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Quantum link models have attracted a lot of attention in recent times as a generalization of Wilson’s lattice
gauge theories, and are particularly suitable for realization on quantum simulators and computers. These models
are known to host new phases of matter and act as a bridge between particle and condensed matter physics. In this
paper, we study the Abelian U(1) lattice gauge theory in (3 + 1)D tubes using large-scale exact diagonalization.
We are then able to motivate the phase diagram of the model with finite-size scaling techniques, and in particular
propose the existence of a Coulomb phase. Furthermore, we introduce models involving fermionic quantum
links, which generalize the gauge degrees of freedom to be of fermionic nature. We prove that while the spectra
remain identical between the bosonic and the fermionic versions of the U(1)-symmetric quantum link models in
(2 + 1)D, they are different in (3 + 1)D. We discuss the prospects of realizing the magnetic field interactions as
correlated hopping in quantum simulator experiments.
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I. INTRODUCTION

Gauge theories have a formidable legacy in the description
of naturally occurring matter. Examples of their diverse appli-
cations include ab initio descriptions of the strong interaction
phenomenology in particle physics, which use quantum chro-
modynamics (QCD) as the starting point, and descriptions
of superconductivity in condensed matter physics, which use
U(1) gauge fields to bind electrons. Even the Kitaev model,
which is used to introduce topological quantum computa-
tion, is a Z2 lattice gauge theory. Naturally, many of these
gauge theories need to couple the fundamental degrees of
freedom very strongly, which in turn renders weak-coupling
perturbation theory useless. Wilson [1] pioneered the tech-
nique of discretizing the gauge theories nonperturbatively on
a space-time lattice and the use of Markov chain Monte Carlo
methods to sample the resulting path integral. This approach
has been developed to a high degree of sophistication, where
many aspects of particle physics and condensed matter phe-
nomenology can be directly studied ab initio using Monte
Carlo simulations [2].

While in the Wilsonian approach, one discretizes the gauge
field action via the parallel transporters which live on the
links of a lattice, it is also possible to approach the problem
from a Hamiltonian perspective. The latter approach [3] is
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particularly useful when one wants to address gauge theories
using the novel tools of quantum simulators and quantum
computers. Quantum computing is a rapidly developing com-
puting paradigm using the notions of quantum entanglement,
and can in principle highly outperform classical computing
paradigms (such as Markov chain Monte Carlo) in certain pa-
rameter regimes [4]. Such regimes occur in strongly correlated
systems for unitary evolution of the system in real time, at
finite density, or with background electric and magnetic fields.

In the Hamiltonian formulation of Wilson’s lattice gauge
theories for compact U(1) or SU(2) gauge groups, one has
to deal with a locally infinite-dimensional Hilbert space even
for single-link degrees of freedom. This makes it tricky to
use this formulation for quantum computation, which nat-
urally has a finite number of available states. Imposing a
naive cutoff on the number of allowed states risks breaking
gauge invariance. Remarkably, it is possible to define gauge
theories that have finite-dimensional Hilbert spaces, and yet
still possess these continuous gauge symmetries, by judi-
ciously using nonunitary link operators. Quantum link models
(QLMs), as they are called, have been theoretically developed
to possess both Abelian and non-Abelian local symmetries
[5–7], including QCD [8]. Qubit-regularized quantum field
theories (QFTs), which generalize the construction of QFTs
using discrete degrees of freedom, are being actively inves-
tigated [9,10]. Such formulations have also been used in
condensed matter physics in the context of superconductivity
[11,12] and frustrated magnetism [13]. Only recently have the
connections between the corresponding microscopic theories
been fully appreciated, and exploited to better understand the
underlying physics of the systems. The fact that they have
a finite-dimensional Hilbert space of the gauge degrees of
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FIG. 1. A schematic phase diagram of the U(1) quantum link
model with the spin and fermionic representation as a function of
the coupling λ. For large negative λ, there is a nematically ordered
phase which spontaneously breaks the lattice (rotation) symmetries.
For small values of λ, the broken symmetry is restored. For λ → 1,
the winding fluxes can be excited easily and additionally for the
fermionic model there is a narrow region where they become the
ground state, before hitting the Rokshar-Kivelson point at λ = 1.

freedom, and yet still possess the same local symmetry as
the Wilson-type models, makes them attractive candidates as
models to be implemented in quantum computers, or quantum
simulators.

While it is established that these QLMs can be set up to
have the same continuous gauge symmetries as the Wilson-
type theories, there remain many open questions as to the
nature of the phases that this family of gauge theories can
host. Since they are generalized lattice gauge theories, they
certainly give rise to novel phases which cannot be realized
on Wilson-type theories. As a classic example, U(1) QLMs
in (2 + 1) dimensions [(2 + 1)D] give rise to phases where
electric flux tubes joining static charges are fractionalized in
units of 1

2 or even 1
4 [14,15]. However, whether QLMs in

higher dimensions can support deconfined Coulomb phases
like continuum gauge fields is still an open question. A reso-
lution of this question would certainly boost the importance of
QLMs for consideration in quantum simulator experiments.

Interestingly, the same question is also of prime importance
in condensed matter physics, where existence of the Coulomb
phase is a key ingredient to postulate the existence of quantum
spin liquids, a phase of matter which does not break any in-
ternal or lattice symmetries and has fractionalized excitations.
Previous work has already provided indications that this might
indeed be the case [16–19]. In this paper, using large-scale
exact diagonalization on the U(1) QLM on the cubic lattice
and techniques of finite-size scaling, we provide evidence of
a region in the parameter space where the ground state does
not break any symmetries, lattice or internal, and the system
is gapped. A schematic of the phases we propose can be found
in the “bosons” side of Fig. 1. Since we are severely restricted
to small lattice sizes, our results should also encourage the de-
velopment of novel algorithms to address the system on large
lattices, or perhaps quantum simulator experiments. Should
the different computational methods be able to establish the
existence of a Coulomb phase in these models, it would be of
fundamental importance in the context of quantum field theo-
ries as well. We would thus have demonstrated an intriguing

way to generate a massless gauge boson from a microscopic
theory with a finite-dimensional Hilbert space.

As an important conceptual development, we also extend
the same ideas which inspired the quantum link formula-
tion to introduce a different kind of quantum link model,
where the gauge link operators are represented by fermionic
creation and annihilation operators. We emphasize that this
construction is distinct from the rishon representation [8,20],
where the quantum link operators are represented as fermionic
bilinear operators, such that all commutation relations are
preserved. We establish that the gauge invariance in the model
is a consequence of the special type of correlated subdi-
mensional hopping of the fermionic particles living on the
links, and thus connected to similar ideas in the models of
fractons. Using geometric constructions, we show that in
(2 + 1)D, the spectra of the fermions and quantum spins
S = 1

2 are identical, while in (3 + 1) dimensions [(3 + 1)D]
they differ due to the Pauli exclusion principle. Using ED
studies, we also offer a first glimpse into the phase diagram
of the fermionic model in (3 + 1)D, which we sketch in the
“fermions” side of Fig. 1. One expects that any reasonably
efficient quantum Monte Carlo method that can be made to
work for the spin model would suffer a severe sign problem
for the fermionic version [21], so we outline the possibility
of realizing this Hamiltonian on an analog quantum simulator
platform.

II. MODELS AND SYMMETRIES

We begin our presentation by describing the microscopic
models and the symmetries of the system. We also moti-
vate how these models can be applied to naturally occurring
phenomena in particle and condensed matter physics. For an
overview of the physics, we provide a phase diagram for the
models proposed in Fig. 1.

A. Bosonic quantum link model

We first introduce the conventional bosonic version of an
U(1) Abelian QLM. While these models can be studied on
any lattice on which loops can be defined, we consider square
and cubic lattices for concreteness. The operators of the gauge
theory are defined on the links joining two adjacent lattice
sites. The Hamiltonian of the link model is

H = g2

2

∑
x,μ

E2
x,μ − J

∑
�

(U� + U †
�)

+ λ
∑
�

(U� + U †
�)2, (1)

where Ex,μ is the electric field operator defined on the link
joining the sites x and x + μ̂. The first term is the electric
field energy, the second term expressed via plaquettes is the
magnetic field energy, and the third term is the Rokhsar-
Kivelson (RK) term. The plaquette operator U� is defined via
the parallel transport operator Ux,μ as

U� = Ux,μUx+μ̂,νU †
x+ν̂,μU †

x,ν . (2)

Each link has three operators Ux,μ, U †
x,μ, and Ex,μ which

can be realized by the generators of an SU(2) algebra. The
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operators satisfy the following commutation relations:

[Ex,μ,Uy,ν] = Ux,μδx,yδμ,ν,

[Ex,μ,U †
y,ν] = −U †

x,μδx,yδμ,ν, (3)

[Ux,μ,U †
y,ν] = 2Ex,μδx,yδμ,ν.

