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Distance between exceptional points and diabolic points
and its implication for the response strength of non-Hermitian systems
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Exceptional points (EPs) are non-Hermitian degeneracies in open quantum and wave systems at which not
only eigenenergies but also the corresponding eigenstates coalesce. This is in strong contrast to degeneracies
known from conservative systems, so-called diabolic points (DPs), at which only eigenenergies degenerate. Here,
we connect these two kinds of degeneracies by introducing the concept of the distance of a given EP in matrix
space to the set of DPs. We prove that this distance determines an upper bound for the response strength of a
non-Hermitian system with this EP. A small distance therefore implies a weak spectral response to perturbations
and a weak intensity response to excitations. This finding has profound consequences for physical realizations
of EPs that rely on perturbing a DP. Moreover, we exploit this concept to analyze the limitations of the spectral
response strength in passive systems. Several optical systems are investigated to illustrate the theory.
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I. INTRODUCTION

Open quantum and wave dynamics and their exotic de-
generacies, so-called exceptional points (EPs), have gained
substantial attention in recent years, primarily in optics and
photonics [1,2]. At an EP of order n, exactly n eigenenergies
(eigenfrequencies) and the corresponding energy eigenstates
(modes) coalesce [1,3–6]. This is very different from a con-
ventional degeneracy, known as a diabolic point (DP) [7], at
which only the eigenenergies coalesce. For an EP to exist, the
Hamiltonian Ĥ has to be not only non-Hermitian Ĥ �= Ĥ†, but
also nonnormal, i.e., [Ĥ, Ĥ†] �= 0.

EPs have been observed in numerous experiments in di-
verse physical systems [8–19]. Several applications of EPs
have been suggested, such as unidirectional lasing operations
[13], orbital angular momentum microlasers [20], sources of
circularly polarized light [21], topological energy transfer be-
tween states [22,23], loss-induced suppression of lasing [24],
mode discrimination in multimode laser cavities [25], and
sensors with enhanced response [26–32].

The sensing applications of EPs (a review can be found in
Ref. [33]) rely on the strong spectral response to perturbations.
A system with an EPn shows an energy (frequency) splitting
proportional to the nth root of the perturbation strength ε [3],
which for sufficiently small perturbations is larger than the
linear scaling near a DP. In Ref. [34], it was shown that the
spectral response to perturbations can be characterized by
the so-called spectral response strength ξ . A large ξ not only
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indicates a large spectral response to generic perturbations but
also a large intensity response to excitations and a large dy-
namic response to an initial deviation from the EP eigenstate.

One convenient way to create an EP is to start with a DP
and to perturb it appropriately [5,35,36]. For instance, opti-
cal modes of ideal whispering-gallery microcavities naturally
come as degenerate pairs of clockwise and counterclockwise
traveling waves. Such a DP can be converted into an EP
by weak local perturbations [13,37,38] or weak boundary
deformations [39,40] without adding extra parasitic radiation
losses. Another example is the efficient transfer of excitations
between energy levels, which is usually done as rapid adia-
batic passage through a DP. Weakly perturbing it maps this
scheme to one based on encircling an EP, which has been
demonstrated experimentally using microwave waveguides
[41]. Another example where EPs originating from perturbed
DPs have been observed is systems of interacting fermions
[42]. Finally, DPs naturally appear in periodic systems as
Dirac or Weyl points in the band structure. These too can be
used to create EPs, which has been done for photonic crystals
[43–46], Dirac superconductors [47], optically biaxial crystals
[14], and for a Hubbard model [48].

The aim of this paper is to introduce the concept of the
distance � between a given EPn and the set of DPs of
the same order n. This distance quantifies the difference of the
n × n Hamiltonians, each exhibiting one of the two different
kinds of degeneracies. We show that � is an upper bound for
the spectral response strength ξ associated with the EP; see
Fig. 1. The important conclusion is that EPs generated by a
small perturbation of a DP necessarily exhibit only a weak
spectral response to perturbations, which renders a number of
applications difficult.

The outline of the paper is as follows. Section II pro-
vides some mathematical preliminaries that are needed for
the subsequent sections. Section III introduces the notion of
the distance between a given Hamiltonian and the set of DPs.
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FIG. 1. Sketch of the distance � (dashed lines) between a given
exceptional point (EP) and the set of diabolic points (DPs) of the
same order (solid line) in matrix space. A key result of this paper
is that, while a system with an EP which is close to a DP shows
only a weak spectral response to perturbations, a system having an
EP with a large distance can exhibit a strong spectral response to
perturbations.

In Sec. IV, the relation to the spectral response strength is
explored. Section V investigates the relevant aspects for pas-
sive systems. Various examples are considered in Sec. VI. A
summary is given in Sec. VII.

II. MATRIX NORMS AND DISTANCES

The aim of this section is to review some aspects of linear
algebra required in this paper.

