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Resilience of parity-violation-induced chiral selectivity to nonequilibrium temperature
fluctuations in open systems
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We consider the sensitivity of chemical reactions, able to undergo spontaneous mirror symmetry breaking,
to chiral bias in the presence of nonequilibrium temperature fluctuations and derive a selectivity criterion.
For this, we estimate the magnitude of fluctuations δk in chemical reaction rate constants k arising from the
nonequilibrium temperature fluctuations δT about a mean value T . To leading order, the relative rate constant
fluctuations δki/ki for each reaction i are given by the product of the activation enthalpy �H‡

i /RT for the ith re-
action multiplied by the relative rms temperature fluctuations δTrms/T . The latter are determined by the system’s
specific heat at constant volume: CV . We test this criterion with simulations carried out for an open-flow fully
reversible Frank model, and for a range of parity-violating energy differences (PVED) within the theoretically
estimated upper and lower bounds. Depending on the relative magnitudes of the deterministic PVED bias and
the temperature fluctuations, the PVED bias can either (i) select the final stable chiral outcome deterministically
or (ii) select one of two possible stable chiral outcomes with an asymmetric statistical weighting. For larger
temperature fluctuations, the PVED bias loses its selectivity, and the final stable chiral outcomes are stochastic
and equally probable. This paper points towards the possible design of small volume chemical flow reactors
capable of detecting the elusive PVED bias in bulk systems, provided other sources of fluctuations can be
sufficiently controlled and attenuated.
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I. INTRODUCTION

The homochirality of biological molecules is a basic sig-
nature of life and is based on a remarkable spatial asymmetry,
namely, on one of the two enantiomers of chiral sugars and
chiral amino acids. Enantiomers are molecules with identical
chemical structure but the mirror images of which are not su-
perimposable. This biological homochirality was discovered
by Pasteur in 1857, but its origin (or perhaps origins) still
remains elusive after more than 170 years and has spurred
an intense research activity nurtured from the investigations
made in the fields of chemistry and physics [1]. According to
Crick, “The first great unifying principle of biochemistry is
that the key molecules have the same hand in all organisms”
[2]. The primordial nature of the origin of mirror symmetry
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breaking at the molecular level, which through subsequent
amplification and chirality transfer through chemical transfor-
mations leads to the dominance of one hand over the other,
can be either chance or deterministic. The former includes
the inherent statistical compositional fluctuations about the
ideal racemic configuration (perfect mirror symmetry), ther-
mal fluctuations, and also external noise. The latter refers
to a physical chiral influence which creates an enantiomeric
imbalance, or bias, in an otherwise achiral composition [1]. Of
all possible chiral influences, only the parity-violating weak
interaction is universal, in that it exists for matter everywhere
in space, and for all times subsequent to the symmetry break-
ing transition from a putative grand unified model down to the
standard model of particle physics [3].

Parity violation in the weak interaction was first suggested
to be the origin of this biological chirality already in the
1960s, thus determining the preference of the enantiomers
selected by nature, that is, the D sugars and the L amino
acids [4,5]. The associated parity-violating energy difference
(PVED) has been studied and calculated in recent years, and
the estimated value of the parity-violating energy shift (EPV)
between enantiomers (pairs of single molecules of opposite
handedness), based on electroweak quantum chemistry, is sev-
eral orders of magnitude smaller than current experimental
resolution [6]. This is the situation in so far as individual
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chiral molecules are concerned. However, this does not rule
out the possibility of being able to detect a physical chiral
bias induced by PVED, and on the level of bulk macroscopic
chemical systems. Chemical reaction systems based on enan-
tioselective autocatalysis are able to undergo mirror symmetry
breaking and lead to a stochastic (random) distribution of
chiral signs (i.e., left or right handed outcomes) between ex-
periments, due to the stochastic distribution of signs in the
inherent fluctuations. In contrast, a physical chiral polarization
(such as PVED, polarized light, or hydrodynamic vortices in
three dimensions) can select deterministically the final sta-
ble chiral sign, provided the chiral bias can overcome the
opposing random fluctuations. In either situation, the mirror
symmetry breaking, whether it be random or deterministic, is
a joint collective property of the bulk macroscopic system.

The sensitivity of nonequilibrium chemical systems to
symmetry breaking influences, in the presence of chiral fluc-
tuations in the chemical composition and at the critical point
of the bifurcation, was investigated in detail by Kondepudi
and Nelson decades ago [7,8]. Those pioneering studies were
concerned with fluctuations in the numbers of molecules,
while keeping both the temperature T and the volume V
constant. Nevertheless, far from equilibrium open systems are
subject to fluctuations in the temperature, the volume, and the
number of chemical species [9,10]. In particular, temperature
fluctuations are always present to some degree in all systems,
and these lead directly to fluctuations in the reaction rate
constants. It is therefore important to explore their impact on
chemical systems able to undergo symmetry breaking tran-
sitions, and to be able to characterize the sensitivity of such
systems to deterministic chiral influences and bias. In contrast
to those previous studies, we do not assume the chemical
system to be located exactly at its critical point, nor that it
necessarily passes through its critical point, say under the con-
tinuous variation of some external parameter. We do consider
a system which is located initially in a nonequilibrium racemic
configuration, and at some arbitrary finite distance from the
putative critical point without implying a purposeful or delib-
erate adjustment or variation of external parameters. Such an
initial condition is determined by the model parameters, the
reaction rate constants, the flow rates and the initial chemical
compositions, etc. That is, we envisage that a chemical sys-
tem with enantiomers may well start off in a state of ideal
racemic composition, which could be a stable nonequilibrium
stationary state (NESS, i.e., racemate) or an unstable one, or
even a nonstationary state, but without necessarily having had
to transit through any critical point, in analogy to the analy-
sis of spontaneous mirror symmetry breaking in the absence
of chiral bias, where the system is initially located on the
unstable racemic (or, thermodynamic) branch. We thus aim
to consider the chiral selection problem in this more general
setting, and under the influence of a PVED competing with the
omnipresent random temperature fluctuations. The latter in-
volves taking into account fluctuating reaction rate constants.
The corresponding noise is therefore multiplicative.

Bifurcation theory applied to the chiral symmetry breaking
problem in molecular systems has revealed important dis-
tinctions regarding the stability in the presence or absence
of physical chiral interactions [7,8]. In the absence of such
interactions, and provided the system is out of equilibrium,

the racemic (thermodynamic) branch can become unstable,
due to the increase in the entropy production in being far from
equilibrium. The slightest fluctuation thus perturbs the system
so as to evolve to one of two otherwise equally probable final
stable scalemic states. Which final state the system ends up in
is determined solely by the chiral sign of initial random fluc-
tuation. While each such individual outcome is scalemic, the
average over the ensemble of these stochastically distributed
scalemic outcomes yields a net racemic outcome. By marked
contrast, in the presence of a physical chiral interaction, the
racemic configuration is no longer an unstable stationary state,
but instead now lies within the basin of attraction of only
one of the two final stable scalemic branches. This is because
in the presence of a chiral bias, the thermodynamic branch
is no longer racemic, but is now scalemic and also stable
(see Appendix D). Thus, if there were no fluctuations, the
system initiated on a racemic configuration would therefore
always evolve deterministically to one and the same final
stable scalemic state. It is in this sense that the deterministic
chiral interaction, or bias, selects the outcome. However, in
the presence of temperature fluctuations, the chiral bias can
be a good selector of the final scalemic outcome only if it can
overcome the influence of the nonequilibrium fluctuations. In
fact, the chiral bias must be able to overcome the fluctuations
that might otherwise knock the initially racemic configuration
so as to cause the system to evolve in the opposite direction
towards the other stable scalemic branch of the imperfect
bifurcation (see Appendix D).

We analyze in detail the competition between the nonequi-
librium temperature fluctuations and the deterministic chiral
bias imposed by the PVED in enantiomers. We explore nu-
merically the conditions for the PVED to act as a selector of
the final stable scalemic state in the presence of temperature
fluctuations around an initial nonequilibrium racemic config-
uration, and for a range of currently accepted PVED values.
That is, in the presence of temperature fluctuations, we ask
what is the minimum value of the PVED energy difference
required for selecting one of the two possible stable chiral out-
comes? To answer this, we consider a fully reversible Frank
reaction scheme kept out of equilibrium by open flow in a
continuous stirred tank reactor. Moreover, the Frank paradigm
itself (i.e., enantioselective autocatalysis and mutual inhibi-
tion) is known to lie at the heart of the Soai reaction [11], and
hence lessons learned from the competition between fluctua-
tions and chiral bias in a simple enantioselective autocatalytic
model with mutual inhibition provide proof of concept for
analyzing and assessing the chiral selectivity problem in more
intricate experimental and theoretical Frank-paradigm models
that are able to capture the essential mechanistic and kinetic
aspects of the Soai reaction mechanism [12–16].

