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A wellknown approach to describe the dynamics of an open quantum system is to compute the master
equation evolving the reduced density matrix of the system. This approach plays an important role in describing
excitation transfer through photosynthetic light harvesting complexes (LHCs). The hierarchical equations of
motion (HEOM) was adapted by Ishizaki and Fleming [J. Chem. Phys.130, 234111 (2009)] to simulate open
quantum dynamics in the biological regime. We generate a set of time-dependent observables that depict the
coherent propagation of electronic excitations through the LHCs by solving the HEOM. The computationally
intractable problem here is addressed using classical machine learning (ML). The ML architecture constructed
here is of model character and it is used to solve the inverse problem for open quantum systems within the HEOM
approach. The objective is to determine whether a trained ML model can perform Hamiltonian tomography by
using the time dependence of the observables as inputs. We demonstrate the capability of convolutional neural
networks to tackle this research problem. The models developed here can predict Hamiltonian parameters such
as excited state energies and inter-site couplings of a system up to 99.28% accuracy.
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I. INTRODUCTION

During the first step of photosynthesis in light harvesting
complexes, photons are absorbed by the antenna. While part
of the energy of the photons is converted into heat in the form
of molecular vibrations, most of the energy is captured as ex-
citons which are subsequently transferred via chromophores
to the reaction center through a process labeled as excitation
energy transfer (EET). It is at the reaction center where pho-
tochemical reactions are triggered [1].

The evidence for quantum coherence, which has no classi-
cal analog, in the exciton transport process became undeniable
in 2007 when Engel et al. [2] used two-dimensional spec-
troscopic signatures [3] to demonstrate quantum “beating”
within a photosynthetic complex at 77 K, a result that was later
confirmed at room temperature. Quantum beating in spectro-
scopic measurements provides a direct measure of quantum
coherence on the appropriate energy and time scales [4].
While electronic coherence was first proposed as the source
for the observed long-lived quantum coherence [2], experi-
mental and theoretical evidence has also supported proposals
that the phenomenon resulted from a mixture of electronic
and vibrational states which is referred to as “vibronic” co-
herence [5].

The idea of quantum coherence playing a role in photosyn-
thesis arose from observations that some energy or electron
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transfer processes in bacterial and plant pigment-protein com-
plexes are efficient to an extent that exceeds explanation using
only classical theory. Engel et al. [2] investigated photosyn-
thetic EET in the Fenna-Matthews-Olson (FMO) protein of
green sulfur bacteria [1,6]. The FMO complex was the first
chlorophyll-containing protein that was crystallized [7]. Prior
to mass spectrometry measurements of the protein that con-
firmed the existence of an eighth pigment, it was accepted
that the protein consisted of seven pigments [8]. Subsequently,
FMO is made up of three subunits each consisting of eight
bacteriochlorophyll molecules. The FMO complex serves as a
bridging energy wire as it is tasked with transporting energy
in the form of light harvested in the antenna chlorosome to the
reaction center pigments [1]. It represents an important model
in EET and has been extensively studied experimentally and
theoretically. Engel and collaborators succeeded in observing
long-lasting quantum effects providing direct evidence for
long-lived electronic coherence [4]. The observed coherence
lasts for time scales similar to the EET timescales, implying
that electronic excitations move coherently through the FMO
protein rather than by previously proposed incoherent hop-
ping motion [9,10]. Panitchayangkoon et al. [11] presented
evidence that quantum coherence survives in FMO at physio-
logical temperature for at least 300 fs which is long enough to
impact biological energy transport. Collini et al. [12] made ob-
servations that provide evidence for quantum coherent sharing
of electronic excitation across proteins under biologically rel-
evant conditions. They suggest that distant molecules within
the photosynthetic proteins are “wired” together by quantum
coherence for more efficient light-harvesting in cryptophyte
marine algae. Lee et al. [13] present experimental results
in which they suggest that correlated protein environments
preserve electronic coherence in photosynthetic complexes
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and allow the excitation to move coherently in space which
enables highly efficient energy harvesting and trapping in pho-
tosynthesis. However, explanations for observed long-lived
coherence have evolved during the past decade [14–16]. More
recently, Fuller et al. [5] and Thyrhaug et al. [17] suggest that
the coherences are of a mixed electronic-vibrational nature
and may enhance the rate of charge separation in oxygenic
photosynthesis.