A. Matrix norms

A matrix norm ||Â|| is defined as a mapping of a matrix Â
to the nonnegative real numbers, see, e.g., Ref. [49], with the
properties:

||Â + B̂|| � ||Â|| + ||B̂|| (triangle inequality), (1)

||αÂ|| = |α| ||Â|| (absolutely homogeneous), (2)

||Â|| = 0, if and only if Â = 0 (definite), (3)

||ÂB̂|| � ||Â|| ||B̂|| (submultiplicative), (4)

for all matrices Â and B̂ and α ∈ C. The nonnegativity of ||·||
follows from the first two items.

Important examples of matrix norms are the Frobenius
norm

||Â||F :=
√

Tr(Â†Â), (5)

with the trace Tr and the spectral norm

||Â||2 := max
||ψ ||2=1

||Âψ ||2. (6)

We adopt the common but slightly confusing notation ||·||2
both for the spectral matrix norm [in the left-hand side (LHS)
of Eq. (6)] and the vector 2-norm ||ψ ||2 = √〈ψ |ψ〉 of a vector
|ψ〉 based on the usual inner product in complex vector space
[in the right-hand side (RHS) of Eq. (6)]. Both matrix norms
in Eqs. (5) and (6) share the important property of unitary
invariance, i.e.,

||Û ÂV̂ || = ||Â||, (7)

for all matrices Â and all unitary matrices Û and V̂ . Moreover,
both matrix norms in Eqs. (5) and (6) are compatible with the

vector 2-norm, i.e.,

||Âψ ||2 � ||Â|| ||ψ ||2, (8)

for all matrices Â and vectors |ψ〉. The following inequality
holds for all matrices Â:

||Â||2 � ||Â||F, (9)

with equality for rank-1 matrices.
The calculation of the Frobenius norm in Eq. (5) is partic-

ularly easy:

||Â||F =
√∑

i j

|Ai j |2, (10)

where Ai j are the matrix elements of Â in any orthonormal
basis. Also beneficial for us is that the Frobenius norm can be
derived from an inner product:

||Â||2F = 〈Â, Â〉F. (11)

The inner product is the Frobenius inner product, see, e.g.,
Ref. [49], of two matrices Â and B̂:

〈Â, B̂〉F := Tr(Â†B̂). (12)

B. Matrix distances

The distance between any two matrices Â and B̂ can be
measured with the distance function (see, e.g., Ref. [50]):

d (Â, B̂) := ||Â − B̂||, (13)

with arbitrary matrix norm. It is easy to show that this distance
function fulfills the usual axioms of a metric:

d (Â, B̂) = 0 if and only if Â = B̂

(identity of indiscernibles), (14)

d (Â, B̂) = d (B̂, Â) (symmetry), (15)

d (Â, B̂) � d (Â, Ĉ) + d (Ĉ, B̂)

(triangle inequality), (16)

for all matrices Â, B̂, and Ĉ. From these axioms, one can
deduce d (Â, B̂) � 0.

It is important to mention that the assumed unitary invari-
ance of the matrix norm in Eq. (7) transfers to the distance
function in Eq. (13).

III. DISTANCE BETWEEN A GIVEN HAMILTONIAN
AND THE SET OF DPs

In the mathematical literature, several matrix nearness
problems had been studied, as reviewed in Ref. [51]. For ex-
ample, one asks the question of how close a given nonnormal
matrix Â is to the set of normal matrices and which normal
matrix B̂ minimizes the distance function such as in Eq. (13).
A rather difficult task is to find the nearest matrix having at
least two equal eigenvalues; see, e.g., Ref. [52]. Our problem
is related but simpler.

We consider an in general nonnormal n × n matrix Ĥ and
a non-Hermitian but normal n × n matrix ĤDP = EDP1 with a
DP of order n with complex-valued eigenvalue EDP and n × n
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identity matrix 1. Note that ĤDP is in the above form in any
orthonormal basis. Using the distance function in Eq. (13), we
define the distance between Ĥ and a given DP by d (Ĥ , EDP1).
The distance between Ĥ and the set of DPs of order n is then
given by

�(Ĥ ) := min{d (Ĥ, EDP1), EDP ∈ C}. (17)

Introducing the traceless part of the Hamiltonian

Ĥ ′ := Ĥ − Ē1, (18)

with the mean energy Ē := TrĤ/n ∈ C, we write

d (Ĥ , EDP1) = ||Ĥ − EDP1|| = ||Ĥ ′ − (EDP − Ē )1|| . (19)

We now choose the Frobenius norm and evaluate with
Eq. (11):

||Ĥ ′ − (EDP − Ē )1||2F = ||Ĥ ′||2F + n|EDP − Ē |2, (20)

where we have exploited 〈1,1〉F = n, 〈1, Ĥ ′〉F = TrĤ ′ = 0,
and correspondingly 〈Ĥ ′,1〉F = 0. Hence, we get

d (Ĥ, EDP1) =
√

||Ĥ ′||2F + n|EDP − Ē |2. (21)

Clearly, this expression is minimal for EDP = Ē , and the min-
imizing ĤDP = EDP1 is unique. Plugging this into Eq. (17)
gives the first result:

�(Ĥ ) = ||Ĥ ′||F. (22)

As the Frobenius norm is unitarily invariant, we can evaluate
the matrix norm in Eq. (22) in an orthonormal basis of our
choice.

