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Hybrid quantum-classical reservoir computing of thermal convection flow
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We simulate the nonlinear chaotic dynamics of Lorenz-type models for a classical two-dimensional thermal
convection flow with three and eight degrees of freedom by a hybrid quantum-classical reservoir computing
model. The high-dimensional quantum reservoir dynamics are established by universal quantum gates that rotate
and entangle the individual qubits of the tensor product quantum state. A comparison of the quantum reservoir
computing model with its classical counterpart shows that the same prediction and reconstruction capabilities
of classical reservoirs with thousands of perceptrons can be obtained by a few strongly entangled qubits. We
demonstrate that the mean squared error between model output and ground truth in the test phase of the quantum
reservoir computing algorithm increases when the reservoir is decomposed into separable subsets of qubits.
Furthermore, the quantum reservoir computing model is implemented on a real noisy IBM quantum computer
for up to seven qubits. Our work thus opens the door to model the dynamics of classical complex systems in a
high-dimensional phase space effectively with an algorithm that requires a small number of qubits.
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I. INTRODUCTION

Quantum computing (QC) and machine learning (ML)
have changed our ways to process data fundamentally in
recent years [1–4]. Quantum algorithms have accelerated
data search [5] and improved the sampling of probability
distributions [6,7]. These quantum advantages have already
found their way into various applications [8–10], even though
we are still in the era of noisy intermediate-scale quantum
(NISQ) devices that suffer from decoherence and are limited
to qubit numbers ≈102 with resulting shallow quantum circuit
depths [11].

Meanwhile, ML algorithms in the form of deep convolu-
tional neural networks extract features effectively and classify
big databases [12–15]. Quantum machine learning ports such
methods to a quantum computer [16–18] with the prospect
that particularly high-dimensional problems can be solved
much more quickly than with their classical counterparts.
This expectation arises from two facts: (i) the data space
dimension grows exponentially as 2n with the number of
qubits n, the smallest unit of information in QC, and (ii)
the entanglement of qubits creates highly correlated tensor
product states that can represent complex features in the data
effectively [19]. Thus, for example, quantum support vector
machines are expected to have the potential to determine
nonlinear decision boundaries of classification problems in
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high-dimensional quantum enhanced feature Hilbert spaces
more efficiently [20–22].

Recurrent neural networks (RNN) are specific ML algo-
rithms with internal feedback loops which predict the time
evolution of dynamical systems without knowing the under-
lying nonlinear ordinary or partial differential equations; they
can be implemented either as gated RNNs in the form of
long short-term memory networks [23] or as reservoir com-
puting models (RCM) [24–28]. As a consequence, RNNs have
been used for the description of chaotic dynamics, fluid me-
chanical problems, and even turbulence [29–32]. RCMs were
also applied to represent low-dimensional chaotic models,
one-dimensional Kuramoto-Sivashinsky equations [33,34], or
even turbulent Rayleigh-Bénard convection [35–38]. At the
center of the RCM is the reservoir, a randomly initialized
and fixed high-dimensional network of perceptrons which is
represented by an adjacency matrix. This specific implemen-
tation of an RNN requires only an optimization of the output
layer, which maps the reservoir state back to the data space
and avoids costly back propagation as required in most other
ML algorithms [14].

In this work, we combine quantum algorithms with reser-
voir computing to a gate-based quantum reservoir computing
model (QRCM) for a universal quantum computer to predict
and reconstruct the dynamics of a thermal convection flow
in the weakly nonlinear regime. The algorithm is of hybrid
quantum-classical nature since the optimization of the output
map is done by a classical ridge regression. The quantum
reservoir is composed of a sequence of elementary single-
and two-qubit quantum gates which form a complex quan-
tum circuit. Following the axioms of quantum mechanics, an
elementary quantum gate performs a unitary transformation
to a single- or two-qubit state. As a consequence, a highly
entangled multiquibit state will result.
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FIG. 1. Sketch of the two scenarios in which the reservoir
computing model is run. (a) Closed-loop scenario for autonomous
prediction of the dynamics. (b) Open-loop scenario for reconstruc-
tion of dynamics from continually available data. The matrix W out

∗
stands for the classically optimized output layer. Ndof is the number
of degrees of freedom of the dynamical system, and Nin is the number
of continually available components of the system state vector. The
dimensionality of the reservoir is Nres � Ndof . (a) Nin = Ndof and
(b) Nin � Ndof .

Our first contribution is to demonstrate the feasibility of
such a hybrid QRCM to describe the classical chaotic dynam-
ics of a thermal convection flow on an actual NISQ device.
The description of the thermal convection flow is based on
Lorenz-type Galerkin models with Ndof � 8 degrees of free-
dom [39–43]. This class of models is directly derived from the
Boussinesq equations of two-dimensional thermal convection
between two impermeable parallel plates, heated uniformly
from below and cooled from above with free-slip boundary
conditions for the velocity field [44,45]. Here, we explore
QRCMs in two different modes of operation [46]:

(1) Closed-loop scenario: a fully autonomous prediction
of the temporal dynamics of all degrees of freedom of a
Lorenz 63 model with Ndof = 3. This study is done with
the ideal Qiskit quantum simulator [47]; see the sketch in
Fig. 1(a).

(2) Open-loop scenario: a reconstruction of the temporal
dynamics of a Lorenz-type model with Ndof = 8. In this case,
one or two degrees of freedom are continually fed into the
quantum reservoir and the remaining degrees of freedom are
obtained by the QRCM evolution; see Fig. 1(b). This investi-
gation is done in two different ways. First, we reconstruct the
whole model from a single degree of freedom (Nin = 1) by
means of the open-loop structure in an ideal Qiskit simulator.
Second, we strongly reduce the number of quantum gates to
even demonstrate the feasibility of QRCM on a real noisy
IBM quantum computer (Nin = 2).

Second, we directly compare the results of the QRCM
to its classical counterpart for the same flow. We identify

hyperparameters in both approaches that can be related to each
other. Note that classical and quantum reservoir computing
models differ essentially, which is primarily a consequence of
the linearity and unitarity of the quantum dynamics [19].

