = −2X i
(μKν)ρHρσVσ i − 2X̄ ı̄

(μKν)ρHρσ V̄σ ı̄,

δMBμν = −2X i
[μVν]i + 2X̄ ı̄

[μV̄ν]ı̄

+ 2X i
[μX̄ ı̄

ν](Y
ρ

i V̄ρ ı̄ + Ȳ ρ
ı̄ Vρi ). (76)

In fact, both local symmetries are part of the local Lorentz
symmetries in DFT and should not be broken.

First let us briefly comment on the scalar field case. Upon
the generic (n, n̄) curved background above, with the choice
of section ∂̃μ = 0, the scalar field kinetic term reduces to

− 1
2 e−2dHAB∂A�∂B� = − 1

2 e−2d Hμν∂μ�∂ν�, (77)

which obviously generalizes (26) into a covariant form.
Now we turn to the doubled Yang-Mills theory on curved

backgrounds. We first factorize the doubled gauge potential,
similarly to (70), as

VA = BA
BV̊B =

(
ϕμ

Aν + Bνρϕ
ρ

)
, V̊A =

(
ϕμ

Aν

)
. (78)

Like the doubled metric, the doubled vector potential VA

should be invariant under the DFT local Lorentz symmetries,

and thus the Milne-shift transformations of the component
fields are

δMϕμ = 0, δMAμ = −(δMBμν )ϕν. (79)

The semicovariant Yang-Mills field strength is

FAB = ∇AVB − ∇BVA − i[VA,VB]

= 2∂[AVB] + 2�[AB]
CVC − i[VA,VB], (80)

where �CAB are the the DFT Christoffel symbols [58]. From
the torsionless property �[ABC] = 0, it follows that �[AB]C =
− 1

2�CAB. Since the fully covariant field strength is (PF P̄)AB,
we only need the projection

PM
AP̄N

B�CAB = (P∂CPP̄)MN = 1
2 (P∂CHP̄)MN . (81)

Using (69), (70), (75), and (81) in (80), the fully covariant
field strength is given by

(B−1P)A
C (B−1P̄)B

DFCD

= P̊A
C ˚̄PB

D
(
2∂[CV̊D] − i[V̊C, V̊D] − 1

2 V̊
E∂EH̊CD

+ 3V̊E∂[EBCD]
)
. (82)

This is the curved generalization of (37). After a lengthy
calculation we may obtain the explicit components,

(B−1PF (B−1P̄)t )μν = − 1
4 f̃ κλ(δκ

μ + Zκ
μ)(δλ

ν − Zλ
ν ),

(B−1PF (B−1P̄)t )μσ = 1
4

[
Hμκ (δσ

λ − Zσ
λ) f̂κλ − ϒσ

μ
]
,

(B−1PF (B−1P̄)t )ρ
ν = − 1

4

[
(δρ

κ + Zρ
κ )H νλ f̂κλ − ϒ̄ρ

ν
]
,

(B−1PF (B−1P̄)t )ρσ = 1
4 (δρ

κ + Zρ
κ )(δσ

λ − Zσ
λ) f̂κλ, (83)

where the constituent tensors are now defined as

f̃ μν = HμρH νσ
(

fρσ + Hρστϕ
τ
) + i[ϕμ, ϕν] − ũμν,

f̂μν = fμν + iKμρKνσ [ϕρ, ϕσ ] + ϕρHρμν − uμν,

ϒμ
ν = 2Kμρ

(
Dρϕi + i[ϕρ, ϕσ ]X i

σ

)
Y ν

i + 4X̄ ı̄
μ D̄ı̄ϕ

ρX i
ρY ν

i ,

ϒ̄μ
ν = 2Kμρ

(
D̄ρϕ ı̄ − i[ϕρ, ϕσ ]X̄ ı̄

σ

)
Ȳ ν

ı̄ + 4X i
μDiϕ

ρ X̄ ı̄
ρ Ȳ ν

ı̄ .