From Eq. (10), we can infer that the physical interpretation
of the distance in Eq. (22) is that of an Euclidean distance
defined on an n × n complex matrix space. The matrix space
is usually of higher dimension than the parameter space, i.e.,
the space spanned by the physical parameters relevant for a
given system. However, this disadvantage is outweighed by
the geometric tools provided by linear algebra, such as norms
and inner products.

A small distance �(Ĥ ) means a minor change of the matrix
elements of Ĥ compared with ĤDP. This translates to a small
detuning of the parameters of the system away from the DP.

A. Hamiltonian without an EP

For a nonnormal Hamiltonian Ĥ that does not have an EP,
one can express the distance to the set of DPs in terms of the
biorthogonal basis of the Hamiltonian:

Ĥ |Rj〉 = Ej |Rj〉 and 〈Lj |Ĥ = Ej〈Lj |, (23)

with the right eigenstates |Rj〉 and the left eigenstates |Lj〉;
see, e.g., Ref. [53]. With 〈Lj |Rl〉 = 0 if j �= l and the normal-
ization 〈Lj |Rj〉 = 1 for all j, the biorthogonal expansion

Ĥ =
∑

j

E j |Rj〉〈Lj |, (24)

and Tr(|Rj〉〈Ll |) = 〈Ll |Rj〉, it is straightforward to show with
Eq. (22) that

�(Ĥ ) =
√∑

j,l

(E∗
j − Ē∗)(El − Ē )Ol j, (25)

with the n × n matrix

Ol j := 〈Rj |Rl〉〈Ll |Lj〉. (26)

This matrix is known as the nonorthogonality overlap ma-
trix [53–55]. Its diagonal elements are the Petermann factors
of the eigenstates [56,57], a measure of nonorthogonality.
In Ref. [31], the expression ||Ĥ ′||F (without relating it to a
distance function) has been used to calculate the Petermann
factors for the special case of n = 2.

From Eq. (25), we learn that the distance of the Hamil-
tonian Ĥ to its nearest DP depends on the distance of its
eigenvalues to the DP eigenvalue EDP = Ē and the nonorthog-
onality of its eigenstates. To emphasize, we do not advocate
the use of Eq. (25) for calculating �(Ĥ ). It is much easier to
directly evaluate Eq. (22). Moreover, Eq. (25) is not valid for
Ĥ having an EP. At the EP, the Petermann factors diverge and
the expansion in Eq. (24) is not valid.

B. Hamiltonian with an EP

Next, we consider the more interesting case of an n × n
Hamiltonian Ĥ = ĤEP having an EP of order n with complex-
valued eigenvalue EEP (frequency ωEP for optical systems). It
follows from Ē = EEP that the traceless part of the Hamilto-
nian [Eq. (18)] equals the operator:

N̂ := ĤEP − EEP1. (27)

The matrix N̂ is nilpotent of index n, i.e., N̂n = 0 but N̂n−1 �=
0; see Refs. [3,34,58]. From Eq. (22), for an n × n Hamilto-
nian with an EPn, the important result follows:

�(ĤEP) = ||N̂ ||F. (28)

The distance of an EP to the set of DPs in Eq. (28) can be
related to Henrici’s departure from normality [59]:

D(Â) :=
√√√√||Â||2F −

n∑
j=1

|λ j (Â)|2, (29)

where λ j (Â) are the eigenvalues of the matrix Â. Clearly,
D(Â) �= 0 only if Â is nonnormal. In our case, Â = N̂ from
Eq. (27) has only zero eigenvalues as the matrix is nilpotent.
As a consequence, the distance of a given EP to the set of
DPs in Eq. (28) can be expressed by the departure of N̂ from
normality:

�(ĤEP) = D(N̂ ). (30)

It is known that Henrici’s departure from normality is an upper
bound for the distance of a matrix to the set of normal matrices
[51]. The quantity �(ĤEP) is therefore also an upper bound of
the distance of the matrix ĤEP to the set of normal matrices.

From the physics perspective, we can consider the depar-
ture of N̂ from normality and the distance of an EP to the set
of DPs in many cases as a vague measure of the experimental
effort in realizing the EP when starting at or near the mini-
mizing DP. We come back to this point later when discussing
some examples in Sec. VI.
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IV. RELATION TO THE SPECTRAL RESPONSE
STRENGTH

In Ref. [34], the spectral response strength of a system with
an EP of order n has been determined to be

ξ = ||N̂n−1||2 = ||N̂n−1||F. (31)

The spectral and Frobenius norms give in this particular case
the same result since N̂n−1 has rank 1, which is a consequence
of the nilpotency of N̂ . The spectral response strength is
unitarily invariant. It describes the response of the system to
perturbations:

Ĥ = Ĥ0 + εĤ1, (32)

with Ĥ0 = ĤEP. The spectral response strength shows up as a
factor in the bound of the eigenvalue splittings:

|Ej − EEP|n � ε||Ĥ1||2 ξ, (33)

where higher orders in the perturbation strength ε are ignored.
The scaling of the splittings |Ej − EEP| with the nth root of
ε expresses the enhanced sensitivity of the EP with respect to
perturbations. It is important to mention that ξ also bounds the
intensity response to excitations [34]

||ψ ||EP
2 � P

1

|h̄ω − EEP|n ξ, (34)

where the vector |ψ〉 ∝ exp(−iωt ) is the long-time asymp-
totic of the equation of motion

ih̄
d

dt
|ψ〉 = Ĥ0|ψ〉 + exp(−iωt )P|p〉, (35)

with the excitation power P � 0, the excitation frequency
ω ∈ R, and a generic excitation vector |p〉 normalized to unity.

Comparing Eq. (28) with Eq. (31) reveals that, in the spe-
cial case of an EP2:

ξ = �(ĤEP) for n = 2. (36)

Hence, the spectral response strength associated with the EP2

and its distance to the set of DPs in the Frobenius norm is
the same. This is different for higher-order EPs. With the
submultiplicativity in Eq. (4), we could use

||N̂n−1||F � ||N̂ ||n−1
F (37)

to derive an upper bound for ξ determined by �(ĤEP). How-
ever, a more stringent bound can be obtained by taking
advantage of the nilpotency of N̂ . For a nilpotent matrix N̂
with index n > 2, the following holds [60]:

||N̂k||F � γn,k||N̂ ||kF, (38)

with k = 1, . . . , n − 1 and positive numbers γn,k given by

γ 2
n,k = (n − 1)(n − 2) · . . . · (n − k)

(n − 1)kk!
. (39)

For k = n − 1 we get,

||N̂n−1||F � (n − 1)−(n−1)/2||N̂ ||n−1
F . (40)

This inequality, valid for N̂ being nilpotent of index n > 2,
provides a much sharper bound than inequality (37). Combin-
ing inequality (40) with Eqs. (28) and (31), we arrive at our

FIG. 2. Illustration of a comparison of the maximum energy
(frequency) splitting for an EP2 (red solid curve) according to
inequality (33) with its nearest DP2 (blue dashed line) according
to inequality (42) under a perturbation. The vertical line marks the
critical perturbation strength εc below which the maximum splitting
of the EP is larger.

next crucial result:

ξ �
[
�(ĤEP)√

n − 1

]n−1

. (41)

The spectral response strength associated with the EP is there-
fore bounded by its distance to the set of DPs in the Frobenius
norm. The important implication is: If the EP is generated by a
small perturbation of a DP, then the spectral response strength
of the resulting EP is weak. Clearly, this has a profound impact
on applications such as EP-based sensing. It is important to
mention that this statement remains true if the DP which is
(experimentally) used to generate the EP is not the minimizing
DP. A nonminimizing DP has a larger distance �′ > � to the
EP, but inequality (41) is clearly also valid with � replaced
by �′.

Note that, here, small perturbation means small compared
with a perturbation needed to create another EP (of the same
order) out of a DP. That one has a potentially larger spectral
response strength than the first EP, as illustrated in Fig. 1.

Another implication is that an EP which, under parameter
variation, approaches a DP has a vanishing response strength.
In this sense, a DP is an EP with zero response strength.

Equation (41) can also be seen as an estimate for the
spectral response strength ξ . The calculation of �(ĤEP) is
considerably simpler and faster.

In the context of the response strength of a system with an
EP, the physical interpretation of the nearest DP is that of a
reference. To discuss this, consider the spectral response to
a perturbation εĤ1. For EP-based sensors, it is common to
compare with a related DP which is chosen rather ad hoc
by removing coupling terms in the Hamiltonian; see, e.g.,
Ref. [26]. In contrast to inequality (33), the response of a
system with a DP to a perturbation is (see the Appendix for
a derivation)

|Ej − EDP| � ε||Ĥ1||2. (42)

With the condition EDP = EEP, it is easy to show that the
maximum splitting of the DP in inequality (42) equals the
maximum splitting of the EP in inequality (33), cf. Fig. 2, if

εc||Ĥ1||2 = ξ 1/(n−1), (43)
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assuming that the perturbation is still small enough such that
inequality (33) is valid. This elementary calculation reveals
that the critical perturbation strength εc below which the max-
imum energy splitting related to the EP exceeds that of the
reference DP (which is the nearest DP in matrix space here) is
determined by ξ .

It is mentioned that, for the special case of n = 2, the
distance �(ĤEP) can also be related to the eigenstate response
strength ζ defined in Ref. [34]. It measures the perturbation-
induced change of the eigenvectors with respect to the EP
eigenvector. For an EP2, the simple relation ζ = 1/ξ holds.
With Eq. (36) follows ζ = 1/�(ĤEP). No such relation is
known for n > 2.