We demonstrate finally that a systematic reduction of the
degree of entanglement in the quantum reservoir by a stepwise
transition from a fully to a weakly entangled configuration re-
duces the performance of the present QRCM algorithm. This
is done by the division of an n-qubit reservoir state into blocks
of entangled p-qubit states, so-called p blocks [48]. The strong
encoding capabilities of fully entangled quantum reservoirs
are demonstrated in the present flow case by runs with qubit
numbers n < Ndof . Also, we show for the open-loop scenario
that the number of operations of the QRCM circuit can be
scaled with O(n) < O(2n) (where 2n is the reservoir size).

The research on quantum reservoir computing models pro-
ceeds along two major frameworks [49,50].

(1) The dynamics of an interacting boson or fermion
many-particle quantum system is investigated in the analog
framework, which is characterized by a Hamiltonian sub-
ject to a unitary time evolution. These systems have been
established in the form of spin ensembles [51–54], circuit
quantum electrodynamics [55], arrays of Rydberg atoms [56],
or networks of linear quantum optical oscillators [57]. In
Refs. [58,59], the phase transition from a thermalized to a
localized many-particle quantum reservoir was studied in re-
spect to the echo state property. The latter describes the ability
of the (quantum) reservoir to forget its initial conditions. It is
shown that thermalized quantum reservoirs close to the phase
transition boundary, for which all spins or oscillators are still
strongly entangled, show the best performance for nonlinear
learning tasks. A further way to establish a quantum reservoir
is by a single nonlinear oscillator [60].

(2) The digital gate-based framework, which sets the stage
for the present work, uses circuits composed of universal
quantum gates to build a quantum reservoir on NISQ devices
[61–63]. These configurations have been applied for the one-
step prediction of nonlinear autoregressive moving-average
(NARMA) time series or solutions of the nonlinear Mackey-
Glass time-delay differential equation. Here we extend the
applications to classical nonlinear dynamical systems with up
to eight degrees of freedom. Furthermore, we apply a reservoir
update that blends linear and nonlinear activation terms, as
frequently done in classical reservoir models.

Our work opens the door for the application of quantum
machine learning as a reduced-order dynamical model of a
higher dimensional classical complex dynamical nonlinear
system. The study thus adds a further proof of concept for
the potential use of quantum algorithms in studying turbulent
flows.

The outline is as follows. In Sec. II, we present the ther-
mal convection flow model; technical details are collected
in Appendix A. Section III is dedicated to the closed-loop
scenario. In Sec. IV, the complexity of the quantum machine
learning task is enhanced to the eight-dimensional model for
which we apply an open-loop QRCM. We summarize our
work and give a brief outlook in Sec. V. Appendixes B, C,
and D provide additional material on n-qubit quantum states,
the classical reservoir computing framework, and benchmarks
of the QRCM with different leaking rates.
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II. THERMAL CONVECTION FLOW

We start with a compact description of the flow. The
thermal convection flow consists of a two-dimensional
fluid layer which is heated uniformly from below with
a temperature Tbot and cooled from above with Ttop thus
giving �T = Tbot − Ttop > 0. The convection flow domain is
A = [0, �] × [0, 1]. The velocity u(x, t ) = [ux(x, z, t ),
uz(x, z, t )] and (total) temperature T (x, z, t ) are coupled
by the balances of mass, momentum, and energy.
The fluid is incompressible and the mass density ρ

depends linearly on θ in the buoyancy term only. This
is known as the Boussinesq approximation in thermal
convection [45]. The total temperature is decomposed into
T (x, z, t ) = 1 − z + θ (x, z, t ) where Teq(z) = 1 − z is the
static equilibrium profile and θ (x, z, t ) is the temperature
deviation. The nondimensional equations are then given by

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u = −∇p + σ∇2u + Ra σ θez, (2)

∂θ

∂t
+ (u · ∇)θ = ∇2θ + uz, (3)

where p is the nondimensional pressure field. The Rayleigh
number Ra and the Prandtl number σ are the two parameters
that characterize the strength of the thermal driving via the
temperature difference �T and the ratio of momentum to
temperature diffusion, respectively. The boundary conditions
in x direction are periodic. At z = 0, 1, one takes

uz|z=0,1 = 0,
∂ux

∂z

∣∣∣∣
z=0,1

= 0, and θ |z=0,1 = 0. (4)

They correspond to isothermal, impermeable, free-slip walls.
Incompressibility and two-dimensionality allow to reduce
the velocity vector field further to a scalar stream function
ζ (x, z, t ) by

ux = −∂ζ

∂z
and uz = ∂ζ

∂x
. (5)

This ansatz satisfies (1) automatically and the equations of
motion (2) and (3) are now given by

∂∇2ζ

∂t
= ∂ζ

∂z

∂∇2ζ

∂x
− ∂ζ

∂x

∂∇2ζ

∂z
+ σ∇4ζ + Raσ

∂θ

∂x
, (6)

∂θ

∂t
= ∂ζ

∂z

∂θ

∂x
− ∂ζ

∂x

∂θ

∂z
+ ∇2θ + ∂ζ

∂x
, (7)

with boundary conditions in the vertical direction

ζ
∣∣
z=0,1 = 0,

∂2ζ

∂z2

∣∣∣∣∣
z=0,1

= 0 and θ
∣∣
z=0,1 = 0. (8)

Equations (6) and (7) are then reduced by an expansion into
trigonometric Fourier modes which satisfy the boundary con-
ditions for the stream function and temperature and encode
the spatial structure of the thermal convection flow; see Ap-
pendix A for further technical details. A subsequent truncation
to N and M real time-dependent amplitudes is done for the
stream function, {A1(τ ), . . . , AN (τ )}, and the temperature,
{B1(τ ), . . . , BM (τ )}, respectively.

This step leads to a class of low-dimensional Lorenz-type
Galerkin models of the thermal convection flow starting with
the original three-dimensional Lorenz 63 model [39] for N =
1 and M = 2 (where Ndof = N + M). The resulting coupled
nonlinear system of ordinary differential equations is given
by

dAi

dτ
= Fi(Aj, Bk, σ, r, b), (9)

dBk

dτ
= Gk (Bl , Ai, σ, r, b), (10)

for i, j = 1 . . . N and k, l = 1 . . . M. Here, σ is again the
Prandtl number, r is the relative Rayleigh number, and b is
an aspect ratio parameter; see Appendix A. Furthermore, Fi

and Gk are quadratic nonlinear functions of the amplitudes
Ai(τ ) and Bk (τ ). We will consider two implementations, the
Lorenz 63 model (L63) [39] with N = 1 and M = 2 and an
extended eight-dimensional model [42] with N = M = 4 that
introduces shear in the flow and causes tilted convection rolls
and shearing motion. It thus displays a more complex fluid
motion further away from the primary instability point at
r = 1 or Rac = 27π4/4 [44].