(84)

Further explanation is in order. Every term in (84) is covariant
under (ordinary undoubled) diffeomorphisms and Yang-Mills
gauge symmetry, and also invariant under GL(n) × GL(n̄)
local rotations, but not under the Milne shift: Only the whole
set of components of (PF P̄)AB is so. Specifically, fμν is the
usual Yang-Mills field strength (36), while ũμν = ũνμ, uμν =
uνμ are the strain tensors for the vector field ϕλ, carrying
upper or lower symmetric indices, which can be expressed as
symmetrizations of appropriate covariant derivatives,

ũμν = Dμϕν + Dνϕμ, uμν = Dμϕν + Dνϕμ, (85)

where, with �μν
ρ to be explained later (91),

Dμϕν = Hμρ (∂ρϕ
ν − i[Aρ, ϕ

ν]) + �μν
ρϕ

ρ,

Dμϕν = (∂μϕρ − i[Aμ, ϕρ])Kρν

+ 1
2 (∂ρKμν + ∂μKνρ − ∂νKμρ )ϕρ. (86)

Furthermore, we have defined various covariant derivatives
which are nontrivial only in genuine non-Riemannian cases,
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i.e., (n, n̄) �= (0, 0):

Dμϕi = Hμρ
(
(∂ρϕ

σ − i[Aρ, ϕ
σ ])X i

σ + ϕσ ∂σ X i
ρ

)
,

D̄μϕ ı̄ = Hμρ
(
(∂ρϕ

σ − i[Aρ, ϕ
σ ])X̄ ı̄

σ + ϕσ ∂σ X̄ ı̄
ρ

)
,

Diϕ
μX̄ ı̄

μ = (
Y ρ

i (∂ρϕ
μ − i[Aρ, ϕ

μ]) − ϕρ∂ρY μ
i

)
X̄ ı̄

μ,

D̄ı̄ϕ
μX i

μ = (
Ȳ ρ

ı̄ (∂ρϕ
μ − i[Aρ, ϕ

μ]) − ϕρ∂ρȲ μ
ı̄

)
X i

μ. (87)

As alternatives to the latter two expressions in (87), we can
also write

Diϕ
λKλμ = (

Y ρ
i

(
∂ρϕ

λ − i[Aρ, ϕ
λ]

) − ϕρ∂ρY λ
i

)
Kλμ,

D̄ı̄ϕ
λKλμ = (

Ȳ ρ
ı̄

(
∂ρϕ

λ − i[Aρ, ϕ
λ]

) − ϕσ ∂σ Ȳ λ
ı̄

)
Kλμ. (88)

All expressions for covariant derivatives given in (86)–(88)
are symmetric under diffeomorphisms, local GL(n) × GL(n̄)
rotations, and Yang-Mills gauge transformations. However,
without the contractions as in (87) and (88), the bare deriva-
tives

Diϕ
μ = Y ρ

i (∂ρϕ
μ − i[Aρ, ϕ

μ]) − ϕρ∂ρY μ
i ,

D̄ı̄ϕ
μ = Ȳ ρ

ı̄ (∂ρϕ
μ − i[Aρ, ϕ

μ]) − ϕρ∂ρȲ μ
ı̄ (89)

are anomalous under local GL(n) × GL(n̄) rotations due to
the final terms containing derivatives of Y μ

i and Ȳ μ
ı̄ . Among

these definitions, note that the upper indexed covariant deriva-
tive,

Dμ = Hμρ∂ρ − iHμρ[Aρ, ] + �μ, (90)

was proposed in Ref. [95]. It can act on an arbitrary (undou-
bled) tensor, as it is equipped with a generalized Christoffel
connection,

�μν
λ = − 1

2∂λHμν − Hρ[μ∂ρY ν]
i X i

λ − Hρ[μ∂ρȲ ν]
ı̄ X̄ ı̄

λ

−Hρ[μ∂ρH ν]σ Kσλ + (
2Hρ[μY ν]

i ∂[τ X i
ρ]

−2Hρ[μȲ ν]
ı̄ ∂[τ X̄ ı̄

ρ]

)(
Y τ

j X j
λ − Ȳ τ

j̄ X̄ j̄

λ

)
. (91)

Note that according to (85), only the symmetric part, �(μν)
λ =

− 1
2∂λHμν , contributes to the strain tensor ũμν .
The Lagrangian for the doubled Yang-Mills theory on gen-

eral curved and non-Riemannian backgrounds,

LYM = 2 Tr
[
(PF P̄)μν (PF P̄)μν + (PF P̄)μν (PF P̄)μ

ν
]
,

(92)
can be obtained analogously to the flat case from the compo-
nents in (83). The full result is