For a given value of the PVED, its ability to effect sym-
metry breaking consistently in one direction (deterministic
outcome) will be compromised at some critical value of the
root mean square temperature fluctuations. Beyond this value,
the reaction outcome becomes stochastic, just as expected in
the absence of a chiral bias. The aim of this paper is to quan-
tify these noise threshold values, induced in the reaction rate
constants, and for the case of the reaction model employed.

To this end, in Sec. II A we consider how the rate con-
stant fluctuations are driven by those in the temperature.
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Thermodynamic constraints, in Sec. III, play a crucial role
in symmetry breaking, and are broken in the presence of
temperature fluctuations, although the level of breaking is
minuscule, of second order in the relative temperature fluctu-
ation. We next define the open-flow reversible Frank model
and its stochastic version in Sec. IV. This is followed in
Sec. V by a derivation of the PVED selectivity criterion. For
a given reaction, the bias g induced by the PVED in the rate
constant is compared to the temperature induced fluctuation
ξ in that same rate constant. Then selectivity, deterministic
outcome, is expected when g > ξ . This criterion is tested out
in simulations of the stochastic Frank model in Sec. VI, where
the salient results obtained regarding selectivity are discussed
when g > ξ , g ≈ ξ , and g < ξ , and also the residual persistent
bias. Simple order-of-magnitude estimates for the minimum
size of a possible small laboratory scale PVED “detector” are
given in Sec. VII. Discussion is provided in Sec. VIII.

II. RATE CONSTANT DEPENDENCE ON TEMPERATURE
FLUCTUATIONS

A. The Eyring-Polanyi equation

From transition state theory, the rate constant of a reaction
is written as (see, e.g., Chap 9 in [10] and Chap 12 in [17])

k(T ) = kBT

h
e− �G‡

RT
(
M(1−m) s−1

)
(1)

where �G‡ = G0(activated complex) − G0(reactants) > 0
for forward reactions, and �G‡ = G0(activated complex) −
G0(products) > 0, for reverse reactions, that is, the free
energies of activation (see, e.g., typical reaction coordinate
diagrams [17]). R is the gas constant and T is the mean
temperature. Since at temperature T the molecules have
energies given by a Boltzmann distribution, one can expect
the number of collisions with energy greater than �G‡ to

be proportional to e− �G‡

RT . We write the units, where M is
the molarity and m is the molecularity of the reaction, e.g.,
m = 1, 2 for unimolecular, for bimolecular, etc. [17]. The
preexponential factor can be readily calculated; thus, for
example, at room temperature,

kBT

h
= (1.3881 × 10−23 J K−1)(300 K)/(6.626 × 10−34 J s)

= 6.25 × 1012 s−1. (2)

Consider temperature fluctuations T ± δT , such that
| δT

T | � 1. Then, expanding k(T ) for small relative temper-
ature fluctuations | δT

T | � 1 we find (see Appendix A) to
leading order

k(T ± δT ) = k(T )

{
1 ± �H‡

RT

δT

T
+ O

[(
δT

T

)2]}
, (3)

where �G‡ = �H‡ − T �S‡ relates the activation energy to
the activation enthalpy �H‡ and activation entropy �S‡.

Defining δk(T ) = k(T ± δT ) − k(T ) shows that the rela-
tive fluctuations in the rate constants are given by

δk(T )

k(T )
� ±�H‡

RT

δT

T
. (4)

The relative fluctuations in k are directly proportional to the
relative fluctuations in T , and the proportionality factor is the
transition state enthalpy of activation for the specific chemical
reaction in question, divided by RT .

To estimate the characteristic amplitude of the tempera-
ture fluctuations, we use the following result from statistical
physics [18] for the mean square temperature fluctuation (see
Appendix B):

〈(δT )2〉 = kBT 2

CV
(5)

⇒ δTrms ≡
√

〈(δT )2〉 =
√

kB

CV
T, (6)

δTrms

T
=

√
kB

CV
, (7)

where CV is the specific heat at constant volume and δTrms the
root mean square. The time-dependent temperature fluctua-
tions, within one standard deviation of the mean value, satisfy
|δT (t )| � δTrms.

We substitute this back into Eq. (3) and find that the corre-
sponding fluctuating rate constant is given by

k[T ± δT (t )] = k(T )

(
1 + �H‡

RT

√
kB

CV
η(t )

)
, (8)

where η(t ) is a uniformly distributed random variable in the
range [−1, 1], a white noise which accounts for the ± sign in
Eq. (3) implicitly.

A few remarks concerning Eq. (8) are in order. The tem-
perature fluctuations are Gaussian distributed according to
Eq. (B7); the width of this probability distribution is charac-
terized by its standard deviation; the latter is also the mean
of the square of the temperature fluctuations [see Eq. (B8)].
The approximation in arriving at Eq. (8) consists in using
this standard deviation to estimate the characteristic scale of
the time-dependent temperature fluctuations, and we consider
the random temperature fluctuations in the range −δTrms <

δT (t ) < δTrms. We implement the latter inequality by writing
δT (t ) = δTrms η(t ), for a uniformly distributed random vari-
able η in the range [−1, 1]. Thus, the overall approximation
consists in considering temperature fluctuations within one
standard deviation of the mean temperature, and approximat-
ing the Gaussian by a uniform distribution (by a step function)
in this range.

The amplitude ξ of the rate constant fluctuations is given
by

ξ = �H‡

RT

√
kB

CV
> 0, (9)

and substituting into Eq. (8) leads to

ki[T ± δT (t )] = ki(T )[1 + ξi ηi(t )], (10)

where we emphasize that both amplitude ξi and noise ηi de-
pend on the ith reaction.

Appendix B reviews the calculation of the nonequilibrium
temperature fluctuations according to a suitable normal distri-
bution [10].
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TABLE I. Estimates of the free energies of activation at T =
300 K.

k (M(1−m) s−1) �G‡

RT �G‡ (kJ/mol)

kd = 10−4 38.67 96.68
k−d = 10−9 50.19 125.47
ka = 102 24.86 62.15
k−a = 10−3 36.37 90.93
k1 = 102 24.86 62.15
k−1 = 10−4 38.67 96.68

B. Some numerical estimates

Temperature fluctuations lead to corresponding fluctua-
tions in the reaction rate constants, and their influence can be
modeled by multiplicative noise. This was assumed to be the
case some time ago [19], except here we give this a funda-
mental physicochemical basis and, even more importantly, we
can actually calculate the magnitude of these fluctuations in
chemical systems in a rigorous fashion (see Appendix B).

Given a rate constant k, we can calculate the corresponding
free energies of activation using the Eyring-Polanyi formula
Eq. (1) since

− ln

(
k

kBT/h

)
= �G‡

RT
. (11)

The values chosen for the forward and reverse rates of di-
rect production kd and k−d , the forward and reverse rates of
enantioselective autocatalysis ka and k−a, and the rates of het-
erodimerization and heterodimer dissociation k1 and k−1 that
were used in the simulations of the Frank model (see Sec. IV)
are collected in Table I, with the corresponding free ener-
gies of activation differences at room temperature. The major
point worth emphasizing here is that, although the individ-
ual rate constants themselves can range over many orders of
magnitude, the associated normalized activation energies �G‡

RT
can nevertheless all be of the same order of magnitude (see
Table I) and therefore, by virtue of Eq. (9), so likewise for
the corresponding noise amplitudes ξ , in the approximation

that �G‡ ≈ �H‡, since the thermodynamic factor
√

kB
CV

is

common to all of them.

III. TEMPERATURE FLUCTUATIONS AND
THERMODYNAMIC CONSTRAINTS

From Eq. (10) we express each individual rate constant
as ki = k̄i[1 + ξiηi(t )] where k̄i is the average value, ξi is the
noise amplitude, 〈ηi(t )〉 = 0, and 〈ηi(t )η j (t )〉 = δi j , the latter
indicating the noise functions for distinct chemical transfor-
mations are independent. Then since 〈ki〉 = k̄i, the ratio of the
average values satisfies

〈ki〉
〈k−i〉 = k̄i

k̄−i
= Keq

i , (12)

where Keq
i is the deterministic equilibrium constant of the ith

reversible reaction. But this may differ from the average of the

fluctuating equilibrium constant, so let us consider

〈
Keq

i (t )
〉 ≡

〈
ki

k−i

〉
=

〈
k̄i(1 + ξi ηi(t ))

k̄−i(1 + ξ−i η−i(t ))

〉

= k̄i

k̄−i

〈
(1 + ξi ηi(t ))

(1 + ξ−i η−i(t ))

〉

= k̄i

k̄−i
〈(1 + ξi ηi(t ))(1 + ξ−i η−i(t ))−1〉

= k̄i

k̄−i

〈
(1 + ξi ηi(t ))

(
1 − ξ−i η−i(t )

+O
(
ξ 2
−i

))〉
= k̄i

k̄−i

〈
1 + ξi ηi(t ) − ξ−i η−i(t )

−ξ−iξi η−i(t ) ηi(t ) + O
(
ξ 2
−i

)〉
= k̄i

k̄−i

(
1 + ξ 2

−i

) = Keq
i

(
1 + ξ 2

−i

)
. (13)

Thus the average of the fluctuating equilibrium constant for
the ith reversible reaction is equal to the deterministic equilib-
rium constant up to corrections of second order in the noise
amplitude for the inverse reaction. For small noise amplitudes,
these second order corrections are negligible compared to
unity. So, for example, for two independent processes which
have identical deterministic equilibrium constants (e.g., the
direct production d of enantiomers and enantioselective au-
tocatalysis a), thus Keq

d = Keq
a , and then the temporal average

implies 〈
Keq

d (t )
〉 = 〈

Keq
a (t )

〉 + Keq
d

(
ξ 2
−d − ξ 2

−a

)
. (14)

The averaged equilibrium constants are equal up to correc-
tions of second order in the noise amplitudes for the associated
inverse processes. Thus T fluctuations do break the detailed
balance constraint Keq

d = Keq
a , although the amount of break-

ing is minuscule.

