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Functional rich clubs emerging from the diffusion geometry of complex networks
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Real systems are characterized by complex patterns of interactions between their units, by dynamical processes
on them, and by the interplay of the two. It is well known that particular structures affect dynamical processes
at different scales. Sometimes richly connected units are connected by costly, long-range links. In the brain,
hubs form rich clubs for integrating information between different brain regions, and many biological and
social networks show this same structural organization. It remains, however, unclear whether this structural
organization alone enables a rapid communication between highly connected nodes or whether a functional
rich club may emerge as a combination of direct links and longer paths between rich nodes. Here, we identify
functional rich clubs through the diffusion geometry, providing a perspective on rich-club phenomena in complex
networks. We show that weak structural rich clubs may be functionally stronger, thanks to bridge nodes, while
diffusion inside strong structural rich clubs may be damped in modular networks.
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I. INTRODUCTION

Networks have long been studied from a structural perspec-
tive, investigating, for instance, how the existence probability
of each edge—a microscale property of the system—affects
macroscale or global properties of the network, such as the
average degree and the connectedness probability. Similarly,
the mesoscale structure can be characterized in terms of the
number of edges in particular subgraphs, be they communi-
ties, i.e., groups of nodes that are more densely connected with
each other than with the rest of the network, or a rich club, i.e.,
a group of high-degree nodes (called rich nodes) sharing more
links with each other than are expected by chance [1,2].

Abstract as they may seem, networks represent real com-
plex systems. Each abstract link is an interaction between
the system’s elements; each interaction is an exchange of
information—in terms of a signal, or of a flow of energy
or matter—and this pairwise communication gives rise to
the system’s behavior and functionality. How microscale in-
teractions shape macroscale phenomena is the fundamental
question of network and complexity science [3]: When ob-
serving a dynamical process taking place on the network’s

*Corresponding author: giulia.bertagnolli@unitn.it
†Corresponding author: manlio.dedomenico@unipd.it

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

nodes and links, a natural question is how the topology of the
network affects the evolution of the dynamics. For instance,
do different distributions of the number of connections of
each node (i.e., the degree distribution) alter the spread of
information or diseases in a networked system? Of course,
the answer is process dependent, and the pair, structure and
dynamics, cannot—and should not—be decoupled.

In the last decades, an approach, complementing the purely
structural one, has been gaining more and more attention:
Through the interplay between the structure of networks and
the dynamical processes on them, researchers are studying
the functional shape of networks [4–8]. In this framework,
a particular organization of nodes corresponds to a pattern
in the functional response of the system at a certain time
or during a time interval. A functional community, for in-
stance, consists of a group of nodes displaying a more or
less homogeneous behavior with respect to the considered
dynamics. This approach is intrinsically multiscale [9,10] and
has the twofold advantage of allowing greater fine-tuning of
analyses and of overcoming common issues, such as, e.g., the
resolution limit in community detection [11–13]. While com-
munity detection [14] exploiting different dynamics—random
walks [15,16] and diffusion [6], synchronization [17], and
spin dynamics [18,19], to cite a few—is already the state of
the art, the aforementioned rich-club phenomenon has not
yet been studied from a dynamical perspective in spite of
the huge interest in this mesoscale organization of nodes.
There is a large literature on the subject of brain networks,
where the (structural) rich club is known to be relevant for
the integration of the information processed by physically
segregated modules [20–25], and it may also be at the base of
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those cognitive capacities distinguishing humans from other
animal species [26]. Moreover, an abnormal rich-club order-
ing has been found in patients suffering from several diseases
[27–32]. In a recent work [33], Moretti and Hütt studied the
role played by hubs, cores, and rich clubs in self-organized
wave and excitation patterns, finding that these act as organiz-
ers and facilitators for the emergence of the global, collective
patterns both in network models and in the human connec-
tome. Social networks have rich clubs too. Resources, for
example, are usually not homogeneously distributed, and a
subset of prominent individuals controls a large part of all the
resources [34–36]; scientific collaborations, in terms of the
coauthorship of papers, tend to be stronger between renowned
scientists [37]; and face-to-face interactions occurring over
time are more frequent and more stable than expected by
chance among individuals who have more interactions [38].
Then, social interactions shape our infrastructures, and hence
it is not surprising that this “the-rich-get-richer” effect and
rich clubs can be found, for instance, in urban networks [39].
Among the real systems lacking a structural rich-club orga-
nization there are protein-protein interaction networks, where
it is claimed [37,40] that hub proteins are mainly devoted to
very specific functions.