LYM = Tr

⎡
⎢⎣

− 1
4 HμρH νσ

(
fμν+ϕκHκμν

)(
fρσ +ϕλHλρσ

) − 1
4 HμρH νσ uμνuρσ + 1

4 KμρKνσ [ϕμ, ϕν][ϕρ, ϕσ ]

−{
DμϕiY ν

i − D̄μϕ ı̄Ȳ ν
ı̄ + i 1

2 [ϕρ, ϕσ ](1+Z )ρμ(1−Z )σ ν
}(

fμν+ϕκHκμν

)
−KμνDiϕ

μ
(
Dνϕi + i[ϕν, ϕρ]X i

ρ

) − KμνD̄ı̄ϕ
μ
(
D̄νϕ ı̄ − i[ϕν, ϕρ]X̄ ı̄

ρ

) − 2Diϕ
μX̄ ı̄

μD̄ı̄ϕ
νX i

ν

⎤
⎥⎦. (93)

By construction, this action is invariant under diffeomor-
phisms, B-field and Yang-Mills gauge symmetries, GL(n) ×
GL(n̄) local rotations, and Milne shifts (76) and (79). This fol-
lows naturally in the doubled formalism but appears nontrivial
from the undoubled perspective.

In deriving the action, it is worthwhile to note the following
relations among the derivatives Dμϕi, D̄μϕ ı̄ , and Dμϕρ ,

(Dμϕρ )X i
ρY ν

i − (Dμϕi )Y ν
i

= Hμρ∂[ρX i
σ ]

(
HσκKκλ + 2Ȳ σ

ı̄ X̄ ı̄
λ

)
ϕλY ν

i ,

(Dμϕρ )X̄ ı̄
ρȲ ν

ı̄ − (D̄μϕ ı̄ )Ȳ ν
ı̄

= Hμρ∂[ρ X̄ ı̄
σ ]

(
HσκKκλ + 2Y σ

i X i
λ

)
ϕλȲ ν

ı̄ , (94)

as well as some projection properties,

HμρH νσ f̂ρσ = (HK )μρ (HK )νσ f̃ ρσ ,

HμρH νσ uρσ = (HK )μρ (HK )νσ ũρσ ,

HμρuρσY σ
i = (HK )μρDiϕ

ρ,

Hμρuρσ Ȳ σ
ı̄ = (HK )μρD̄ı̄ϕ

ρ (95)

and

Kμρ ũρσ X i
σ = KμρDρϕi, Kμρ ũρσ X̄ ı̄

σ = KμρD̄ρϕ ı̄,

ϒμ
νKνρ = 0 = ϒ̄μ

νKνρ, Y μ
i uμνȲ ν

ı̄ = 0 = X i
μũμνX̄ ı̄

ν .

(96)

Upon taking the flat-spacetime limit (33) with vanishing B
field, the connection � vanishes and the covariant derivatives

D,D all reduce to the Yang-Mills covariant derivative, D =
∂ − i[A, ]. Thus the field strength (83) and (84) and the strain
tensor (85) simplify to (37), (38), and (42), respectively, while
from the Lagrangian (93) we recover (41).

Finally, as a curved spacetime generalization of (54), we
present the full particle action minimally coupled to the dou-
bled Maxwell vector potential on a generic (n, n̄) curved
background,

Lq = 1

2
e−1Dτ xADτ xBHAB − 1

2 em2 − qDτ xAVA

= 1

2
e−1ẋμẋνKμν − 1

2 e
(
m2 + q2ϕμϕνKμν

) − qẋμAμ

+1

2
e−1( ˙̃xμ − aμ − Bμκ ẋκ − eqKμρϕρ )Hμν

×(
˙̃xν − aν − Bνλẋλ − eqKνσ ϕσ

)
+X i

μ

(
e−1ẋμ − qϕμ

)
( ˙̃xν − aν − Bνρ ẋρ )Y ν

i

−X̄ ı̄
μ

(
e−1ẋμ + qϕμ

)
( ˙̃xν − aν − Bνρ ẋρ )Ȳ ν

ı̄ . (97)

The first line on the right-hand side of the second equality is
essentially the usual (undoubled) action for a charged “rela-
tivistic” particle in the Riemannian subspace, with effective
mass generated by the displacement vector field,

m2
eff = m2 + q2ϕμϕνKμν. (98)

The second and third lines are quadratic in the auxiliary
variable aμ on the Riemannian subspace and hence are to be
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negligibly integrated out, resulting in

Hμν
(

˙̃xν − aν − Bνρ ẋρ − eqKνρϕρ
) = 0. (99)

The last two lines are linear in aμ and hence impose con-
straints,

X i
μ(e−1ẋμ − qϕμ) = 0, X̄ ı̄

μ(e−1ẋμ + qϕμ) = 0, (100)

which can be unified into a single expression,

e−1ẋρZρ
μ = qϕρ (1 − KH )ρ

μ. (101)