V. PASSIVE SYSTEMS

In Ref. [34], it had been shown for the special cases n = 2
and n = 3 that there is an upper bound for the spectral re-
sponse strength ξ in passive (no gain) systems. This upper
bound limits the applicability of the given EP in the sensing
setting. In this section, we derive an upper bound for the
distance � for arbitrary n. With inequality (41), this in turn
generalizes the upper bound for ξ in Ref. [34].

For passive systems, the Hermitian decay operator

�̂ := i(Ĥ0 − Ĥ†
0 ), (44)

is positive semidefinite; see, e.g., Refs. [55,61]. With Eq. (27),
we write

N̂ − N̂† = −i(�̂ − β1), (45)

where we have introduced the real number:

β := −2Im EEP. (46)

Considering the fact that both N̂ and N̂† are traceless because
of their nilpotency [49], one gets

Tr�̂ = nβ. (47)

For a positive semidefinite matrix, Tr�̂ � 0, and hence, β �
0. Taking the Frobenius norm on both sides of Eq. (45) gives

||N̂ − N̂†||F = ||�̂ − β1||F. (48)

In the following, we assume that N̂ is a strictly upper tri-
angular matrix. This can always be achieved by a unitary
transformation of the Hamiltonian ĤEP which does not change
the Frobenius norm; see Eq. (7). According to the Schur
theorem (see, e.g., Ref. [60]), a unitary transformation exists
that transforms the matrix N̂ defined in Eq. (27) to the sum of
a diagonal matrix and a strictly upper triangular matrix. The
former matrix is identical to zero because of the nilpotency of
N̂ . Obviously, if N̂ is a strictly upper triangular matrix, then N̂†

is a strictly lower triangular matrix. With Eq. (10), it follows
for the LHS of Eq. (48):

||N̂ − N̂†||F =
√

2||N̂ ||F . (49)

With Eq. (5) and the Hermiticity of �̂, we can rewrite Eq. (48)
then as

||N̂ ||F = 1√
2

√
Tr[(�̂ − β1)2]. (50)

The positive semidefiniteness of �̂ restricts the maximum
value of the RHS of Eq. (50). It is attained when �̂ is a rank-1
matrix. In this case, �̂ has only one nonzero eigenvalue which,
according to Eq. (47), must be nβ. With Eqs. (28) and (46), the
important result follows:

�(ĤEP) �
√

2n(n − 1)|Im EEP|. (51)

This inequality valid for passive systems shows that the dis-
tance of a given EP to the set of DPs is bounded essentially
by the decay rate at the EP. This bound can be transferred to
the spectral response strength via inequality (41). The next
important result follows:

ξ � (
√

2n|Im EEP|)n−1. (52)

For n = 2, the bound in Ref. [34] for passive systems is
recovered. For n = 3, a slightly lower bound is obtained here.
This improved bound is consistent with the numerical data in
Ref. [34]. To emphasize, Eq. (52) is valid for all n � 2. It is
therefore a generalization of the results proven in Ref. [34].

Note that, for small perturbation strength ε, inequality (52)
together with the bound of the eigenvalue splittings in inequal-
ity (33) provides a much stronger statement than Im Ej � 0,
which must also be fulfilled in passive systems.

The importance of inequality (52) becomes clear by re-
marking that 2|Im EEP| is the linewidth of the spectral peak at
the EP. Hence, the upper bound for ξ in inequality (52) limits
the resolvability of the frequency splittings under perturbation
and therefore the performance of a sensor based on such an
EP.

The result in inequality (52) also has significant con-
sequences for the intensity response of passive systems to
excitations. Consider the DP analog of inequality (34) (see
the Appendix for a short derivation):

||ψ ||DP
2 = P

1

|h̄ω − EDP| . (53)

We compare the response of the two kinds of degeneracies
at resonance, i.e., at the EP [inequality (34)] with h̄ω =
Re(EEP) and at the DP [Eq. (53)] with h̄ω = Re(EDP). Using
inequality (52), we obtain

||ψ ||EP
2

||ψ ||DP
2

� (2n)(n−1)/2. (54)

This inequality tells us how much an EPn can enhance the in-
tensity response to excitation in a passive system if compared
with a reference DPn. For n = 2, the maximal enhancement
factor is 2, which is consistent with the findings in Ref. [62].
For n = 3, the maximal enhancement factor is 6.

VI. EXAMPLES

In this section, we provide several examples to illustrate
our approach.

A. Exceptional ring in wave-number space

Our first example stresses the difference between the com-
monly used parameter space and wave-number space on the
one side and the matrix space discussed in this paper on
the other side. In Ref. [43], it has been shown that EPs can
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be created out of a Dirac point in a photonic crystal slab. The
finite thickness of the slab introduces radiation losses which
are dissimilar for the two involved dipole and quadrupole
modes. The effective Hamiltonian to describe this situation
is

Ĥ =
(

ω0 vg|
k|
vg|
k| ω0 − iγ

)
, (55)

where 
k = (kx, ky) is the two-dimensional wave vector, γ � 0
is the loss rate of the dipole mode (the loss of the quadrupole
mode can be ignored), ω0 > 0 is the frequency of the unper-
turbed Dirac point, and vg > 0 is the group velocity at the
Dirac point. The eigenvalues of the Hamiltonian in Eq. (55)
are

ω± = ω0 − i
γ

2
± vg

√
|
k|2 − k2

c , (56)

with the critical wave number kc := γ /(2vg). In the absence
of radiation (γ = 0), Eq. (56) describes the linear dispersion
near the Dirac point ω± = ω0 ± vg|
k|, the well-known Dirac
cones.