The structural rich-club phenomenon was originally quan-
tified through the spectrum of the rich-club coefficient [2], the
density of connections among nodes with degree larger than
k:

φ(k) = 2E>k

N>k (N>k − 1)
, (1)

where N>k and E>k are the number of nodes with degree
larger than k and the number of edges between them, respec-
tively. Later, it was shown [37] that a proper normalization of
φ(k) is mandatory, since φ(k) alone does not allow the effect
of degree-degree correlations to be filtered out. Normalized
descriptors of the rich-club phenomenon were introduced in
Refs. [37,41], dividing the coefficient in (1) by the average
rich-club coefficient of the uncorrelated or the maximally ran-
dom network with the same degree sequence of the network
under study:

ρunc(k) = φ(k)

φunc(k)
, (2)

ρran(k) = φ(k)

φran(k)
. (3)

There are other possible formulations of the normalized
structural rich club [42] and of its generalization to weighted
[34,43–45], hierarchical [46], and temporal [38] networks,
but the key point pooling all these descriptors together is the
need to distinguish the case where nodes with a lot of (or
strong) connections have more links between them just by
chance from the case in which hubs have, indeed, an intense
connectivity giving them, e.g., control over resources flowing
in the system or facilitating the rapid exchange of information
among them.

This last interpretation of the rich club raises a question:
Does a topological, or structural, rich-club organization trans-
late seamlessly into function? Vice versa, does a functional
rich-club organization always need its structural counterpart?
Assuming that communication—the exchange of information

or signals—is the basic process enabling the emergence of
complex system behaviors, e.g., the physiological activity of
a cell or socioeconomic activity depending on trade networks,
and that communication takes various forms [47,48]—from
routing information along shortest paths to broadcasting—it is
clear that we need other approaches complementing the struc-
tural one to understand the organization of complex systems
and, eventually, their functional principles. To answer these
questions and to bring us a step closer to understanding the
structural-functional interplay in complex systems, we tackle
the rich-club phenomenon from the functional perspective of
diffusion geometry [6,8,49,50]. As a communication strategy,
diffusion lies at the opposite end of the spectrum from routing,
but still it cannot represent the whole communication spec-
trum. Nevertheless, our definition of the functional rich club
has two major advantages: Firstly, random walks and diffusion
are good approximations of a bunch of different dynamics,
from metastable synchronization to consensus [6], so that in
applications they may be “general enough.” Secondly, the fact
that our approach is based on the metric induced by random
walks on the network makes it easily generalizable to other
process-driven geometries, when available.

II. NUMERICAL EXPERIMENTS AND DATA ANALYSIS

A. Defining the functional rich club of complex networks

We propose a functional rich club which is based on the
idea that a rapid information exchange among rich nodes
is facilitated not only by the presence of many, direct links
between them, but also by the global connectivity of the
network. For instance, bridge nodes with low degree placed
between hubs may be overlooked in the structural case,
whereas using an averaging process, such as the diffusion, we
can account also for longer paths. Furthermore, a small set of
rich nodes may form a strong structural rich club, regardless of
the presence or absence of other mesoscale structures. Instead,
in the functional setting these structures may be competing
at some scale, leading to the lack of a functional rich-club
organization.

The diffusion geometry framework [6] exploits
continuous-time random walks to map the set of nodes V of
a network G = (V, E ) to a cloud of points in space, whose
distribution depends on the connectivity E and, possibly, on
the information flow encoded in the edge weights and on the
type of random walk dynamics [8]. The Euclidean distance
between these points induces, in turn, a metric on G, called
the diffusion distance Dt . Intuitively, two nodes i, j ∈ V are
near with respect to Dt if the transition probability from i to
j is high; see Sec. III for more details. The time parameter
t acts as a scale parameter; hence our family of diffusion
distances {Dt }t>0 provides a geometric, multiscale tool for
uncovering the functional rich-club organization of networks.