It is worthwhile to note the conjugate momenta of xμ,

pμ = e−1
(
Kμν+BμρZν

ρ
)
ẋν−qAμ−qBμν

(
Y ν

i X i
ρ+Ȳ ν

ı̄ X̄ ı̄
ρ

)
ϕρ

+ e−1
(
BμρHρν + Zμ

ν
)(

˙̃xν − aν − Bνσ ẋσ − eqKνσ ϕσ
)
,

(102)

and some on-shell values for the tilde coordinates,

e−1(Dτ x̃μ − Bμν ẋν ) = Zμ
ν (pν + qAν ) + qKμνϕ

ν, (103)

where actually only the momenta along the non-Riemannian
directions, pi, p̄ı̄ , are relevant.

Clearly, (100) generalizes the saturation velocity (58) as
well as the immobility constraint (11) of the constant back-
ground (8) to the case of a curved background. Specifically,
for a neutral particle of q = 0, from (100) we obtain the
vanishing of the velocity along the (curved non-Riemannian)
X i

μ and X̄ ı̄
ν directions,

X i
μẋμ = 0, X̄ ı̄

μẋμ = 0. (104)

Taking the τ derivative of these gives expressions that may be
viewed as “non-Riemannian geodesic equations,”

X i
μẍμ + ∂(μX i

ν)ẋ
μẋν = 0, X̄ ı̄

μẍμ + ∂(μX̄ ı̄
ν)ẋ

μẋν = 0,

(105)
For genuine curved backgrounds where ∂(μX i

ν) or ∂(μX̄ ı̄
ν) are

nontrivial, this indicates that the immobility of a fracton is
rather nontrivial. Related to this, it is worthwhile to note that
the first curved non-Riemannian DFT background reported
in Ref. [72] was shown in Ref. [87] to admit only a finite
number of isometries, implying the absence of higher-moment
conservations. Further investigation with more examples is
desired.

VII. DISCUSSION

Existing field theoretical intuition on fractons is largely
based on dipole conservation for charged particles. Contradis-
tinctly, in our scheme the immobility is universal regardless
of charge, since it originates from the “geodesic” particle
action (9). Accordingly, our current (17) contains the energy-
momentum tensor rather than a charge density of any sort.

Analysis on a spinor field is also possible, following
Refs. [60,63]. We merely comment that, since DFT vielbeins
square to projectors like VA

pVBp = PAB, on the flat background
(8) the doubled Dirac equation

/γψ = V A
pγ

p∂Aψ = 0 (106)

gives

0 = (/γ )2ψ = PAB∂A∂Bψ = 1
2H

AB∂A∂Bψ = 1
2∂a∂

aψ.

Thus the massless spinor is also fractonic, like (66). Du-
alization of the full strain-Maxwell model including the
non-Riemannian sector (56) and also the connection to
D-branes, following Refs. [26–34,91,100] and Ref. [23], re-
spectively, deserve further study.

The charged particle action (55) and (97) is of interest
even upon a genuine Riemannian or Minkowskian (0,0) flat
background,

S(0,0)
q =

∫
dτ

1

2
e−1ẋaẋa − 1

2
e(m2 + q2ϕaϕa) − qẋaAa. (107)

Minimally coupled to the doubled vector potential VA, this
particle action naturally interacts with the Maxwell vector
potential of photons Aa, and further with the elasticity dis-
placement vector of phonons ϕb, satisfying, from (61), (63),
(62), and (65),

∂c f ca = Ja, Ja(x) =
∑

α

∫
dτqẋa

α (τ )δD(x − xα (τ )),

∂cuc
a = J̃a, J̃a(x) =

∑
α

∫
dτeq2ϕa δD(x − xα (τ )).

(108)

This set of equations may provide an effective description of
polarons [101–104]. Deformations of a periodic potential of a
crystal lattice are described by phonons, or the displacements
of atoms from their equilibrium positions. Electrons moving
inside the crystal interact with the displacements, which is
known as electron-phonon coupling. Such electrons with the
accompanying deformation are called polarons. They move
freely across the crystal, but with increased effective mass.
This polaron picture essentially agrees with (107) and (108)
above. The charged particles can correspond to both atomic
nuclei and electrons. From (108), the lattice structure of the
atomic nuclei naturally sets the dual pseudocurrent J̃a and also
the strain tensor uab to be discretely crystallized on the lattice,
while the electrons acquire an effective mass (107) from the
condensation of the displacement vector ϕa. We recall the
effective mass formula (60) and expand the square root,

meff =
√

m2 + q2ϕaϕa

= m
[
1 + 1

2

( q

m

)2
ϕaϕa − 1

8

( q

m

)4(
ϕaϕa

)2 + · · ·
]
. (109)

