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Real- and Fourier-space observation of the anomalous π mode in Floquet
engineered plasmonic waveguide arrays
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We present a joint experimental and theoretical study of the driven Su-Schrieffer-Heeger model implemented
by arrays of evanescently coupled plasmonic waveguides. Floquet theory predicts that this system hosts for
suitable driving frequencies a topologically protected edge state that has no counterpart in static systems, the
so-called anomalous Floquet topological π mode. By using real- and Fourier-space leakage radiation microscopy
in combination with edge and bulk excitation, we unequivocally identify the anomalous Floquet topological π

mode and study its frequency dependence.
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Introduction.—Floquet engineering, i.e., the time-periodic
perturbation of an otherwise static lattice system by an exter-
nal drive, is a powerful method to create and study topological
phases of matter [1–5]. The underlying idea is that the mod-
ulation dynamically couples and hybridizes eigenstates of the
static system whose eigenfrequencies differ by multiples of
the modulation frequency and by that modifies the spectrum
of the system. By choosing proper driving conditions, the
resulting Floquet band structure can feature a qualitatively
different character than the original band structure [6]. In
particular, the modulated system can possess nontrivial topo-
logical properties even though the underlying static system
is trivial [7–9]. What is even more remarkable, topological
insulators created by time-periodic driving, so-called Floquet
topological insulators, can show topological properties that
have no complement in static systems. For instance, period-
ically driven, two-dimensional (2D) lattices can feature chiral
edge states despite vanishing Chern numbers of the bulk Flo-
quet bands [7,8,10].

The Su-Schrieffer-Heeger (SSH) model [11], i.e., a one-
dimensional tight-binding lattice with staggered hopping
amplitudes J1 and J2, has attracted considerable interest as
a simple yet topologically nontrivial system [12]. For static
hopping amplitudes, its spectrum consists of two bands sep-
arated by a gap of width 2|J1-J2|. Depending on the choice
of the unit cell (either J1 > J2 or J1 < J2), the model features
two dimerizations with different Zak phases [13]. By virtue
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of chiral symmetry, these dimerizations correspond to two
topologically distinct phases. As a consequence of the bulk-
boundary correspondence principle, each interface between
two domains of different topology supports a topologically
protected edge state with zero energy.

Periodic modulation of the hopping amplitudes splits the
original band structure of the undriven SSH model into in-
finitely many equivalent copies (Floquet replicas) spaced by
the driving frequency ω (here and in the following we set h̄ =
1) [4,14]. Besides the zero-energy gap, the driven SSH model
can feature additional gaps between the Floquet replicas of the
bands. In the high-frequency regime, these band gaps trivially
arise since ω is larger than the widths of the bands. Driving
induced gaps can, however, also evolve at lower frequencies
for which the Floquet replicas spectrally overlap. In this case,
the modulation hybridizes states at the boundary of the Flo-
quet Brillouin zone (FBZ) and, hence, lifts their degeneracy
[4,14]. For suitable driving frequencies, if the topological
invariants of the hybridizing bands have different values, the
resulting gap can host a topologically protected edge state, the
so-called anomalous Floquet topological π mode. In contrast
to the zero-energy mode of the undriven SSH model, it has a
quasienergy E = ±ω/2, i.e., it is located at the boundary of
the first FBZ (FFBZ). Note, that such modes can only arise
in driven systems because the band gaps supporting them are
due to periodicity in quasienergy of the Floquet spectrum.
Following theoretical predictions [14–17], the anomalous
Floquet topological π mode has recently been observed in
real space by microwave near-field experiments performed
on a metallic array of coupled corrugated waveguides [18]
and at optical frequencies in a non-Hermitian waveguide
lattice [19].