Understanding the relationship between the structure of
light harvesting complexes and their excitation energy transfer
dynamics is of importance in many applications. Insight into
long-lived quantum coherence in EET processes can be gained
through the reduced equation of motion and the numerically
exact formalism of quantum dynamics adopted to study EET
processes is the Hierarchical Equations of Motion (HEOM)
derived by Tanimura and Kubo [18].

Machine learning is a well established tool that has been
actively applied in various ways to address physical problems
[19]. One common strategy is to use supervised learning in
which an algorithm is trained with datasets that are labeled
beforehand; then the goal of the algorithm is to establish a
general rule for assigning labels to data outside the training
set. This approach can be used to identify distinct phases of
matter and the transitions between them, one of the central
problems in condensed-matter physics, that has been tackled
by Carrasquilla and Melko [20]. Machine learning techniques
have been used to represent and solve quantum systems such
as in a work by Carleo and Troyer [21] where the authors
introduce an ansatz capable of both finding the ground state
and describing the unitary time evolution of complex inter-
acting quantum systems. More specifically and in a bid to
investigate open quantum systems further, the applications
of supervised machine learning that we are interested in are
related to forms of approximating solutions to open quantum
system dynamics such as where multi-layer perceptrons have
been used to obtain the exciton dynamics of large photosyn-
thetic complexes [22] and to better understand the relationship
between the structure of light-harvesting systems and their ex-
citation energy transfer properties [23], where recurrent neural
networks were used to model quantum systems interacting
with an unknown environment [24], and where convolutional
neural networks were used to predict long-time dynamics of
an open quantum system [25].

More specifically, research has been conducted where
varying techniques have been employed to address inverse
problems in open quantum systems. Vargas-Hernández et al.
probe the steady state (SS) solution of the Liouvillian in
relation to the computation of desired physical observables
[26]. They present a novel methodology to address the in-
verse design of quantum systems interacting with multiple
environments. This methodology, based on automatic differ-
entiation, is capable of differentiating the SS solution with
respect to any parameter of the Liouvillian. The authors claim
that their approach has a low memory cost and is agnostic to
the exact algorithm for computing the SS. An advantage of
this method is illustrated in the text by inverse designing the
parameters of a quantum heat transfer device that maximizes
the heat current and the rectification coefficient. Hou et al.
investigate Hamiltonian tomography through a machine learn-
ing approach [27]. Particle or energy transfer through quan-

FIG. 1. Machine learning Hamiltonian tomography in open
quantum systems. The “direct problem” is the process of using the
Hamiltonian of an open quantum system ĤS as an input to the
HEOM to calculate the evolution of the reduced density matrix ρ̂(t )
to produce the time dependent observables. The “inverse problem”
addressed in this study is the process of using the observables as an
input to the CNN to reproduce the system Hamiltonian.

tum networks is determined here by network topology and
couplings to environments. They study the combined effect
of these characteristics on the efficiency of quantum transfer
through quantum networks. They are able to determine the
Hamiltonian parameters corresponding to minimum transfer
time by Bayesian optimization. Their approach can be applied
to determine quantum speed limits in other applications. In an-
other study, Vargas-Hernández et al. further prove that for the
common task of the optimization of physical models to repro-
duce a set of target observables, machine-learning algorithms
are useful [28]. In the case where multiple target observables
are considered, the authors used a multi-objective optimiza-
tion protocol where the goal is to learn the limits of each ob-
jective through the Pareto front [29]. They illustrate that more
can be learned about the robustness of a physical model by
finding the Pareto front than can be done with results from us-
ing a single-objective optimization scheme. A significant bio-
physical process retinal photoisomerization, as it occurs in na-
ture, i.e., in the steady state induced by incoherent radiation, is
a particularly important system to examine via this algorithm.