The Hamiltonian has a local U(1) invariance generated by the
lattice Gauss-law operator

Gx =
∑

μ

(Ex,μ − Ex−μ̂,μ), (4)

with the local commutation relations

[Gx, H] = 0 for all x. (5)

This necessitates the specification of additional conditions to
define the superselection sector of the Hilbert space by spec-
ifying the local charges. In the context of particle physics, it
is usual to choose a vacuum which does not have any charges.
Mathematically, this is expressed as Gx| ψ〉 = 0, where | ψ〉
is a physical state of the theory. It is, of course, possible
to choose various other superselection sectors by specifying
different charges on different sites. An example is the quan-
tum dimer model, a model to describe the non-Néel phases
of quantum antiferromagnets relevant to high-Tc supercon-
ductivity. This model works with a different superselection
sector, mathematically represented as Gx| χ〉 = (−1)x| χ〉,
where (−1)x is the site parity.

Using the infinitesimal generators Gx, one can gener-
ate a finite unitary transformation V = ∏

x e−iθxGx , where
θx ∈ (0, 2π ] are local parameters. Then, under the gauge
transformations, the spectrum and the eigenstates | ψ〉 remain
unchanged, irrespective of their degeneracies:

H | ψ〉 = E | ψ〉 ⇒ V HV † V | ψ〉 = E | ψ〉, (6)

which follows from Eq. (4). Note that any representation
of the operators Ex,μ, Ux,μ, and U †

x,μ is admissible as long
as the commutation relations in Eq. (3) are satisfied. The
well-known case of Wilson-type lattice gauge theory uses the
quantum rotor as a degree of freedom, generating an infinite-
dimensional representation on each of the links. In this case,
Ux,μ is an unitary operator, and the commutation relation
between Ux,μ and U †

x,μ vanishes. This is a special feature of the
Wilson theory, which immediately narrows down the possible
physical scenarios.

Interestingly, a finite-dimensional representation of the
gauge fields can be obtained using quantum spin-S operators
�Sx,μ. In particular, the raising and the lowering spin operators
can be identified with the quantum link gauge fields, and the z
component with the electric field:

Ux,μ = S+
x,μ; U †

x,μ = S−
x,μ; Ex,μ = Sz

x,μ. (7)

Note that viewed this way, one way of approaching the Wilson
limit of the gauge theory is to consider larger-spin representa-
tions [22,23].

It is possible to give a pictorial representation of the QLM,
which we show for the case of spin S = 1

2 . It is easiest to work
in the electric flux basis, and the local Hilbert space is two
dimensional. We can represent left- and right-pointing arrows
on the horizontal links as well as top- and bottom-pointing

x
y

z

FIG. 2. Gauss-law compatible states. In total there are 20 al-
lowed states for a 3D cubic lattice, and the gray-shaded area
highlights the six compatible states for a 2D square lattice (where
the z component is neglected).

arrows on the vertical links to denote 1
2 and − 1

2 , respectively.
These considerations allow us to write the Hamiltonian of the
U(1) QLM in a more pictorial representation:

(8)

For the spin- 1
2 case, the electric field energy terms contribute a

constant and can be ignored. This corresponds to setting g2 =
0, which we will consider for the rest of the paper.

It is instructive to point out that it is also possible to
give a particle interpretation of the spin directions, such that
E = + 1

2 indicates the presence of a hard-core boson, and
E = − 1

2 the absence of the particle. Then, the above pictorial
Hamiltonian corresponds to

(9)

This illustrates how Gauss’ law constrains the Hilbert space.
For a hypercubic lattice, four links touch a site in two spa-
tial dimensions, while six links touch a site in three spatial
dimensions. Normally, this would have given rise to 24 = 16
states in the former case, and 26 = 64 states in the latter case.
With Gauss’ law, this would allow only six states in two
dimensions, and 20 states in three dimensions. Their particle
representation is sketched in Fig. 2.

B. Fermionic quantum link model

Motivated by the particle representation, we introduce a
different class of Abelian QLMs. This class of models fol-
lows immediately from the particle formulation of QLMs in
the previous section if one postulates that the particle is a
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fermion. This has the additional implication that the different
link operators must also anticommute, in addition to the first
two commutation relations of Eq. (3), which are necessary for
the gauge invariance of any microscopic model.

Mathematically, we postulate that the two-dimensional
Hilbert space at each link consists of two states: the ab-
sence or the presence of a fermion on the link. In the
fermion occupation number basis, we can denote the two
possibilities as | 0〉 and | 1〉 = c†

x,μ| 0〉, respectively. Here
c†

x,μ is a fermionic creation operator on the link joining
the sites x and x + μ̂. Similarly, | 0〉 = cx,μ| 1〉, where cx,μ

is an annihilation operator. Since fermionic creation and
annihilation operators anticommute we have cx,μc†

x,μ = 1 −
c†

x,μcx,μ, and we can write | 0〉 = cx,μ| 1〉 = cx,μc†
x,μ| 0〉 =

(1 − c†
x,μcx,μ)| 0〉, so that we can interpret the number operator

as nx,μ = c†
x,μcx,μ. At this point, the similarities are obvious so

that we can identify the number operator as the electric field,
and the creation and the annihilation operators as the quantum
link and its Hermitian conjugate:

Ux,μ = c†
x,μ, U †

x,μ = cx,μ, Ex,μ = nx,μ − 1
2 . (10)

Note that with this identification the electric flux is still a
bosonic operator, as is expected of a physical operator repre-
senting the electric field. The 1

2 gives the electric flux the same
values as a quantum spin S = 1

2 . The success of this identifi-
cation of the operators is due to the fact that the creation and
the annihilation operators satisfy the exact same commutation
relations as the spin- 1

2 operators:

[nx,μ, c†
y,ν] = c†

x,μδx,yδμ,ν,

[nx,μ, cy,ν] = cx,μδx,yδμ,ν, (11)

[c†
x,μ, cy,ν] = 2Ex,μδx,yδμ,ν = 2

(
nx,μ − 1

2

)
δx,yδμ,ν.

The quantum link operators themselves satisfy the anticom-
mutation relations:

{cx,μ, cy,ν} = {c†
x,μ, c†

y,ν} = 0,

{c†
x,μ, cy,ν} = δx,yδμ,ν . (12)

The introduction of the fermionic operators is the key fea-
ture of this class of QLMs. The fermionic world lines have
nonlocal correlations due to the Pauli exclusion principle,
and we expect qualitatively different phenomena to occur
with fermionic links, beyond the ones realized in the bosonic
version, and certainly beyond the ones in Wilson-type gauge
theories.

It is useful to note immediately that this proposed rep-
resentation is very different from the rishon representations
already motivated in [8] and used in [20] for atomic quantum
simulators. Note that the rishons are a generalization of the
Schwinger boson construction, in which each link has a fixed
number of fictitious particles called rishons, the number of
which is determined by the representation. In an appropriately
chosen basis, each quantum link operator essentially shifts
the positions of the particles on a link. Additionally, there
is an emergent link U(1) gauge symmetry with the rishons,
corresponding to the total number of rishons on a link. In
contrast, the particle representation introduced here does not
keep the total number of particles fixed within a link, but only

U�

U†
�

FIG. 3. Correlated particle hop. The term U� (or U †
�) involving

fermionic operators can be understood as a simultaneous hop of the
fermionic particles within the plaquette along the dashed lines. The
solid lines show the action of U� (from the left state to the right state)
and U †

� (from the right state to the left state), respectively.

globally. The particles, whether bosonic or fermionic, are free
to move about on the lattice.

In terms of the fermionic operators, we can now write the
plaquette and local operators as

U� = c†
x,î

c†
x+î, ĵ

cx+ ĵ,îcx, ĵ,

Gx =
∑

i

(nx,î − nx−î,î ). (13)

We note that due to the anticommutation properties of the
fermionic operators, the order of the operators matters and
the theory will not be fully defined until the operator ordering
for the states in the Hilbert space is defined. The plaquette
operator is composed of two creation and two annihilation
operators, and this works out to be a correlated hop of two
fermions, as shown in Fig. 3. This particular type of correlated
hopping has peculiar consequences, as will be explained in
Sec. IV. In particular, note that not all kinds of hoppings
are possible, and this is the manifestation of the constraint,
consistent with Gauss’ law. The only allowed hoppings are
when shaded sites are occupied and their directed neighbors
are empty, in which case both the hoppings are oriented in
the same direction. Thus, among the six possible hoppings,
only two are actually allowed. It can be shown (via a unitary
transformation) that the resulting theory is identical if the two
hoppings instead occur in reverse directions.

