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Fixing the rotating-wave approximation for strongly detuned quantum oscillators
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Periodically driven oscillators are commonly described in a frame corotating with the drive and using the
rotating-wave approximation (RWA). This description, however, is known to induce errors for off-resonant
driving. Here, we show that the standard quantum description, using the creation and annihilation of particles
with the oscillators’ natural frequency, necessarily leads to incorrect results when combined with the RWA.
We demonstrate this on the simple (quantum) harmonic oscillator and present an alternative operator basis that
reconciles the RWA with off-resonant driving. The approach is also applicable to more complex models, where
it accounts for known discrepancies. As an example, we demonstrate the advantage of our scheme on a driven
quantum Duffing oscillator.
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I. INTRODUCTION

Nature displays many degrees of freedom that are coupled
to one another. For simplicity, we describe them as linear
resonators that drive each other as they oscillate with a bare
harmonic around their respective equilibrium points. Hence,
finding the response of a system to an applied drive is an
essential task in all areas of science, ranging from fundamen-
tal effects in classical and quantum physics to applications in
spectroscopy and diagnostics of our daily lives.

The bare harmonic translates to a drive that is periodic
in time with a given frequency. To describe the system’s
response to the drive, a common approach involves moving
to a rotating frame, where the system’s behavior appears sta-
tionary on short timescales. In the rotating frame, the so-called
rotating-wave approximation (RWA) is used, whereby any re-
maining rapidly oscillating terms are dropped. This procedure
becomes less precise when the system and drive frequencies
are far detuned from one another, i.e., when the neglected
terms are less rapid. Nevertheless, the RWA is a standard
approach to find the response of driven systems [1,2], such
as nanomechanical resonators [3–5], optical cavities [6–12],
phononic and magnonic modes [13–19], and superconducting
junctions [20–22]. Similarly, it is a common starting point for
Floquet engineering and perturbative expansions of nonlinear
driven systems [23–27].

Despite its ubiquity, the RWA is known to induce er-
rors at large detuning [28]. There the neglected oscillating
(or “counter-rotating”) terms become significant and must
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be included as perturbations that affect the system’s re-
sponse [29–37]. Yet, such a perturbative treatment becomes
very demanding in many cases that rely on detuned driving,
such as optomechanical cooling [38,39] and the formation
of frequency combs [40–44]. These cases are therefore com-
monly treated using the RWA. The issue is particularly salient
in the case of the simple (quantum) harmonic oscillator, where
the solution obtained with the RWA disagrees with the exactly
soluble classical limit. While the inconsistency of the RWA
with classical mechanics has been identified in the litera-
ture [45], the issue, to the best of our knowledge, remains
unresolved.

In this paper, we pinpoint the source for the quantum-to-
classical discrepancy in the driven harmonic oscillator and
correct for it. Specifically, we show the description of the
oscillator in terms of its bare excitations is ill suited for
the RWA. Instead, we propose a nonstandard operator basis
(frame) in which the RWA yields the correct solution for
the driven case. We furthermore demonstrate that this basis
choice is also beneficial for describing driven nonlinear sys-
tems, as it significantly improves the fidelity of the RWA in
a driven Duffing oscillator at large detuning. We expect that
our approach will lead to a significant improvement in the
description of numerous scenarios where the response of an
oscillator to a coherent drive is calculated.

II. RWA AND THE HARMONIC OSCILLATOR

The Hamiltonian of a periodically driven harmonic oscilla-
tor reads

H = p2/2m + mω2
0x2/2 − F0 cos(ωt )x, (1)

with position x, its conjugate momentum p, mass m, and
resonance frequency ω0. The driving force has amplitude F0