Studying the distribution of the mutual diffusion distances,
we are able to tell whether rich nodes are indeed nearer to
each other than expected by chance, accounting also for the
rest of the nodes in the network. The functional rich-club
coefficient is defined as a Z score (see Sec. III) and measures
the average diffusion distance between rich nodes, sometimes
also indicated as the average core distance, in units of standard
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FIG. 1. Model of a functional rich-club organization: moving from weakly connected subnetworks to more densely connected rich and
mildly rich nodes. A total of 256 nodes are grouped into four equally sized Barabási-Albert (BA) communities highlighted with different
colors in (a)—where only the four richest nodes in each community are shown—and in (b)—where their first neighbors are added. At step
1, intercommunity links are added, at random between low-degree nodes and in “rings,” dashed edges, and “crosses,” dotted edges, between
high-degree nodes with the same rank (see Sec. III C for more details). In steps 2 and 3 the connectivity between rich nodes is increased, adding
more links between rich nodes of different rank. In step 4, mildly rich nodes with a degree k ∈ [4, 9] are connected to nodes with a degree
larger than k = 9. The average degree of G at the different steps varies from 〈k〉 ≈ 4.2 to 〈k〉 ≈ 4.9.

deviations from the mean of the null model. In other words,
we state that a network has a functional rich club if the flow of
information between nodes with high degree is significantly
easier compared with the whole network and with a null
model, which we choose to be a sample from the configuration
model [51] with the same degree sequence as G.

Figure 1 is a summary of a simple construction of a syn-
thetic network with a functional rich club, and Fig. 2 is a
summary of its functional and structural rich-club organi-
zations. For the structural part, we show both the Z score
of the original rich-club coefficient φ(k), indicated as φZ (k)
(see Sec. III), and the rich-club ratio ρ(k) of (2). A de-
tailed description of the model and its building steps can be
found in Sec. III. The network has a very strong organization
of its nodes in four equally sized ( N

4 = 64) communities.
At the beginning these communities are very weakly con-
nected, through random edges between low-degree nodes and
through regular connection patterns between the four rich-
est nodes in each group, referred to henceforth as the rich
nodes. This is enough for observing a (weakly significant)
structural rich club for k > 15, according to ρ(k) in Fig. 2(c),
while, functionally, the average distance between rich nodes
is significantly larger compared with the configuration model,
especially for 4 < t < N

4 . Adding more links between the rich
nodes strengthens the structural rich club and brings the rich
nodes nearer in the diffusion space at small time scales, i.e.,
t < 4 ≈ 〈k〉, the average network degree. Finally, a functional
rich club for k � 25 emerges when we connect rich and mildly
rich nodes. It is also interesting to observe that for small

time scales, say, t < 5, the structural and functional Z scores
display a similar but not identical behavior. Thinking about
the embedded chain of our continuous-time random walk, i.e.,
a classical discrete-time random walk on the network, one
observes that for t = 1 a random walker can only reach the
first neighbors of the initial node, and so, one could expect
the two rich clubs to be the same. However, a more attentive
look reveals a subtle but non-negligible difference: If the
structural rich-club coefficient φ(k) is proportional to

∑

k j>k
k j ,

disregarding of the rest of the network, the average distance
between nodes with degree larger than k always accounts for
all edges going out from those rich nodes. In particular, if
two random walkers starting in two distinct rich nodes both
have a nonzero probability of going into a third nonrich node,
then this will decrease their reciprocal diffusion distance. On
the other side, if two rich nodes are directly linked but have
otherwise disjoint first neighborhoods, then the posterior dis-
tribution of the random walker being in any node after one
step will be almost localized in the two neighborhoods and,
consequently, the diffusion distance of the two nodes will be
high.