If the loss rate γ is nonzero, even if it is very small, the
system possesses an EP at |
k| = kc. In the two-dimensional
wave-number space (kx, ky) with all other parameters fixed,
this degeneracy therefore appears as a ring of EPs. In the
three-dimensional parameter space (ω0, vg|
k|, γ ), this degen-
eracy is the two-dimensional plane vg|
k| = γ /2. Both the
parameter space and the wave-number space are clearly differ-
ent from the 2 × 2-dimensional complex matrix space where
the distance �(ĤEP) of the EP to the set of DPs is defined.
Here, it is calculated by inserting the Hamiltonian in Eq. (55)
at the EP and its eigenvalue ωEP = ω0 − i γ

2 via Eq. (27) into
Eq. (28):

�(ĤEP) = γ . (57)

This result makes intuitive sense because it is here that the loss
turns the DP into an EP. A small loss rate γ is sufficient, but
according to Eq. (36), the spectral response strength ξ = γ is
then also small. To enlarge the spectral response to perturba-
tions, one has to increase the loss in the photonic crystal slab
by reducing the thickness of the slab which obviously has a
limit.

One remark is in order. The DP from which the ex-
periments starts is Ĥ ′

DP = ω01, according to Eq. (55),
in the absence of radiation, and for 
k = 0 at a Dirac point.
The minimizing DP is, however, ĤDP = ωEP1 = (ω0 − i γ

2 )1.
The distance of ĤEP to Ĥ ′

DP is
√

3/2γ and therefore slightly
larger than �(ĤEP), see Eq. (57). The above conclusions are
still correct.

Note that γ = 2|Im ωEP|, so that inequality (52) for passive
systems holds here with the equal sign.

B. Unidirectionally coupled pair of PT -symmetric dimers

Our second example is a higher-order EP at which � and ξ

are not equal. We consider a unidirectionally coupled pair of
parity-time (PT )-symmetric dimers introduced in the context
of hierarchical construction of higher-order EPs [63]. The

Hamiltonian is

Ĥ =

⎛
⎜⎝

ω0 − iα g 0 0
g ω0 + iα 0 0
κ 0 ω0 − iα g
0 0 g ω0 + iα

⎞
⎟⎠. (58)

Each of the two 2 × 2 subblocks along the diagonal de-
scribes a PT -symmetric dimer with real-valued frequency ω0,
gain/loss coefficient α > 0, and internal coupling coefficient
g > 0. These two dimers are unidirectionally coupled with
the strength κ > 0. This system can be realized experimen-
tally by two evanescently coupled microrings each with two
modes, one traveling clockwise and one counterclockwise
[63]. One microring exhibits gain; the other one exhibits an
equal amount of loss. The unidirectional coupling can be
achieved by evanescently coupling the lossy microring to a
semi-infinite waveguide with an end mirror [64]. This in-
troduces a fully asymmetric backscattering [38] between the
traveling waves in that microring.

For α = g, the Hamiltonian in Eq. (58) possesses an EP4

with real eigenvalue ωEP = ω0. Inserting this eigenvalue and
the Hamiltonian in Eq. (58) via Eq. (27) into Eq. (28) gives

�(ĤEP) =
√

8g2 + κ2. (59)

The Pythagoras-like appearance of �(ĤEP) in this case is
obvious. The experimental effort in realizing a significant
�(ĤEP) starting from uncoupled microrings/resonators is
based on implementing either a large internal coupling g or
a large unidirectional coupling κ . For the spectral response
strength in Eq. (31), we get

ξ = 2g2κ. (60)

It can be easily verified that inequality (41) is satisfied. Equa-
tion (60) tells us that large g or large κ is only a necessary but
not a sufficient condition for getting a large response from the
system at the EP. For the sufficient condition, the product g2κ

must be large. The bound in inequality (52) does not apply
since the system is not passive.