III. METHODS

In this section, we discuss the symmetries of the model un-
der study as well as the employed methodology. As mentioned
previously, our main approach is the numerical diagonaliza-
tion of Eq. (8) on 3D lattices (with an even extent in all
directions) up to 48 links (2 × 2 × 4). To this end, we em-
ploy the Lanczos algorithm [24] to extract a portion of the
low-lying energy spectrum as well as the ground-state wave
function. Moreover, we discuss a systematic approximation,
which we use for larger systems up to 96 links (2 × 2 × 6).
Systems above 48 links are out of reach for full diagonal-
ization for our current numerical implementation. A crucial
ingredient for both approaches is to efficiently construct the
Hilbert space by finding all permissible Gauss’ law states
(GLS) on a given lattice. For completeness, we describe our
algorithm in Appendix A, where we also briefly discuss the
steep scaling of the number of GLS with lattice size.
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A. Symmetries of the microscopic model

The Hamiltonian in Eq. (8) features several global symme-
tries, which we may use to reduce the computational burden
by separately diagonalizing the blocks corresponding to the
different quantum numbers associated with the symmetries.
Below, we explain these symmetries and how they are imple-
mented for the bosonic and the fermionic representations.

The overwhelming advantage arises from exploiting the
conservation of the winding numbers in a given plane un-
der plaquette flips in this plane. On a 3D lattice, there
are three such separately conserved winding numbers,
generating a U(1) ⊗ U(1) ⊗ U(1) symmetry and mathemat-
ically expressed as

Wx = 1

LyLz

∑
i,x=x0

Ei,x̂, (14)

Wy = 1

LxLz

∑
i,y=y0

Ei,ŷ, (15)

Wz = 1

LxLy

∑
i,z=z0

Ei,ẑ. (16)

For a pictorial representation of the winding numbers on a
2 × 2 × 2 lattice see Fig. 15. In the particle representation,
recall that the Ei,μ operators should be replaced by ni,μ − 1

2
since the occupation numbers can be only 0 or 1. This puts
the E -flux values to be in one-to-one correspondence with the
original formulation using spin 1

2 . In this notation, the winding
number in each direction can go from −Lμ/2 to Lμ/2, thus
resulting in a total of (Lx + 1) × (Ly + 1) × (Lz + 1) sectors
for a lattice with even (Lx, Ly, Lz) extents. For any lattice, the
W = [Wx Wy Wz] = [000] winding sector will be the largest
block and is a priori expected to host the ground state, being
the most symmetric configuration.

The Hamiltonian has a Z2 charge-conjugation symmetry.
The unitary transformation is implemented on an operator O
as CO = COC†. In the original formulation with quantum
spins, this yields CU = U †; CU † = U ; CE = −E . For the
spin representation (which is equivalent to the hard-core bo-
son representation), the charge-conjugation operator is C =
σ x. In the fermion representation, in terms of the creation and
annihilation operators acting on individual links we have C =
(c† + ic). Using the fermion anticommutators (or the Pauli
matrices for the spins), it is easy to show that C†C = 1 = C2.
For the fermions, additional phases are involved in the trans-
formation of the individual link operators, but the observable
electric flux transforms as in the spin representation:

Cc† = ic; Cc = −ic†;

C
(
n − 1

2

) = −(
n − 1

2

)
. (17)

To define the transformation on the entire system, or on the
wave function, an ordering of the links on the lattice needs
to chosen and the product of individual transformations taken
along the ordering:

C =
Ns∏

i=1

[c†
i + ici]. (18)

For the spin representation, this works out to be a product of
σ x on all links, while for the hard-core bosons use bosonic cre-
ation and annihilation operators which commute for unequal

sites, but anticommute for identical sites [25]. Obviously,
the ordering is not important for the spins or the hard-core
bosons. At the single-plaquette level, the Hermitian conjugate
of the plaquette-flip operator U� is U †

�, and is identical to the
charge-conjugation operation. Similarly, it is easy to see that
in the absence of any matter, Gauss’ law is also satisfied under
charge conjugation. Note that this transformation preserves
the commutation relation of the quantum spins, as well as the
anticommutation relations of the fermions.

Similarly, the Hamiltonian is invariant under parity trans-
formations, which can be defined as for the fermionic
representation:

P =
Ns∏

i=1

[c†
P(i) + icP(i)], (19)

where P(i) simply denotes the point reflected index around the
origin (with appropriately imposed periodic boundary condi-
tions). Note that under the parity operation, the links and the
flux transforms as PUxy → U †

−y,−x; PExy → −Exy.
In addition, the model has the other point-group sym-

metries, such as translation invariance (in each of the x,
y, and z directions), the rotation symmetries (the C4 rota-
tions about the lattice axes, the C3 rotations about the body
diagonals, the C2 rotations about the axis joining the oppo-
site edges) the subscript n denotes the (2π/n)-fold rotation.
While it is possible to take advantage of the commuting
symmetries to increase the numerical reach of our exact di-
agonalization routines, we have not considered it here.

B. Low-energy approximation

Because of the prohibitive scaling of the number of GLS
with system size (see Appendix A for a discussion), ED is re-
stricted to the lowest system sizes (for us these are 2 × 2 × 2
and 2 × 2 × 4, which involve 24 and 48 links, respectively).
For larger volumes, the number of states requires serious
numerical effort at the limit (or beyond) what is currently
feasible on high-performance computing setups. Moreover, in
higher dimensions, increasing the linear dimension by a unit
amounts to increasing the total number of links proportional
to the surface area.

To gain some insight into the physics despite these lim-
itations, we construct a truncated Hilbert space (sometimes
also called a limited functional space) starting from the en-
ergetically lowest-lying states and systematically introducing
excitations to form new basis states [similar strategies have
been applied in ED-like studies for various other physical
systems see, e.g., [26,27]]. In the present case, the ener-
getically most favorable states at large negative λ are the
ones with the most flippable plaquettes. An excitation can
then be introduced by flipping single plaquettes, which con-
structs a new state while respecting Gauss’ law. Exhausting
all maximally flippable states in this way, one obtains a set
of states that differ by a single flip from the lowest-lying
states, in the following denoted as “flip level” 1 (FL1). Higher
FLs are reached by repeatedly applying this procedure to
the newly found states. In fact, this is an alternative method
to construct the full list of GLS. However, a tiny subset of
nonflippable states are omitted in this way and this procedure
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(a) (b)

FIG. 4. Cartoon states of the zero-winding sector for a 2 × 2
lattice in the spin (a) and particle (b) representations. Green (white)
shaded plaquettes are flippable (nonflippable).

may be stuck in disjoint pockets of the Hilbert space, which
is sometimes called fragmentation of Hilbert space in the
literature [28–30]. Nevertheless, as we will see, the unflip-
pable states are not of interest for this study, and further no
Hilbert-space fragmentation is present for the square-lattice
Hamiltonian.

While it is obvious that eventually the spectrum of the
truncated Hilbert space will converge to the true spectrum,
we expect that the convergence sets in early such that we
may extract useful information about the finite-size scaling
of the mass gap. As it turns out, this approach is feasible
and allows us to study the physics of the lattice 2 × 2 × 6,
having 72 links, without the need to fully diagonalize the
entire Hamiltonian. Further details, including the convergence
analysis for the 2 × 2 × 4 system, are shown in Appendix B.

IV. DISTINGUISHING THE BOSONIC AND FERMIONIC
QUANTUM LINK MODELS

The U(1) quantum link model in (2 + 1)D has been exten-
sively studied on the square lattice in the spin- 1

2 representation
[14,31]. Therefore, we begin our investigation with the (2 +
1)D fermionic model, attempting to understand if it has differ-
ent properties from the one realized with quantum spins. We
further examine the spin and fermionic versions of the model
in (3 + 1)D for similarities and differences.

A. Two dimensions

In order to understand the differences and the similarities
between the fermionic and bosonic representations of the
lattice gauge theory, we begin by considering the simplest
possible setting: the case of the 2 × 2 lattice with periodic
boundary conditions. For this system, there are four sites, and
eight links. Implemented without any further constraints, the
system would have 28 = 256 states, but imposing Gauss’ law
of Qx = Gx = 0 for every site gives rise to only 18 total states
of the system. Using the global winding-number symmetry,
there are only six states in the zero-winding sector, in both the
spin and the fermion representations as shown in Figs. 4(a)
and 4(b), respectively.