The primary focus of this work is on using classical ma-
chine learning models to study the quantum dynamics of
EET. We can generate a time dependent set of observables
that depict the coherent movement of electronic excitations
through a photosynthetic pigment-protein complex by solving
the HEOM. Here we develop a scalable and efficient tool for
the description of the dynamical properties of open quantum
systems by use of a trained convolutional neural network
(CNN) to solve the inverse problem. This means that the ob-
jective is to determine whether a trained CNN can accurately
describe the system under study, by predicting the parameters
of the system Hamiltonian such as excited state energies and
intersite couplings, when given this time dependent data of
varying length (see Fig. 1).

In Sec. II, we describe the HEOM framework, Sec. III is
used to introduce and explain the use of machine learning
in this context. In Sec. IV, we present the numerical results
which show that our models can successfully reproduce the
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Hamiltonian of a system and that our method can be easily
adapted to study more complex systems. Finally, Sec. V is
devoted to concluding remarks.

II. HIERARCHICAL EQUATIONS OF MOTION

One of the viable approaches to explore long-lived quan-
tum coherence and its interplay with the protein environment
in EET processes is through the reduced equation of mo-
tion. In this approach, the key quantity of interest is the
reduced density matrix, i.e., the partial trace of the total
density matrix over the environmental degrees of freedom
[30]. Typical situations in photosynthetic EET are such that
the electronic coupling strengths, between chromophores and
their local environment phonons, span a similar range as the
reorganization energies, which characterize the time scale of
the coupled phonons relaxing to their respective equilibrium
states [24,31]. However, these site-dependent reorganization
processes cannot be described by theories that rely on the
Markov approximation as it requires the phonons to relax to
their equilibrium states instantaneously, that is, the phonons
are always in equilibrium even under the electron-phonon
interaction.

In order to go beyond the Markov approximation, Tan-
imura and Kubo [18] developed a new theoretical framework,
the HEOM, which can describe the site-dependent reorga-
nization dynamics of environmental phonons. Ishizaki and
Fleming [32] adapted this formalism to suit the quantum bi-
ological regime which is the form we employ. HEOM is a
numerically exact method which accurately accounts for the
reorganization process in which the vibrational coordinates
rearrange to their new equilibrium positions upon electronic
transition from the ground to the excited potential energy
surface. It can describe quantum coherent wavelike motion
and incoherent hopping in the same framework and reduces to
the conventional Redfield [33–35] and Förster [36,37] theories
in their respective limits of validity. In the following, we
highlight the theory required to describe EET dynamics in a
photosynthetic complex [38,39].

The total Hamiltonian is composed of the Hamiltonian of
the system, bath and system-bath interaction,

ĤT OT = ĤS + ĤB + ĤSB. (1)

The Hamiltonian of the system refers to the electronic
states of a complex containing N pigments,

ĤS =
N∑

j=1

| j〉ε j〈 j| +
N∑

k �= j

| j〉Jjk〈k|, (2)

where ε j is the excited state energy of the jth site and Jjk

denotes the electronic coupling between the jth and kth sites.
Here we consider that each pigment is coupled to a sepa-

rate bath. The bath Hamiltonian represents the environmental
phonons,

ĤB =
N∑

j=1

ĤBj , ĤBj =
∑

α

h̄ω j,α

(
p̂2

j,α + q̂2
j,α

2

)
, (3)

where p is the conjugate momentum, q is the dimensionless
coordinate and ω j,α is the frequency of the jth site and αth

phonon mode, respectively. The last term of Eq. (1) represents
the fluctuations in the site energies caused by the phonon
dynamics,

ĤSB =
N∑

j=1

û j | j〉 〈 j|, û j =
∑

α

g j,α q̂ j,α, (4)

where g j,α is the coupling constant between the jth site and
αth phonon mode.

The spectral density J j (ω) specifies the coupling of an
electronic transition of the jth pigment to the environmen-
tal phonons through the reorganization energy λ j and the
timescale of the phonon relaxation γ j . Here it is expressed
as the Ohmic spectral density with Lorentz-Drude cutoff,
J j (ω) = 2λ jγ jω/(ω2 + γ 2

j ).
We focus on the application of this theory to EET at

physiological temperatures of around 300 K. Hence, when the
high-temperature condition characterized by h̄γ j/kBT � 1 is
imposed, the following hierarchically coupled equations of
motion are obtained [32]:

∂

∂t
σ̂ (n, t ) = −

(
iL̂e +

N∑
j=1

n jγ j

)
σ̂ (n, t )