C. Coupling of optical modes with different angular momenta

The third example is a deformed microdisk cavity [65,66].
The broad range of applications of deformed microcavities
is reviewed in Ref. [67]. For generating EPs in this kind of
system, a weak boundary deformation is sufficient [39,40].
Such a boundary deformation can be expressed in polar
coordinates as r(φ) = R + f (φ), with the radius of the unper-
turbed microdisk R and the deformation function | f (φ)| � R.
We consider here only deformation functions that preserve a
mirror-reflection symmetry. Moreover, we restrict ourselves
to two modes. The mode with lower radiation losses is called
mode 1. Its complex frequency is ω1, and its azimuthal mode
number is m. Mode 2 has the higher radiation losses, complex
frequency ω2, and azimuthal mode number p < m. If the
frequencies of the two modes are nearly degenerate, i.e., ω1 ≈
ω2, a first-order perturbation theory can be applied, leading to
the effective non-Hermitian Hamiltonian [40]:

Ĥ =
(

x1 0
0 x2

)
− x1

(
Ae/o

mm Ae/o
mp

Ae/o
pm Ae/o

pp

)
. (61)

033179-6



DISTANCE BETWEEN EXCEPTIONAL POINTS AND … PHYSICAL REVIEW RESEARCH 4, 033179 (2022)

The eigenvalues of this Hamiltonian are the frequencies of
the two modes in the deformed microcavity. Here, xi = ωiR/c
are the dimensionless complex frequencies of the unperturbed
modes, and c is the speed of light in vacuum. The Fourier
harmonics of the deformation function are given for the even
and odd parity as

Ae
pm = εp

πR

∫ π

0
f (φ) cos (pφ) cos (mφ)dφ, (62)

Ao
pm = εp

πR

∫ π

0
f (φ) sin (pφ) sin (mφ)dφ, (63)

with εp = 2 if p �= 0 and εp = 1 otherwise. Restricting to the
relevant case m, p > 0, the matrix elements Ae/o

mp and Ae/o
pm are

equal for fixed parity.
Note that the unperturbed system, i.e., the undeformed

microdisk, is strictly speaking not at an DP, as x1 �= x2. How-
ever, the distance to a DP is very small, as x1 ≈ x2 has been
required.

The Hamiltonian in Eq. (61) has an EP if[
x1 − x2 − x1

(
Ae/o

mm − Ae/o
pp

)]2 + 4x2
1

(
Ae/o

mp

)2 = 0. (64)

The eigenvalue of the EP is

xEP = x1 + x2

2
− x1

Ae/o
mm + Ae/o

pp

2
. (65)

Plugging this eigenvalue and the Hamiltonian in Eq. (61) by
means of Eq. (27) into Eq. (28) gives the distance to the set of
DPs:

�(ĤEP) = 2
∣∣x1Ae/o

mp

∣∣. (66)

Clearly, a weak deformation (|Ae/o
mp| � 1) implies a small dis-

tance �(ĤEP). This is turn leads, according to Eq. (36), to
a weak spectral response strength ξ to perturbations (e.g.,
induced by a nanoparticle close to the boundary of the mi-
crocavity). The response can, therefore, be enhanced if the
deformation is increased. This, however, often leads to en-
hanced radiation losses [68]. Also note that, if the deformation
is too strong, then the perturbation theory for weak boundary
deformations is no longer valid.

D. Fully asymmetric hopping model

Here, we study an n × n Hamiltonian describing uniform
and unidirectional hoppings in a nearest-neighbor tight-
binding chain:

ĤEP =

⎛
⎜⎜⎜⎜⎝

EEP A 0 . . . 0
0 EEP A . . . 0
0 0 EEP . . . 0
...

...
...

. . .
...

0 0 0 . . . EEP

⎞
⎟⎟⎟⎟⎠. (67)

If the complex hopping parameter A is nonzero, the
Hamiltonian has an EPn with eigenvalue EEP. The
Hamiltonian in Eq. (67) can be considered as the nonperiodic,
fully asymmetric limiting case of the Hatano-Nelson model
of a cylindrical superconductor [69]. The spectral response
strength has been determined in Ref. [34] to be

ξ = |A|n−1. (68)

0 0.2 0.4 0.6 0.8 1
10 -4

10 -3

10 -2

10 -1

1

FIG. 3. Probability density function (notice the logarithmic
scale) of the dimensionless number x defined in Eq. (71) computed
from 108 realizations of random Hamiltonians having an EP4 with
eigenvalue EEP = −i0.5.

The distance of this EP to the set of DPs can be easily
calculated from Eqs. (28), (27), and (10), yielding

�(ĤEP) = √
n − 1|A|. (69)

With Eq. (68), this gives

ξ =
[
�(ĤEP)√

n − 1

]n−1

. (70)

Interestingly, this is inequality (41) with the equality sign.
Hence, this fully asymmetric hopping model has the largest
possible spectral response strength ξ for given distance
�(ĤEP).

E. Random Hamiltonians at EPs

Finally, we adopt the random-matrix approach invented
in Ref. [34] to numerically generate a whole class of exam-
ples. To do so, we introduce the n × n matrix ĤEP, having
an EPn with eigenvalue EEP via a similarity transformation
ĤEP = Q̂ĴQ̂−1, with Ĵ being an n × n matrix with an EPn in
Jordan normal form, and Q̂ is an in general nonunitary n × n
matrix consisting of complex random numbers with real and
imaginary parts being drawn from a uniform distribution on
the interval [− 1

2 , 1
2 ]. Clearly, ĤEP is not completely random,

but nevertheless, we refer to it as the random Hamiltonian with
an EP.