This simple toy network suggests that the global network
structure plays an important role in shaping and conditioning
the information flow among hubs: If these belong to distinct
communities in which they are, having high degree, deeply
rooted, despite the presence of direct links between them, the
diffusion is hindered, resulting in higher distances in the diffu-
sion space with respect to the null model, where the structures
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FIG. 2. The emergence of a functional rich club. (a) The functional rich-club coefficient, (b) Z score of the structural rich-club coefficient,
and (c) the ratio ρ(k) for the model in Fig. 1 during its building steps. The dashed lines in (a) and (b) enclose 95 and 99% of the standard
normal distribution. Points outside these ranges are sufficiently extreme deviations from the mean behavior of the configuration model, which
allow as to claim that G has a strong functional (or structural) rich club. Structurally, there is a clear club of mildly rich nodes, i.e., for degree
k ∈ [8, 12], at all steps (only weakly at step 1, according to φZ ), whereas at first the diffusion distances between nodes of degree k � 10 are
significantly larger than expected, due to the strong partition into communities of the model. In step 4, adding connections between rich and
mildly rich nodes has a negligible effect on the structural rich club for degrees k ∈ (10, 20), while it considerably changes the functional
panorama: A significant functional rich club emerges at high values of k, and the functional shape of the network is more persistent across
scales.

are destroyed. To answer our previously asked questions, we
have shown that a network can have a significant structural
rich club and lack a functional rich club [Fig. 2(b), steps 2
and 3]. Vice versa, in the presence of bridges and many short
(even if not direct) paths between hubs, the diffusion among
them may be eased sufficiently enough to form a functional
rich club [Fig. 2(a), step 4].

Now that we can quantify the functional rich-club phe-
nomenon and have identified some basic mechanisms allow-
ing for its emergence, let us move on to real networks and
more realistic network models.

B. Unraveling the functional rich-club organization
of empirical networks

From previous studies [34,37], networks representing so-
cial and collaboration relationships display the (structural)
rich-club phenomenon, and so we look at the results of the
functional rich-club analysis on the unweighted 2010 Network
Scientists network [52,53], a coauthorship network with 522
nodes, where two scholars are linked if and only if they wrote
at least one paper together, which are summarized in Fig. 3. At

a local scale t = 1—recall that the continuous-time random
walk has exponential waiting times with rate 1 [8]—there
is no significant functional organization of the rich nodes
into a club; see Fig. 3(d), although for k = 20, 21 the aver-
age distance between nodes of degree of at least 20 or 21
is almost two times smaller than expected by chance (i.e.,
according to the average of the configuration model). Also,
the structural coefficients ρ(k), φZ (k) detect a strong rich club
at k = 19, 20, as can be seen in Figs. 3(c) and 3(d). As time
increases, the diffusion between rich nodes (k � 18) is sig-
nificantly supported by the presence of longer paths between
them, leading to strong evidence of the functional rich-club
phenomenon. In Figs. 3(a) and 3(b) we show the structural and
the extended functional rich clubs for k � 20, respectively.
More specifically, in Fig. 3(b) we fix t = 2 and highlight all
the nodes in the network which are not farther than the max-
imum observed distance in the rich club, i.e., max(Dt |�20),
from each rich node. We call this the metric neighborhood
of the rich nodes. In addition to the eight rich nodes, this
neighborhood contains 30 other nodes with varying degree,
which may belong to small and dense communities of or
connecting the rich nodes, such as, for instance, the nodes
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FIG. 3. The 2010 Network Scientists network. (a) Its structural rich club, where nodes with a degree equal to or larger than 20 are colored
and labeled. (b) All the nodes which are in the same (metric) neighborhood as the rich nodes. These nodes are not rich themselves, but
contribute to the diffusion among rich nodes. (c) The rich-club ratio ρ(k) = φ(k)

〈φ(k)cm〉 . For k > 15 the structural rich-club coefficient is larger
than 1, indicating the presence of a rich club, with a peak for k = 20, while for larger values of the degree the rich club is not so evident. (d) The
functional rich-club coefficient (coeff.) as in (6), as a function of the degree k and diffusion time t ; the dashed line corresponds to the Z score
of the structural rich club φZ (k). Dashed horizontal lines delimit the ranges [−1.95, 1.95] and [−2.575, 2.575], which enclose 97.5 and 99%
of the standard normal distribution, respectively. There is strong evidence of a functional rich club for k > 15 at different time scales t . For
k = 20 the average core diffusion distances are more than three standard deviations smaller than the distances in the cores of the configuration
model. Unlike its structural counterpart, the functional rich club is clearly present also for richer nodes, i.e., k > 20.

around Newman or the community to which Barabási, Jeong,
Oltvai, and Vicsek belong. Interestingly, there is also a small
clique, consisting of Boguñá, Pastor-Satorras, and Vespignani,
that is topologically, at one step, disconnected from the rich
nodes (see Fig. S2 in the Supplemental Material [54] for the
completely labeled neighborhood subnetwork). To summa-
rize, in the diffusion space the rich nodes are close to each
other not only because of their direct connections, but also
because of the presence of different small structures (bridges,
cliques, and dense communities) supporting diffusion.