We compare this with a well-known formula for the effective
mass of a polaron obtained from estimating its self-energy
[105,106],

mknown 	 m
[
1 + 1

6αe-ph + 0.0236(αe-ph)2
]
, (110)

where αe-ph is a dimensionless electron-phonon coupling con-
stant. From the leading-order terms in the two formulas,
we identify ( q

m )2ϕaϕa = 1
3αe-ph, which in turn gives, from

(109), meff/m 	 1 + 1
6αe-ph − 1

72 (αe-ph)2 and hence differs
from (110) at subleading order. We call for experimental ver-
ification.

For the Riemannian subspace we have mostly envisaged a
Minkowskian signature (8), such that time can flow without
suffering from immobility and that the effective mass (60) is
not necessarily bigger than the true mass. Intriguingly then, in
the case of time crystals [107], where ϕaϕa would be timelike
or negative, our formula seems to predict that the effective
mass of polarons in time crystals should become smaller. Note
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that a time crystal is a quantum system of particles for which
the ground state is characterized by repetitive periodic motion
of the particles.

On the other hand, if we were to choose the Euclidean sig-
nature ηab = δab for the Riemannian subspace and let (n, n̄) =
(1, 1), thereby including two non-Riemannian directions, one
temporal and the other spatial [73,75,77–79,87,95,108,109],
the corresponding fracton physics would match that of the
nonrelativistic string [80,81,110] and Newton-Cartan gravities
[86,111–117]. Equation (58) then further implies that time
therein can start to flow if the timelike displacement vector
condenses, setting

ṫ = eqϕt . (111)

It would be of utmost interest if any of the non-Riemannian
geometries underlying the modified Maxwell equations (61)
and (63) are realized in nature. Some well-known singularities
in GR [118–120] have recently been identified as regular non-

Riemannian geometries [121]. Approaching them, geodesics
indeed become immobile. Extra dimensions, if any, might be
non-Riemannian [75] and therefore fractonic.
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APPENDIX: DOUBLED YANG-MILLS ENERGY-MOMENTUM TENSOR ON A CONSTANT FLAT BACKGROUND

In this Appendix, we write down the explicit components of the energy-momentum tensor (32) for the doubled Yang-Mills
theory (30). In terms of undoubled spacetime indices, the relevant pieces appearing in the on-shell conserved current (17) are

T μν = Tr
[
(FHF )μρHρν − Hμρ (FHF )ρν + (FHF )μρZρ

ν − Zρ
μ(FHF )ρν

] − 2∂λTr
[
ϕλ

(
PF P̄+P̄FP

)μν]
,

T μ
ν = Tr

[
(FHF )μρKρν − Hμρ (FHF )ρν + (FHF )μρZν

ρ − Zρ
μ(FHF )ρν

] − 2∂λTr
[
ϕλ

(
PF P̄+P̄FP

)μ
ν

] + δμ
νLYM.

(A1)

To evaluate these, we need the explicit expressions

(FHF )μν = −Dρϕ
μHρσ Dσ ϕν + iZρ

σ
(
Dσ ϕμ[ϕρ, ϕν] − [ϕμ, ϕρ]Dσ ϕν

) − [ϕμ, ϕρ]Kρσ [ϕσ , ϕν],

(FHF )μν = −Dρϕ
μHρσ fσν + i[ϕμ, ϕρ]

(
Kρσ Dνϕ

σ − Zρ
σ fσν

) + Zρ
σ Dσ ϕμDνϕ

ρ,

(FHF )μ
ν = fμρHρσ Dσ ϕν − i

(
DμϕρKρσ + fμρZσ

ρ
)
[ϕσ , ϕν] + DμϕρZρ

σ Dσ ϕν,

(FHF )μν = fμρHρσ fσν − DμϕρDνϕ
σ Kρσ + Zρ

σ
(
Dμϕρ fσν − fμσ Dνϕ

ρ
)
, (A2)

as well as

−2
(
PF P̄+P̄FP

)μν = HμρH νσ fρσ + 2Hρ[μZσ
ν]Dρϕ

σ + i[ϕμ, ϕν] − i[ϕρ, ϕσ ]Zρ
μZσ

ν,

−2
(
PF P̄+P̄FP

)μ
ν = Dνϕ

μ + HμρDρϕ
σ Kσν − i[ϕρ, ϕσ ]Zρ

μKσν + (
Hμρ fρσ − Zρ

μDσ ϕρ
)
Zν

σ . (A3)