Figures 2(a) shows two instances of the temperature and
velocity fields with the counter-rotating circulation rolls that
cause a rise of warm and a descent of cold fluid. These two
flow states corresponds to trajectory points of L63 in each of
the two butterfly-like wings in Fig. 2(c).

III. CLOSED-LOOP SCENARIO FOR
THREE-DIMENSIONAL LORENZ MODEL

A. Quantum and classical reservoirs

The design of our time-discrete and gate-based QRCM
builds on a n-qubit tensor product state at time t . In Ap-
pendix B, we provide a compact primer on qubits, tensor
product spaces, and entangled or separable states. The n-qubit
state in Dirac notation [19] is given by

|ψt 〉 =
Nres∑
k=1

at
k|k〉 with at

k ∈ C, (11)

with Nres = 2n. Here |k〉 is the standard basis of the n-qubit
quantum register. The measured probabilities pk are given by

pt
k = |at

k|2 (12)

with at
k from Eq. (11). Here, we have 2n probabilities; 2n − 1

of them are linear independent since they have to sum up to
1. The reservoir state evolves from time t to t + �t with a
fixed time step width �t as follows. First, the dynamical part
is updated by three blocks of unitary linear transformations

|ψ̃t+1〉 = U (β)U (4πxt )U (4π pt )|0〉⊗n, (13)

with random rotation angles β = (β1, ..., βn), reservoir state
probability amplitudes pt = (pt

1, ..., pt
2n ), and the past system

state vector xt = (xt
1, ..., xt

N+M ), the latter of which sum-
marizes (A1, ..., BM ). We simplify the notation in (13) by
switching from t + �t to t + 1 (or later t + m with m ∈ N).
The initial n-qubit state vector |0〉⊗n implies that every qubit
is in the basis state |0〉. With Eq. (12) for the probability
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FIG. 2. Quantum reservoir computing model (QRCM) for the Lorenz 63 dynamical system. (a) Two instantaneous convection flow states
which display the velocity vector field (ux, uz ) together with the total temperature field T as a colored background (blue for Ttop and red for
Tbot). (b) Circuit diagram for the QRCM. Here (x1, x2, x3) = (A1, B1, B2). The three groups of unitary operations are indicated by differently
colored boxes. The scaling of input parameters of the RY -rotation gates is specified in the text. (c) Trajectory plot of the Lorenz 63 system in
the phase space which is spanned by one stream function mode A1(t ) and two temperature modes, B1(t ) and B2(t ), i.e., N = 1 and M = 2.
(d) Comparison of classical and quantum reservoir computing in the prediction phase (yellow background). Time is rescaled by the largest
Lyapunov exponent λ1 = 0.9056; see, e.g., Ref. [64]. The two flow configurations in (a) are also indicated in panels (c) and (d). (e) Mean
squared error (MSE) as a function of the leaking rate ε and the number of qubits n. The model parameter are σ = 10, b = 8/3, and r = 28.
All displayed QRCM runs are done with the Qiskit simulator.

amplitudes p̃ t+1
k which are obtained from |ψ̃t+1〉, the RCM

update step outside the quantum reservoir is given by the
following iteration:

pt+1
k = (1 − ε) pt

k + ε p̃ t+1
k . (14)

The update rule thus contains two terms, a first linear memory
term and a second nonlinear activation term. The nonlinearity
is connected to the classical data loading as will be discussed
in the next subsection. Equation (14) contains a leaking rate
0 � ε � 1 that blends both terms. In the classical reservoir
computing model, the update of the reservoir state ψt

c would
be given by

ψt+1
c = (1 − ε)ψt

c + ε tanh[W inxt + W rψt
c], (15)

which reveals a similar structure to (14). Here, W r is the
reservoir matrix and W in is the input matrix. More details
are provided in Appendix C. A leaking rate of ε = 1 implies
that only a nonlinear activation by the hyperbolic tangent is
present—a mode in which several but not all classical reser-
voir computing models are operated [24,65]. Inubushi and
Yoshimura [66] term this split the memory-nonlinearity trade-
off since the nonlinear activation term typically will degrade
the memory of the system.

Unlike the analog framework of quantum reservoir com-
puting [51–59] that processes the state without external
memory in the reservoir, we add external memory by the first
term in (14). An improved performance of the present hybrid
quantum-classical reservoir computing model for ε < 1 in
comparison to one with ε = 1 is demonstrated in Appendix D
for two common benchmark cases.

B. Classical data loading and reservoir state evolution

We now specify the loading procedure of the classical data
into the quantum reservoir. The unitary transformations of
Eq. (13) consist of single-qubit rotation gates RY and subse-
quent two-qubit controlled NOT (CNOT) gates. The RY gate is
defined by

RY (x) =
(

cos(x/2) − sin(x/2)

sin(x/2) cos(x/2)

)
.

Figure 2(b) shows the corresponding circuit diagram of the
quantum reservoir which consists of three circuit blocks as
lined out in Eq. (13). The first block of unitary transformations
U (4π pt ) loads the reservoir state probability amplitudes of
the previous time step t (indicated as the blue box). This
is done by rotation gates RY (4π pt

k ). In the circuit diagram
of Fig. 2, these 29 = 512 probabilities with 0 � pt

k � 1 are

033176-4



HYBRID QUANTUM-CLASSICAL RESERVOIR COMPUTING … PHYSICAL REVIEW RESEARCH 4, 033176 (2022)

TABLE I. Comparison of classical and quantum reservoir computing models. Different essential quantities including optimal hyperparam-
eters for the Lorenz 63 model in the closed-loop scenario are listed. The spectral radius ρ(W r ) in the quantum case is always equal to 1 since
unitary transformations are norm preserving. The number of qubits is n. Two additional hyperparameters are used in the classical RCM: a
reservoir density D = 0.2 which determines the percentage of active nodes in the matrix W r and an additional Tikhonov regularization term
with a parameter γ = 10−1 in the cost function C(W out ); see Appendix C.