In this paper, we present a joint experimental and the-
oretical study of the driven SSH model with time-periodic
coupling constants. We unambiguously identify the anoma-
lous Floquet topological π mode by its localization at the
system boundary in real space as well as spectroscopically
by its characteristic energy of half the driving frequency,
±E = ω/2. Our experimental implementation of the model
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FIG. 1. (a) Sketch of the driven SSH model with time-periodic
coupling constants J1(t ) and J2(t ) modulated with frequency ω.
(b) Scanning electron micrograph of a plasmonic waveguide array
used to implement the driven SSH model. The blue dashed line
marks the boundary of the excitation region, and the red dotted boxes
indicate the position of the grating couplers deposited onto the input
waveguides.

is based on evanescently coupled dielectric-loaded surface-
plasmon polariton waveguide arrays (DLSPPWs) operating at
near-infrared frequencies [see Fig. 1]. Based on the mathe-
matical equivalence of the paraxial Helmholtz equation and
the time-dependent Schrödinger equation [20,21], the spatial
surface plasmon polariton (SPP) evolution in such a waveg-
uide array can be mapped onto the temporal dynamics of an
electronic wave packet in the corresponding one-dimensional
SSH model. Effects of different driving frequencies are stud-
ied using leakage radiation microscopy [22] as the detection
technique, which gives us the opportunity to not only observe
the intensity distribution of the modes in real space, but also
image their momentum-resolved spectra. The experimental
findings are supported by numerical calculations based on the
Floquet formalism.

Model.—In the following, we consider the periodically
driven SSH model with time-dependent coupling constants
[see Fig. 1(a)]. The corresponding Hamiltonian can be written
as [12]

Ĥ (t ) =
∑

s

J1(t )â†
2sâ2s+1 + J2(t )â†

2s+1â2s+2 + Hc., (1)

where â†
s (âs ) is the creation (annihilation) operator acting at

the lattice site s. The inter-/intracell hoping amplitudes J1/2(t )
are real valued, periodic functions of time with frequency
ω = 2π/T , where T is the period of driving. In the fabricated
samples, we sinusoidally vary the separation between neigh-
boring waveguides [see Fig. 1(b)]. Since the mode overlap has
an exponential dependence on the spacing between neighbor-
ing sites, we write the hopping amplitudes as

J1(t ) = J0e−λ[1−sin(ωt )], (2a)

J2(t ) = J1(t − T/2), (2b)

where λ characterizes the exponentially decaying mode over-
lap. This coupling scheme where the two coupling amplitudes
have the same period-averaged value, has been chosen in order
to close the band gap at zero quasienergy [see Fig. 2]. In this
way, we intentionally eliminate the zero-energy topological
edge state also found in the static SSH model.

FIG. 2. (a) Calculated frequency-dependent quasienergy spec-
trum with assigned weights in the case of single-site excitation at the
edge. Calculations were performed for N = 50 unit cells. (b) Topo-
logical invariant νπ as a function of the driving frequency. (c) The
same as (a) but with excitation in the bulk.

The Hamiltonian of the driven SSH model is periodic in
time, Ĥ (t + T ) = Ĥ (t ) so that the Floquet theory lends itself
to the theoretical analysis [4,23–25].

According to Floquet’s theorem, solutions of the time-
dependent Schrödinger equation, i ∂

∂t |ψ (t )〉 = H (t )|ψ (t )〉, can
be expanded in a set of Floquet states [4],

|ψα (t )〉 = exp(−iεαt )|uα (t )〉. (3)

where εα is the quasienergy of the state, |uα (t + T )〉 = |uα (t )〉
is the associated time-periodic Floquet mode, and α is the
mode index. The quasienergies are determined only up to
integer multiples of ω, hence, the εα restricted to the first
Floquet Brillouin zone [−ω/2, ω/2) define all unique Flo-
quet states. As immediately follows from the time-dependent
Schrödinger equation, the quasienergies are solutions of the
following eigenvalue problem:(

Ĥ (t ) − i
∂

∂t

)
|uα (t )〉 = εα|uα (t )〉. (4)