+
N∑

j=1

[
̂ j σ̂ (n j+, t ) + n j�̂ j σ̂ (n j−, t )]. (5)

In Eq. (5), n ≡ (n1, n2, . . . , nN ) for sets of non-negative
integers and n j± differs from n by changing the corresponding
n j to n j ± 1. Furthermore, in Eq. (5), the element σ̂ (0, t )
is identical to the reduced density operator ρ̂(t ), while the
rest are auxiliary density operators. Moreover, the Liouvillian
corresponding to the Hamiltonian ĤS is denoted by L̂e and the
relaxation operators 
̂ j and �̂ j are given by Eqs. (6)–(8):

L̂e = [ĤS, ρ̂S], (6)


̂ j = iV ×
j , V ×

j y = [Vj, y], (7)

�̂ j = i

(
2λ j

β h̄2 V ×
j − i

λ j

h̄
γ jV

◦
j

)
, V ◦

j y = {Vj, y}. (8)

Formally, the hierarchy in Eq. (5) is infinite and cannot
be numerically integrated. In order to make this problem
tractable, the hierarchy can be terminated at a certain depth.
There are several methods of doing so and in this work
we have chosen the following termination condition fol-
lowing Ishizaki and Fleming [38]. For the integers n =
(n1, n2, . . . , nN ) and for characteristic frequency ωe of L̂e

where

N ≡
N∑

j=1

n j � ωe

min(γ1, γ2, . . . , γN )
, (9)

Eq. (5) is replaced by

∂

∂t
σ̂ (n, t ) = −iL̂eσ̂ (n, t ). (10)

To elaborate on the truncation, Eq. (11) is the HEOM of
the first nontrivial case of a dimer (N = 2) where the depth of
the hierarchy is N = 2. This case is chosen for its simplicity
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while it contains all three components of the hierarchy —- the
density matrix of the system where n = (0, 0),

∂

∂t
ρ̂ = −iL̂eρ̂(t ) + 
̂1σ̂

(1,0)(t ) + 
̂2σ̂
(0,1)(t ), (11a)

the generic HEOM for non-negative integers (n1, n2) =
[(0, 1), (1, 0)] with auxiliary density operators σ̂ (n1,n2 )(t ),

∂

∂t
σ̂ (n1,n2 )(t ) = −(iL̂e + n1γ1 + n2γ2)σ̂ (n1,n2 )(t )

+ 
̂1σ̂
(n1+1,n2 )(t ) + n1�̂1σ̂

(n1−1,n2 )(t )

+ 
̂2σ̂
(n1,n2+1)(t ) + n2�̂2σ̂

(n1,n2−1)(t ) (11b)

and terminating term of the HEOM sequence for (n1, n2) =
[(0, 2), (2, 0), (1, 1)],

∂

∂t
σ̂ (n1,n2 )(t ) = −iL̂eσ̂

(n1,n2 )(t ). (11c)

III. MACHINE LEARNING APPROACH

There exist numerous studies [22–25,40,41] of machine
learning techniques applied to accelerate computations by
many orders of magnitude at a reasonable level of accuracy.
A machine learning model can be leveraged to predict the
reduced density matrix of a system given the Hamiltonian of
the system. In this approach, the model is trained and tested
on a large and diverse enough dataset of Hamiltonians and
corresponding reduced density matrices such that it may learn
patterns in the data and be able to present highly accurate
predictions without having any knowledge of the theory or
in this case, HEOM.

However, in an experimental setting one may gather certain
timedependent observational data and subsequently need to
use these findings to attain the Hamiltonian of the excitonic
system under study. The use of machine learning models in
this work is to act as a blackbox which one can input excita-
tion energy transfer observations into and obtain Hamiltonian
parameters from.

In Sec. III A we describe the machine learning basics
required to follow the study. Thereafter, in Sec. III B we gen-
erate multiple datasets comprising of excited state population
dynamics and corresponding Hamiltonian parameters, and in
Sec. III C we design the supervised machine learning model
architecture to be used for making predictions based on the
generated datasets.