FIG. 5. Restricted movement on the 2D lattice. The nature of the
plaquette interaction constrains the “paths” of the fermionic particles
in two dimensions along diagonal tracks, illustrated by the lines in
this particular 2 × 2 example. Effectively, the plaquette interaction
causes two correlated simultaneous hops along two adjacent one-
dimensional chains. In the numbered figures, the green highlighted
plaquettes illustrate the particular Hamiltonian term being applied in
each step. The only sign for the fermionic case that could occur is
due to the boundary, but the fact that the particles move in pairs ends
up precluding this possibility.

The action of the Hamiltonian for both the bosonic and
fermionic models (when λ = 0) on the different states, as
numbered in Fig. 4, is then given by

H |1〉 = −J (|2〉 ± |3〉 + |4〉 ± |5〉),

H |2〉 = −J (|1〉 ± |6〉),

H |3〉 = −J (±|1〉 + |6〉),

H |4〉 = −J (|1〉 ± |6〉),

H |5〉 = −J (±|1〉 + |6〉),

H |6〉 = −J (±|2〉 + |3〉 ± |4〉 + |5〉). (20)

(Details are given in Appendix C.) In the bosonic case the up-
per (positive) signs in Eq. (20) are taken, and in the fermionic
case the lower (negative) signs are taken. The spectrum ob-
tained in the two cases, however, is identical.

Naively, this seems surprising since from the analysis of
spin and fermionic models one knows that in the latter, the
fermionic world lines can exchange positions in two spatial
dimensions, which gives rise to different physics as compared
to the bosonic version. Therefore, it must be that the nature
of the four-body interactions, necessary to preserve gauge
invariance, also forbids all those paths which could otherwise
differentiate between the hard-core bosons and the fermions.
A geometric proof of this is provided in Fig. 5, which can be
easily extended to any square (or rectangular lattice) with lin-
ear dimension L. Note, further, that the proof can be extended
for all the superselection sectors labeled by different values of
charges Qx. We have explicitly repeated the exercise on the
2 × 2 lattice for all possible values of the fermion occupation
(i.e., without imposing the Gauss law), and obtained an iden-
tical spectrum for both the spin links and the fermion links.
This implies that the physics of the fermionic model is also
the same as the ones already studied before.
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(a) (b) (c)

FIG. 6. Difference between bosonic and fermionic links. Starting from a given initial position on a 2 × 2 × 2 lattice (a) one may follow
a “path” of two fermions by successively applying suitable plaquette flipping operators (b, application from top left to bottom right). Finally,
one ends up in the initial configuration with an effective interchange of two fermions (c), implying a sign that is not present in the bosonic
model.

B. Three dimensions

In three spatial dimensions, we can extend the geometric
proof outlined for two spatial dimensions. In this case, the
particles are restricted to move on planes, and it is possible for
a particle to make an orbit without disturbing any other parti-
cles in the plane. To see this, consider the example depicted
in Fig. 6: Starting from an initial configuration [Fig. 6(a)],
one may apply a string of plaquette operators that move the
particles according to the paths shown in Fig. 6(b). In the final
configuration [Fig. 6(c)], all links returned to their original
occupation number with an effective interchange of the col-
ored particles (the exact algebra for the applied operators is
carried out in Appendix D). While in the bosonic case there
is no sign associated with this exchange, the fermionic nature
of the gauge particles requires a sign, therefore, the physics of
both models is expected to exhibit distinct effects.

Thus, we obtain the very interesting result that interactions
responsible for maintaining gauge invariance restrict world
lines which cause particles to swap positions on the square
lattice, thus rendering the statistics of the particles irrelevant.
However, in three spatial dimensions, this is no longer the
case, the particles move along planes, and the bosonic and
the fermionic physics differ since the world lines which give
different signs to the bosons and fermions can occur. Interest-
ingly, the subdimensional motion of particles observed in this
model due to the gauge interactions is reminiscent of fractonic
physics [32].

V. PHYSICS IN THREE DIMENSIONS

In this section we numerically explore the physics of both
the spin- 1

2 bosonic and fermionic versions of the QLM in 3D,
which we have shown to have distinct world-line weights to
each other, in contrast to in 2D. Another difference compared
to the 2D system is that in 3D there is no configuration on the
lattice that allows all plaquettes to be flippable simultaneously,
regardless of the statistics of the gauge particles. As we shall
see below, this leads to a different broken symmetry in the
ordered phase expected at a large negative RK coupling λ on
3D lattices as compared to 2D. We present results for several
observables to explore both the bosonic and fermionic models,
emphasizing the different features found in both cases.

A. Spectrum vs λ

As our first quantity of interest, we study the low-energy
spectrum and its dependence on the RK coupling λ. In
Fig. 7(a), the spectra for both bosonic (top) and fermionic
(bottom) links are shown. First, we note the similarity of the
low-energy spectra of both models at large negative λ, which
persists up to λ � −1.0. This comes as no surprise since in
the limit of λ → −∞ the particle statistics, i.e., the plaquette
flipping term in the Hamiltonian, does not play any role and
arguments may be made purely based on energetic consider-
ations. Hence, in this limit the 3D system wants to maximize
the number of flippable plaquettes. However, as mentioned
above, not all plaquettes can be made flippable at the same
time: only 2

3 of the total number of plaquettes Np = 3 × Lx ×
Ly × Lz. The maximally flippable configurations are achieved
by stacking fully flippable layers in a given planar direction
while maximizing the number of flippable plaquettes along
the remaining two planar directions. For a given direction,
this stacking while retaining the maximal number of flippable
plaquettes can be done in four ways, such that in total there
are 4 × 3 most flippable configurations which correspond to
the “half-filled” or particle-hole symmetric case (in the spin
picture this would be Sz = 0). Therefore, at λ → −∞ we
observe a 12-fold degeneracy in the spectrum. It turns out that
these states are related via the transformation of the group
D3h = D3 ⊗ Z2, which represents the direct product of the
lattice rotation in 3D and the charge conjugation, respectively.
All states belonging to this multiplet are expected to be de-
generate in the thermodynamic limit (TL), and therefore this
symmetry is spontaneously broken in this phase.

This observation is further elucidated in Fig. 8(b), where
the volume scaling of the lowest few energy gaps in the
bosonic model is shown for a reference value of λ = −3.0,
which is deep in the symmetry-broken phase. The spectrum
for the fermionic model is virtually indistinguishable from the
bosonic model in that regime, and so the low-energy spectra
for both models differ by less than 1% . As expected from
the above arguments, the lowest 11 gaps decay exponen-
tially while higher-lying energy values decay more slowly,
seemingly polynomially. Moreover, the inset of the same
figure shows the lowest 12 states for a 2 × 2 × 2 lattice,
revealing a structure with six energy manifolds consisting
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(a)

(b)

FIG. 7. Low-energy spectrum for 2 × 2 × 4 lattices with
bosonic (a, top panel) and fermionic (a, bottom panel) links. For
fermions, the gray shaded area marks the region where the ground
state is in the nonzero-winding sector. (b) Lower part of the spectrum
for bosons (open symbols) and fermions (solid symbols) at λ = 0,
corresponding to the dotted vertical lines in (a).

of 1 + 2 + 3 + 3 + 2 + 1 states. This corresponds exactly to
the dimensionality of the irreducible representations of the
D3h group, where the (numerically) exact degeneracies are a
consequence of the non-Abelian nature of this group.

At larger values of λ, the competition between maximizing
flippability and the kinetic term in Eq. (8) may potentially
lead to a phase transition out of the ordered phase. Ear-
lier studies of dimer models (with bosonic links) on other
3D lattice geometries [18,19] suggested the emergence of a
quantum spin-liquid (QSL) phase that persists at intermediate
λ values up to the RK point at λ = 1.0. A study of hard-core
bosons on the pyrochlore lattice, which gives rise to the QLM
(also on the pyrochlore) in the low-energy limit, was also
shown to have a QSL phase [17]. One of the hallmarks of

such QSLs is the absence of any sort of symmetry breaking
in the ground state in the thermodynamic limit, which in
itself is challenging to establish rigorously. A sense of this
can already be obtained from Fig. 7(b), which shows the
low-energy spectra of both the bosonic and the fermionic
QLMs in different winding sectors. We note the presence
of a large number of low-lying energy eigenstates above the
ground state for both the cases, without the presence of any
large gap. This indicates the possibility of smooth excitations
which have overlaps with the low-lying eigenstates, and con-
sequently a smooth spectral function lacking any distinctive
energy scale, which is typical of a liquid phase. This is in sharp
contrast to the nematically ordered phase, where above the
manifold of 12 states there is a large window which hosts no
energy eigenstates. Consequently, excitations there are peaked
around a certain frequency and typical of a symmetry-broken
solid phase. We have noted that this distinction between the
two regimes persists for our system sizes, and therefore if
the trend continues to the TL, a liquid phase with continuous
excitations is reasonable in the λ ∼ 0 region.

