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Z2 Dirac points with topologically protected multihelicoid surface states
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In some Dirac systems with time-reversal (T ) and glide (G) symmetries, multihelicoid surface states (MHSSs)
appear, as discussed in various systems such as electronic and photonic ones. However, the topological nature
and the conditions for the appearance of the MHSSs have not been understood. Here we show that MHSSs result
from bulk-surface correspondence for the Z2 monopole charge Q, which cannot be defined as a local quantity
associated with the Dirac point, unlike the Z monopole charge characterizing Weyl points. The previously known
formula of Q turns out to be non-gauge-invariant and thus cannot characterize the MHSSs. This shortcoming
of the definition of Q is amended by redefining Q as a global topological invariant in k-space. Surprisingly,
the newly defined Q, characterizing GT invariant gapless systems, is equal to the G-protected Z2 topological
invariant ν, which is nontrivial only in T -breaking gapped systems. This global definition of Q automatically
guarantees the appearance of MHSSs even when the Dirac point splits into Weyl points or a nodal ring by
lowering the symmetry, as long as the GT symmetry is preserved. Q can be simplified to symmetry-based indi-
cators when two vertical Gs are preserved, and filling-enforced topological crystalline insulators are diagnosed
in several cases when a T -breaking perturbation is induced. Material candidate Li2B4O7 together with a list of
space groups preserving MHSSs are also proposed.
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I. INTRODUCTION

Since the first proposal of the T -protected topological insu-
lator in 2005 [1–3], a vast number of topological (crystalline)
insulators (TI/TCI) have been discovered in gapped band
structures with different symmetries [4–11]. The topological
equivalence of two systems can be diagnosed by either the
type or the value of the topological invariants, associated
with diverse topological surface states due to bulk-surface
correspondence (BSC). For example, TIs associated with sur-
face Dirac cone(s) are proposed with topological invariant
z2 = 1 in Ref. [3]. As for topological semimetals, their band
degeneracies are protected by various topological invariants
associated with disparate BSC, such as the Berry phase γ

for the nodal line/ring with drumhead surface states [12–16],
the Z-type monopole charge C for Weyl points with helical
surface states [17–26], and Z2-type monopole charge Q for
Dirac points with MHSSs such as double (quad-)helicoid
surface states (DHSSs/QHSSs) [21,27–32]. In particular,
DHSSs/QHSSs associated with Dirac points realized in GT -
preserving systems are particularly interesting. Because they
originate from Dirac points, which are composites of a pairs of
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Weyl points with C = ±1, they can escape from gap opening
only under some conditions. Nevertheless, these conditions
have not been identified because their topological nature has
not been understood yet. Therefore, it is not known how to
realize DHSSs/QHSSs in general systems, such as electronic
and photonic systems. Furthermore, two more topological
invariants ν [29,33] and μ2 [34] can be defined in terms of
G when the system is fully gapped, but there has been no
research studying their relationships with Q so far.

In this paper, we point out that the previous definition of
the Z2 monopole charge Q is not gauge-invariant, and we
show a new gauge-invariant definition for Q. Thereby, we can
show the BSC between nontrivial values of Q and MHSSs.
In Sec. II, we start the discussion for conventional Dirac
points composed of two Weyl points with opposite C in Dirac
semimetal systems, in which no gapless helical surface states
are guaranteed, and then we discuss Z2 Dirac points carrying
monopole charge Q protected by �̃ in Secs. III A and IV B.
Here, we give an amended gauge-invariant definition of Q.
We also show that the Z2 monopole charge Q associated with
Dirac points under G and T symmetry cannot be defined as a
local quantity, as opposed to previous works, and surprisingly
it is equal to ν, which characterizes a G-protected TCI phase
without T -symmetry in Sec. III B. With this newly defined
gauge-invariant Q (=ν), we establish BSC for Dirac points
with both DHSSs and QHSSs for GT -preserving systems in
Secs. III D and IV C. This global definition of Q automatically
guarantees the appearance of MHSSs even when the Dirac
point splits into Weyl points or a nodal ring by lowering the
symmetry, as long as the GT symmetry is preserved. We
find that QHSSs can only be retained in spinless systems,

2643-1564/2022/4(3)/033170(10) 033170-1 Published by the American Physical Society

https://orcid.org/0000-0002-2010-6721
https://orcid.org/0000-0002-2033-9402
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.033170&domain=pdf&date_stamp=2022-08-31
https://doi.org/10.1103/PhysRevResearch.4.033170
https://creativecommons.org/licenses/by/4.0/