IV. AN OPEN-FLOW STOCHASTIC FRANK MODEL

We consider a simple open-flow and fully reversible ver-
sion of the Frank model [20] for analyzing the competition
between the temperature fluctuations and the deterministic
chiral bias (PVED). These fluctuations and bias directly af-
fect the rate constants. It is worth remarking that, apart from
playing a privileged role in the modeling of spontaneous
mirror symmetry breaking in chemistry, nowadays the ra-
tionalizations of the Soai reaction [12–15] all consider a
reaction network similar to that of Frank’s original proposal,
namely, first order autocatalysis coupled to a heterochiral re-
action coupling, known as the mutual inhibition step. In these
more elaborate and extended kinetic models, the enantiose-
lective autocatalysis and mutual inhibition are provided by
the involvement of oligomeric intermediates. Moreover, the
thermodynamic scenario for spontaneous mirror symmetry
breaking (SMSB) is that of nonequilibrium thermodynamics.

In the fully reversible Frank model in an open flow reactor
of volume V , an achiral species A flows in at constant con-
centration [A]in, and all species A, L, D, and P flow out with
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FIG. 1. Reversible version of the Frank model in a continuous
open-flow reactor of volume V at mean temperature T , assuming
instant and perfect diffusion of all the species in solution. Achiral
resource A flows in at fixed concentration [A]in; all species A, L, D,
and P flow out with their instantaneous concentrations. The matter
flow maintains the system out of chemical equilibrium. The fluid
volumes entering and exiting the reactor per unit time are the same.

their instantaneous concentrations according to the following
transformations (see Fig. 1):

A + L
ka−⇀↽−

k−a

L + L, A + D
ka−⇀↽−

k−a

D + D, (15)

A
kd−⇀↽−

k−d

L, A
kd−⇀↽−

k−d

D, (16)

L + D
k1−⇀↽−

k−1

P, (17)

∅̄ k f [A]in−→ A, (18)

A
k f−→ ∅, (19)

L
k f−→ ∅, (20)

D
k f−→ ∅, (21)

P
k f−→ ∅, (22)

where k f = q/V , the volumetric flow rate q is in liters per
second, and V is in liters. Equality of the deterministic
equilibrium constants for the direct production (16) and the
autocatalytic steps (15) implies the constraint for the reaction
rate constants [21], and for the associated equilibrium con-
stants [22]:

ka

k−a
= kd

k−d
. (23)

These transformations [Eqs. (15)–(22)] lead to the follow-
ing set of differential rate equations for the concentrations:

d[A]

dt
= −2kd [A] + k−d ([D] + [L]) − ka[A]([L] + [D]) + k−a([L]2 + [D]2) + k f ([A]in − [A]), (24)

d[L]

dt
= kd [A] − k−d [L] + ka[A][L] − k−a[L]2 − k1[L][D] + k−1[P] − k f [L], (25)

d[D]

dt
= kd [A] − k−d [D] + ka[A][D] − k−a[D]2 − k1[L][D] + k−1[P] − k f [D], (26)

d[P]

dt
= k1[L][D] − k−1[P] − k f [P]. (27)

These imply the constraint

d

dt
([A] + [L] + [D] + 2[P]) = k f ([A]in − [A] − [L] − [D] − 2[P]), (28)

and in the steady state the total chemical mass in the reactor is equal to the input mass [A]in:

[A]in = [A] + [L] + [D] + 2[P]. (29)

We next write down the stochastic version of Eqs. (24)–(27), by writing those in terms of the fluctuating rate constants
[Eq. (10)]. This yields the following set of stochastic differential rate equations subject to multiplicative noise:

d[A]

dt
= −kd (1 + ξdLηdL(t ))[A] + k−d (1 + ξ−dLη−dL(t ))[L] − ka(1 + ξaLηaL(t ))[A][L] + k−a(1 + ξ−aLη−aL(t ))[L]2

− kd (1 + ξdDηdD(t ))[A] + k−d (1 + ξ−dDη−dD(t ))[D] − ka(1 + ξaDηaD(t ))[A][D] + k−a(1 + ξ−aDη−aD(t ))[D]2

+ k f ([A]in − [A]), (30)

d[L]

dt
= kd (1 + ξdLηdL(t ))[A] − k−d (1 + ξ−dLη−dL(t ))[L] + ka(1 + ξaLηaL(t ))[A][L] − k−a(1 + ξ−aLη−aL(t ))[L]2

− k1(1 + ξ1η1(t ))[L][D] + k−1(1 + ξ−1η−1(t ))[P] − k f [L], (31)

d[D]

dt
= kd (1 + ξdDηdD(t ))[A] − k−d (1 + ξ−dDη−dD(t ))[D] + ka(1 + ξaDηaD(t ))[A][D] − k−a(1 + ξ−aDη−aD(t ))[D]2

− k1(1 + ξ1η1(t ))[L][D] + k−1(1 + ξ−1η−1(t ))[P] − k f [D], (32)
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d[P]

dt
= k1(1 + ξ1η1(t ))[L][D] − k−1(1 + ξ−1η−1(t ))[P] − k f [P]. (33)

Note there are ten independent one-way (forward and reverse)
reactions in Eqs. (15)–(17), so we must allow for the same
number of independent noise terms η j (t ), each one being mul-
tiplied by a corresponding amplitude ξ j [23], and �H‡

j > 0
is the activation enthalpy of the jth reaction [see Eq. (9) in
Sec. II A]:

ξ j = �H‡
j

RT

√
kB

CV
> 0. (34)

The fluid flow rate k f does not depend on the temperature,
consequently we take it as a fixed parameter. We verify that
the total mass constraint [Eq. (C7)] continues to hold in the
presence of fluctuations.

Regarding the thermodynamic constraint [see Eqs. (14) and
(23)], this is given by〈

Keq
a (t )

〉 = 〈
Keq

d (t )
〉(

1 + ξ 2
−a − ξ 2

−d

)
, (35)

indicating that the averages of the (fluctuating) equilibrium
constants for the direct production (d) and the autocatalysis
(a) are equal up to corrections of second order in the tempera-
ture induced fluctuations of the reverse reactions (see Sec. III).

V. PVED SELECTIVITY CRITERION

To investigate the competition between the deterministic
PVED chiral polarization and thermal noise, we first esti-
mate some numbers. The current theoretical estimates for
the transition state energy difference between enantiomeric
molecules are on the order of ��G‡|300K = 10−13–10−20eV
at room temperature [24]. The constants and conversion fac-
tors needed to convert eV to J and then to J/mol are

R = 8.314 J mol−1 K−1, (36)

NA = 6.022 × 1023 mol−1, (37)

1 eV = 1.602 × 10−19 J (38)

⇒ 1 eV = 9.648 × 104 J/mol. (39)

Hence, using the estimated upper bound we obtain

��G‡|300 K = 10−13 eV (40)

= 10−13 eV ×
(

9.65 × 104 J/mol

eV

)
(41)

= 9.65 × 10−9 J/mol (42)

� 10−8 J/mol, (43)

��G‡

RT
|300 K = 10−8 J/mol

2.5 × 103 J/mol
= 4.0 × 10−12. (44)

Chiral bias explicitly breaks the L ↔ D symmetry in the rate
constants for the autocatalysis and direct production, so we
need to distinguish this fact in the transformations involving
only the L enantiomer from those involving only the D. To do
so, we write kaL, k−aL on the left hand side of Eq. (15) (and
kaD, k−aD on the right), and write kdL, k−dL on the left hand

of Eq. (16) (and kdD, k−dD on the right), keeping all other rate
constants and flow terms unchanged.