Quantity Classical RCM Optimal value Quantum RCM Optimal value

Reservoir dimension Nres 512 Nres = 2n 512
Leaking rate ε 0.12 ε 0.05
Spectral radius of reservoir ρ(Wr ) 1.01 ρ(U ) 1.0
Reservoir state at time t ψt ∈ RNres |ψt 〉 ∈ CNres

Training steps Ntrain 2000 Ntrain 2000
Reservoir model nonlinearity tanh(·) RY (·)

summarized to a vector to keep the notation less crowded.
For this as for all the following blocks, the combination of
RY and CNOT gates is continued until the last qubit is reached.
There, the CNOT is applied to the previous qubit and if not yet
finished, the constructor starts at the upper qubit again.

The application of an RY rotation gate, which is
parametrized by the input value, is a nonlinear operation in
terms of the amplitudes [62,67]. It can be considered as an
analogy to the nonlinear activation in a classical RCM, e.g.,
by tanh(·); see also Table I where we summarize hyperparam-
eters of the classical and quantum RCMs. Note also that all 29

amplitudes pt
k are loaded into the reservoir in this case.

Similarly, the degrees of freedom xt
i at time t are loaded

into the quantum reservoir in the second block U (4πxt ) be-
fore the model advances further (indicated as the yellow box)
to the last block (indicated as the gray box). This third block
U (β) performs additional rotations by angles βi. It stands
for a unitary evolution step of the full reservoir state which
enhances the entanglement and randomization. The rotation
angles βi are sampled initially in a reproducible way from a
uniform distribution between 0 and 2π , which corresponds to
a random seed initialization of a classical reservoir.

The loading of the full reservoir state, which becomes
exponentially more costly, was necessary to obtain the re-
ported prediction horizons for the closed-loop scenario. This
is discussed in the next subsection.

C. Quantum reservoir readout and classical optimization

A projection-valued measure in the standard basis of the
Pauli-Z operator provides the probabilities pt

k from K � 2n

independent circuit simulations, known as shots. These prob-
abilities are mapped to the updated dynamical system state by
the output matrix,

xt
i =

2n∑
k=1

W out∗
ik pt

k, (16)

with the optimized weights which are summarized in the ma-
trix W out∗ ∈ R(N+M )×Nres . We note once more that the output
matrix is optimized by a classical algorithm similar to the
classical RCM case. This optimization seeks a minimum of
the cost function C(W out ) which is given in Appendix C.

Figure 2(d) and Table I compare the classical and quan-
tum RCM with the numerical simulation of the equations of
motion obtained by a fourth-order Runge-Kutta method. The
integration time is rescaled by the largest Lyapunov exponent
of the system, λ1 = 0.9056, which quantifies the determin-
istic chaos of the model [64]. The training phase comprises
Ntrain = 2000 time steps, both for the classical and quantum
case. The first 50 time steps out of Ntrain are used for the
washout of the initial reservoir state. For times t � 0 the
reservoirs are exposed to unseen test data predicting the dy-
namics autonomously. It is seen that the prediction horizon of
the QRCM with nine qubits is about 1.5λ1t in this example.
This result remains nearly the same for different reservoir
seeds. Either the approximation of the L63 model by reservoir
dynamics or the additional white noise in the Qiskit simulator
will cause a switch of the trajectory into the other wing of the
butterfly-like Lorenz attractor. Note that the classical RCM
(CRCM) prediction will also deviate from the ground truth at
about 3λ1t which is not shown here. The leaking rates in this
example are given in Table I.

Two hyperparameters are varied, the leaking rate ε and the
number of qubits n that determines the reservoir dimension
Nres. We identify a minimum of the cost function in the form
of a mean squared error (MSE) around ε = 0.025. This is
the statistical minimum while the single best representation
shown in Fig. 2(d) has ε = 0.05, as stated in Table I. Larger
number of qubits corresponds to smaller MSE, although the
improvements in the Qiskit simulations remain small (and
thus the difference of the displayed to the optimal case). Note
also that each data point for the MSE in Fig. 2(e) is obtained
as an average over 50 different random seeds of the quantum
reservoir, i.e., 50 different random vectors with angles βi.
A small leaking rate implies that the reservoir dynamics is
memory-dominated blended with a small nonlinear contribu-
tion [66], as we detailed already in Sec. III A.

The Tikhonov regularization parameter γ which is added
to the cost function to avoid overfitting was set to γ = 0 in
the present as well as in the NISQ device runs. The noise
in the ideal quantum simulator and the decoherence in the
NISQ device have a regularizing effect; see discussions of this
aspect in Ref. [65] for classical and in Ref. [63] for quantum
devices. We will come back to this hyperparameter in the
next section. All details on the classical reservoir computing
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model, the hyperparameters, and the cost function are found
in Appendix C in order to keep the work self-contained.

The quantum reservoir readout requires K projective
measurements of the n-qubit reservoir state on identically pre-
pared quantum systems which might be costly in comparison
to the CRCM case. However, a readout of the data has to
be done in the classical case as well. Throughout this study,
we used K = 210+n shots to reduce the measurement noise.
A further increase of the number of shots did not reduce
the MSE. Since the NISQ devices allow a maximum number
of K = 8192 shots only, batch jobs with a predefined Qiskit
function (combine counts) were used.

In the closed-loop scenario, we conduct these measure-
ments after each step to monitor the time evolution at
equidistant instants from t to tm = t + m (m > 1, m ∈ N).
This is the same procedure as in the classical algorithm such
that both can be compared to each other. With an increasing
number of qubits the state vector grows exponentially. Larger
qubit numbers can also require a number of shots K for the
quantum simulator or quantum device that goes beyond our
presently suggested one. In the open-loop scenario, which will
be discussed in Sec. IV, we advance the system from t to
t + 1 only to obtain the results. This step always closes with a
readout in the form of a measurement.