ZHANG, HARA, AND MURAKAMI PHYSICAL REVIEW RESEARCH 4, 033170 (2022)

FIG. 1. Z2 Dirac points under G- and T -symmetries and associated DHSSs. (a1) Fermi arcs for Weyl points with opposite monopole
charges C, which can be defined either by the sphere enclosed by the Weyl point or by a two-dimensional plane marked by the dashed line.
(a2) Fermi arcs do not necessarily exist for a conventional Dirac point composed of a pair of Weyl points with opposite C. (a3) Helical surface
states for a pair of Weyl points carrying opposite C. (b1) Locations for Z2 Dirac points (Weyl dipoles) on the kx = −π plane (blue plane)
satisfying �̃2

y = −1 in the bulk BZ. (b2) Double-helicoid surface states contributed by Z2 Dirac points, which will be projected along M̄-X̄
on the surface BZ. The gray cone is the bulk Z2 Dirac band. Blue and yellow sheets are the anticrossing helical surface states. Purple lines
show the surface-state connections along �̄-X̄ -M̄ directions. (b3) Fermi arcs for Z2 Dirac points (Weyl dipoles) on the Gy-preserved surface
BZ, which corresponds to the gray plane shown in (b1). The Fermi arcs will change to (b4) when the energy changes. (b5),(b6) Two possible
surface-state connections with νy = 1 (=νsurface

y ) in the T -breaking system defined by single Gy, with the single surface Dirac cone located
along different Gy-invariant lines. TRS denotes time-reversal symmetry. (b7),(b8) Two possible topological surface-state connections for Z2

Dirac points in the spinless and T -preserving case. (b9),(b10) Two possible topological surface-state connections for Z2 Dirac points in the
spinful and T -preserving case. Surface states shown in (b7)–(b10) are all in the double-helicoid shape shown in (b2).

and it vanishes in spinful systems due to the ill-defined Q in
Sec. IV. The first Z2 Dirac material candidate Li2B4O7 and
a list of space groups with QHSSs will be offered in Sec. V.
Therefore, our theory has established conditions to guarantee
DHSSs/QHSSs, which can lead to their realization in a broad
range of physical systems.

II. MONOPOLE CHARGES C FOR WEYL
AND DIRAC POINTS

Monopole charge C can be defined by the Chern number on
a sphere enclosing the Weyl point, or on a two-dimensional
(2D) plane in the 3D Brillouin zone (BZ) marked by the
dashed line in Fig. 1(a1). The former definition shows the
local property of C, while the latter offers the global topology
to understand the influence of C on the whole BZ, giving
rise to gapless surface states connecting two Weyl points with
opposite C, as shown in Fig. 1(a3). Fermi arcs are isoenergetic
surface states, and they can disappear when those two Weyl
points are projected onto the same momentum on the surface
BZ or when they are forced to coalesce into a Dirac point by
additional symmetries [35–56], as shown by the purple solid
line in Figs. 1(a1) and 1(a2).

Although the monopole charge C will vanish for a Dirac
point [27,35,57–59], a new Z2 topological invariant Q can be
defined when an antiunitary operator �̃ = GT with �̃2 = −1
is present [21], and its corresponding topological bulk degen-
eracies are named Z2 Weyl dipoles or Z2 Dirac points (detailed
discussions on Weyl dipoles are in [60]). Z2 Dirac points
always appear in pairs and are located at T -related momenta
in the BZ. Since Z2 Weyl dipoles and Z2 Dirac points can be
transformed mutually by �̃-preserved perturbations, we will

use Z2 Dirac points as an example to show the global topology
of Q in the following.

III. MONOPOLE CHARGE Q IN SYSTEMS
WITH A SINGLE GT

In this section, we will show that the definition of Z2

monopole charge Q given in Ref. [21] in systems with a single
G and T actually depends on a gauge, and we will redefine
Q in a gauge-independent way. This eventually shows that Q
cannot be defined locally in k-space, but that Q shows global
topology in k-space.

A. Redefinition of monopole charge Q
We consider systems with one glide symmetry Gy =

{My| 1
2 00}, where My represents the mirror reflection with

respect to the xz plane. Systems with only a Gy symmetry cor-
respond to no. 7, and their BZs are shown in both Figs. 1(b1)
and 2(a). Let �̃y denote an antiunitary operator �̃y=T Gy,
which leads to �̃2

y = e−ikx . Therefore, kx = +π/ − π is a
special plane where �̃2

y = −1 is satisfied, as shown by the
blue plane in Fig. 1(b1) and the green plane (region A) in
Figs. 2(a)–2(c), and here we consider the case with two Z2

Dirac points on the kx = −π plane in the 3D BZ. They are
related by T symmetry, and so they cannot appear at time-
reversal-invariant momenta (TRIM). Thus, Z2 Dirac points are
usually located on high-symmetry lines for systems with only
one G.