Now the ratio of the forward rate constants kaL �= kaD for
the enantioselective autocatalysis [see Eq. (15)] is then given
by (and for the upper bound estimate)

kaL

kaD
= exp

(
− ��G‡

RT

)
(45)

� 1 − 10−12 = (1 − g). (46)

From Fig. 2 we quantify the direct production in terms of
the PVED energy difference as follows. A reasonable approx-
imation is kdL = kdD for the forward rate constants, but with
k−dL < k−dD for the inverse ones (see top right in Fig. 2). It
then follows that

k−dL = exp

(
− ��G‡

RT

)
k−dD (47)

⇒ kdL

k−dL
= exp

(
+ ��G‡

RT

)
kdD

k−dD
(48)

⇒ Kd
L > Kd

D, (49)

the final inequality holding for the equilibrium constants for
the direct production of the enantiomers. Next, we assume
equality between the equilibrium constants for autocatalysis

FIG. 2. Reaction coordinate diagrams corresponding to the
noncatalytic or spontaneous (top) and the autocatalytic (bottom)
reactions, respectively. Left: Reactants, transition states (‡), and
products in the absence of PVED. Right: The effect of the PVED on
the energies of the individual enantiomers L and D and the transition
states. These (minuscule) energy differences ��G‡ > 0 in the enan-
tiomers appear only in those processes involving the enantiomers.
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(Ka) and direct production (Kd ) for each enantiomer sepa-
rately [see also Eq. (23)]:

Ka
L = Kd

L , Ka
D = Kd

D, (50)

⇒ Ka
L = exp

(
+ ��G‡

RT

)
Ka

D, (51)

where the second line follows immediately from Eqs. (48)
and (50). We parametrize the relation between the forward
(and also the reverse) rate constants for the enantioselective
autocatalyses as follows:

kaL = exp
(

a
��G‡

RT

)
kaD (52)

k−aL = exp
(

b
��G‡

RT

)
k−aD (53)

⇒ kaL

k−aL
= exp

(
(a − b)

��G‡

RT

) kaD

k−aD
, (54)

where we must have a − b = 1 according to Eq. (51), whereas
from the diagram in Fig. 2 we have |a| = 1, |b| = 2. The
unique solution is a = −1 and b = −2. Thus, kaL < kaD and
k−aL < k−aD, and we have Ka

L = Kd
L > Ka

D = Kd
D, in accord

with Eqs. (49) and (50).
Considering the current range of theoretical predictions for

the energy difference between enantiomeric molecules, the
above calculations imply, e.g., that

kaL

kaD
= 1 − 10−12, −19 = (1 − g), (55)

and define the range of the dimensionless parameter 10−19 �
g � 10−12, which provides a measure of the chiral bias.

So, to include chiral bias in the (stochastic) rate equa-
tions we make the following substitutions in the first two rate
equations [Eqs. (30) and (31)], and only in the terms that
contain [L], but in no term containing [D] (resulting in three
substitutions):

k−d → (1 − g)k−d , (56)

ka → (1 − g)ka, (57)

k−a → (1 − 2g)k−a. (58)

From Eqs. (3) and (8) for δT k = k(T ± δT ) − k(T ) and
Eq. (55), we estimate the relative magnitude of the time de-
pendent fluctuations induced in the ith rate constant by the
temperature fluctuations,

δT ki

ki
� �H‡

i

RT

(
δT

T

)
rms

= �H‡
i

RT

√
kB

CV
, (59)

and that corresponding to the constant PVED bias g is

δPVED(kL − kD)i

(kD)i
= g. (60)

These considerations point to the following selectivity crite-
rion. That is, when the PVED bias in the rate constant for the
ith transformation is greater than the fluctuations induced in

that rate constant by the ambient rms temperature fluctuations
(in absolute values),

δPVED(kL − kD)i

(kD)i
� δT ki

ki
, (61)

g = ��G‡
i

RT
� �H‡

i

RT

√
kB

CV
= ξi, (62)

then we might rightfully expect that the chiral bias g can
overcome the thermal noise ξi, and therefore selects the final
stable chiral outcome, provided the inequality g > ξi holds for
all the reactions i in which the bias intervenes. This is also
an order-of-magnitude estimate of the energy of interaction
��G‡

i required to produce a macroscopic chiral selection.
This condition [Eq. (62)] can be cast as follows:

��G‡
i

�H‡
i

�
√

kB

CV
. (63)

The left hand side of Eq. (63) is independent of the tempera-
ture; it depends on the ratio of the PVED energy difference to
the activation enthalpy between transition state and reactants
(or products) for reaction i. The right hand side depends on
the temperature through the constant volume heat capacity
CV (T ), and is universal, in that it is independent of the specific
reaction i. According to this criterion, systems composed of
otherwise mirror-symmetric reactions and with sufficiently
large heat capacity CV would have their net chirality sign
selected by the deterministic PVED bias, provided of course
there were no other sources of chiral bias.

Our selectivity criterion, Eqs. (61)–(63), is radically dif-
ferent from the one derived decades ago by Kondepudi and
Nelson [7,8]. Using bifurcation theory, those authors arrived
at the criterion

g >

(
8

27

)(
U

4W

)
〈α2〉3/2, (64)

where α = ([L] − [D])/2 and U and W are specific functions
of the model parameters (rate constants, external clamped
concentrations, etc). For these model dependent prefactors,
Eq. (64) states that the chiral bias g must be greater than the
cube of the rms chiral fluctuation in the composition, 〈α2〉1/2,
and this inequality must hold at the critical point of the bi-
furcation, where the distance between the upper and lower
stable scalemic branches is a minimum (see Appendix D).
This criterion also envisaged that the chemical system could
migrate or evolve starting off on the single stable scalemic
branch below the critical point, and then pass through the
critical point under the variation of an externally controllable
parameter. The inequality is the condition for the system to
remain on the same scalemic branch that it starts off on as it
evolves under the variation of an external parameter.

Our criterion Eq. (62) states that for the chiral bias to be
a good selector, it should be greater in magnitude than the
relative rms temperature fluctuations times a factor propor-
tional to the activation enthalpy for the ith reaction. We also
consider the system to be located initially on a nonequilibrium
racemic configuration (which in the presence of bias is never
stationary), typically above the critical point, without having
had to evolve there via the variation or tuning of any external
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FIG. 3. Characteristic dynamic outcome of deterministic mirror symmetry breaking triggered by a minuscule PVED bias g = 10−19

[Eq. (55)], in the absence of all fluctuations, for the open flow Frank model (see Sec. IV). (a) The evolution of all four chemical species.
(b) The percent of enantiomeric excess ee(%) = ([L] − [D]/[L] + [D]) × 100. The outcome is homochiral in favor of the D enantiomer.
Changing the sign of the PVED bias to g = −10−19 leads to the opposite homochiral outcome, now in favor of the L (not shown). See text for
related comments, the parameter values employed, and also Fig. 7 in Appendix D for a characteristic imperfect (biased) bifurcation.

parameter. Thus, in the absence of fluctuations, the system
would evolve deterministically to the preferred final scalemic
state, because the racemic configuration lies inside the basin
of attraction of the preferred stable scalemic branch (see Fig. 7
in Appendix D).

But sufficiently large temperature fluctuations could well
take the system out of that basin into the basin of attraction be-
longing to the other stable scalemic branch. These two basins
of attraction are separated by an unstable scalemic branch that
lies close to the horizontal axis of racemic configurations (see
Fig. 7 in Appendix D).

The selectivity criterion Eq. (62) is a condition for each
individual rate constant, but not all the rate constants in a
model that can undergo SMSB will necessarily depend on
a bias, as, for example, in achiral transformations such as
mutual inhibition and heterodimer decay into enantiomers
[Eq. (17)]. For such achiral transformations, Eq. (62) cannot
apply since g = 0 for those processes (the transition state is
achiral). Thus the selectivity could be absolute (deterministic)
or partial (statistical); we will see examples of these kinds of
selectivity in the next section.

VI. RESULTS

For the numerical simulations we generate uniformly dis-
tributed random numbers lying in the range −1 � x � 1,
and then use INTERPOLATINGFUNCTION to build continuous
time-dependent noise functions η(t ) based on these random
number sets. The time resolution in these noise functions is
chosen to be equal to the time step �t used in the simula-
tions. From Eq. (10) this then implies that the relative rate
constant fluctuations lie in the range (−ξ, ξ ), which involve
rms temperature fluctuations within one standard deviation
from the mean value [Eq. (7)]. The stochastic differential
equations are integrated numerically using the MATHEMAT-
ICA function NDSOLVE with options MAXSTEPS→ 106 and
WORKINGPRECISION→ 30. All the initial conditions and pa-
rameters are specified with SETPRECISION set to 30. The
outputs using INTERPOLATINGFUNCTION are used to evaluate
the dynamics, the enantiomeric excesses, etc.

Our goal is to focus on the competition between the deter-
ministic PVED bias g and the random temperature fluctuations
ξ in the reaction rate constants, and when the system is
initially situated on a nonequilibrium racemic configuration.
Before dealing with this, we first must ensure that, in the
absence of all fluctuations (including computational noise
from roundoff error) and biases, the system remains on the
unstable racemic branch (see Fig. 7 in Appendix D) during the
full temporal range of the simulations, from t = 0 to 1020 s,
which is more than sufficient for our purposes (the age of
the Universe is on the order of 1017 s). This is achieved by
working with a sufficiently high numerical precision.