IV. OPEN-LOOP SCENARIO FOR EIGHT-DIMENSIONAL
LORENZ-TYPE MODEL

A. Quantum reservoir with one continually
available degree of freedom

We proceed from the standard L63 model to an extension
with eight degrees of freedom, which is listed and explained
further in Appendix A. As shown by Gluhovsky et al. [42],
this extension can be decomposed into subgroups, called gy-
rostats. The model conserves total energy and vorticity. They
are given by

E (t ) = 1

2A

∫
A
[(∇ζ )2 − 2Ra σ zθ ]dA, (17)

with a kinetic and potential energy term and

�(t ) = 1

A

∫
A
ωdA, (18)

with the vorticity ω = −∇2ζ and the convection domain size
A. The open-loop scenario of the QRCM implies that a subset
of the degrees of freedom will remain continually available
in the reconstruction phase after the training phase. In this
subsection, we will take Nin = 1 which will be A4(t ). The
leading Lyapunov exponent was computed numerically by a
method proposed in Ref. [68] and turned out to be λ1 = 0.825.

Figure 3 displays the results for the eight-dimensional
Lorenz-type model which receives the time series A4(t ) to
reconstruct the remaining seven degrees of freedom of the
thermal convection flow model. Figure 3(a) compares the
times series of the ground truth (GT) with the results of a
CRCM, and a QRCM which was run on n = 7 qubits on an
ideal Qiskit simulator. We see that the data remain closely
together for the displayed interval of more than 16 Lyapunov
time units. The QRCM runs again through a training phase
of Ntrain = 2000 integration time steps with a leaking rate

ε = 0.05 after an initial washout of 50 time steps. Figure 3(b)
displays the reconstructed convection flow at four instants.
The eight-dimensional model incorporates the shearing modes
which are missing in the lower-dimensional Lorenz 63 model
and lead to tilted convection cells, as can be seen in the panels.

The dimension of the quantum reservoir is Nres = 128,
while the one of the CRCM in Fig. 3 is Nres = 512. We now
compare the mean squared error (MSE) as a function of the di-
mension of the CRCM Nres and the regularization parameter γ

in Fig. 4. We also show the behavior of the QRCM Nres = 128
for comparison. The MSE is given as

MSE = 1

Ttest

Ttest∑
t=1

|xt − xt
tg|2; (19)

see also Eq. (16) and Ttest = 2000. Subscript tg stands for
target and denotes the ground truth (GT) which is obtained
by time integration of the model equations (9) and (10). The
MSE of the CRCM is large for all reservoir dimensions when
γ is very small, but improves as γ rises. The minimal MSE
for the CRCM is ≈2.8 × 10−3 at γ = 1 and Nres = 512 while
the minimal value of the QRCM is ≈1.36 × 10−3. The MSE
of the QRCM remains practically unchanged for γ � 10−3

and starts to grow then moderately. As we discussed in the
previous section, the noise of the quantum algorithms seems
to provide enough regularization. We can conclude that the
MSE of the QRCM is found to be fairly close to that of the
CRCM with a reservoir dimension that is reduced by a factor
of 4.

B. Implementation on an actual quantum device

The eight-dimensional convection flow model is finally
implemented on an actual noisy quantum device. Figure 5(a)
displays the quantum reservoir for the implementation. The
circuit depth on real devices is still limited by the decoherence
of the elementary quantum gates that are installed in the form
of microwave-controlled superconducting quantum interfer-
ence devices. The figure shows that we had to reduce the
original three-block structure of the quantum reservoir, which
was used for the results that are shown in Figs. 2 and 3, to one
block. Two further steps were necessary: (1) Instead of one
continually available variable in the reconstruction phase, we
provide now A4(t ) and B3(t ). The reason is that the shallower
circuit was found to be too noisy for the reconstruction of
seven degrees of freedom from one continually available de-
gree of freedom. (2) Only 14 out of the 128 components of the
reservoir state measurement vector pt are fed back into reser-
voir together with the two degrees of freedom. This reduces
the cost of loading data into a quantum register significantly.
The total qubit number was limited to n = 7. The studies
were conducted on two devices, ibmq_ehningen, a 27-qubit
quantum computer in Germany, and ibm_perth, a seven-qubit
machine. Figure 5(c) displays the arrangement of the seven
qubits on ibm_perth which was mainly used for the results in
Fig. 5(b). The quantum computer ibmq_ehningen was used for
reservoir computing runs with ε = 1, which gave a reduced
network performance. The additional option to take the best
calibrated seven qubits out of 27 did not lead to significant
improvements. Entanglement operations, e.g., by CNOT gates,
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FIG. 3. Comparison of the eight-dimensional Lorenz-type, time-integrated system of equations as ground truth (GT) with the classical
reservoir computing model (CRCM) and the quantum reservoir computing model (QRCM). Panel (a) displays the time evolution of all
variables. (b) Reconstruction of the flow and temperature fields at times t1 to t4 which are indicated in A1(t ). The model parameters are
σ = 10, b = 8/3, and r = 28. Here, N = 4 and M = 4. Mode A4 is the only input and always given accurately into each reservoir.

are only possible for qubits which are connected by the bars
in Fig. 5(c). No error correction was performed.

FIG. 4. Comparison of classical and quantum reservoir comput-
ing models in the reconstruction phase for different regularization
parameters γ which have been increased by factors of 10 from 10−10

to 10. Each data point corresponds to the median of 30 different ran-
dom reservoir realizations. The remaining hyperparameters remain
fixed throughout this study. The legend indicates the corresponding
reservoir dimension.

We backed up this investigation by two runs on the Qiskit
simulator with the same configuration. One is the ideal sim-
ulator that has been used before. The other simulation was
done on a noisy Qiskit simulator for which you can prescribe
the probabilities of measurement errors, here pm = 0.05, gate
errors, here p = 0.1, and qubit resets, here pr = 0.03. Values
have been chosen such that they come close to those on real
devices. All environments are compared in Fig. 5(b). The
data from the noisy Qiskit simulator and the real quantum
device partly deviate, but are found to follow the overall trend
fairly well. This proves the concept of a hybrid QRCM for a
classical dynamical system on a NISQ device.