The same holds for other real networks, such as the connec-
tome in the Drosophila’s medulla and the worldwide airports
network, while the protein-protein interaction (PPI) network
of the Plasmodium falciparum has generally no rich club, as
shown in Figs. 4(a)–4(c). These networks, details about which
and references to which are reported in Table I, have been
analyzed along with network models. Figures 4(d)–4(f) show
the functional rich-club coefficients for the Barabási–Albert
(BA) [56], the Erdős-Rényi (ER) [57], and the Lancichinetti-
Fortunato-Radicchi (LFR) [58] models; others can be found
in the Supplemental Material. All the synthetic networks have

N = 256 nodes, and their parameters have been chosen to
result in an average degree 〈k〉 ≈ 12 (see the Supplemental

TABLE I. Real networks. Size of and references for the real
networks analyzed in this paper. We considered different types of bi-
ological networks: an interactome—the protein interaction network
of the malaria parasite Plasmodium falciparum (others can be found
in the Supplemental Material)—and a connectome. An instance of an
infrastructural network is given by the worldwide airports network.
This is the reduced version, with 965 airports out of the over 4000
airports of the complete network, proposed in Ref. [5].

2010 Network
Scientists

Plasmodium
PPI Connectome Airports

Nodes (n) 552 1179 1170 965
Edges (n) 1318 2481 8905 33349
Average
degree 〈k〉 4.8 4.2 10.1 69.1

Refs. [52,53] [59,60] [55,61] [3,5]
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FIG. 4. The functional rich clubs of real and synthetic networks. See Table I for details of the data sets. (a) The protein-protein interaction
network (PPI) of Plasmodium falciparum has no persistent functional rich-club organization, while (b) the connectome in the Drosophila’s
optical medulla [55] and (c) the worldwide air transportation network [5] have a clear functional rich club at different scales, i.e., diffusion
times t . Synthetic networks are generated from three models: (d) Barabási-Albert (BA), (e) Erdős-Rényi (ER), and (f) Lancichinetti-Fortunato-
Radicchi (LFR). These networks have 256 nodes each and an average degree of around 5; nevertheless, their different structural features are
reflected in their functional rich-club organizations: The BA network has a significant functional rich-club at the highest values of k, while the
ER network is not different from the null model. The LFR has a clear community structure and lacks the functional rich-club organization;
however, as nodes become richer, their average core distance grows more than expected by chance.

Material for details); notwithstanding, they have very dis-
tinctive characteristics, which are reflected in their functional
organization. BA networks have a heterogeneous degree dis-
tribution with hubs, and these form a functional rich club.
As expected, the nodes in ER networks are neither closer to
each other nor mutually more distant than by chance. Finally,
the LFR model, which is characterized by the presence of
both hubs (heterogeneous degree distribution) and communi-
ties with different sizes, further confirms our conjecture that
networks with a clear community structure lack a functional
rich-club organization. However, we can see in Fig. 4(f) that as
nodes become richer, their average core distance grows more
than expected by chance.

To conclude, we have shown that not only the absence of a
structural rich club, but also the presence of clear mesoscale
structures, does not facilitate or even hinders the diffusion
between rich nodes. Indeed, functional organizations of nodes
into communities, cores, and rich-clubs are competing at some
scales. Furthermore, the frequent claim that systems which
need to integrate information processed in segregated sub-
systems display the rich-club phenomenon finds here further
support.