Moreover, as we are dealing with both extremely tiny
PVED biases g and minuscule temperature fluctuations ξ , on
orders of magnitude as small as 10−20, we need to employ an
adequate numerical precision in order that such small num-
bers are to remain significant during the full duration of the
simulations, and not be lost in numerical roundoff errors [25].
Hence in our simulations, we have set all model parameters
and initial conditions up to 40 digit working precision, and the
numerical integration scheme (NDSOLVE) employs a working
precision of 33 digits, respectively. This affords an ample and
safe margin in our calculations. Then we have confirmed that,
in the absence of bias and fluctuations, strictly racemic initial
conditions lead to a racemic outcome, and during the full
temporal range employed in all the simulations.

We first consider the effect of a minuscule bias g = 10−19

in the reaction rate constants [Eqs. (56)–(58)] (and zero fluc-
tuations and noise) following Sec. V, which corresponds to
the current minimum theoretical estimate of the PVED [24].
Set all the ξi = 0. The results are shown in Fig. 3. The sys-
tem experiences an imperfect deterministic bifurcation from
an initially racemic composition, or mirror-symmetric state,
to the preferred stable scalemic (it is enantiomerically pure)
branch selected by the sign of g > 0. There is a relatively
short induction period in which both the enantiomers L and D
remain close to their initial concentrations, followed by a burst
in their joint concentrations and corresponding consumption
of the achiral resource A. This is followed by a rapid in-
crease in the production of the achiral heterodimer P, with a
corresponding drop in the still joint concentrations of L and D
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FIG. 4. Distributions of the outcomes from multiple simulations n = 200 of the reaction model. (a) Subject exclusively to chiral bias
g = 10−19 and zero fluctuations ξ = 0. (b) Subject to pure thermal fluctuations ξ = 10−22 and in the absence of any chiral bias g = 0. The red
(blue) column corresponds to total number of final homochiral D (L) states. See text for related comments and Fig. 7 in Appendix D for a
structure of imperfect and perfect bifurcations.

to a level even lower than their initial conditions. The high
level of heterodimer and the low levels of the enantiomers
become jointly unstable, provoking the biased bifurcation in
the enantiomeric concentrations along with a dramatic drop in
the heterodimer concentration, and an increase in the favored
enantiomer (in this case, it is the D). Here, the heterodimer
P gets depleted by virtue of the inverse reaction [Eq. (17)],
and dissociates back into the individual enantiomers. Beyond
the symmetry breaking transition point, the system remains in
this stable chiral NESS for as long as the fluid flow, supplying
the fixed concentration of achiral molecule A to the reactor
[Eq. (18)], is maintained. Here we show the details of the
mirror symmetry breaking transition by plotting the results in
the temporal window 10−3 s � t � 109 s (see Fig. 3).

The reaction model subject exclusively to a minuscule
chiral bias (g = 10−19) and no fluctuations always ends up in
the same final stable homochiral D state. This single outcome
is selected deterministically by the sign of the chiral bias, and
for an arbitrary number of repetitions or trials. This results in a
unimodal distribution [Fig. 4(a)]. In marked contrast, the same
system subject to minuscule thermal fluctuations on the order
of ξ = 10−22 and zero bias (g = 0) leads instead to a stochas-
tic and bimodal distribution of outcomes [see Fig. 4(b)]. The
evolution of the system under temperature fluctuations alone
and for multiple runs shows that the symmetry breaking can
occur at different times (see Fig. 8 in Appendix E).

We now consider the dynamics of the model in the pres-
ence of both temperature fluctuations (see Sec. IV) and the
PVED (Sec. V). We begin by assessing the competition
between the current estimated upper bound on the PVED,
g = 10−12, and the rate constant fluctuations (induced by
the temperature fluctuations) for various orders of magnitude
ranging from below to above the PVED bias. The model
parameters are taken to be as follows: kd = 10−4, k−d =
10−9, ka = 102, k−a = 10−3, k1 = 102, k−1 = 10−4, [A]in =
10−2, and the flow rate k f = 10−3. We initiate all the simula-
tions on the racemic composition: [L]0 = [D]0 = 10−3, with
[P]0 = 10−6 and [A]0 = [A]in. Recall, moreover, that each
effective noise amplitude ξ j results from the product of the ac-
tivation enthalpy factor for the jth reaction, multiplied by the
rms temperature fluctuation [Eq. (34)]. The former depends
on the energetics of the specific chemical transformation,
whereas the latter is universal, being a physical property of

the medium, namely, its heat capacity at constant volume. For
simplicity, we take all ξ j = ξ amplitudes to be the same, actu-
ally a reasonable approximation since the activation energies
�G‡

i
RT are all of the same order of magnitude as implied by the

model’s rate constants (see middle column of Table I).
We carry out a series of n runs. A set of outcomes is shown

in Fig. 5. Depending on the relative values of g and ξ each
individual run 1 � j � n will give rise to a dynamic result
qualitatively identical to that in Fig. 3, where either the L or
the D enantiomer is the majority (actually, 100% homochiral).
We then collect the output of all the n runs in two bins: one for
ee = −1, the other for ee = +1. Depending on the level of the
noise amplitude ξ , the final stationary outcomes are either uni-
modal (deterministic) or bimodal (stochastic), and the latter
may exhibit a significant asymmetric bias induced by PVED.
Figure 5(a) shows the outcome for n = 60 trials using the
noise amplitude ξ = 10−13, ten times smaller that the PVED
value. The resultant unimodal distributions indicate that the
PVED is still an efficient selector of the final chiral sign. This
case is not unexpected as the thermal fluctuations are smaller
than the PVED. In Fig. 5(b), the noise amplitude ξ = 10−12 is
now further increased to be of the same order as the PVED.
Surprisingly, for this case the PVED continues to act as an
efficient selector of the final chiral sign, and the outcomes,
also for n = 60 trials, are still unimodal (deterministic). This
case is more interesting as it shows a certain resilience to the
noise. If we now increase the noise level to ξ = 10−11, an
order of magnitude greater than the PVED, and for n = 120
trials, the outcomes are bimodal (stochastic), albeit indicating
a significant bias for the preferred enantiomer induced by the
PVED [see Fig. 5(c)]. Here, we are at the competition point;
this is the bias which is the key point. Finally, increasing
the noise level yet further to ξ = 10−10, now two orders of
magnitude greater than the PVED bias, and for n = 60 trials,
the outcomes are bimodal (stochastic) and without indicating
any statistically significant preference for either enantiomer
[see Fig. 5(d)]. The PVED bias is washed out by the noise.

We next carry out a series of simulations employing g =
10−17, now five orders of magnitude smaller than the previ-
ous value. The results are shown in Fig. 6, and all for n =
120 independent runs, in varying the noise amplitude from
ξ = 10−18 to 10−15, ranging from an order of magnitude
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FIG. 5. Distributions of the outcome from multiple simulations n of the competition between the PVED [Eq. (55)] and the product of the
rms temperature fluctuation times the activation enthalpy factor ξ j [Eq. (34)]. The level of chiral bias corresponds to g = 10−12. (a) ξ = 10−13

and n = 60. (b) ξ = 10−12 and n = 60. (c) ξ = 10−11 and n = 120. (d) ξ = 10−10 and n = 30. The red (blue) bar centered at −1 (+1) represents
the total number of stationary homochiral outcomes for which the final majority enantiomer is D or L. See text for related comments.

smaller up to two orders of magnitude greater than the PVED
bias. In contrast to the previous case, the now much smaller
value of g fails to act as a deterministic selector of the
final chiral sign even for noise levels an order of magnitude

smaller [Fig. 6(a)], and also for noise levels of the same order
[Fig. 6(b)], since the distributions of the homochiral outcomes
are bimodal, albeit showing significant bias for the preferred
enantiomer. For thermal noises an order of magnitude greater,

FIG. 6. Distributions of the outcome from multiple simulations n = 200 of the competition between the PVED [Eq. (55)] and the product
of the rms temperature fluctuation times activation enthalpy factor ξ j [Eq. (34)]. Chiral bias corresponds to g = 10−17. (a) ξ = 10−18. (b)
ξ = 10−17. (c) ξ = 10−16. (d) ξ = 10−15. The red (blue) bar centered at −1 (+1) represents the total number of stationary homochiral outcomes
for which the final majority enantiomer is D or L. See text for further remarks.
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ξ = 10−16, the PVED bias is still significant [Fig. 6(c)]. But
for noise amplitudes ξ = 10−15 now two orders of magnitude
greater than the PVED, the chiral bias is lost and we recover
a bimodal distribution, statistically indistinguishable from the
case of unbiased equally likely random outcomes [Fig. 6(d)].