and oscillates at frequency ω. The time evolution of the system
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FIG. 1. (a) Response amplitude [cf. Eq. (3)] of the driven har-
monic oscillator as a function of the driving frequency ω for the exact
solution (solid, blue) and the standard RWA solution (dashed, red)
with F0 = m = ω0 = 1. The inset shows the corresponding phase
space plots for large detuning, ω = 0.5. Spheres indicate solutions
in the rotating frame. The ansatz of stationary 〈ã〉 (large red dashed
circle) does not match the exact result. For this, an additional time-
dependent term in the solution is needed (small red circle). This
term oscillates at 2ω, which results in an elliptical path. (b) Energy
quantization of the harmonic oscillator Hamiltonian (6) with energy
spacing h̄ω0 using the operators a, a† defined in Eq. (4). (c) With the
operators b, b†, the harmonic oscillator is not diagonalized, showing
a level spacing of h̄(ω2

0 + ω2)/2ω and processes that create or anni-
hilate two particles with amplitude h̄(ω2

0 − ω2)/4ω.

is given by Hamilton’s equations of motion (EOM),

ṗ = −mω2
0x + F0 cos(ωt ), ẋ = p/m. (2)

These EOM can be solved exactly by transforming to the
Fourier domain, where the driving term appears as a Dirac
delta function. As a result, the stationary response of the
oscillator to the drive reads [46]

x = X cos(ωt ), p = −mωX sin(ωt ), (3)

with X = F0/[m(ω2
0 − ω2)]. We can parametrize the oscilla-

tor’s phase space by x and p/(mω0). The trajectory described
by Eq. (3) is then an ellipse with vertices at X and Xω/ω0 [see
Fig. 1(a)].

Within the framework of quantum mechanics, the Hamil-
tonian (1) is an operator written in terms of a pair of
noncommuting operators x̂ and p̂. To find the oscillator’s
response in the quantum realm, one commonly introduces
raising and lowering operators a and a† that diagonalize the
time-independent part of H ,

x̂ =
√

h̄

2mω0
(a† + a), p̂ = i

√
h̄mω0

2
(a† − a), (4)

resulting in

H = h̄[ω0(a†a + 1/2) − Fa(eiωt + e−iωt )(a† + a)], (5)

with Fa = F0/(2
√

2mω0 h̄) [see Fig. 1(b)]. The driving renders
the Hamiltonian (5) time dependent and several methods exist
to find the resulting response. For example, one approach
involves time-dependent perturbation theory [47], where we
move to the interaction picture using the transformation

V (t ) ≡ e−ia†a ω0t , and diagrammatically expand the remaining
interaction Hamiltonian Hint. While this approach is possible
for a harmonic oscillator, it rapidly becomes infeasible when
additional terms are included in H . Hence, in many cases only
a linear response is considered, e.g., using the input-output
method [48].

Another common approach involves the rotating-wave ap-
proximation (RWA). Here, we aim at removing the oscillatory
time dependence altogether. To do so, we first use the uni-
tary transformation Ua(t ) = e−iωta†a. In the resulting rotating
frame, we obtain the (still time-dependent) effective Hamilto-
nian

H̃ ≡ U †
a HUa − ih̄U †

a U̇a

= h̄{−�ã†ã − Fa[ã(1 + e−2iωt ) + ã†(1 + e2iωt )]}, (6)

where ã ≡ Ua(t )†aUa(t ) denotes the operator a in the rotating
frame, and � = ω − ω0 is the so-called detuning away from
resonance.

In the rotating frame, the remaining time-dependent terms
are far detuned since 2ω � |�| and therefore elicit a negligi-
ble response. Hence, we can apply the RWA and remove all of
these from the Hamiltonian (6) to obtain H̃RWA. We may then
find the response by solving Heisenberg’s EOM, i d

dt 〈ã〉 ≡
〈[ã, H̃RWA]〉/h̄ = −�〈ã〉 − Fa, and obtain the stationary so-
lution 〈ã〉 = −Fa/�. Then, by inverting the transformation
Ua(t ) we have 〈a〉 = 〈ã〉e−iωt . An analogous EOM is similarly
solved for 〈ã†〉. Combining the two solutions [cf. Eq. (4)], we
obtain in the classical limit

xRWA(t ) = − F0/m

2ω0�
cos(ωt ). (7)