III. THEORY

The diffusion distance [6] between two nodes i, j ∈ G is
defined as

Dt (i, j; T) = ||p(t |i) − p(t | j)||2, (4)

where t > 0 is the diffusion time, T is the transition matrix
of the (discrete-time) embedded jump chain of the particular
continuous-time random walk under consideration, and p(t |i)
indicates the probability vector whose kth component pk (t |i)
is the probability of finding the random walker at node k at

time t given that it started at node i at time t = 0 with prob-
ability 1. Defining the random walk normalized Laplacian
as L̃ = I − T, the continuous-time random walk evolves ac-
cording to the equation ṗ(t ) = −p(t )L̃ and, with the previous
initial condition pi(0) = 1, the transition probability at time t
is given by pk (t |i) = (e−L̃t )ik . In this paper, the random walker
always follows a classical random walk, i.e., T = D−1A, so
we drop the transition matrix from (4), simplifying the nota-
tion to Dt (i, j).

A. Average core diffusion distance

At each t > 0 we have a distance matrix Dt , whose i jth
entry is given by (Dt )i j = Dt (i, j), and we know from Ref. [8]
that the pairwise distances are bounded in [0,

√
2], but as

t → ∞, assuming the network is connected, Dt (i, j) → 0
since the posterior probability vector will tend to the invariant
or stationary distribution. Hence we need to remove the effect
of the whole network, and we do so by standardizing the
distances: Firstly, we compute the average μ(Dt ) and standard
deviation σ (Dt ) of the diffusion distances over the whole
network and then compute the pairwise standardized distances

D̃t (i, j) = Dt (i, j) − μ(Dt )

σ (Dt )
. (5)

Now, D̃t (i, j) is zero on average with unitary variance, and
may take negative values. As a matter of fact, if D̃t (i, j) < 0,
then i and j are closer to each other with respect to the average
pairwise distance of the network. Moreover, the magnitude
|D̃t (i, j)| tells us how far (i.e., how many standard deviations)
this distance is from the mean network distance. Henceforth,
we drop the “tilde notation” for the standardized distances,
since there is no ambiguity being that all distances are stan-
dardized with respect to the network distribution.
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For each node degree k, we consider {Dt (i, j) : i, j ∈
G, ki, k j � k} and compute the average over this set, which
we henceforth indicate as μ(Dt |�k ) and refer to as the av-
erage core diffusion distance, or simply the core distance of
G at level k. Observe that μ(Dt |�k ) is not a statistic, since
{D̃t (i, j) : i, j ∈ G, ki, k j � k} is not a random sample; in-
stead it is a measure of the diffusion closeness of the nested
subnetworks of G.

This needs to be compared with a null model, so let us take
a sample G1, . . . , Gn from the configuration model [51] with
the same degree sequence as the network G under study. In
this paper, we mostly fixed n = 30, except for the toy model
in Figs. 1 and 2, where n = 50. For each realization Gi, we
compute the diffusion distance at the same time scale and
repeat the same standardizing procedure. We then collect the
set of core distances for each Gi, put them together in a unique
large sample, and finally compute its sample mean m(Dcm

t |�k )
and standard deviation s(Dcm

t |�k ).

B. The functional rich-club coefficient

We define the functional rich-club coefficient, FRCCt,k ,
in terms of a standardized distance from the configuration
model. Since we would like to observe positive values when
the network G under study has smaller core distances than the
null model, we take

FRCCt,k = m
(
Dcm

t |�k
) − μ(Dt |�k )

s
(
Dcm

t |�k
) , (6)

which quantifies how far the average network core distance
is from the average configuration model core distance, in
units of the standard deviation of the configuration model core
distances. One advantage of using standardized scores is that
they can be compared without worrying about scales: We can
compare the FRCCt,k at different diffusion times, and if we
standardize the structural rich-club coefficient, we can also
compare the two rich-club organizations. The Z score for the
structural rich-club coefficient is evaluated similarly (but with
inverted sign):

φZ (k) = φ(k) − m(φcm(k))
s(φcm(k))

. (7)

C. Model of a functional rich club

In Figure 1 we presented one possible model of synthetic
network with a functional rich-club organization. Here, we
describe in detail the four construction steps and the rationale
behind them. To build a synthetic (unweighted and undi-
rected) network with a defined and controllable functional
rich-club, we need two main ingredients: hubs, i.e., nodes with
high degree, and a connectivity that supports diffusion among
rich nodes. So we start with four subnetworks G1, . . . , G4,
with 64 nodes each, generated from the BA model (with
m = 2), which, at step 1, are connected very loosely. Nodes
inside each community are ranked in decreasing degree order,
and we call the top four ranking nodes in each group the rich
nodes.