A. Supervised machine learning

Machine learning algorithms are used to learn underly-
ing patterns embedded in the data. In the realm of classical
machine learning, there exist three broad types classified by
the amount and type of supervision models get during train-
ing: supervised, unsupervised, and reinforcement learning. In
supervised learning, the training set fed to the model includes
the true solutions called labels [42,43].

A neural network is a machine learning model whose struc-
ture is inspired by the networks of biological neurons found in
our brains [44]. They are made up of layers of neurons which
are core processing units of the network. Usually these layers
contain an input layer to receive input features, an output layer
to make final predictions, and hidden layers which perform

most of the computations done by the network. Convolutional
neural networks (CNNs) [45] are a class of neural networks
which emerged from the study of the brain’s visual cortex
[46,47]. CNNs specialize in processing data that has a gridlike
topology. The human brain processes information when we
see an image as each neuron works in its own restricted region
of the visual field called the receptive field and is connected to
other neurons in a way that covers the entire visual field. Just
as each neuron responds to stimuli only in its receptive field
in the biological vision system, each neuron in a CNN pro-
cesses data only in its receptive field. The layers are arranged
such that they detect simpler patterns first and more complex
patterns deeper into the network. A rich description of how
the convolution operation works and the advantages of using
CNNs has been written by Goodfellow et al. [48].

In this work, machine learning has been leveraged to
solve the HEOM inversely without explicitly solving the
equations at all so that predictions of the parameters of the
Hamiltonian of a system can be made when given time depen-
dent observations.

B. Generating the database

To demonstrate the capabilities of our machine learning
approaches for the regression task at hand, we investigate
three datasets of increasing complexity that are randomly
generated excitonic systems. The parameters of the Hamilto-
nians in these datasets are motivated by and sampled around
the same order of magnitude as those that are typical of the
light-harvesting pigment-protein FMO.

We impose a linear chain such that only neighbor-neighbor
couplings are permitted and, for simplicity, we consider that
the transition rates are strictly real in value. When sampling
the Hamiltonian parameters we consider the excited state en-
ergy ε j and intersite coupling Jjk with respect to ε1. Hence,
the Hamiltonian of an N-level system would require 2(N − 1)
real parameters. In constructing the first dataset, we consider
two-level excitonic systems which allow for excitation energy
transfer between two excited states. In this case, there are
two Hamiltonian parameters needed to describe the two-level
system as seen in Eq. (2) where N = 2. Therefore, by solving
the HEOM we obtain the time evolution of an N-dimensional
reduced density matrix for each sample. In a similar way, the
second and third datasets consider three-level and four-level
systems which require four and six Hamiltonian parameters,
respectively. The following data is captured and stored for
each sample in each dataset: Hamiltonian parameters which
are used as labels for the machine learning model and, the
time evolution of each element of the reduced density matrix
to be used as input features for the machine learning model.
An example of an input feature for a two-level system can
be seen in Fig. 2 which depicts the time evolution of the
population of site 1 which corresponds to the first element in
the reduced density matrix. For each dataset, 25 000 Hamil-
tonians were generated by sampling a uniform distribution
for excited state energies and intersite couplings within a
fixed range of values around those that are typical of FMO
complex shown in Table I. Only neighbor-neighbor couplings
were considered to be nonzero, hence, Jjk were only sampled
for each site’s nearest neighbors. Furthermore, the values of
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FIG. 2. Time evolution of the population of site 1 of a two-level
system calculated by the HEOM, Eq. (5). This calculation was done
at T = 300 K where the reorganization energy and the phonon
relaxation time are set to be λ = 35 cm−1 and γ = 106.1767 cm−1,
respectively. Other parameters were fixed to be E = 100 cm−1 and
J12 = 100 cm−1.

excited state energy ε j have been sampled with respect to
12 400 cm−1 for all sites [23,49].