Finally, we recall that, in the absence of noise ξ = 0, a
PVED bias as small as g = 10−19 is still a deterministic se-
lector of the outcome [see Fig. 4(a)]. However, even for noise
amplitudes two to three orders of magnitude smaller than
this bias ξ � 10−19, the outcomes are statistically indistin-
guishable from the unbiased random case (i.e., an ideal “coin
toss”), qualitatively similar to the outcomes in, for example,
Figs. 5(d) and 6(d). Thus, a g = 10−19 is probably already a
value smaller than the lower bound on the PVED bias that can
be amplified in the presence of thermal noise.

VII. PVED DETECTOR

We can estimate the order-of-magnitude size for the min-
imum reactor volumes such that the product of the rms
temperature fluctuations [Eq. (7)] times the transition enthalpy
factor [Eq. (9)] for the reaction is less than the value of the
PVED bias g, in accord with our selectivity criterion Eq. (62).

To do so, we evaluate CV for a volume filled with water
(solvent). Consider first a reactor of length scale, or charac-
teristic size, of 1 cm = 10−2 m. The specific constant volume
heat capacity for H2O at room temperature is 4.18 MJ/m3 K.
The corresponding constant volume heat capacity for this
reactor is then

CV = 4.18 × 106 J/m3 K × (10−2 m)3 = 4.18 J/K. (65)

Now the Boltzmann constant kB = 1.380 66 × 10−23 J K−1,
so that from Eq. (7) we have

δTrms

T
=

√
kB

CV
= 3.71 × 10−12

√
J/K√

CV
(66)

= 3.71 × 10−12

√
4.18

= 1.82 × 10−12. (67)

Then from Eqs. (7) and (9), the amplitude of the fluctuation in
a reaction rate constant is

ξ = �H‡

RT

√
kB

CV
= �H‡

RT
(1.82 × 10−12). (68)

The overall magnitude depends on the specific energetics of
the reaction. Assuming, by way of example, that the transition
enthalpy lies in the range 10 � �H‡

RT � 100, then

10−11 � ξ � 10−10, (69)

so that a PVED bias of the order of g � 10−11, 10−10 might
be detectable, with Eq. (62) holding for all reactions involving
the enantiomers.

For a reactor of linear size of 10 cm = 10−1 m, then the
numbers work out to give

ξ = �H‡

RT

√
kB

CV
= �H‡

RT
(5.8 × 10−14), (70)

so that fluctuations on the reaction rate constant lie in the
range

10−13 � ξ � 10−12, (71)

and a homogeneous reactor of this size scale might be able
to detect a PVED bias on the order of g = 10−12, 10−13, for
example. These are both very small, laboratory-size reactors
such as those used in modern microfluidic techniques.

Given the optimal sizes, the spatial homogeneity of the
reactants is desired to suppress concentration gradients and so
reaction noise, due to fluctuations in the numbers of species.
This means we want to operate these reactors in the regime
of the thermodynamic limit. Recall, the thermodynamic limit
corresponds to the infinite-population, infinite-volume, finite-
concentration limit in which the stochastic chemical Langevin
equation (CLE) reduces to the deterministic reaction rate
equations [26]. As the thermodynamic limit is approached, the
deterministic terms on the left side of the CLE grow like the
system size, whereas the noise terms grow more slowly, and as
the square root of the system size. In the full thermodynamic
limit, the reaction noise terms becomes negligibly small com-
pared with the deterministic terms.

Note, in the case of temperature fluctuations, the stochastic
noise terms in Eqs. (30)–(33) are directly proportional to the
reaction rates themselves, and not their square roots, as is the
case of the CLE for reaction noise.

VIII. CONCLUDING REMARKS

In this paper we have shown that the characteristic ampli-
tude of the relative fluctuation δki/ki in the ith reaction rate
constant, driven by nonequilibrium temperature fluctuations,
is given by the product of two distinct contributions, namely,
(i) the activation enthalpy of the reaction (divided by RT )
multiplied by (ii) a thermodynamic factor proportional to the
inverse square root of the heat capacity at constant volume
[Eq. (4)]. The former is specific to the individual reaction
energetics, whereas the latter is a property of the material
composition of the bulk solvent or medium in which the
reaction can take place. This amplitude expression Eq. (34)
combines the individual physicochemical molecular proper-
ties with the system thermodynamics. We can then compare
the magnitude of these temperature induced fluctuations in
the reaction rate constants, for each reaction, with the chiral
bias induced by the PVED in that same reaction. This chiral
selectivity criterion Eq. (62) compares the PVED bias (elec-
troweak quantum chemistry) to the reaction transition state
enthalpy (physical chemistry) and the medium’s specific heat
at constant volume (thermodynamics). All these factors affect
the rate constant.

The simulations indicate the ability of the PVED bias to
act as a good selector of the final stable chiral state depends
on its magnitude and on the relative magnitude of the thermal
fluctuations. This can be explained on the basis of the structure
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of the imperfect bifurcation (see Appendix D). Indeed, an
increase in the value of the PVED bias g translates the unsta-
ble scalemic branch down to more negative values of α < 0
while the bifurcation point (where the unstable and stable
scalemic branches meet) moves towards the right, to larger
values of λc. This leads to a greater vertical distance between
the racemic configuration at α = 0 and the unstable scalemic
branch. Hence it is more resilient to temperature fluctuations.
On the other hand, smaller values of g have the opposite effect,
moving the unstable scalemic branch upwards ever closer to
the racemic configuration at α = 0 and shifting the critical
point λc to the left. Thus the system is now more sensitive to
ever smaller temperature fluctuations about the racemic con-
figuration. The simulations indicate that for PVED biases g
greater than 10−19, the amplification mechanism is resilient to
thermal noise amplitudes ξ as much as an order of magnitude
larger than g.

Temperature fluctuations directly affect the reaction rate
constants, but not the numbers of molecules participating in
the reactions, nor the system volume. The stochastic terms due
to temperature fluctuations [Eqs. (9) and (34)] appearing in
Eqs. (30)–(33) depend on the heat capacity at constant volume
CV , an extensive quantity, depending on system size, and sys-
tem mass. So, we expect the relative temperature fluctuations
decrease as system size increases, since the heat capacity
increases with system size [Eq. (7)]. This is also true to a
certain degree when the material, of which the reaction system
is composed, has a large heat capacity. This latter point should
be taken into account in proposals for possible experiments for
the detection of the PVED as a selector of the chiral sign in
SMSB scenarios. See Appendix B for details on the types of
nonequilibrium fluctuations in open systems.

This in principle, allows us to study bounds on the ab-
solute values of the transition state energies and enthalpies,
mean temperatures, and the system’s constant volume heat
capacities, such that the maximum characteristic rate constant
fluctuation, considering all the reactions i, is smaller than the
constant PVED bias [Eq. (62)]. We then argue that the PVED
bias should be detectable macroscopically in the overall re-
action system, provided other sources of random fluctuations
(e.g., in the particle numbers and in the volume) are quenched,
or controlled and attenuated.

Interestingly, and apart from the still open question of
whether the PVED itself has played any decisive role in de-
termining the handedness of Earth’s biochemistry, our paper
points to a proposal for the design of a PVED detector, or
more generally, a chiral bias detector. This is a special de-
vice operating under a specific regime of parameters, with a
long duration constant flux in an open system. Yet, such an
instrument is theoretically possible, and could be realized ex-
perimentally likely by exploiting small scale fluidic reactors,
where there are no volume fluctuations and for which tem-
perature and particle number fluctuations could be controlled
and monitored. We envisage operation in the thermodynamic
limit, where sufficiently large numbers validates the use of
concentrations, and so suppresses reaction noise.

Our fluctuation analysis and simulation results differ
markedly from those of earlier papers on this subject. First
of all, we consider the competition between PVED selec-
tivity and temperature fluctuations, with respect to an initial

nonequilibrium racemic composition. To ensure the initial
racemic composition, a possibility is to start off without
any flux (closed, batch reactor) and then initiate the flux
rapidly, with a fast start. The results indicate a nonlinear
relationship between the chiral bias and the temperature fluc-
tuations. There is no direct way to relate fluctuations in chiral
composition to temperature fluctuations. That is, even if we
assume the local equilibrium hypothesis [27] and appeal to
the Gibbs-Duhem relation, the latter only relates fluctuations
in temperature to fluctuations in system pressure and to the
overall net system composition, but not to chiral fluctuations
themselves (see Appendix C). Thus, we need to translate δT
into chiral fluctuations, and this requires direct simulation of
the differential rate equations, which are stochastic by virtue
of the fluctuating reaction rate constants.

In closing, we comment on the influence that various fea-
tures may have on the robustness of our selectivity criterion
Eqs. (62) and (63), and how their variability may affect some
of the conclusions drawn in this paper, which uses a specific
reaction model with certain kinetic parameters.