C. Stepwise reduction of reservoir entanglement
and quantum advantage

Finally, we investigated if a simulation of the Lorenz-type
model with the simpler quantum reservoir than from Fig. 5(a)
is successful when the corresponding quantum circuit is de-
composed into several p-qubit blocks which are disentangled.
If p = n the circuit is fully entangled, for p = 1 the n-qubit
quantum state is fully separable; see Appendix B for the
definitions of both possible multiqubit quantum states. The
decomposition is illustrated in Figs. 6(b) and 6(c). The ratio-
nal behind this analysis, which we did with the ideal Qiskit
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FIG. 5. Quantum reservoir computing model run of the eight-dimensional time-integrated Lorenz-type model an actual quantum device.
(a) Sketch of the quantum reservoir which had to be reduced due to decoherence in comparison with the one that is displayed in Fig. 2. (b) Time
series of the extended Lorenz model. We compare the ground truth (model) with an ideal and noisy Qiskit simulator and the seven-qubit
quantum computer (IBM Q). The number of training steps was again Ntrain = 2000 and the leaking rate ε = 0.2. The two degrees of freedom
that are continually available in the reconstruction phase are indicated. (c) Connection of the seven qubits on the ibm_perth quantum computer.

simulator for n = 8, is that a p-blocked structure might be
simulated efficiently on a classical computer loosing the quan-
tum advantage [48].

In Fig. 6(a), we summarize the MSE in a diagram for cir-
cuits with 3 � n � 8 and possible block size 2 � p � 8. For
example, n = 4 and p = 3 imply that a single qubit remains
which is disentangled from the three-qubit block. In general,

the number of blocks of size p follows by np = 
n/p�. Each
possible p-blocked reservoir configurations at n qubits was
trained and then run for 100 different realizations to gather
statistics. Since the reduced structure of Fig. 5(a) is used,
there is no U (β) block. To generate the 100 different re-
alizations, we took 14 values pi randomly out of the 128
possible probabilities as input. The block diagram shows that

FIG. 6. Performance of the quantum reservoir computing model for different reservoir architectures. (a) Mean squared error on a
logarithmic scale as a function of the total number of qubits and the size of the blocks of entangled qubits. The dark cells in the lower
left stand for impossible decompositions. (b) Sketch of an example case. Fully entangled four-qubit-quantum circuit which is the normal
setting. (c) Two fully entangled two-qubit blocks (p = 2) build the four-qubit-quantum circuit.
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the MSE decreases when the block size is increased. We can
conclude from this analysis that the entanglement of the qubits
in the reservoir is essential for the performance of the QRCM.
This is different compared to the classical reservoir which is
a sparse network for which 20% of the network nodes are
actively only, but the number of perceptrons is by two to three
orders of magnitude larger in comparison to the number of
qubits of the quantum reservoir.

Finally, we estimate the number of operations for the
CRCM and our QRCM. While most tasks have equal compu-
tational effort, our comparison is related to the second term in
(14) which provides the nonlinear activation. In the classical
case, this requires mainly O((Nc

res)2) operations for the first
term in the tanh(·) activation; see Ref. [36] for an analysis of
the occupation of the reservoir matrix. Superscripts c and q
of Nres stand for classical and quantum reservoir dimension,
respectively. The second term with Nc

res × Nin operations is
subdominant when Nin � Nc

res. In the quantum case, we have
O(ξn) gate operations for a shallow circuit as the one given
in Fig. 5(a) that spans a reservoir of dimension Nq

res = 2n.
Here, the prefactor of ξ � 3 is the approximate amount of
operations for a single qubit. This has to be multiplied with
the number of shots, which was set here to K = 210+n. We
compare the amount of operations for N = Nc

res = Nq
res with N

being sufficiently large, and thus follows the inequality

210+n × ξn < (2n)2 = 22n, (20)

or, in terms of states N = 2n,

210ξN log2(N ) < N2, (21)

for having less reservoir operations of the quantum case. In
order to show a quantum advantage for this framework rig-
orously, one needs to prove that the formula K = 210+n is
still appropriate and that ξ can still be chosen constant for
increasing qubit number. Since the QRCM requires typically
fewer nodes than the CRCM, i.e., Nq

res � Nc
res as seen in Fig. 4,

we expect that the QRCM might be able to outperform its clas-
sical counterpart, at least for the class of problems discussed
here. It is clear that future investigations have to show if this
is the case.

V. SUMMARY AND OUTLOOK

The main objective of our present work was to show the
feasibility of a hybrid quantum-classical reservoir computing
model to predict and to reproduce the dynamical evolution of
a classical, nonlinear thermal convection flow, on an actual
quantum computer with up to seven superconducting qubits.
In a nutshell, quantum reservoir computing models are re-
current machine learning algorithms for which the reservoir
state is built by a highly entangled tensor product quantum
state that grows exponentially in dimension with the number
of qubits.

Our work showed that a quantum reservoir has a qubit
number that is by about two orders of magnitude smaller
than that of the perceptrons in a classical one. On the one
hand, we could thus take advantage of the data compression
capabilities of quantum machine learning algorithms where
the dimension of the data space grows exponentially with the
number of qubits which is essential for the modeling of higher

dimensional nonlinear dynamical systems. On the other hand,
it shows that a classical reservoir state which is caused by a
sparsely occupied network matrix of dimension �103 can be
substituted by a highly entangled quantum state that is caused
by the application of unitary transformations. The qubit num-
ber was n < 10 in the present case.

The study can be extended into several directions. It is clear
that the present thermal convection flow model is still very low
dimensional and thus far away from convective turbulence.
Our efforts should be considered as one first step to model
real fluid flows on a quantum computer. It provides a possible
route beside other directions, such as quantum embedding of
nonlinear dynamical systems by the Koopman operator frame-
work [69] or variational quantum algorithms for the direct
solution of the equations of motion [70]; see also Ref. [71]
for further directions such as lattice Boltzmann methods.
Extensions to higher dimensional models are currently still
limited by the technological capabilities of quantum comput-
ers. As the technological progress in this field is very fast,
it can be expected that Galerkin models with significantly
more modes will be modeled on upcoming devices with chips
with a higher noise resilience and lower error rates at the
gates. The model that we applied here can be systematically
extended toward turbulent convection, as discussed in detail
in Refs. [43,72]. A QRCM with n ≈ 10 might thus be able
to run a two-dimensional turbulent convection flow usable as
a subgrid-scale superparametrization in a global circulation
model [73].