Due to temporal periodicity of the Hamiltonian and the
Floquet modes, they can be expanded into Fourier series
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with Ĥ (t ) = ∑
n e−inωt Hn and |uα (t )〉 = ∑

n e−inωt |un
α〉, re-

spectively. Substitution of these series into Eq. (4) yields the
time-independent Floquet equation,

(H0 − h̄ω)|un
α〉 +

∑
m �=0

Hm|un−m
α 〉 = εα|un

α〉 (5)

for all integer Floquet indices n, m. As a result, our
one-dimensional time-periodic system is represented as a
(1+1)-dimensional time-independent system whose spectrum
is composed of infinitely many equivalent copies (Floquet
replicas) described by H0 and coupled with each other by
means of Hm, m �= 0. Equation (5) can be solved numeri-
cally by introducing a cutoff index m′ such that |un

α〉 = 0 for
|n| > m′ [26].

The complete solution of the Schrödinger equation can be
written as

|
(t )〉 =
∑

α

Cα

∑
n

exp(−iεn
αt )|un

α〉, (6)

with εn
α = εα + nω. The constants Cα depend on the ini-

tial condition and can be calculated as Cα = 〈uα (0)|
(0)〉.
The temporal Fourier transform of Eq. (6) yields |ψ (E )〉 =∑

α,n Cα|un
α〉δ(E − εn

α ). Therefore, the normalized spectral
weight at quasienergy E = εn

α is given by

|ψ (εn
α )|2 = |Cα|2〈un

α|un
α〉. (7)

Numerical Calculations.—Figure 2(a) depicts the calcu-
lated spectral weights of the wave function injected at t = 0 at
the outermost site (s = 0) in dependence on the quasienergy
and the driving frequency from the experimentally achievable
range ω ∈ [0.3J0, 1.75J0]. Here, we assume a lattice size of
N = 50 unit cells, J0 = 1, λ = 3.02, and all energies are given
in units of J0, similar to Ref. [27].

The quasienergies εα were obtained by solving the trun-
cated version of Eq. (5). The color coding in Fig. 2(a) indicates
the spectral weight from Eq. (7), calculated for a state |
(t )〉
[Eq. (6)] with initial conditions chosen such that the bulk
and the spatially localized edge states can be populated
simultaneously.

The number of topological π -edge modes is given by the
value of a topological invariant νπ [16] which characterizes
the two bands with avoided crossing in two adjacent Floquet
zones. In Fig. 2(b) we show νπ computed for the π mode
between the zeroth and the first Floquet zones. It shows that
the anomalous π modes, marked by arrows in Fig. 2(a), appear
in the frequency range where νπ = 1.

We start our discussion with the high-frequency regime
(ω > 1.0J0). As mentioned above, the spectrum has no gap
at zero quasienergy for the chosen driving scheme [see
Fig. 2(a)]. Instead, we observe gaps between the different
Floquet replicas of the bands formed by the bulk modes since
the driving frequency is larger than the width of the bands. In
the following we concentrate on the so-called π gap between
the n = 0 and the n = 1 replicas. In accordance with the pre-
vious calculations [14,17], we observe in the high-frequency
regime no midgap state and zero value of the topological
invariant [see Fig. 2(b)], hence, can conclude that the system
is topologically trivial in this case.

When lowering the driving frequency, the π gap opens
and closes repeatedly. This occurs whenever a new pair of
Floquet replicas gets into or out of resonance at the boundary
of the FBZ. As the Zak phase acquires a π -phase shift on
this occasion, the π gap repeatedly switches its topological
character [4,14]. In particular, between the first and the second
gap closing points (0.32J0 < ω < 1.0J0), the π gap becomes
topologically nontrivial (νπ = 1 in this frequency interval)
and hosts a midgap state [white arrows in Fig. 2(a)], i.e., the
anomalous Floquet topological π mode. If we excite the sys-
tem in the middle of the array, i.e., in the bulk, the anomalous
Floquet topological π mode is absent in the spectrum [see
Fig. 2(c)]. This is a consequence of the exponential local-
ization of the anomalous Floquet topological π mode at the
edge (see below). For specific frequencies, e.g., ω = 0.47J0,
the widths of the bands collapse almost completely, and we
expect dynamic localization of wave packets also in the bulk
[17,28]. We note that this effect is not of topological nature
but a consequence of the vanishing group velocity for these
specific frequencies [17,26].