Substituting these into (A1), we acquire all the components of the doubled Yang-Mills energy-momentum tensor,

T a
b = Tr

[
f ac fbc + DaϕcDbϕc − Dcϕ

aDcϕb + [ϕa, ϕc][ϕb, ϕc] + ∂λ

(
ϕλua

b
)

− 2Zρ
σ
(

f (a
σ Dc)ϕρ + iDσ ϕ(a[ϕc), ϕρ]

)
ηcb

] + δa
bLYM,

T a
i = Tr

[(
f ac+Dcϕa

)
fic + D−aϕcDiϕc + ∂λ

(
ϕλ f −a

i
) + Zρ

σ
(

f −a
σ Diϕ

ρ + D−aϕρ fiσ
)]

,

T a
ı̄ = Tr

[(
f ac−Dcϕa

)
fı̄c + D+aϕcDı̄ϕc − ∂λ

(
ϕλ f +a

ı̄

) + Zρ
σ
(

f +a
σ Dı̄ϕ

ρ + D+aϕρ fı̄σ
)]

,

T i
a = Tr

[ − Dcϕi
(
Dcϕa+ fac

) − i[ϕi, ϕc]D−
a ϕc + ∂λ

(
ϕλD−

a ϕi
) − Zρ

σ
(
Dσ ϕiD−

a ϕρ + i[ϕi, ϕρ] f −
aσ

)]
,

T ı̄
a = Tr

[ − Dcϕ ı̄
(
Dcϕa+ fca

) + i[ϕ ı̄, ϕc]D+
a ϕc + ∂λ

(
ϕλD+

a ϕ ı̄
) + Zρ

σ
(
Dσ ϕ ı̄D+

a ϕρ + i[ϕ ı̄, ϕρ] f +
aσ

)]
,

T i
ı̄ = 2Tr

[
Dcϕi fcı̄ − i[ϕi, ϕc]Dı̄ϕc + ∂λ

(
ϕλDı̄ϕ

i
) − Zρ

σ
(
Dσ ϕiDı̄ϕ

ρ + i[ϕi, ϕρ] fσ ı̄

) ]
,

T ı̄
i = 2Tr

[ − Dcϕ ı̄ fci + i[ϕ ı̄, ϕc]Diϕc + ∂λ

(
ϕλDiϕ

ı̄
) + Zρ

σ
(
Dσ ϕ ı̄Diϕ

ρ − i[ϕ ı̄, ϕρ] fσ i
) ]

, (A4)

T ab = Tr
[
2Dcϕ

[a f b]c − 2i[ϕc, ϕ[a]Db]ϕc + ∂λ

(
ϕλ

(
f ab + i[ϕa, ϕb]

)) + 2Zρ
σ
(
Dσ ϕ[aDb]ϕρ − i[ϕρ, ϕ[a] f b]

σ

)]
,

T ai = Tr
[ − (

f ac+Dcϕa
)
Dcϕ

i − i[ϕi, ϕc]D−aϕc + ∂λ

(
ϕλD−aϕi

) − Zρ
σ
(
D−aϕρDσ ϕi − i[ϕρ, ϕi] f −a

σ

)]
,

T aı̄ = Tr
[ − (

f ac−Dcϕa
)
Dcϕ

ı̄ − i[ϕ ı̄, ϕc]D+aϕc − ∂λ

(
ϕλD+aϕ ı̄

) − Zρ
σ
(
D+aϕρDσ ϕ ı̄ − i[ϕρ, ϕ ı̄] f +a

σ

)]
,

T iı̄ = 2Tr
[

DcϕiDcϕ
ı̄ − [ϕi, ϕc][ϕ ı̄, ϕc] + i∂λ

(
ϕλ[ϕi, ϕ ı̄]

) + 2iZρ
σ Dσ ϕ(i[ϕ ı̄), ϕρ]

]
, (A5)
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and, from the projection properties,

T i j = 0, T ı̄ j̄ = 0, T i
j = δi

jLYM, T ı̄
j̄ = δ ı̄

j̄ LYM,

T ia = −ηabT i
b, T ı̄a = ηabT ı̄

b, T ı̄i = −T iı̄, T a
cη

cb = T b
cη

ca.
(A6)
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