In the present work, we have not systematically optimized
the circuit architectures for the different tasks. Further reduc-
tions of the number of gates caused always reduced prediction
and reconstruction capabilities in the closed- and open-loop
scenarios, respectively. A possible route of research would
thus be to compose the different quantum reservoirs more
systematically from first principles, e.g., in the form of a
multilayer tensorial network that potentially improves the per-
formance of quantum algorithms on NISQ devices; see, e.g.,
Ref. [74].
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APPENDIX A: LORENZ-TYPE MODEL OF DIMENSION 8

In this Appendix, we provide details of the derivation of
reduced Lorenz-type models for thermally driven convection
flows. The Lorenz-type models are obtained from Eqs. (6) and
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(7) by means of the following finite expansions that satisfy the
boundary conditions (8). They are given by

ζ (x, z, t ) =
N∑

i, j=1

cζ Ai j (t )�(αix) sin(β jz), (A1)

θ (x, z, t ) =
M∑

k,l=1

cθBkl (t )�(αkx) sin(βl z), (A2)

with normalization prefactors cψ, cθ , the real amplitudes
{Ai j (t ), Bkl (t )}, and the wave numbers

αk = kα = 2πk

�
and βk = kβ = kπ, (A3)

with k = 0, 1, 2, . . . Here, �(x) = {cos(x), sin(x)}. Inserting
the expansions into the equations for ζ and θ , sorting the
terms with respect to the wave numbers, and truncating higher
wave numbers leads to closed systems of coupled nonlinear
ordinary differential equations. In the present work, we con-
sider Lorenz-type models up to order 8 (N = M = 4); higher
dimensional models have been investigated for example in
Refs. [42,43]. In detail, we take the expansions

ζ (x, z, t ) = cζ [A1(t ) sin(αx) sin(βz) + A2(t ) sin(βz)

+ A3(t ) cos(αx) sin(2βz) + A4(t ) sin(3βz)],

θ (x, z, t ) = cθ [
√

2B1(t ) cos(αx) sin(βz) + B2(t ) sin(2βz)

+ B3(t ) sin(αx) sin(2βz) + B4(t ) sin(4βz)].

The normalization constants are

cζ =
√

2
α2 + β2

αβ
, (A4)

cθ = (α2 + β2)3

α2βRa
. (A5)

The resulting system of nonlinear coupled ordinary differen-
tial equations is given by

dA1

dτ
= σ (B1 − A1) − 3β2 + α2

√
2(α2 + β2)

A2A3

+ 3α2 − 15β2

√
2(α2 + β2)

A3A4, (A6)

dA2

dτ
= −σb

4
A2 − 3

2
√

2
A1A3, (A7)

dA3

dτ
= − σ

α2 + 4β2

α2 + β2
A3 − σ

α2 + β2

√
2(4β2 + α2)

B3

+ α2

√
2(α2 + β2)

A1A2 + 24β2 − 3α2

√
2(4β2 + α2)

A1A4, (A8)

dA4

dτ
= −9σb

4
A4 − 1

2
√

2
A1A3, (A9)

dB1

dτ
= −B1 + rA1 + A1B2 + 1

2
A2B3 + 3

2
A4B3, (A10)

dB2

dτ
= −bB2 − A1B1, (A11)

dB3

dτ
= − α2 + 4β2

α2 + β2
B3 − A2B3 +

√
2rA3 + 3A4B1

− 2
√

2A3B4, (A12)

dB4

dτ
= −4bB4 + 3

√
2

4
A3B3, (A13)

with b = 4β2/(α2 + β2), Rac = (α2 + β2)3/α2, and the
rescaled time τ = (α2 + β2)t . The Lorenz 63 model [39] is
recaptured for A2 = A3 = A4 = 0 and B3 = B4 = 0.

A primary linear instability of the convection flow, which
initiates fluid motion due to a sufficiently large tempera-
ture difference between the bottom and the top, takes place
at a critical Rayleigh number Rac = 27π4/4 when free-slip
boundary conditions hold at the top and bottom [75]. The first
parameter σ is the Prandtl number. The second parameter r in
the Lorenz-type models is then defined as r = Ra/Rac > 1.
The third parameter b is connected to the aspect ratio � of the
fluid volume that is considered. In detail,

b = 4�2

4 + �2
. (A14)

If b = 8/3 then the aspect ratio is � = length/height = 2
√

2
which corresponds to the critical wavelength of plane wave
perturbations of the quiescent equilibrium of the convection
flow. In other words, at this wavelength the thermal convection
flow becomes linearly unstable first.

APPENDIX B: QUBITS AND TENSOR PRODUCT SPACES

In this Appendix, we briefly summarize some basic def-
initions of quantum computing. For more details, we refer
to the textbook of Nielsen and Chuang [19] and a review
by Bharadwaj and Sreenivasan [71]. While a single classical
bit can take two discrete values, namely {0, 1} only, a single
quantum bit (in short qubit) is a superposition of two basis
states in the vector space C2 which can take any state on the
surface of a (Bloch) sphere

|q1〉 = c1|0〉 + c2|1〉 = c1

(
1
0

)
+ c2

(
0
1

)
, (B1)

with c1, c2 ∈ C and |c1|2 + |c2|2 = 1. Vectors |0〉 and |1〉 are
the basis vectors in Dirac notation [19]. A two-qubit state
vector is the tensor product of two single-qubit vectors,

|q2〉 = |q1〉 ⊗ |q′
1〉. (B2)

The basis of this tensor product space is given by four vec-
tors: | j1〉 = |0〉 ⊗ |0〉, | j2〉 = |0〉 ⊗ |1〉, | j3〉 = |1〉 ⊗ |0〉, and
| j4〉 = |1〉 ⊗ |1〉. An n-qubit quantum state, which is given by

|�〉 =
2n∑

k=1

ck| jk〉 with
2n∑

k=1

|ck|2 = 1, (B3)

is called fully separable if it can be written as

|�〉 =
n⊗

i=1

|qi〉, (B4)

where |qi〉 are single-qubit quantum states given by Eq. (B1).
It is called separable if a tensor product decomposition of |�〉
into blocks is possible with at least one multiqubit quantum
state |qi〉 that is not fully separable. Not separable multiqubit
quantum states are called entangled. An n-qubit quantum state
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is called fully entangled if no subspace of separable qubits
exists.