The left-hand side of Fig. 3 depicts the calculated temporal
evolution of the probability density |ψ (s, t )|2, where ψ (s, t ) is
the projection of |ψ (t )〉 onto the lattice sites s for three charac-
teristic driving frequencies and single-site excitation either in
the bulk (x0 = N/2) or at the edge (x0 = 0) of the lattice. The
absolute value squared of the 2D Fourier transform |ψ (k, E )|2
yields the corresponding momentum-resolved spectra plotted
on the right-hand side. Based on auxiliary finite element cal-
culations, we assume a global damping rate of γ = 0.098J0

for all modes to account for the ohmic losses inherent for
propagation of SPPs. Note, that such homogeneous losses
only cause the exponential decay of the probability den-
sity in real space and spectral line broadening in Fourier
space but otherwise do not alter the systems dynamics. For
ω = 1.3J0 and excitation in the bulk [see Fig. 3(a)], the tempo-
ral evolution of the probability density is governed by ballistic
spreading of the wave packet. The asymmetry with respect to
the x axis is a result of the initial condition that effectively
breaks space and time-inversion symmetries [26]. The cor-
responding momentum-resolved spectrum is composed of a
set of Floquet bands with almost linear dispersion and band
gaps at the FBZ boundaries [see Fig. 3(b)]. Excitation at the
edge of the lattice also leads to ballistic spreading of the wave
packet over time without an indication of localization at the
boundary [see Fig. 3(c)]. Since we excite in this case exclu-
sively states moving in +x direction, the momentum-resolved
spectrum contains only Floquet bands with positive slope [see
Fig. 3(d)].

If the driving frequency is lowered down to ω = 0.7J0 and
the system is excited in the bulk, the temporal evolution of the
probability density [see Fig. 3(e)] and the momentum resolved
spectrum [see Fig. 3(f)] show similar characteristics as in the
high-frequency case discussed above. In contrast, excitation
at the edge leads to a qualitatively new feature for this driving
frequency. The temporal evolution of the probability density
shows that a large fraction of the excited population remains
localized to the edge and is periodically exchanged between
the two outermost sites [see Fig. 3(g)]. In the corresponding
momentum-resolved spectrum, new modes with quasienergies
E = ω/2 ± nω appear as bright horizontal lines in the middle
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FIG. 3. Calculated temporal evolution of the probability density |ψ (s, t )|2 (left) and corresponding momentum resolved spectra |ψ (k, E )|2
(right) for different driving frequencies and single-site excitation at the position x0 either in the bulk or at the edge lattice site. All
calculations were performed for the periodically driven SSH model with N = 50 unit cells. (a)–(d) High-frequency regime (ω = 1.3J0).
(e)–(h) Intermediate-frequency regime (ω = 0.7J0). (i)–(l) Low-frequency regime, dynamic localization (ω = 0.5J0). The white scale bars in
the real-space data indicate the corresponding driving period T whereas the scale bars in the spectra show 2ω. In the spectra excited in the
bulk, the arrows point to the locations of the band gap, whereas for the edge excitation they highlight the anomalous π mode.

of the band gap [see Fig. 3(h), black arrow]. This is exactly
the expected signature of the anomalous Floquet topological
π mode [18].