Here, we consider a Dirac point on the �̃-invariant line
with �̃2 = −1, i.e., the E-A or D-B line on the kx = −π plane
shown in Fig. 2(c). A Z2 monopole charge Q is associated
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FIG. 2. (a) Brillouin zone for the space group no. 7, which
only has a glide symmetry, and the colored planes are used for
the calculation of ν. Projection onto the (001) plane is also shown.
The regions A, B, and C are defined by A = {k|kx = −π, 0 �
ky � π,−π � kz � π}, B = {k|kx = 0, −π � ky � π,−π � kz �
π}, and C = {k|kx = π,−π � ky � π,−π � kz � π}. (b) Slice of
the Brillouin zone at kx = −π . If the system has both time-reversal
and glide symmetries, the Z2 invariant ν is shown to be equal to the
difference of �̃-polarization, calculated as a Berry phase along the
two blue lines. (c) When the system has a Dirac point either on the
DB line or on the EA line, and is gapped in the rest of the region A,
the Z2 monopole charge Q for the Dirac point can be well defined. In
the previous work, Q is defined along the circle C parametrized. To
guarantee the gauge invariance of Q, we need to deform the circle C
to the rectangle R (purple line), which makes Q equal to ν.

with the Dirac point, defined in terms of wave functions on a
�̃-symmetric sphere enclosing the Dirac point, according to
Ref. [21]. The formulation of Q closely follows that of the
Z2 topological invariant for time-reversal invariant topolog-
ical insulators without inversion symmetry [61], but with a
replacement of T by �̃:

(−1)Q = Pf[W (0)]√
det[W (0)]

Pf[W (π )]√
det[W (π )]

, (1)

where the matrix Wmn(K ) is defined by

Wmn(K ) = 〈um(−K )|�̃|un(K )〉, (2)

with m and n running over the occupied bands [21]. Here
we have introduced a coordinate K (−π � K � π ) along the
circle C, as shown in Fig. 2(c), so that �̃ transforms K to
−K . It was claimed that Q (mod 2) is gauge-invariant in
Ref. [21]; nevertheless, we point out that this discussion of
gauge invariance is not correct. As opposed to the discussion
in the Methods section of Ref. [21], some gauge transforma-
tion (e.g., multiplying a phase factor eiK to one eigenstate)
changes the branch choice of the square root in Eq. (1) and
will alter the value of Q by unity. Thus, we hereby reexamine
the definition of the Z2 monopole charge Q.

Similar to the T -polarization [61], we note here that the
crucial condition for Q is �̃2 = −1, which is satisfied on the
plane kx = −π . Thus, among the wave functions on the sphere
surrounding the Dirac point, only those on the circle C lying
on the kx = −π plane are relevant for the definition in Eq. (1).
Since there is a gauge transformation for wave functions along
circle C, which will change Q by unity (see the last paragraph
of Sec. III B in Ref. [61]), this definition is not sufficient to
cause the Z2 monopole charge Q to be well-defined.

To make the value of Q gauge-independent modulo 2, we
need to make some constraints on the gauge choice. It is
achieved by imposing that the gauge of the wave functions is
continuous within the region A. It allows us to enlarge the cir-
cle C to a rectangle R in a �̃-symmetric way in the definition
of Q [see Figs. 1(b1) and 2(c)]. This is possible only when the
bulk band structure on kx = −π is gapped except for the Dirac
points considered. Since wave functions should be periodic
along the kz direction, i.e., equal between the two edges of
the rectangle, EA and E′A′, the above gauge transformation
altering Q by unity is now prohibited. Under this gauge con-
dition, similarly to the argument for inversion-asymmetric Z2

TIs in Ref. [61], the Z2 monopole charge is rewritten to be
a difference in “�̃-polarization” between ky = 0 and ky = π ,
and we conclude

Q = P�̃(ky = π ) − P�̃(ky = 0) (mod 2), (3)

where P�̃(ky) = 1
2π

(γ +
L − γ −

L ). γL is the Berry phase with
the integral path L taken as ky = 0 and ky = π lines on the
kx = −π plane, and “±” represent the sectors with positive
or negative glide eigenvalues for the Bloch wave functions.
We call P�̃(ky) �̃-polarization because �̃y switches those two
glide sectors, in analogy to the time-reversal polarization in
Ref. [61]. Thus, as opposed to previous works, Q can only
be defined globally in k-space in Eq. (12). This is in strong
contrast with the locally defined monopole charge C for Weyl
points.