Moreover, one may investigate the volume scaling of the
gap between the ground and the first excited states, where the
absence of any exponential decay of the gap, 
E0, would be
indicative of such a liquid phase around λ ∼ 0. In Fig. 8(a),
we show results for the lowest-energy gap for bosonic link
variables for two representative values of λ. The left panel
at λ = −3.0 again reflects the symmetry-broken phase [cf.
Fig. 8(b)] where the gap to the first excited state decays
exponentially with the volume, as one would expect for a
symmetry-broken phase. Conversely, the right-hand panel of
the same figure corresponds to λ = 0 and displays a much
slower decay. Moreover, we note that in the λ = 0 phase,
the lowest excitation is a winding string in the shorter direc-
tions [100] and [010], while the lowest excitation within the
zero-winding sector costs more energy. This is an interesting
indication that the vacuum is stable to the creation of strings,
another signal for a possible Coulomb phase. The values of
λ were chosen solely to be representative of the respective
regimes, and their numerical values do not correspond to
quantitatively important aspects of the phase transition. The
data points for the largest system, here 2 × 2 × 6, have been
obtained with the low-energy approximation discussed above
and are in agreement with this trend.

While this analysis presents some evidence for a transition
between an ordered phase and a potential QSL, the obtainable
lattice sizes limit our ability to make definitive statements.
Moreover, the exact transition point (if present at all) is im-
possible to pinpoint with ED with the few lattice sizes that we
possess. A natural next step would be to address these issues
by means of ab initio calculations, such as a Markov chain
Monte Carlo. However, for the fermionic model, sign prob-
lems currently preclude the existence of any efficient Monte
Carlo algorithm to our knowledge, and different numerical
approaches such as tensor network methods [33–35] might be
necessary.

While the volume scaling of the gap is here only presented
for bosonic link variables, we observe qualitatively similar be-
havior for fermionic links and therefore expect the transition
between an ordered phase and a QSL for both models (we
return to this point in Sec. V C). However, despite the simi-
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(a) (b)

FIG. 8. Finite-volume behavior of the low-energy spectrum for bosonic links. (a) Finite-size scaling of the gap to the first excited state
on a y-log scale. Fast decay for λ = −3.0 (left panel) versus a slower decay for λ = 0 (right panel). (b) Gaps to the lowest 11 excited states
are shown in blue shades, higher excited states in red. The scale on the top denotes the corresponding number of links. (Inset) Degeneracy
structure of the ground-state manifold on a 2 × 2 × 2 lattice. In all panels, squares denote results from a diagonalization of the full Hilbert
space H, whereas circles show low-energy results from a reduced Hilbert space with the level of approximation indicated in parentheses (see
main text). Dashed lines are a guide to the eye.

larities of the low-energy spectrum in both models, there are
two important differences. The first observation concerns the
winding numbers of the first excited state in the potential QSL
phase, which seem to be nonzero only for the bosonic case.
The model with fermionic degrees of freedom has another
state of the zero-winding sector as first excited state (although
with different parity as the GS). Only upon increasing λ

further do we observe the eigenstates with nonzero-winding
approaching the ground state.

Interestingly, there is a second key difference between the
models in that the fermionic model even features a ground-
state level crossing at λc2 ≈ 0.65 for the lattice 2 × 2 × 4,
which is absent for the bosonic links. Beyond this λc2 , and
up to the RK point, the GS is in the Wx = Wy = 0 and Wz = 2
winding sector, indicated by the gray-shaded area in Fig. 7(a).
Therefore, the system seems to enter a “flux-condensed”
phase where it is energetically advantageous for the system to
have flux lines along the long direction of the tubelike lattice.
It will be interesting to see whether this feature persists in the
TL.

B. Ground-state fidelity susceptibility

In order to further shed light on whether the explored
parameter range of λ crosses a phase transition, one can also
exploit tools from quantum information theory. Specifically,
in this section we present results for the ground-state fidelity,
which measures the overlap between two ground states with a
slight difference in the coupling. The overlap exhibits a dip if
the two corresponding ground-state (GS) wave functions are
qualitatively different, i.e., when the states belong to different
quantum phases, and hence is a useful witness to detect quan-
tum phase transitions [36]. Here, we are interested in the GS
fidelity as a function of λ, defined as

F (λ, ε) = |〈ψ (λ)|ψ (λ + ε)〉|, (21)

where ε denotes the difference between the two involved λ

values. Note that the fidelity itself depends on ε since, naively,

the overlap between two “neighboring” states increases when
the parameter offset is reduced (since the states are “closer”).
Moreover, this overlap is expected to vanish exponentially
with increasing system size, in accordance to predictions of
random matrix theory [37]. To overcome these shortcomings,
it is more convenient to introduce the fidelity susceptibility
formally defined via

χF ≡ −∂2 log F

∂ε2

∣∣∣∣
ε=0

. (22)

Much like thermodynamic susceptibilities [38], the fidelity
susceptibility encodes the response of the GS overlap to a
small change in the driving parameter λ. Moreover, just like
the fidelity of order parameters, the positions of the maxima
in χF at finite-system sizes can be used to extract critical
properties for infinite systems via finite-size scaling [38,39].

Computationally, there are several ways to extract the fi-
delity susceptibility (see, e.g., Ref. [39] for an overview). A
straightforward way is to simply take the overlap according to
Eq. (21) and then exploit the relation

F (λ, ε) = 1 + ε2

2
χF(λ) + O(ε4), (23)

which may be obtained via first-order perturbation theory
[38,40]. A potential drawback is a systematic error induced
by the finite difference ε, however, this can be efficiently
suppressed by using small enough ε.

In Fig. 9 we show results for the fidelity susceptibility on
both lattice sizes studied in this work for bosons (top) and
fermions (bottom). For the bosonic link model we observe a
peak for λ ∼ −1, hinting at the presence of a smooth phase
transition, and thereby suggesting that for λ close to zero, the
system probably comes out of the ordered phase. At positive
λ the susceptibility dips before a steep increase heralds the
presence of the RK point at λ = 1 (which separates a potential
QSL from a staggered dimerized ground state with no flip-
pable plaquettes). Close to the RK point, the ground state is
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FIG. 9. Ground-state fidelity susceptibility for two system sizes
for bosonic (top) and fermionic (bottom) links. Note the log-scale on
the y-axis.

sensitive to states with winding strings, and this shows up as
a sharp increase in χF.

For the case of fermionic links, the overall behavior is
similar; however, a qualitative difference arises: while the
sharp rise in the vicinity of the RK point as well as the smooth
peak at λ ∼ −1 are present as in the bosonic case, the curves
for both shown system sizes exhibit a discontinuity. Unsur-
prisingly, this jump occurs at the point where we observe
the ground-state level crossing in the spectrum, i.e., where
a potential first-order transition takes place. For both lines
shown in the lower panel of Fig. 9, the solid circles are the
values in the zero-winding sector whereas the filled squares
reflect the susceptibility in a nonzero-winding sector, which
hosts the ground state in this regime.

Based on these findings and the discussion in the previous
section, we propose the qualitative phase diagram on the λ

axis shown in Fig. 1. For both the bosonic and fermionic link
models, there seems to be a smooth quantum phase transition
at moderately negative λ. Additionally, for fermionic links
a sharp transition to an as-of-yet unknown phase seems to
exist, however, it is challenging to predict if this persists in
the thermodynamic limit. In the next section, we investigate
other observables to establish some properties of the putative
quantum phases.

C. State participation and entropy

In order to further characterize the ground-state behavior,
we investigate the structure of the ground-state wave function
at representative values of the RK coupling λ in the different
phases. As a first step, we discuss a correlation histogram that
relates the number of flippable plaquettes for a given basis
state with the relative weight of this basis state in the GS wave

function on a 2 × 2 × 4 lattice, shown in Fig. 10 for both the
bosonic and the fermionic links.