By explicitly solving the HEOM, we compute the time
evolution of the reduced density matrix for each Hamiltonian
in each of our datasets. As opposed to the traditional 4th-order
Runge-Kutta method, the numerical propagation was done by
an exponential expansion method described by Dattani et al.
for 1 ps represented by 5000 time steps [14]. Each compu-
tation took approximately 1 s, 1.5 s, and 2 s for a two-level,
three-level, and four-level system sample, respectively. For all
samples in all datasets, the HEOM were truncated at a depth
of[write out three?] 3 [refer to Eq. (9)]. For all Hamiltoni-
ans, we assumed identical Drude-Lorentz spectral densities
describing the influence of the bath on each excited state. For
all datasets, simulations were done at temperature T = 300 K,
reorganization energy λ = 35 cm−1, and phonon relaxation
time γ = 106.1767 cm−1 [32]. Python’s main scientific li-
braries used are NumPy, pandas, and Matplotlib, while Python
frameworks for machine learning tasks are Scikit-Learn, Ten-
sorFlow, and Keras.

C. Model architecture

The architecture of our CNNs are designed for supervised
learning of excitation energy transfer dynamics. As mentioned
in Sec. III B, the elements of the reduced density matrices
obtained by solving the HEOM are the inputs known as
features for the CNN. To reduce the computational cost of

TABLE I. Lower and upper limits in between which excited
state energies ε j and inter-site couplings Jjk for each site’s nearest
neighbors were uniformly sampled to generate the three datasets of
this study.

Dataset ε j (cm−1) Jjk (cm−1)

2 [−100, 100] [−100, 100]
3 [−100, 100] [−100, 100]
4 [−100, 100] [−100, 100]

model training and to improve the performance of the model,
a feature selection process was carried out to reduce the num-
ber of input variables. During the process of optimization of
our CNNs, it was found that rather than the entire reduced
density matrix, only the diagonal elements and their nearest-
neighbors were required as input features to allow the models
to perform best. Data scaling was performed to transform
all datasets as a preprocessing step by fitting a scaling ob-
ject only to the training data then using it to tranform the
training/validation and test sets. All features of all datasets
were normalized by rescaling the data into the range [0,1].
Similarly, the labels were transformed so as to be normally
distributed such that the mean of the values is 0 and the
standard deviation is 1. For each dataset, all features were
reshaped into four-dimensional tensors (number of samples,
number of time steps, number of features, 1) and provided
as input features to the CNNs, which were used to predict
excited state energies and inter-site couplings known as labels.
Since the input features of neural networks need to be of fixed
size, we construct separate CNNs for each dataset in order
to treat the different dimensionalities of the Hamiltonians.
These CNNs only differ by their input and output shapes. The
hidden layers of the CNNs consist of two 2D convolutional
layers with a max pooling operation layer; the previous three
layers are repeated and then followed by a flattening layer and
three dense layers. Goodfellow et al. [48] describe general
guidelines for choosing which architectures to use in which
circumstances. The full architecture of the models with hy-
perparameters can be found in Sec. VI.

The 25 000 Hamiltonians of each dataset were split into
three sets: a training set of 85% of all Hamiltonians where
80% of these are used for training CNN model instances
with particular hyperparameters and the other 20% form a
validation set used to evaluate the CNN architecture during
optimization of the hyperparameters and a test set of 15%
of all Hamiltonians to probe out-of-sample prediction accura-
cies. Noteworthy, after splitting the data into train, validation,
and test sets, the distribution of the Hamiltonian parameters
(labels) of each of the subsets maintained their uniform dis-
tributions. All constructed CNN models were trained with
100 data points per batch and the ADAM optimizer with a
learning rate of 0.001 until the mean squared error (MSE) on
the validation set increased over three full consecutive training
epochs on a computational cluster.

The MSE provides a direct quantitative check of the extent
to which the predicted response value for a given observation
is close to the true response value for that observation. This
measure works well in ensuring that our trained model has
no outlier predictions with large errors since it allocates larger
weight to theses errors due to the squaring part of the function.
To calculate the MSE as given in Eq. (12), the difference
between the model’s predictions yi and the ground truth fi are
squared then the average across the whole dataset is taken. An
ideal MSE value is 0.0, which means that all predicted values
matched the expected values exactly

N∑
i

(yi − fi )2

N
. (12)
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TABLE II. K-fold cross validation results for the CNN model
used for each dataset where K=5. The average MSE and R2 scores
are given with their standard deviations.