For ω = 0.5J0 and bulk excitation, the momentum-
resolved spectrum is composed of nearly flat bands [see
Fig. 3(j)]. In the time domain [see Fig. 3(i)], this is connected
with a very slow spreading of the wave packet, i.e., dynamic
localization. In the case of edge excitation, we again observe
the anomalous Floquet topological π mode identified by time-
periodic oscillations of the population at the edge of the lattice
[see Fig. 3(k)] and its spectral position at the boarder of
the Floquet Brillouin zone [see Fig. 3(l)]. Thus, at this partic-
ular frequency the spectrum consists of equidistant horizontal
lines separated by ω no mater whether the excitation takes
place at the edge or in the bulk.

Experimental Methods.—In order to test the theoretical
predictions, we perform experiments on arrays of DLSPPWs.
Based on the quantum-optical analogy [20,21], the propa-
gation distance along the waveguides (z axis) takes the role
of time. Accordingly, the real-space SPP intensity I (x, z)

corresponds to the probability density |ψ (x, t )|2, and the
Fourier-space SPP intensity I (kx, kz ) correlates with the spec-
trum |ψ (k, E )|2 decomposed in the momentum components
in the different Brillouin zones [29].

The samples were fabricated by negative-tone grayscale
electron-beam lithography [30,31] and consist of arrays of
poly(methyl methacrylate) ridges deposited on a microscope
coverslip covered with 5 nm of chromium (adhesion layer)
and 60 nm of gold. Figure 1(b) shows a micrograph of a typ-
ical waveguide array used in our experiments. The width and
height of the waveguides are 350 and 130 nm, respectively.
The periodic modulation of the coupling constants is imple-
mented by sinusoidally varying the center-to-center distance
between neighboring waveguides. The mean center-to-center
distance between adjacent waveguides and the modulation
amplitude are chosen to be d = 1.7 and A = 0.5 μm, respec-
tively. We note that the variation of the effective refractive
index due to the curvature of the waveguides can be ne-
glected because of the strong confinement of the SPPs in the
waveguides, i.e., we can set the on-site potential V0(t ) ≈ 0.
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FIG. 4. Measured real-space (left) and Fourier-space (right) SPP intensity distributions for different driving frequencies and single-site
excitation at the position x0 either in the bulk or at the edge waveguide. (a)–(d) High-frequency regime (T = 20 μm corresponding to frequency
ω = 1.3J0). (e)–(h) Intermediate-frequency regime (T = 40 μm corresponding to frequency ω = 0.7J0). (i)–(l) Low-frequency regime (T =
50 μm corresponding to frequency ω = 0.5J0). The white scale bars in the real-space data indicate the corresponding driving period T whereas
the scale bars in the spectra show 2ω. In the Fourier-space images, the arrows indicate the predicted band gaps for excitation in the bulk, whereas
for the edge excitation they highlight the location of the anomalous π mode.

Combining an auxiliary experiment with two waveguides (not
shown) and finite element calculations, we determine that the
coupling constants vary between J0 = 0.24 and 0.0006 μm−1

for these parameters. Different driving frequencies are real-
ized by varying the modulation period T . For the chosen
average center-to-center distance and modulation amplitude,
the modulation periods T = 20, T = 40 and T = 50 μm cor-
respond to the driving frequencies considered above in the
calculations, i.e., ω = 1.3J0, ω = 0.7J0, and ω = 0.5J0, re-
spectively. A short section of straight waveguides in front
of the modulated part serves as an excitation region [part
on the left hand-side of the blue vertical line in Fig. 1(b)]
that contains the grating couplers deposited on the outermost
waveguide and on a waveguide in the interior of the array [see
red boxes in Fig. 1(b)].

Experimental Results.—Real- and Fourier-space images of
the SPP intensity distributions are recorded by leakage ra-
diation microscopy [22]. For this purpose, SPPs are excited
by focusing a TM-polarized laser beam with λ0 = 980-nm
wavelength onto the chosen grating coupler. An oil immer-
sion objective (Nikon 60×, numerical aperture NA = 1.4

Plan-Apo) is used to collect the leakage radiation as well
as the transmitted laser beam. The latter is filtered out by
a knife edge placed in the intermediate back focal plane
(BFP) of the objective. The leakage radiation is imaged onto a
scientific complementary metal-oxide semiconductor camera
(Andor Marana). The real-space SPPs intensity distribution is
recorded at the real image plane whereas the Fourier-space
intensity distribution is acquired by imaging the BFP of the
oil immersion objective.