A. The values of the reaction rate constants

In the case of zero chiral bias, the reaction rate constants
employed here place the Frank model on the unstable racemic
branch. In the presence of PVED bias, the system is no longer
located on any branch, but is instead initially within the basin
of attraction of the stable scalemic branch selected by the bias
(see Fig. 7 in Appendix D). The determinant factor for making
the racemic branch unstable (zero bias case) is that the inverse
rate of enantioselective autocatalysis over the forward rate of
heterodimerization is less than unity, that is, k−a/k1 < 1. Note
the latter rate is independent of the PVED bias, as it does
not depend on g, whereas the former does (see Fig. 2). From
Fig. 7 in Appendix D we see that PVED selectivity is rela-
tively more favored the greater the distance between the initial
racemic configuration and the unstable scalemic branch, so
model parameters should be chosen accordingly, and such that
the inequality Eq. (62) is obeyed. Since this distance goes
to zero asymptotically as the system is driven further away
from equilibrium (say, by increasing the flow rate), we expect
PVED selectivity to also decrease in this limit. We have in
fact observed this trend reflected clearly in the simulations
reported in Sec. VI, where taking ever smaller PVED bias
g shifts the initially racemic system closer to the unstable
scalemic branch, making the system increasingly sensitive to
ever smaller fluctuations (diminished selectivity).

B. The noise amplitude and frequency

The temperature fluctuations are modeled by white noise,
characterized by an amplitude and a frequency [Eq. (8)]. The
rms amplitude is determined by the constant volume heat
capacity [Eq. (7)], and so depends on the composition of the
solvent or medium as well as the system size. So, for a given
medium, larger volumes imply smaller amplitude tempera-
ture fluctuations. The noise frequency ω should be chosen
large enough such that ω�t � 1, where �t is the smallest
time step used in the numerical solution of the differential
rate equations. This is done to ensure randomness between
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successive time steps. Smaller frequencies can lead to correla-
tions between consecutive time steps, which could either have
a constructive (reinforcing) or destructive (opposing) role with
respect to the detection of the PVED bias.

C. Compositional vs temperature fluctuations

Fluctuations in the temperature δT are to be distinguished
from compositional fluctuations, or fluctuations in the num-
bers δnα of each species [see also Eq. (B3)]. The latter are
characterized by the CLE, which is itself an approxima-
tion to the more fundamental chemical master equation [26].
Fluctuations in particle number are also known as reaction
noise, and are a consequence of the fact that reactions in-
volve individual molecules. This type of internal noise is
suppressed in the thermodynamic limit, where both species
number and system volume tend to infinity, while holding
the ratio (number/volume), i.e., the concentration, constant.
It is also suppressed in well-mixed homogeneous systems.
Recently, a more involved but closed and kinetically con-
trolled model for the Soai reaction was considered. Those
authors estimated the minimum binding energy difference in
product-initiator complexes required to break chiral symmetry
in the presence of reaction noise (δnα) [28].

D. System complexity

The Frank model involves five reversible reactions
[Eqs. (15)–(17)], but only five independent rate constants (in-
stead of ten) and a flow rate [Eqs. (18)–(22)]. The temperature
fluctuations affect each individual rate constant, whereas the
PVED bias only affects processes involving the enantiomers,
such as direct production and enantioselective autocataly-
sis, but neither the forward nor reverse heterodimerization
nor the flow rate (see Fig. 2). A more involved model with
more reactions will have correspondingly more fluctuating
rate constants. But of these, only a smaller subset will be
independent, as dictated by chiral symmetry and thermody-
namic constraints. Among these rate constants, the PVED bias
only affects those processes involving single enantiomers.
The selectivity criterion is applied to this set. Whether the
bias g can overcome the noise depends on where the sys-
tem is located with respect to the imperfect bifurcation.
This initial position is model dependent; its location can in
principle be determined in terms of the coefficients of the
cubic bifurcation equation in Eq. (D1) in Appendix D (see
also [8]).

E. Molecular modes

The parity-violating energy shift is itself a complicated
function of the molecular geometry, and hence geometric
distortions due to, for example, molecular vibration and ro-
tation modes can lead to an implicit time dependence in the
energy shift [29–31], and so in g. In the present paper, we
assume these conformational fluctuations, about the molec-
ular potential energy minimum, are negligible with respect
to the temperature induced fluctuations in the reaction rate
constants, and so regard the current quantum chemical com-
putation estimates for EPV in molecules to represent the mean
values taken over large ensembles of molecules. This should

be a reasonable approximation for small system volumes, but
large enough for the use of concentrations to be valid, i.e., in
the thermodynamic limit.

F. Current estimates for g

Rough estimates for ξ are difficult to provide since these
depend on the specific chemical reactions involved as well as
on the system’s heat capacity at constant volume. However,
we can summarize briefly the history of the calculations for
g. The possible connection of the PVED with handedness
in biological molecules was first suggested in 1966 [4]. The
theoretical framework for calculation PVED appeared in 1979
[32]. This framework was then used to carry out a “first
generation” of PVED calculations using uncoupled-perturbed
Hartree-Fock on a selection of biomolecules, yielding a g of
order 10−17 [33,34]. The introduction of perturbative coupling
in second generation calculations increased typical PVED
values by one order of magnitude to g = 10−16 [29–31,35].
Larger values of g may be obtained with molecules containing
heavy atoms, and these calculations require using relativis-
tic methods. In the case of the chiral molecule dihydrogen
dipolonide H2Po2, g = 10−9 is one of the highest reported
calculated values for any molecule [36] [after conversion of
EPV(a.u.) to eV and with respect to room temperature]. Polo-
nium (Z = 84) was chosen to demonstrate the higher than
Z5 scaling in the parity-violating energy difference in chiral
molecules [36]. Finally, the asymmetric radiolysis of racemic
mixtures of chiral molecules by spin-polarized electrons from
beta decay, proposed in [4], was given a theoretical framework
in [37]. The estimates from beta decay put g ≈ 10−12, and are
still tentative; for a review see [35].
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APPENDIX A: RATE CONSTANT FLUCTUATIONS

Expanding k(T ) [Eq. (1)] for small relative temperature
fluctuations | δT

T | � 1 leads to

k(T ± δT ) = kB(T ± δT )

h
e− (�H‡−(T ±δT )�S‡ )

R(T ±δT )

= kB(T ± δT )

h
e

(−�G‡±δT �S‡ )
RT

(
1± δT

T

)−1

= kB(T ± δT )

h
e

(−�G‡±δT �S‡ )
RT

(
1∓ δT

T +O
((

δT
T )2

))

= kB(T ± δT )

h
e− �G‡

RT ± δT
T

�G‡

RT ± δT
T

T �S‡

RT +O(( δT
T )2 ))

= kB(T ± δT )

h
e− �G‡

RT e± δT
T

�H‡

RT eO
((

δT
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)2)
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= kBT
(
1 ± δT

T

)
h

e− �G‡

RT

(
1 ± �H‡

RT

δT

T

+ O

((
δT

T
)2

)))

= k(T )

(
1 ±

[
1 + �H‡

RT

]
δT

T
+ O

(
δT

T

)2)
.

(A1)

The coefficient of unity in the brackets [1 + ...] comes from
expanding out the prefactor, but generally the ratio �H‡

RT � 1
will be much greater (see examples in Table I, middle column,
involving the transition energies).

APPENDIX B: TEMPERATURE FLUCTUATIONS
IN OPEN SYSTEMS

The Einstein formula for the probability distribution of
fluctuations in equilibrium

P(�S) = Z−1e�S/kB , (B1)

where �S is the entropy change associated with the fluctu-
ation from equilibrium and Z is a normalization constant,
was established for open nonequilibrium systems by Nicolis
and Babloyantz (see [9,27]), and is valid in the range of the
local equilibrium assumption. Einstein’s formula shows that
from thermodynamic entropy we can obtain the probability
of fluctuations [10]. The entropy change with respect to a
stationary state (NESS) is calculated to be

�iS = −CV (δT )2

2T 2
− 1

T κT

(δV )2

2V

−
∑
i, j

(
∂

∂Nj

μi

T

)
δNi δNj

2
< 0, (B2)

for fluctuations in the temperature δT and the volume δV and
for the molar quantities δNk . Here, we are interested in the
temperature fluctuations in open systems.

Then the probability of a fluctuation in T , V , and Nk is
given by (see Chap 14 in [10])

P(δT, δV, δNi ) = Z−1 exp(�iS/kB) (B3)

= Z−1 exp

[
− CV (δT )2

kB 2T 2
− 1

T κT kB

(δV )2

2V

−
∑
i, j

(
∂

∂Nj

μi

T

)
δNi δNj

2kB

]
. (B4)

The normalization factor is calculated from

Z =
∫∫∫

P(x, y, z) dx dy dz. (B5)

Note, for a single variable X , the normal distribution with
mean ξ = 〈X 〉 and standard deviation σ is [38]

φ(X ) = 1√
2πσ

e− 1
2

(
X−ξ

σ

)2

= 1√
2πσ

e− U2

2 , U =
(

X − ξ

σ

)
. (B6)

Computing P(δT ) from above Eqs. (B4) and (B5) we find

P(δT ) = 1
√

2π

√
kB
CV

T
e
− 1

2

(
CV (δT )2

kB T 2

)
. (B7)

Using these expressions, we calculate the mean square
temperature fluctuation:

〈(δT )2〉 = kBT 2

CV
= σ 2. (B8)

APPENDIX C: GIBBS-DUHEM RELATION

An important result from equilibrium thermodynamics is
the Gibbs-Duhem relation which shows that changes in the
intensive variables T, p, and μk cannot be all independent:

SdT − V d p +
∑

k

Nk dμk = 0, (C1)

where S is the entropy, V the volume, Nk the molar quantity
of kth species, and μk the chemical potential [10].