Crucially, the response amplitude found with the RWA
does not match the analytical solution in Eq. (3) [see
Fig. 1(a)]. Indeed, the ratio

x(t )

xRWA(t )
= 2ω0�

ω2 − ω2
0

= 2ω0

ω0 + ω
(8)

only approaches unity for � → 0, which demonstrates the
limitation of the RWA to near-resonant drives. A compari-
son between the exact and RWA results in phase space is
also illustrative. To this end, we take a stationary amplitude
〈ã〉 ≡ |〈ã〉|eiθ , and using Eq. (4), we find the equivalent tra-

jectory in phase space, x(t ) = 2|〈ã〉|
√

h̄
2mω0

cos(ωt − θ ) and

p = −2|〈ã〉|
√

h̄mω0
2 sin(ωt − θ ). The resulting path is always

circular, unlike the elliptical path of the exact solution [cf.
Eq. (3) and Fig. 1(a)]. Indeed, the dropped time-dependent
oscillating terms, dubbed micromotion, add on to the circular
path to produce the full elliptical motion [cf. the small circle in
Fig. 1(a)]. This implies that to describe the elliptical path, 〈ã〉
must be time dependent, which cannot be obtained only by
time-independent corrections from a high-frequency expan-
sion [23–27]. In other words, the assertion of a stationary 〈ã〉
violates Hamilton’s EOM, specifically the relation p = mẋ.
This has also been described as a breakdown of the Ehrenfest
theorem [45].

As the driven quantum harmonic oscillator is exactly solv-
able, the RWA was not necessary in the aforementioned
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analysis. Without the approximation, we would still have ob-
tained the exact result. However, when the system becomes
nonlinear, its EOM are usually not exactly solvable. The
RWA, being effectively the lowest order of a perturbative
expansion, is then a common method to find the stationary
response. As we have seen, however, it neglects crucial cor-
rections due to the detuned drive frequency. We identify that
this systemic mismatch stems from the usual starting point (4),
which relies on operators that diagonalize the bare oscillator
Hamiltonian and describe excitations with energies h̄ω0 [see
Fig. 1(b)].

We now turn to our scheme for an exact treatment of the
driven harmonic oscillator. We seek operators akin to a and a†

which recover the ellipsoidal phase-space path corresponding
to drive frequency ω. A natural choice is to replace ω0 by ω in
Eq. (4), i.e., to define new operators b and b† via

x̂ =
√

h̄

2mω
(b† + b), p̂ = i

√
h̄mω

2
(b† − b), (9)

which satisfy [b, b†] = 1, and describe the system in terms of
excitations with the drive’s frequency ω. The driven harmonic
oscillator Hamiltonian (1) now reads

H =h̄

{
ω2

0 + ω2

2ω

(
b†b + 1

2

)
+ ω2

0 − ω2

4ω
[b2 + (b†)2]

− Fb(eiωt + e−iωt )(b† + b)

}
, (10)

with Fb = F0/(2
√

2mωh̄) [see Fig. 1(c)]. Note that we effec-
tively rotated from the a to the b operators using a unitary
(Bogoliubov) transformation [49]. With the new operators,
Eq. (10) contains squeezing terms that do not conserve the
particle number, since b and b† do not diagonalize the bare
harmonic oscillator unless ω = ω0.

We repeat the same procedure in the new basis. We first
apply the unitary transformation Ub(t ) = e−iωtb†b to move to
a rotating frame, and then obtain the corresponding Heisen-
berg’s EOM,

i
d

dt
〈b̃〉 = ω2

0 − ω2

2ω
(〈b̃〉 + 〈b̃†〉e2iωt ) − Fb(1 + e2iωt ). (11)

Crucially, when we now search for a stationary solution for
〈b̃〉, we obtain

〈b̃〉 = 2Fb ω

ω2
0 − ω2

, (12)

which upon inverting Ub(t ) matches the exact result in
Eq. (3). Importantly, the correct result is obtained regardless
of whether or not we take the RWA. In other words, when the
operators b, b† are used, the stationary solution in the rotating
frame is exact and satisfies Eq. (11). This is the main result of
this work.