The measured real-space and Fourier-space SPP intensity
distributions presented in Fig. 4 qualitatively confirm the pre-
dictions of the numerical calculations. In the high-frequency
case (ω = 1.3J0), we observe, regardless of the excitation po-
sition, ballistic spreading of the wave packet in the real-space
intensity distributions [bulk: Fig. 4(a); edge: Fig. 4(c)] without
an indication of localization. As discussed above, the initial
conditions lead to an imbalance between modes propagating
in the +x and −x directions. The main feature of the related
Fourier-space distributions, which correspond to the momen-
tum resolved spectra, are sets of bands with nearly linear
dispersion separated by band gaps [bulk: Fig. 4(b); edge:
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Fig. 4(d)]. We note that in any realistic experiment, in addition
to ohmic losses, the propagation of SPPs is inevitably associ-
ated with extra losses due to leakage radiation and imperfec-
tions of the metal film. As a result, the bands show additional
line broadening in comparison to the numerical calculations
shown on the right-hand side of Fig. 3. We note in passing
that the curved spectral feature in the low-kz region can be
attributed to the excitation of free SPPs on the bare gold film.

For ω = 0.7J0 and edge excitation, we observe a localized
mode at the array boundary in real space that is absent in
the corresponding intensity distribution for the bulk excita-
tion [compare Figs. 4(e) and 4(g)]. In Fourier space lowering
the driving frequency leads to shrinkage of the Floquet Bril-
louin zone, which together with the aforementioned additional
broadening hampers clear resolution of the band gap. In order
to identify the edge mode we, therefore, concentrate on the
brightest part of the spectrum in the first BZ. In the case of the
bulk excitation in Fig. 4(f) one sees the reduced intensity close
to k = 0 exactly at the position where the numerical calcula-
tions shown in Fig. 3(f) predicted the occurrence of the band
gap (indicated by the arrow). Similar to the high-frequency
regime, the bands with a positive slope are predominantly
populated. In contrast, in Fig. 4(h) the brightest line of the
spectrum has no slope indicating the spatial localization of
the corresponding mode. Notably, the band gap at k = 0 is
no longer visible (see the black arrow), which suggests that
this line should lie inside the gap. Comparing to numerical
calculations in Fig. 3(h), we conclude that these spectral fea-

tures can only correspond to the sought anomalous Floquet
topological π mode.

The anomalous Floquet topological π mode can be also
seen for ω = 0.5J0 and edge-excitation [real space: Fig. 4(k);
Fourier space: Fig. 4(l)]. In the case of bulk excitation, we also
observe in real space a strongly suppressed spreading of the
wave packet [see Fig. 4(i)] that corresponds in Fourier space
to nearly flat bands [see Fig. 4(j)]. Based on the discussion of
the numerical calculations, we attribute this phenomenon to
dynamic localization.

Summary.—In conclusion, we presented a joint exper-
imental and theoretical study of the periodically driven
Su-Schrieffer-Heeger model implemented by evanescently
coupled plasmonic waveguide arrays with periodically vary-
ing coupling constants. Calculations of the spectral density
allow to predict different driving frequency regimes with dis-
tinct localization behavior. Our main finding is the spatially
and spectrally resolved observation of the anomalous Floquet
topological π mode by leakage radiation microscopy in the
optical range. Additionally, we demonstrated dynamic wave-
packet localization in the bulk for suitable driving conditions
such that the bulk bandwidth collapses. The experimental
findings agree well with the numerical calculations based on
the Floquet theory.
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