Dataset MSE R2 score

2 0.0121 ± 0.0001 99.94 ± 0.001
3 0.0557 ± 0.0001 94.73 ± 0.001
4 0.1162 ± 0.0001 91.63 ± 0.002

Although the MSE was used to evaluate the cost function
throughout the training and testing processes, the coefficient
of determination given in Eq. (13) was calculated as an al-
ternate accuracy measure where yi, fi and y represent the ith
value to be predicted, the predicted value of yi and the mean
value of all yi samples, respectively,

R2 = 1 −
∑

i(yi − y)2∑
i(yi − fi )2

. (13)

R2 depends on the ratio of total deviation of results de-
scribed by the model. The reported values in Section IV are
presented as a percentage such that 0 � R2 � 100. R2 can
be interpreted as the percentage of variation in the dependent
output attribute that the model is capable of explaining. Quan-
titatively, the closer R2 is to the upper limit of 100, the better.
Both of these measures were used in analyzing the results
in order to determine the predictive power of the model. All
CNN models were generated and trained using the Tensorflow
package.

IV. RESULTS

In this section, we demonstrate the capabilities of our
trained CNN models by analyzing the MSE between predicted
Hamiltonian parameters and those used in the numerically
exact HEOM calculations, and the coefficient of determi-
nation (R2 score). Our trained models predict Hamiltonian
parameters for test (out-of-sample) data at almost the same
accuracy as for training and validation data on which CNN
model parameters and hyperparameters were optimized. This
demonstrates the ability of our models to generalize well to
other data and to provide out-of-sample predictions with high
accuracy. To support this conclusion, we present the results of
the fivefold cross validation of each of our models in Table II
which was carried out prior to training. A complete set of sam-
ples is randomly shuffled and split into the specified number
of folds to form smaller sample groups. Crossvalidation is a
resampling procedure then used to evaluate the performance
of a machine learning ansatz on each of the limited data
sample sets formed. The model is then fit using the K-1 folds
and validated using the remaining Kth fold. This process is
repeated until every K-fold has served as a test set then the
average of the recorded scores are captured. The reported
values in Table II are the average MSE and R2 score values.

We highlight that the K-fold cross validation results are
based on the training subdataset split into five smaller datasets
in terms of the number of data samples which further implies
less variance amongst the data samples. This justifies the
observation of much lower average MSE and higher average

TABLE III. Mean squared error (MSE) and coefficient of de-
termination (R2 score) of Hamiltonian parameters used in HEOM
calculations and predicted by the trained CNNs. For all three
datasets, the full time length of 1 ps for all features were input to
the model. The results of the training, validation and test sets are
shown, separately.

Dataset Train Validation Test
MSE R2 score MSE R2 score MSE R2 score

2 0.83 99.16 0.65 99.34 0.70 99.28
3 2.92 97.06 2.86 97.11 3.28 96.64
4 6.58 93.42 6.91 93.04 7.31 92.63

R2 score values in Table II in comparison to Table III where
the full cohort of the training dataset samples were processed.
As R2 can be interpreted as the percentage of variation in
the dependent output attribute that the model is capable of
explaining, the consistency of the R2 score values per dataset
(i.e., 2, 3, or 4) across Table II and Table III show the re-
liability of the models developed. Table III summarizes the
results for the predicted Hamiltonian parameters for our three
generated datasets where the full length of 1 ps equating to
5000 timesteps was considered for all selected input features.
Furthermore, we can deduce that the architectures of the neu-
ral networks are wellbalanced and neither in the regime of
over- or underfitting which would result in a large discrepancy
in errors between the training and validation datasets. The
predictions carried out with the CNN architectures only show
variation in their performances depending on the dataset under
study. Overall, we find a high accuracy of our predictions
and small mean squared errors on the datasets which are in
the range between 0.70 for a two-level system and 7.25 for
the largest considered 4-level system. The four-level system
dataset exhibits the most diverse transfer properties which
explains the larger mean squared errors in the predictions
when compared to the other datasets.

Figure 3 provides a visual comparison of Hamiltonian
parameters as computed with the HEOM approach and pre-
dictions with trained CNN models. In Fig. 3(a), one can
observe that there exist a group of points of excited state en-
ergies which are not well predicted by the model. As random

FIG. 3. (a) Excited electronic energy and (b) electronic coupling
as computed with the HEOM approach compared to prediction from
CNN model for a two-level system. The blue dots represent the
model predictions. The yellow line indicates perfect agreement be-
tween HEOM results and predictions by the model.
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TABLE IV. Mean-squared error (MSE) and coefficient of de-
termination (R2 score) of Hamiltonian parameters used in HEOM
calculations and predicted by the trained CNNs. For each dataset,
the time length are given in fs for all features which were input to the
model. The results of the training, validation, and test sets are shown
separately.