To numerically confirm inequality (41), we define the non-
negative quantity:

x := (n − 1)(n−1)/2ξ

�(ĤEP)n−1
, (71)

which should be less than or equal to unity. Figure 3
shows a histogram resulting from 108 realizations of random
Hamiltonians for the case of an EP of order n = 4. It can be
clearly seen that x � 1, and therefore, the upper bound for
the response strength ξ given by inequality (41) is fulfilled.
The average and the maximal values of x are numerically
determined to be ≈0.21 and ≈0.99. The latter value indicates
that the upper bound given by the RHS of inequality (41) is
sharp. We observe this numerical indication of a sharp upper
bound also for n < 4 but not for n > 4. For instance, for
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2 3 4 5 6

10 -2

10 -1

1

FIG. 4. Maximal values of the dimensionless distance y
[Eq. (72), star symbols] and the dimensionless response strength z
[Eq. (73), circle symbols] for passive systems as function of the
order n of the EP. From 108 realizations (for each n) of random
Hamiltonians having an EPn with eigenvalue EEP = −i1.2, those
are selected that possess a positive semidefinite decay operator �̂

[Eq. (44)]. Note the logarithmic scale on the vertical axis.

n = 2, . . . , 6, the maximal values of x [Eq. (71)] are 1, 1, 0.99,
0.91, and 0.74.

To check the upper bound for the distance � [inequal-
ity (51)] and the spectral response strength ξ [inequality (52)]
in passive systems, we consider the random Hamiltonians ĤEP

with an EPn for several values of n. We define the nonnegative
quantities:

y := �(ĤEP)√
2n(n − 1)|Im EEP|

, (72)

and

z := ξ(√
2n|Im EEP|

)n−1 , (73)

which according to the inequalities (51) and (52) are less
than or equal to unity. For each value of n, we select from
108 realizations of random Hamiltonians those that have a
positive semidefinite decay operator �̂ [Eq. (44)]. Figure 4
shows the resulting maximal values of y and z vs the or-
der n. First, one can observe that ymax, zmax � 1. Hence,
the inequalities (51) and (52) are indeed fulfilled. Second,
from ymax � zmax, we conclude that inequality (51) gives
a sharper bound than inequality (52). This is understand-
able, as the former bound results directly from the positive
semidefiniteness of �̂, whereas the latter additionally requires
inequality (41).

VII. SUMMARY

We have introduced the concept of the distance � of an
n × n Hamiltonian to the set of DPs of order n in matrix space.
This concept is mathematical in nature, but it has physical
relevance for non-Hermitian Hamiltonians with an EP. In this
case, � is a vague measure of the experimental effort to
create an EP out of a DP of the same order. Interestingly, �

determines an upper bound for the spectral response strength

ξ of the given system with the EP. This not only provides an
easy way to estimate ξ , but more importantly, it also reveals
that the strategy of experimentally implementing an EP by
slightly modifying a DP results in an EP exhibiting only a
weak response to perturbations. We have related the distance
� to Henrici’s departure from normality.

For passive systems, we have derived an upper bound for
the distance �. This bound engenders an upper bound for the
spectral response strength ξ which constitutes an improve-
ment and generalization of the bound for ξ in Ref. [34] to
EPs of arbitrary order.

Analytical and numerical results for various physical ex-
amples have been presented which demonstrated the insights
into the physics of EPs provided by the concept introduced in
this paper.

ACKNOWLEDGMENTS

Valuable discussions with J. Kullig and R. El-Ganainy
are acknowledged. We acknowledge support for the Book
Processing Charge by the Open Access Publication Fund of
Magdeburg University.

APPENDIX: SPECTRAL AND INTENSITY RESPONSE
AT A DP

In this Appendix, we derive the spectral response to per-
turbations [inequality (42)] and the intensity response to
excitations [Eq. (53)] for a system with a DP. To do so, we
first consider the eigenvalue equation of the Hamiltonian in
Eq. (32):

(ĤDP + εĤ1)|ψ j〉 = Ej |ψ j〉, (A1)

with Ĥ0 = ĤDP, eigenvalues Ej , and eigenstates |ψ j〉. With
ĤDP = EDP1, we can write

εĤ1|ψ j〉 = (Ej − EDP)|ψ j〉. (A2)

Taking the vector 2-norm on both sides of this equation and
using the normalization ||ψ j ||2 = 1 gives

ε||Ĥ1ψ j ||2 = |Ej − EDP|. (A3)

Exploiting the compatibility of the matrix norm to the vector
2-norm in inequality (8) and again the normalization of the
eigenstate gives inequality (42).

Next, we quickly derive the intensity response for Ĥ =
ĤDP = EDP1 by solving Eq. (35) with the ansatz |ψ〉 ∝
exp(−iωt ) to yield

|ψ〉 = (E1 − EDP1)−1 exp(−iωt )P|p〉, (A4)

with E = h̄ω. Taking the vector 2-norm on both sides of
this equation and using the normalization ||p||2 = 1 gives
Eq. (53).
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