While both scenarios look fairly similar, let us first discuss
the case of bosonic links (left column). At a representative
value for the rotational symmetry-broken ordered phase, for
which we take λ = −3.0, the ground-state wave function
| GSλ=−3.0〉 is in the W = [000] sector (red symbols). Both
Figs. 10(a) and 10(b) show the absolute value of the overlap
of the ith basis state with the ground-state wave function:
ci = 〈 i | GS〉. The y axis of Fig. 10(a) shows the number
of basis states which have the same overlap with the wave
function, while Fig. 10(b) shows the total number of flippable
plaquettes for the corresponding basis states. As is apparent
from Fig. 10(b), almost the entire weight in this regime is
carried by basis states with the largest number of flippable
plaquettes. This is indicated by the isolated scatter points in
the top right corner. Indeed, this is not unexpected since we
already argued above that in this phase the D3h-symmetric
states constitute the GS manifold at λ → −∞. The relative
importance of these few states becomes even more apparent
by considering the corresponding histogram of the weights of
the GS wave function (not resolved in the number of flippable
plaquettes), shown of Fig. 10(a). Here, the isolated point cor-
responds to the single peak with the largest weight and all the
other basis states contribute with weights smaller by several
orders of magnitude (note the logarithmic scale).

At larger values of λ, we have argued based on the scaling
of the energy gap to the first excited state that symmetry
breaking might be absent, and the system enters a disordered
QSL phase. Performing an equivalent analysis on the repre-
sentative wave function at λ = 0.0 (blue data) indeed reveals
a picture consistent with the conjecture of a liquid phase:
The amplitude in | GSλ=0.0〉 is carried by many states with
vastly different number of flippable plaquettes, all with similar
amplitudes. This is reflected by the relatively flat distribution
in Fig. 10(b) and by the narrow histogram in Fig. 10(a). More-
over, the distribution of the weights is localized around the
value for an equal superposition of all states in the W = [000]
winding sector, indicated by the vertically dashed line. The
deviation from this ideal result could become smaller with
increase in the lattice size.

Let us turn to the case of fermionic links, which is shown in
the right panel of Figs. 10(c) and 10(d), which plot the same
physical quantities as those in Figs. 10(a) and 10(b), but for
the fermionic model. For values of λ up to the ground-state
level crossing at λc2 ≈ 0.65, the overall picture of the corre-
lation histogram is very similar to the bosonic case since the
GS also is in the zero-winding sector. However, in contrast to
the bosonic case, many more states have zero weight (within
machine precision). This could be due to some unresolved
symmetry for the fermionic model causing the coefficients
of basis states with the same number of flippable plaquettes
to be equal and opposite, which then conspire to cancel out.
A striking difference between the bosonic and the fermionic
links occurs only above λc2, when the ground state is in
the W = [002] sector. We show the corresponding analysis
of representative state at λ = 0.8 (green data) and it im-
mediately becomes apparent that most lattice configurations
again have very small weights. Conversely, the states with
nonzero weight are observed to contribute equally to a very
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(b) (d)

(a) (c)

FIG. 10. Correlations between the weight and the number of flippable plaquettes of basis states in the ground state for bosonic (left) and
fermionic (right) links on a 2 × 2 × 4 lattice. (Top row) Histogram of the logarithm values of the absolute value of the weight. At large
negative λ = −3.0 only a few states contribute significantly, while others have significantly reduced weight and are spread over orders of
magnitude. At λ = 0 the distribution is narrow, corresponding to a more even distribution of weight among the states. (Bottom row) The
number of flippable plaquettes vs the logarithm of the absolute value of the amplitude. The dashed line marks an even superposition of all
states.

good approximation. This phase therefore is indicative of an
ordered phase which happens close to the RK point in the
fermionic model. For orientation, the green dashed-dotted line
shows the corresponding amplitude of an equal superposition
of all states in the W = [002] sector, and we see that all the
contributing states are to the right of this line.

The visual investigation of the structure of the GS wave
function above, which suggests the delocalized nature of the
wave function in the Hilbert space in the potential spin-liquid
phase, could also be made more concrete with other ob-
servables typically used to diagnose delocalization in Hilbert
space [41]. Specifically, we discuss the Shannon entropy,
which can be written as a special case S1 of the Rényi entropy
of order α:

Sα = 1

1 − α
log

N∑
i=1

pα
i

α→1= −
N∑

i=1

pi log pi, (24)

where the probability pi = |〈 i | GS〉|2 is the weight of the
basis state i in the ground state. Note that such entropies are
dependent on the chosen many-body basis, but the values are
not expected to be very different as long as the basis is not
fine tuned. The intuition behind this observable is a quantifi-
cation of the amount of fluctuations in the ground-state wave
function: While a maximally localized ground state would
correspond to minimal values of S1, the entropy grows with
the amount of fluctuation to its maximal value when all states
contribute equally (when it is maximally disordered).

In the top panels of Fig. 11, we show our numerical values
of S1 for bosonic (left) and fermionic (right) link models for
two system sizes. In both cases, the ordered limit at λ → −∞
would correspond to S1 = log(12), which is indicated by a
black dashed line. We observe that S1 for both system sizes
converge to this limit. In the opposite limit, namely λ → 1,
we observe that the Shannon entropy for the bosonic link

model quickly approaches the maximal value S1 = log NW

where NW = |HW | denotes the size of the Hilbert space in the
corresponding winding sector. This supports the picture from
the above analysis, namely, that the system exits the ordered
phase as λ is made small and positive, and enters a QSL phase
which smoothly merges to the RK point λ = 1.

FIG. 11. Entropy and IPR vs λ for bosonic (left) and fermionic
(right) link variables are shown in the top and bottom lines, respec-
tively. The respective limits are shown with dashed lines. For all
plots, full symbols correspond to zero-winding states whereas open
symbols (for fermions) correspond to nonzero-winding sectors, as
indicated in the legend.
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For fermions a slightly different picture presents itself,
which depends on the considered lattice size. While similar
features to the bosonic case persist, above λc2 the entropy
is expected to converge to log N00z, which is indicated by
the colored dashed lines. This is indeed the case for the
2 × 2 × 2 lattice (for the Wz = 1 sector), where all states
contribute almost equally irrespective of the λ value. For
the larger 2 × 2 × 4 lattice, S1 settles at a smaller value,
indicating that the ground state of the system now resides in
a reduced number of states in the W = [002] sector. This is
completely consistent with the above analysis where the GS
histograms in the same region showed that the weight of any
state either vanishes or is approximately equal to all other
nonzero weights.

For completeness, we also briefly discuss here a closely
related quantity, namely, the so-called inverse participation
ratio (IPR) [41], defined via

I =
N∑

i=1

p2
i . (25)

The IPR is an alternate probe for localization of a quantum
state in a given many-body basis and is related to the Rényi
entropy of order α = 2 via S2 = − log I such that both I and
S1 encode similar information. We show our numerical values
for the IPR in the lower panels of Fig. 11, where we can draw
equivalent conclusions as for the entropy discussed above:
While the ground-state wave function is dominated by the
12 most flippable states at large negative λ (convergence to
the black dashed line at I = 1

12 irrespective of the system
size) the IPR approaches the one of an equal superposition
of all basis states in the given winding sector (appropriately
colored dashed lines at I = 1/N) and is, hence, reminiscent of
a QSL-type behavior.

D. Monopole string excitation

One way to characterize the putative U(1) liquid phase at
λ values close below the RK point is to investigate the cost
of the flux lines in the system. The emergence of these flux
lines is illustrated in Fig. 12(a): Starting from a state in the
zero-winding sector (top left panel), where Gx| ψ〉 = 0 on all
vertices, we flip an arbitrary link Ex, μ. Such a configuration is
not in the pure-gauge sector, as Gauss’ law at x and x + μ̂ now
corresponds to a positive and a negative charge sitting at these
vertices, respectively. The flipped link acts as a “flux line”
between these opposite charges (marked as the red arrows in
the figure). Further, separating these charges prolongs these
flux lines, until eventually the charges cross the boundary
and annihilate each other leaving behind a line of flipped
links with the condition Gx| ψ〉 = 0 is again fulfilled at every
vertex. As opposed to the initial basis state, the resulting state
acquires a nonzero-winding number and therefore does not
belong to the zero-winding sector.

In a confined phase, it is energetically costly to separate the
charges, and the energy cost scales linearly with the distance
between the pair of charges. The strength of this confinement
is determined by the constant of proportionality, commonly
referred to as the string tension σ , defined via V (R) = σR
where V (R) is the potential between two opposite charges.

(a)

(b)

FIG. 12. Monopole string excitation. (a) Sketch of the emergence
of a flux line. (b) κF for two system sizes as a function of λ for
bosonic (left) and fermionic (right) links. For the tubelike lattices,
we plot two lines: one for fluxes along the short (disks) direction and
one for the long (squares) direction.

In a deconfined phase, as is expected in a U(1) liquid phase,
these “flux excitations” should cost much less energy, i.e., the
string tension should be small. Of course, at finite system size
this behavior is challenging to address precisely, however, the
flux excitations should be cheaper for λc � λ � −1 (where
we expect such a phase) than for the ordered state at large
negative λ.