III. EXAMPLE: DUFFING OSCILLATOR

The RWA is a common starting point for dealing with
time-dependent systems that are not exactly solvable. Our
result (12) implies that a suitable choice of operators made
prior to applying the RWA can significantly reduce errors at
large detuning. To demonstrate this, we compare the results

FIG. 2. A comparison of the Duffing oscillator response obtained
using the a, a† and b, b† operator bases [cf. Eqs. (4) and (9)] with a
time-dependent simulation. The parameters used are m = ω0 = α =
1. (a) The response amplitude |xω| plotted against the drive frequency
ω for F0 = 0.2 using a, a† (dashed, red) and b, b† (solid, blue). The
time-dependent simulation result (dotted-dashed gray, behind blue)
consists of adiabatic up and down sweeps of ω. (b), (c) The relative
discrepancy in log scale of the a, a† (dashed, red) and the b, b† (solid,
blue) results from the time-dependent simulation. The circles and
crosses in (a) and (c) represent the jump frequency in the down sweep
for operators a and b. (d) A phase diagram as a function of ω and F0.
Blue (red) fill denotes regions with one (two) stable solution(s). (e)
Relative discrepancy δω = |(ω − ωRWA)/ω| in log scale of the phase
boundaries obtained using a, a† (dashed, red) and b, b† (solid, blue)
from the time-dependent result. The numerical approach is exact up
to 10−5 which becomes visible at low F0, where the discrepancy of
our scheme is of that order. The green dotted lines in (d) and (e)
indicate where the simulation of (a) takes place.

obtained using the RWA with the two operator definitions,
a, a† and b, b†. We consider a Duffing oscillator, described
by the Hamiltonian

HD = p2/2m + mω2
0x2/2 + αx4/4 − F0 cos(ωt )x, (13)

where α is the Duffing nonlinearity. We plug both operator
definitions [Eqs. (4) and (9)] into Eq. (13), move to a rotating
frame [cf. Eq. (6)], and apply the RWA in both procedures.
Note that the RWA drops multiple oscillating terms that de-
scribe frequency conversion processes due to the Duffing
nonlinearity. We furthermore apply a semiclassical mean-field
ansatz [50] to obtain Heisenberg’s EOM,

i
d

dt
〈ã〉 = −�〈ã〉 − Fa

h̄
+ 3αh̄

4m2ω2
0

(〈ã〉 + 〈ã〉2〈ã†〉), (14)

i
d

dt
〈b̃〉 = ω2

0 − ω2

2ω
〈b̃〉 − Fb

h̄
+ 3αh̄

4m2ω2
(〈b̃〉 + 〈b̃〉2〈b̃†〉).

(15)

We can now search for stationary solutions in either of
the rotating frames [ d

dt 〈ã〉 = 0 or d
dt 〈b̃〉 = 0]. Both Eqs. (14)

and (15) generate a cubic polynomial condition which has
up to three solutions [4,51,52] [see Fig. 2(a)]. Both ap-
proaches produce the expected tail-shaped response, i.e., a
single solution in the ω < ω0 regime that bends up towards
a high-amplitude solution and a coexistence region in the ω >

ω0 regime, where both low- and high-amplitude solutions
appear. The coexistence region manifests mathematically as
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a bifurcation point for the roots of the polynomial condition.
Despite the qualitative agreement, the solutions in the two
frames differ quantitatively, i.e., in their amplitudes as a func-
tion of detuning and in the positions of their bifurcation points.