Rich nodes with the same rank are then connected either (i)
in a ring, i.e., the rth-ranking node ri in the community Gi is

connected to the rth-ranking node ri+1 ∈ Gi+1 for i = 1, 2, 3
and r4 links to r1, or (ii) in a cross, with r1 connected to
r3 and with r2 connected to r4. We name this connectivity
pattern “rings and crosses.” Rings are placed among nodes
of rank r = 1, 3, and crosses are placed among nodes of
rank r = 2, 4 (see Fig. S1 in the Supplemental Material).
Additionally, five random edges link the five lowest degree
nodes of each pair of distinct communities. Of course, build-
ing a clique between rich nodes would add a lot of short
paths between them and, consequently, decrease their pairwise
diffusion distances. Unfortunately, this is not realistic and,
although it guarantees a clear structural rich club, it is not
enough to obtain a strong functional rich club at different
scales, because of the mesoscale organization of the nodes into
well-separated communities. At the second and third steps,
inter-rank links between rich nodes are added in order to
create paths of length larger than 1 between rich nodes. At
step 2, in particular, the first-ranking node of each group Gi is
linked at random with (i) two fourth-ranking nodes outside Gi

and (ii) one third-ranking node of a group chosen at random in
{G1, . . . , G4} \ {Gi}, indicated henceforth as G \ Gi, and, sim-
ilarly, one second-ranking node in G \ Gi. In the same manner,
at step 3, the second-ranking node of each group connects ran-
domly to two third-ranking nodes and to one fourth-ranking
node of the other groups. Finally, at step 4 we compute the
75th and 90th percentiles of the degree distribution, corre-
sponding to k0.75 = 4 and k0.9 = 8, and we place ten edges
between ten nodes with a degree k > k0.9 chosen at random
inside group Gi to ten nodes with a degree k0.75 � k � k0.9

chosen at random in G \ Gi. The average degree of G at the
different steps varies from 〈k〉 ≈ 4.2 to 〈k〉 ≈ 4.9.

IV. CONCLUSIONS

Many empirical networks are not static, and connections
are purposefully created or destroyed to achieve a particular
function, such as driving people or goods through a transporta-
tion network, processing an external stimulus in the brain,
or, in general, exchanging information. Hence the interplay
between structure and function has to be taken into account
when ascribing a particular functional output to an observed
structural pattern. Although the rich-club phenomenon is
found in different types of systems and is considered respon-
sible for the rapid exchange and integration of information,
its definition is purely structural, assuming that communica-
tion follows preferentially and exclusively the shortest paths
connecting rich nodes. Shortest paths and their lengths play
undoubtedly a key role in the communication between the
units and, ultimately, in the function of a system, where,
indeed, the observed short average path lengths are achieved at
a cost and are not the consequence of randomness. Similarly,
shortest paths cannot be the unique reservoir for pathways
of information flow and other communication strategies, and
descriptors based on them should complement our network
analyses.

In this paper, we fill this gap by tackling the rich-club
phenomenon from the functional perspective of diffusion
geometry, a framework to investigate the latent geometry
induced by network-driven processes, asking whether rich
nodes are closer in the diffusion space than expected by
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chance. From the analysis of our toy model and synthetic
networks, we have shown that the structural rich-club orga-
nization does not translate seamlessly into function, because
the existence of communities can hinder the diffusion between
rich nodes despite the one-link paths connecting them. Re-
markably, we have shown that a strong functional rich club
may emerge without a structural counterpart (e.g., the airports
network for large degrees), or with a weak structural coun-
terpart (the 2010 Network Scientists network), because the
diffusion geometry at not too local time scales integrates the
structural information of longer paths so that these contribute

to an efficient diffusion between nodes. With these results, we
foresee the potential of this framework if extended to other
communication mechanisms which lie in between routing and
broadcasting and are important to many real systems.
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