APPENDIX C: CLASSICAL RESERVOIR
COMPUTING MODEL

In this Appendix, we provide details about the reservoir
computing approach, a recurrent supervised machine learning
algorithm, which is implemented here in the form of an echo
state network with a leaking rate ε. The training of the RCM
proceeds as follows. The dynamical system state at time t ,
which is denoted more compactly as

xt = {A1, ..., AN , B1, ..., BM} ∈ RNin , (C1)

is mapped to the reservoir state ψt via the randomly initial-
ized input weight matrix W in ∈ RNres×Nin . Here, Nres � Nin is
the reservoir dimension. The reservoir state ψt is updated as
follows [26,28,35] [see Eq. (15) in the main text]:

ψt+1 = (1 − ε)ψt + ε tanh[W inxt + W rψt ]. (C2)

This update rule comprises external forcing by the inputs xt

as well as a self-interaction with the reservoir state ψt . The
two terms on the right-hand side of (C2) are combined by the
leaking rate ε. The hyperbolic tangent tanh(·) is the nonlinear
activation function of each reservoir node. The randomly ini-
tialized matrix W r represents the reservoir, a sparse random
network of neurons [65]. Thus, the leaking rate ε ∈ (0, 1]
moderates the linear and nonlinear contributions. The updated
reservoir state ψt+1 is mapped via the output matrix W out ∈
RNin×Nres to form the reservoir output xt+1 ∈ RNin

xt+1 = W outψt+1. (C3)

The elements of W out have to be computed. Therefore, a set of
T training data instances {xt+1, xt+1

tg }, where t = −T,−T +
1, ...,−1, needs to be prepared. The target output xt+1

tg [also
denoted as ground truth (GT)] represents the desired output
that the RCM should produce for the given input xt . The
resulting data pairs are assembled into a mean squared cost
function C(W out ) with a Tikhonov regularization term which
is given by

C(W out ) = 1

T

−1∑
t=−T

|xt − xt
tg|2 + γ Tr(W outW outT

),

and has to be minimized corresponding to W out∗ =
arg min C(W out ). Superscript T denotes the transposed. The
regularization parameter γ > 0 avoids overfitting [14]. The
optimized output matrix is given by

W out∗ = UtgRT(RRT + γ I)−1, (C4)

where I is the identity matrix. Utg and R are matrixes where
the t th column is the target output xt

tg and reservoir state
ψt , respectively. The optimization of the output weights thus
becomes computationally inexpensive. The hyperparameters
of the classical RCM are Nres, ε, γ , the reservoir density D,
and the spectral radius ρ(W r ).

Once the output weights are optimized and the hyperpa-
rameters are tuned, the RCM can run either in the prediction

(closed-loop scenario) or reconstruction mode (open-loop sce-
nario). Equation (C2) changes in the closed-loop scenario to

ψt+1 =(1 − ε)ψt + ε tanh[W inW out∗ψt + W rψt ]. (C5)

Now the RCM can work independently of training input.
The prediction for the dynamical system follows by xt+1 =
W out∗ψt+1. Equation (C2) remains the same in the open-loop
scenario, except that the continually available input vector is
very low dimensional in this regime; see Fig. 1. The full state
reconstruction follows again by xt+1 = W out∗ψt+1. The latter
case is also called one-step prediction since xt+1 is not used
as a new input for xt+2, unlike the former prediction mode.

APPENDIX D: NARMA-2 MODEL AND MACKEY-GLASS
EQUATION FOR DIFFERENT LEAKING RATES

In this Appendix, we demonstrate the necessity of ε < 1
for two common reservoir computing benchmark cases. The
first case is the NARMA model, an input-output model class
with input uk with k ∈ N given by

uk = 0.1[sin(2παk) sin(2πβk) sin(2πγ k) + 1]. (D1)

Here, α = 2.11/T , β = 3.73/T , γ = 4.11/T , and T = 100.
The output yk is then given by the following iteration rule:

yk+1 = 0.4yk + 0.4ykyk−1 + 0.6u3
k + 0.1. (D2)

We use y0 = y1 = 0.19. The recursive character of the discrete
time series can be enhanced by adding further terms from the
past. Here, we take a NARMA-2 model since yk+1 depends on
yk and yk−1.

The second case is the Mackey-Glass equation, a nonlinear
time-delay differential equation, which is given by

dx(τ )

dτ
= βαnx(τ − T )

αn + x(τ − T )n
− γ x(τ ). (D3)

FIG. 7. Open-loop prediction with the quantum circuit structure
of Fig. 2(b) for the time-discrete NARMA-2 model with four qubits
(top) and the time-continuous Mackey-Glass equation for five qubits
(bottom). Time t is given either in iterations k (top) or in multiples of
�τ (bottom). GT is the ground truth. Leaking rates in the legend hold
for both panels. Training ends at time step t = 500. The open-loop
one-step prediction is marked by the yellow shaded background.
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Here, α = 1, β = 2, γ = 1, and T = 2. The time τ is mea-
sured here in multiples of the time step width �τ = 0.1,
i.e., τ = k�τ with k ∈ N. Figure 7 compares the afore-
mentioned benchmarks for two leaking rates which were
processed with our QRCM, either with ε = 1 or ε = 0.2.
All runs were done in Qiskit. The first 100 time steps are

used for washout, and the subsequent 400 time steps for
training. We clearly observe a significant improvement of
the performance of the hybrid quantum-classical reservoir
computing model with a leaking rate of ε < 1. The QRCM
prediction with ε = 0.2 follows the ground truth nearly
perfectly.
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[46] M. Lukoševičius and A. Uselis, Efficient implementations of
echo state network cross-validation, Cogn. Comput. (2021),
doi:10.1007/s12559-021-09849-2.

[47] Qiskit Version 0.24.1, 2021, https://qiskit.org/documentation/
stable/0.24/release_notes.html.

[48] R. Jozsa and N. Linden, On the role of entanglement in
quantum-computational speed-up, Proc. R. Soc. London A 459,
2011 (2003).
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