Dataset Time Train Validation Test
MSE R2 score MSE R2 score MSE R2 score

2 400 0.77 99.22 0.95 99.04 0.96 99.03
3 400 2.39 97.59 3.01 96.95 3.02 96.91
4 400 6.62 93.36 7.82 92.08 7.27 92.70

Hamiltonians were generated in the data preparation step, the
Hamiltonians that correspond to these points cover the full
range of allowed excited state energies as seen in Fig. 3(a);
however, all of these points also correspond to the range of
inter-site couplings that is [-30,30] cm−1. This is known as the
overdamped regime where the time-dependent observables do
not display a coherent but rather a purely dissipative behav-
ior, hence, the CNN does not perform well in differentiating
between these represented systems.

As highlighted in Sec. III B, feature selection is critical
to the performance of trained models. The time evolution
of selected elements of the reduced density matrices used
as input features each contain data for 1 ps long. The next
aim of this work was to determine by how much this time
series data could be shortened by while still maintaining the
accuracy measures achieved with the full dataset. The results
obtained are shown in Table IV. From this we can deduce that
the full time length is not required to maintain high accuracy,
rather only 400 fs are sufficient for 2, 3, and 4 level systems.
The observed prediction errors are also consistent with the
complexity of the system dynamics for each of the three
datasets which indicates that CNN models generally benefit
from a wider sampling of the input parameter space.

V. CONCLUSIONS

During photosynthesis in light harvesting complexes, en-
ergy is transferred from antenna pigments to the reaction
center to trigger photochemical reactions. The formalism
adopted to study excitation energy transfer (EET) processes
is the Hierarchical Equations of Motion (HEOM). This work
focuses on leveraging classical machine learning models to
study the dynamics of EET within open quantum systems.
We propose the use of a trained convolutional neural net-
work (CNN) to perform Hamiltonian tomography when given
input data that represents the dynamics of EET through the
open quantum system over time. We have discussed the in-
vestigation of EET for two-, three- and four-level systems
where linear chain configurations were imposed. The perfor-
mance of the models were gauged by mean-squared error and
coefficient of determination measures. We have proven the
capabilities of CNNs and supervised machine learning as an
efficient tool for solving the inverse problem of the HEOM
by employing a model to predict the parameters of Hamilto-
nians when given underlying time-dependent observations as
features. In particular, we have shown that, using a trained

CNN, one can predict the Hamiltonian parameters such as
excited state energy and electronic coupling up to 99.28%
accuracy and mean-squared error as low as 0.65. We propose
the use of the trained CNNs as an efficient way to study the
excitation energy transfer dynamics of biological complexes.
An improvement that can be investigated in the future is a
more sophisticated algorithm that will be able to distinguish
between the systems in the overdamped regime that can be
described by the set of observables that are purely dissipative.

FIG. 4. The architecture of the convolutional neural network
suited for the prediction of parameters of two-level system Hamil-
tonians is shown. The input/output parameters on the right hand side
of the figure describe the dimensions of the data going into and out
of each layer. The left-hand side describes the type of layer used
in the network where the following key can be used: conv2d: 2D
convolution layer, max_pooling2d: max pooling layer for 2D inputs,
flatten: layer to flatten the input and dense: deeply connected layer.
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This work can be developed further in a few ways, either by
investigating fully connected neural networks or by develop-
ing a model such that it may be independent of the dimension
of input data. The latter modification would allow the user
to input data such that in return the model may determine
the dimension of the system under study which represents the
number of pigments in the complex.
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APPENDIX

The architecture of the convolutional neural network model
developed in this study is summarized in Fig. 4 below. Here,
the number of input features is three and the number of outputs
is two. This model can be adapted for systems of varying
complexity as seen in this work. The number of input features
for an N-level system is 2(N ) − 1 and the number of outputs
is 2(N − 1).
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