Following [19], we investigate the cost of such a flux-line
excitation by measuring the monopole string tension, defined
as

κF = EF − E0

LF
= 
f

Lf
, (26)

where EF is the ground-state energy in the lowest nonzero-flux
sector, E0 is the ground state in the zero-flux sector, and LF

denotes the length of the flux tube [corresponding to the dif-
ference between the last and first panels of Fig. 12(a), divided
by the length of the flux line].

Results for this quantity are shown in Fig. 12(b) for the
two system sizes reachable with ED. For the bosonic case
(left panel) we indeed observe the aforementioned trend, with
a slight tendency to move towards the expected results for
the thermodynamic limit (which is well beyond ED stud-
ies). There, κF should only be nonzero for λ < λc but vanish
above in the U(1) liquid phase. Although the authors of
Refs. [18,19] study the related dimer model (which has the
identical Hamiltonian, but a different superselection sector)
we find qualitatively similar results for the monopole string
tension for the small systems studied here.
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For the fermionic case, on the other hand, the picture
is slightly more complicated. There, the ground-state level
crossing between the zero- and nonzero-winding sectors im-
plies a vanishing cost of excitations for flux lines of arbitrary
length. This is apparent in the right plot in Fig. 12(b) where
κF crosses over to negative values. We interpret this as a
flux-condensed phase beginning, at least for the finite sizes
considered here, already below the RK point. As the crossing
point shifts to higher values of λ with increasing system size,
it will be interesting to see whether such a phase can be stabi-
lized in the TL. While this implies that the RK point does not
have its usual properties for the finite-size fermionic system,
we expect the properties to be restored in the thermodynamic
limit. In particular, we would expect the GS to have an equal
superposition of basis states from all the different winding
sectors for larger system sizes.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have introduced the particle represen-
tation for the Abelian U(1) QLMs, distinct from the rishon
representations considered before [8]. We noted that while
the physics of using hard-core bosons (which are equivalent
to using quantum spins) to represent the link operators give
identical physics as that of using fermions in two spatial di-
mensions, the physics is qualitatively different in three spatial
dimensions. Interpreting the plaquette term as a correlated hop
of two fermionic particles along two adjacent lines diagonally
intersecting the midpoint of perpendicularly oriented links,
as shown in Fig. 3, we could show that these particles have
subdimensional motion under the kinetic term. For two spa-
tial dimensions, this implied a linear motion of the particles,
and any negative signs due to fermions crossing the periodic
boundary gets canceled by the hop of the paired fermion. In
three spatial dimensions, the fermions move along a plane in
two spatial dimensions and give rise to an opposite sign to
a world line as a boson. Therefore, the fermionic operators
give rise to different physics as the bosons in three and higher
dimensions.

Using techniques of finite-size scaling on results obtained
from lattices up to 72 links, we showed that both the fermionic
and the bosonic models spontaneously broke the lattice ro-
tation and the charge-conjugation symmetry for large and
negative λ. On decreasing λ towards zero, our results indicated
that the symmetry-breaking gap dissolves and the gap does
not decrease. We introduced the state-participation histogram
as a tool to identify any sign of symmetry breaking in the
ground-state wave function. This diagnostic clearly indicates
the absence of any special basis state in the region λ ∼ 0
with any significant overlap with the ground-state wave func-
tion. In addition, a host of other observables such as the
mass gap, the fidelity susceptibility, as well as several related
information theoretic quantities reveal the absence of any
symmetry-broken phase, and provide an indirect evidence of
a U(1) Coulomb phase, which is sometimes identified as a
spin-liquid phase in the condensed matter theory literature.
Both the fermionic and the bosonic models show these fea-
tures, even though the potential liquid phase is possibly very
different in the models. For example, the winding strings are

much easier to excite in the regions λ ∼ 0 of the bosonic
model, as compared to the fermionic model.

Of course, the existence of this liquid phase is fascinating
and needs to be investigated on larger lattices. One could
marginally extend our calculation by exploiting various com-
muting symmetries to reach larger system sizes using exact
diagonalization. However, this is likely going to be insuffi-
cient, and some stochastic Monte Carlo methods, or tensor
network methods, would be more useful to achieve significant
progress here.

For the fermionic model, we observe a phase which is sand-
wiched between the liquid phase and the RK point. This phase
has condensed phases in the ground state, and is reminiscent
of the staggered phase (which is stable for λ > 1 in both the
models in two spatial dimensions). However, the ground state
has winding strings only in the longer direction and none
along the shorter direction. This could be a finite-size effect,
disappearing in the thermodynamic limit to the usual RK point
where the ground state is spread over all the winding sectors.

With the rapid advance in the field of quantum simulators
using cold atoms or with Rydberg atoms, it is natural to
imagine that such platforms can be used to realize the model
proposed here. Such an experimental realization would not
only enable an independent verification of the physics pro-
posed here, but also enable the study of quantum dynamics
in this model which could possibly be beyond the reach of
any numerical method in the near future. However, the three
spatial dimensions involved in the problem provide a difficult
challenge given the well-known difficulty of implementing the
plaquette interaction in a cold-atom simulator [42]. However,
we note that the possibility of realizing the plaquette interac-
tion as a correlated hop could be an altogether practical route
to realize the four-body interaction without the need of any
auxiliary qubits as in a digital simulation scheme [43]. In this
regard, our interpretation of the plaquette term as a correlated
hop of particles could already extend the schemes provided
in [44], which, however, was postulated for the limit of large
boson occupation numbers. In fact, Ref. [45] already describes
a Rydberg atom implementation of the fermionic t-V model
which allows the fermions to hop along only one spatial direc-
tion. With additional interactions to force fermions in adjacent
chains to hop together, one could realize exactly the plaquette
interaction.

Independently of the experimental realization, this class of
models opens up some interesting avenues of research purely
from a quantum field theory perspective. One of the imme-
diate questions is to ask if the Coulomb phase does indeed
exist in the bosonic model in three spatial dimensions, is it
possible to use dimensional reduction to obtain a confined
continuum gauge theory in two spatial dimensions, which the
so-called D-theory approach advocates [46]. Other interesting
questions include the formulation of the field theory of a
Coulomb phase in three spatial dimensions, where the gauge
fields are fermionic in nature, the mechanism of including
larger representations using fermionic states, as well as non-
Abelian generalizations of the fermionic links. The presence
of possible critical points and the phase diagrams in such
models, together with synergies with experiments, promise an
exciting road ahead.
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APPENDIX A: CONSTRUCTING THE GLS

The first step of the diagonalization routine consists of
building the many-body Hilbert space of permissible states
(i.e., those that fulfill the Gauss law on every vertex). A
naive approach, i.e., listing all states and simply discard
the ones that violate the constraint, is not useful because
of the prohibitive scaling of the number of states. Here we
offer two options how to efficiently construct the Hilbert
space.

Recursive state search I. One way to construct all permissi-
ble states for bipartite lattices is to first divide the problem into
the two sublattices. We call the sublattice �A the one where
we place vertices that obey Gauss’ law (see main text) and the
sublattice �B which contains the “in-between” vertices where
we need to check for the validity of Gauss’ law. Then, one can
proceed with a recursive function as follows:

(1) The (recursive) function should take in a list as its
argument.

(2) If the list is of the length of the sublattice �A, return
the current list. The recursion is done and we have obtained a
valid state.

(3) If the length of the list is shorter, then loop through all
allowed vertices by Gauss’ law:

(1) Append the current vertex to the original list.
(2) With the updated list, check which vertices of �B

are already surrounded by vertices on �A. If there are
surrounded vertices in �B, check if Gauss’ law is satisfied
on this vertex. If not, terminate the recursion for this branch
and return nothing; Gauss’ law is violated and hence the
state is not valid. If Gauss’ law is satisfied, or if there are
not surrounded vertices in �B, call the recursion with the
updated list.
Calling the function with an initially empty list creates a

tree which is checked for validity on the fly. Only when the
desired depth is reached (i.e., the size of the sublattice A) a
state will be added to the list in the end. Therefore, once the
recursion is finished, only the valid GLS survive.

Note that technically this could be problematic because for
large systems this could lead to steep memory requirements.
It is advisable to store the already obtained states to file at
intermediate steps (buffered, for every 106 states for instance),
in order to keep the list short.