To find out which of the two approximate procedures de-
scribes the driven Duffing oscillator (13) more accurately,
we compare their predictions with a “numerical experiment”
in the classical picture. Specifically, we numerically evolve
Hamilton’s equations for the Hamiltonian (13) until we reach
stationary motion for different detunings and initial condi-
tions and then adiabatically sweep the detuning to explore
the solution landscape. Note that we add an infinitesimal
dissipation term to enforce convergence in the simulation,
which negligibly shifts the stationary outcome. Additionally,
the numerical time trace exhibits high harmonic generation—
this cannot be described by the RWA, regardless of which
operators are used. We remark that the same limitation applies
to related methods which also rely on truncation in Fourier
space, such as Floquet theory [25,53], harmonic balance [51],
and Krylov-Bogolyubov averaging [54]. Hence, the relevant
benchmark for the RWA solutions is the Fourier component
xω at frequency ω of the time trace. In Figs. 2(b) and 2(c), we
plot the relative discrepancy δx = |(xω − xω,RWA)/xω| between
the numerically obtained xω and the two RWA results in the
high- and low-amplitude solution branches, respectively. We
observe that our RWA approach agrees much better for all val-
ues of ω. In the low-amplitude regimes, the system responds
quasilinearly and our scheme performs better as discussed
above in the harmonic oscillator case. Slight deviations are
seen in the high-amplitude regime, where nonlinear effects
dominate the physics.

In driven-dissipative systems, phase diagrams depict the
number or type of stationary solutions as a function of system
parameters [55,56]. Here, we focus on the location of the bi-
furcation point as a function of detuning and drive amplitude.
The bifurcation point is marked in Figs. 2(a) and 2(c), where
the better performance of our RWA approach manifests as
a clear change in its position. In Fig. 2(d), we draw phase
diagrams obtained by the two RWA approaches, and observe a
distinct difference in the phase boundaries. The exact numer-
ical solution matches our scheme much better [see Fig. 2(e)].

IV. CONCLUSION

In summary, we have presented an operator basis for pe-
riodically driven systems which anticipates a response at the
driving frequency and is thus better suited for using the RWA.
For both the harmonic and the Duffing oscillators, this basis
choice significantly improves the fidelity of the RWA while

retaining its simplicity. Our approach is applicable to sys-
tems in many areas of physics beyond mechanical oscillators
described by x and p [3]. In quantum optics [48] and optome-
chanics [57], a driven cavity mode is described by Eq. (1) with
the magnetic and electric fields playing the roles of x and p.
For models with inherent detuning such as optomechanical
cooling and frequency-comb generation, our approach may
result in significant numerical corrections.

It is important to contrast the oscillator systems treated
here to a driven two-level system. While the latter also gives
inaccurate results when treated with the RWA, the root of
the problem is different. Unlike the harmonic oscillator, a
harmonically driven two-level system displays many harmon-
ics in its response [32], despite being linear. It is therefore
impossible to correctly describe the response using a single-
harmonic ansatz such as that employed in Eq. (3). A specific
case of interest are models coupling a cavity to one or more
two-level systems [58,59]; here, the so-called general RWA is
used, where a basis diagonalizing the spin-cavity interaction
reduces the RWA error [60]. As general RWA uses the stan-
dard operators a and a†, we expect that it can be improved
further by using our scheme. Detuned driven systems also
appear in circuit QED where the magnetic flux and charge
appear in place of x and p [20]. The presented argument
also applies to multimode systems, where a pair of raising
and lowering operators is needed in order to describe each
frequency-response mode. A rigorous description of this case
is left to future work. Overall, a sizable body of work exists
elaborating on the errors due to the RWA at large detun-
ing [61–64]. Our work suggests that in many cases, these
errors can be dramatically reduced by choosing an appropri-
ate operator basis. The errors are partially due to the RWA
assuming a single-frequency response, which cannot describe
strongly nonlinear behavior. Nevertheless, as we show in this
paper, the standard RWA already fails to describe a single-
frequency response if the system is driven off-resonantly.
Using the suggested operator definition fixes this problem,
and reduces the RWA errors to those truly inherent to the
single-frequency description.
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