By using the relative chemical potential [39] (the concen-
tration is Ck = Nk/V ),

μrel
k = RT ln

(
Ck

Ceq
k

)
= RT ln

(
Nk

Neq
k

)
, (C2)

we can calculate the total change in μk to be

dμrel
k =

∑
j

(
∂μrel

k

∂Nj

)
dNj +

(
∂μrel

k

∂T

)
dT (C3)

=
∑

j

(
RT

δ jk

Nk

)
dNj +

(
μrel

k

T

)
dT (C4)

= RT

(
dNk

Nk

)
+

(
μrel

k

T

)
dT . (C5)

Substituting Eq. (C5) into Eq. (C1) yields[
S +

∑
k

(
Nkμ

rel
k

T

)]
dT − V d p + RT

∑
k

dNk = 0. (C6)

This relates fluctuations in the temperature, the pressure, and
the molar amounts of all species involved. If we consider the
NESS, where total chemical mass is constant, the fluctuations
in the molar amounts [Eq. (C9)] are constrained as follows:

[A]in = [A] + [L] + [D] + 2[P] (C7)

⇒ NAin = NA + NL + ND + 2NP (C8)

⇒ 0 = dNA + dNL + dND + 2 dNP (C9)

for fixed input of A (clamped), which implies (and now as-
suming d p = 0)(

S +
∑

k

(
Nkμ

rel
k

T

))
dT = RT dNP. (C10)

So the Gibbs-Duhem relation, which is an equilibrium result,
provides no information relating dT and chiral fluctuations:
the dNp are achiral fluctuations in the molar amount of the
heterodimer. In order to relate dT to chiral fluctuations out of
equilibrium, we must employ the kinetic rate equations, which
is what we have done in the main paper.
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FIG. 7. Solution α(λ) of the bifurcation equation (D1). Red
dashed curves: Perfect bifurcation in the absence of any chiral in-
fluence g = 0. Blue solid curves: The imperfect bifurcation diagram
due to the chiral symmetry breaking interaction g > 0. Note that
the racemic composition, or racemate, (represented by the abscissa
α = 0) is not a stationary solution of Eq. (D1) for g > 0, and hence
does not form part of the imperfect bifurcation diagram. Instead, the
racemate α = 0 lies inside the basin of attraction of the upper stable
scalemic branch (blue).

APPENDIX D: IMPERFECT BIFURCATION DUE TO
CHIRAL BIAS

We review and compare the stability structure of the un-
biased perfect bifurcation, with that of the biased imperfect
bifurcation. From [10], the bifurcation of chiral symmetry
breaking states is described by the following bifurcation
equation:

−Aα3 + B(λ − λc)α + Cg = 0, (D1)

where α = ([L] − [D])/2 is the chiral amplitude; A > 0, B >

0, and C are model dependent coefficients, functions of the
concentrations, and reaction rates; and λ is a parameter rep-
resenting the nonequilibrium constraint on the system (e.g.,
external clamped concentrations, flow rates, etc.). The param-
eter g is a small systematic bias. First suppose there is no
such bias, so g = 0; then the solution of the resultant cubic
equation Eq. (D1) includes the racemic branch α = 0 and
two mirror image stable scalemic branches, α+ > 0 and α− =
−α+ < 0, that bifurcate off the racemic at the critical value
λ = λc (see dashed red lines in Fig. 7), in the plot λc = 1.
For λ < λc the only stationary solution is the stable racemic
branch, whereas for λ > λc the racemic branch becomes un-
stable, and both upper α+ and lower α− scalemic branches
are stable. Which of the two stable scalemic branches the
system evolves to is not deterministic, and cannot be predicted
a priori, but depends on the random fluctuations about the
unstable racemic branch. The outcome is stochastic, with an
equal probability p = 1

2 for the system to end up on either one
of the stable scalemic branches.

In the presence of a small chiral bias g �= 0, the stationary
solutions of Eq. (D1) change qualitatively with respect to the
unbiased case, depicted as shown in Fig. 7, and for g > 0.
First, we note that the bifurcation, or critical point, gets shifted
to the right: λc(g) > λc(0) = 1. This means the bias makes
the upper scalemic branch relatively more stable, in that now
we must drive the system further from equilibrium in order
to have a possibility of a bifurcation. Second, in marked
contrast to the unbiased case (dashed red lines), it is easy to
check that the racemic composition α = 0 is not a solution of
Eq. (D1), for any value of λ, nor does the racemate belong to
the thermodynamic branch. Instead, the upper stable scalemic
α+ > 0 (upper blue curve) is the thermodynamic branch in
the presence of bias. The racemate is not a stationary con-
figuration. Rather, for λ > λc(g) the system possesses three
stationary scalemic branches (the upper and lower ones are
stable, whereas the intermediate one is unstable). The (upper)
scalemic branch favored by the bias exists for all λ, and
tends towards the horizontal axis as the system approaches
equilibrium, as 0 � λ < λc(g).

Moreover, as seen in Fig. 7, the racemic composition (the
horizontal axis α = 0) lies inside the basin of attraction of
the upper stable scalemic branch. Hence, if the system is
initially in a racemic configuration, and in the absence of
fluctuations, it will evolve deterministically to this preferred
stable scalemic branch. The bias selects this chiral branch for
all values of λ, both below and above the critical value. In the
presence of fluctuations, and for λ < λc(g), the system will
evolve to the (upper) stable scalemic branch selected by the
bias, because this branch is the unique stable attractor in this
domain. However, for λ > λc(g) an initially racemic compo-
sition will only be able to evolve to the preferred scalemic
branch if the bias g is able to overcome the temperature
fluctuations around α = 0. Temperature fluctuations lead to
fluctuations in the reaction rate constants (see the main text),
and the latter can lead, through nonlinearities, to chiral fluctu-
ations in the compositions. For the (PVED) bias to be a good
selector, fluctuations must not take the system into the basin
of attraction of the lower stable scalemic branch. This other
basin of attraction is separated from that of the upper stable
scalemic branch by an intermediate unstable scalemic branch
(see Fig. 7). When chiral bias fails to be a good selector, the
system becomes stochastic; however, even for rate constant
fluctuations on the same order of magnitude as the chiral bias
ξ ≈ g, the statistical distribution of the final stable scalemic
outcomes can still reflect an appreciable amount of persistent
and significant bias, and such that the two stable chiral out-
comes are not equally likely. The outcomes follow a binomial
distribution P(n, p; k) where 0 � p � 1 is the probability of
one chiral outcome, and q = 1 − p is the probability of the
alternative chiral outcome but p �= q �= 1/2.

APPENDIX E: SYMMETRY BREAKING DUE TO
TEMPERATURE FLUCTUATIONS

Further details of the evolution of the two enantiomers
under the influence of temperature fluctuations alone show
that the spontaneous mirror symmetry breaking can happen at
different times, a purely stochastic phenomenon. To see this,
it suffices to consider a simpler version of the open flow Frank
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FIG. 8. Dynamic outcome of spontaneous mirror symmetry breaking triggered by pure temperature fluctuations in the rate constants, for
the simplified open flow Frank model [Eqs. (E1) and (E2)]. (a) The evolution of both enantiomer concentrations [L] and [D] starting from
an initial (unstable) racemic configuration for 12 independent runs. (b) The enantiomeric excess ee = ([L] − [D]/[L] + [D]) calculated at
time t = 600 s. In these simulations, D is the majority enantiomer for five runs (ee = −1) and L is the majority for seven runs (ee = +1).
ka(A) = 0.18, k−a = 0.09, k1 = 0.14, initial [L]0 = [D]0 = 0.5, and noise amplitude ξ = 10−6.

model considered in the main text. Essentially, we retain the
reversible enantioselective autocatalysis and the forward rate
of inhibition only. The system is open, as the input value of
[A] is clamped and we remove the inhibition product P. The
steps are

A + L
ka−⇀↽−

k−a

L + L, A + D
ka−⇀↽−

k−a

D + D, (E1)

L + D
k1−→ P. (E2)

For each individual run, the prevailing enantiomer can either
be L or D. Already for a modest number of runs, there is
a “pile-up” of majority and minority enantiomers for times
subsequent to the symmetry breaking bifurcation [Fig. 8(a)].
The best way to tell which enantiomer prevails is to calculate
the enantiomeric excess at an asymptotic time slice; these are
plotted in Fig. 8(b), which exhibits the characteristic bimodal
distribution.
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[19] D. Todorović, I. Gutman, and M. Radulović, A stochas-
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