Recursive state search II. The allowed GLS can also be
found by a nested application of the “kinetic” part of the
Hamiltonian to a set of seed states (the plaquette flipping
term). This is efficient, but needs at least one flippable basis
state for each winding sector in order to be useful. Moreover,

(a) (b)

FIG. 13. Scaling of the number of GLS. (a) Total number of
GLS, NGL, for 2D (red) and 3D (blue) lattices, irrespective of wind-
ing. The dashed lines are an extrapolation with only the lowest data
points, the dotted line uses all available 2D data points. The green
diamond is an estimate for the size of the W = [000] sector on a
2 × 2 × 6 lattice. (b) Number of GLS in the W = [000] sector as
function of the flip level. Solid lines represent a quadratic fit.

there are two potential caveats: (1) unflippable configurations
cannot be reached (which likely is not an issue except at the
RK point) and (2) this strategy relies on the ergodicity of the
problem. It could be, for instance, that the Hilbert space does
fragment into several subspaces due to some hidden symme-
try. Then, this strategy will in general not find all relevant
states (see also [19]).

For completeness, we show the scaling of the total number
of GLS for 2D and 3D lattices (across all winding sectors)
in Fig. 13(a), where exact values are represented by filled
symbols and (linear) extrapolations on the logarithm scale are
shown as dashed and dotted lines. Clearly, the requirements
for a 2 × 2 × 6 lattice are steep, and it is likely that only
the zero-winding sector of this lattice size could potentially be
reached with ED (green diamond), which is still of the order of
∼233 states (without the consideration of further symmetries,
e.g., translational invariance).

APPENDIX B: CONVERGENCE OF LOW-ENERGY
APPROXIMATION

As briefly discussed in the main text, we employ a sys-
tematic low-energy approximation for the largest considered
systems in order to avoid the prohibitive scaling of the com-
putational effort, allowing us to gain some information on
systems larger than V = 2 × 2 × 4. Here we present some
details of this approach.

The general idea is to first consider the ground-state man-
ifold in the limit λ → −∞, which is a set of superpositions
of the most flippable lattice configurations. In this limit, the
lowest 12 states (this is the size of the GS manifold) could
be extracted exactly by only considering the most flippable
lattices. To systematically improve the obtained energies at
λ > −∞ we simply introduce “excitations” to the system
by flipping single plaquettes. The extended set of states is
expected to improve the approximation, as we now couple
the low-lying states to excited states. Systematically repeating
this sequence allows us to study the spectrum at different “flip
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FIG. 14. Low-energy spectrum of a bosonic 2 × 2 × 4 system with all states in the zero-flux sector considered (gray symbols) and with
a restricted Hilbert space constructed from plaquette flips (red symbols). From top left to bottom right: 2, 3, 4, 5, 6, and 7 flips away from
the maximally flippable manifold, respectively. Darker coloring indicates degeneracy.

levels” (FL); this is shown in Fig. 14 for a 2 × 2 × 4 involv-
ing FL2 to FL7. At large negative λ, the spectrum converges
quickly since only small corrections are expected to be of im-
portance in this regime. In the region λ ≈ 0 convergence sets
in only at lager FL, indicating the importance of states with
an arbitrary number of flip excitations. Clearly, at λ = 1.0 due
to the massive degeneracy of states with finite-flux content at
the RK point, higher flip levels will be needed to establish
convergence of the spectra.

The values for the excitation energies within such an ap-
proximation at λ = −3.0 and 0.0 are shown in Fig. 7(b) and
are observed to give a satisfactory convergence even at lattices
with 72 link variables. For quantities other than energy gaps,
however, convergence was observed to be more challenging.

Finally, we show the scaling of the number of GLS as a
function of the flip level in Fig. 13(b) for different lattice sizes,
and we also explicitly give the number and fraction of the total
Hilbert space for a 2 × 2 × 4 lattice in Table I.

TABLE I. Number of states for the respective low-energy ap-
proximations of the 2 × 2 × 4 lattice in the [000] winding sector
compared to the full number of states (last line).

FL Number of states %

0 12 0.00077%
1 396 0.0255%
2 5132 0.3307%
3 35660 2.298%
4 151864 9.785%
5 436088 28.1%
6 860664 55.45%
7 1245688 80.26%
All 1552024 100%

APPENDIX C: DIAGONALIZING THE 2 × 2 FERMIONIC
AND BOSONIC CASES

In this Appendix, we explicitly work out the eigenvalues
and the eigenvectors of 2 × 2 bosonic and fermionic systems,
explicitly showing where they differ in negative signs. Before
constructing the Hamiltonian explicitly for the 2 × 2 system,
we can further simplify the analysis and the numerics by
dividing the basis states into different winding-number sectors
in x and y directions (Wx,Wy). The winding number commutes
with the Hamiltonian and in the electric flux basis, the Hamil-
tonian is block diagonal. Out of a total of 18 states, 6 are in the
zero-winding sector. The ground state lies in the zero-winding
sector, and hence is characterized by a six-dimensional vector.
Using the action of the Hamiltonian given in (20), the eigen-
values are obtained by diagonalizing the matrix

H(0,0) = −J

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0
1 0 1 1 0 1
0 1 0 0 1 0
0 1 0 0 1 0
1 0 1 1 0 1
0 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

. (C1)

For J = 1, the eigenvalues are −2.82843, 0, 0, 0, 0, 2.82843.
Before doing a similar exercise with the fermionic version,

we need to label our states according to a definite convention
since fermionic operators are involved. The matrix which one
obtains is

H(0,0) = −J

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 −1 0
1 0 1 −1 0 −1
0 1 0 0 −1 0
0 −1 0 0 1 0

−1 0 −1 1 0 1
0 −1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

. (C2)

Indeed, on diagonalizing matrix (C2) we recover the same
spectrum as that of (C1) for the quantum spin model.
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FIG. 15. Numbering of links on a 2 × 2 × 2 lattice. The blue
colored links [3, 6, 9, 12] are summed to obtain the total flux Wz in
the z direction, indicated as the flux through a closed loop around the
system in the z plane. Accordingly, Wx is obtained by summing the
links [1, 7, 13, 19] and Wy via summation of the links [2,5,14,17].

APPENDIX D: EXCHANGE OF TWO FERMIONS IN 3D

In this Appendix, we show the exact calculation demon-
strating the emergence of a sign in the fermionic QLM, as
argued in the main text (cf. Fig. 6, we write mathematically the
flips that were considered in that figure). To do this, we first
need to introduce the conventions regarding the ordering of
operators, such that we are able to properly identify an overall
sign. In our conventions, normal ordering refers to creation
operators arranged so that their index is ascending from right
to left, i.e., those with lower index are applied first.

Although the specific numbering of link variables merely
is a technical detail, we show our convention in Fig. 15 for
the sake of completeness. In this convention, the initial state
discussed in the main text corresponds to

|ψ0〉 = c†
24c†

12c†
11c†

10c†
7c†

5c†
4c†

1|0〉. (D1)

Moreover, we denote the plaquette operators as

U�(i, j, k, l ) = c†
i c†

j ckcl , (D2)

U †
�(i, j, k, l ) = cic jc

†
kc†

l , (D3)

where the indices denote the links of the plaquette in
question.

With this, we are able to explicitly show the emergence of
a sign for the example discussed in the main text, specifically
the string of plaquette operators applied in Fig. 6(b). For the
sake of brevity, we only consider explicitly the application of
the first of six plaquette operators, namely,

|ψ1〉 = U †
�(5, 12, 17, 6)|ψ0〉

= [c5c12c†
17c†

6][c†
24c†

12c†
11c†

10c†
7c†

5c†
4c†

1|0〉]
= c†

24c†
17c†

11c†
10c†

7c†
6c†

4c†
1|0〉, (D4)

where the last line is obtained by exploiting the usual
fermionic anticommutation relations. The subsequent opera-
tors generate the following sequence of states:

|ψ2〉 = U †
�(1, 6, 13, 3)|ψ1〉

= −c†
24c†

17c†
13c†

11c†
10c†

7c†
4c†

3|0〉, (D5)

|ψ3〉 = U †
�(13, 17, 19, 14)|ψ2〉

= −c†
24c†

19c†
14c†

11c†
10c†

7c†
4c†

3|0〉, (D6)

|ψ4〉 = U�(2, 9, 14, 3)|ψ3〉
= −c†

24c†
19c†

11c†
10c†

9c†
7c†

4c†
2|0〉, (D7)

|ψ5〉 = U�(1, 5, 7, 2)|ψ4〉
= −c†

24c†
19c†

11c†
10c†

9c†
5c†

4c†
1|0〉, (D8)

|ψ6〉 = U�(7, 12, 19, 9)|ψ5〉
= −c†

24c†
12c†

11c†
10c†

7c†
5c†

4c†
1|0〉 = −|ψ0〉. (D9)

As is evident from the last line, the application of these six
operators (in this specific order) maps the state back to itself
but with a sign that distinguishes a system with bosonic link
variables from its fermionic counterpart.
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