To summarize, we found that the definition of the Z2

monopole charge Q for the Dirac point in a previous work
in terms of wave functions on a circle C surrounding the
Dirac point is gauge-dependent and ill-defined. To make Q
well-defined, we need to impose a condition that the system is
gapped everywhere in the region A (kx = −π , −π � kz � π ,
0 � ky � π ), except for the Dirac point. Under this condition,
the Z2 monopole charge is now well-defined in terms of wave
functions along the rectangle R. In this sense, the Z2 monopole
charge cannot be defined locally but has a global nature. We
also note that a simplified formula for Q in systems with
an additional twofold rotation or screw symmetry is given in
terms of eigenvalues of those rotation symmetries in Ref. [21],
but it is valid only when the system satisfies the conditions
discussed above.

All the discussions above are in spinless systems, and we
note that the definition of Q remains the same in spinful
systems because �̃2 = e−ikx remains true also in spinful sys-
tems with single glide symmetry. We further notice that Q
is equal to the global G-protected Z2 topological invariant ν

mathematically and physically in both spinless and spinful
systems, which will be discussed in detail in the next section.
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B. Topological invariant ν for gapped systems with G
In spinless systems with glide symmetry Gy = {My| 1

2 00)},
eigenstates on glide-invariant planes ky = 0 and ky = π are
classified into two glide sectors with

g±(kx ) = ±e−ikx/2. (4)

For three-dimensional (3D) spinless systems with a gapped
band structure, a Z2-type topological invariant [29,33,62] can
be defined by the glide symmetry as

ν = 1

2π

[∫
A

Fyzdkydkz +
∫
B

F−
zx dkzdkx

−
∫
C

F−
zx dkzdkx

]

− 1

π
(γ +

A′BA + γ +
EDE′ ) (mod 2), (5)

where A, B, and C are the integral regions shown in Fig. 2(a).
In this formula, we have defined the Berry connections

A(k) ≡
∑

n∈occ

i 〈unk| ∇k |unk〉 , (6)

A±(k) ≡
∑

n∈occ

i 〈u±
nk| ∇k |u±

nk〉 , (7)

and the corresponding Berry curvatures

Fi j (k) = ∂ki A j (k) − ∂k j Ai(k), (8)

F±
i j (k) = ∂ki A

±
j (k) − ∂k j A

±
i (k), (9)

where the summation
∑

n∈occ is over the occupied states with
band index n, and |u±

nk〉 are the Bloch wave functions within
the positive/negative glide sectors of g±(kx ) = ±e−ikx/2. The
Berry phase γ ±(k) is defined along a closed path λ as

γ ±
λ (k) =

∮
λ

A±(k) · dk. (10)

In Eq. (5), γ +
A′BA and γ +

EDE′ are Berry phases with the paths λ

taken as straight lines with A′ → B → A and E → D → E′,
respectively, where the corresponding high-symmetry points
are shown in Fig. 2. We note that the wave functions are
periodic along the kz direction. It is noted that for convenience,
we take the glide operation to be Gy = {My| 1

2 00}, which is
different from {My|00 1

2 } taken in Refs. [29,33,62].
We now consider systems with time-reversal symmetry

(T ). In this case, integrals on the B and C surface will vanish,
because the Berry curvature will change its sign, while the
glide sector will be unchanged under T . The integral on A is
rewritten as ∫

A
Fyzdkydkz = γA′BA + γEDE′ , (11)

where the gauge of the wave functions is taken to be con-
tinuous between kz = −π and kz = π . Thus, Eq. (5) can be
written as

ν = 1

2π
(γ −

A′BA − γ +
A′BA + γ −

EDE′ − γ +
EDE′ )

= P�̃(ky = π ) − P�̃(ky = 0) (mod 2), (12)

where we define

P�̃(ky) = 1

2π
(γ +

L − γ −
L ) (ky = 0, π ), (13)

with L = (A′BA, E′DE) being a straight path along the kx

direction with fixed ky(= 0, π ) on the kx = −π plane. It is
a polarization difference between two glide sectors along the
1D subspaces marked by the blue arrows in Fig. 2(b). The
antiunitary symmetry �̃ ≡ GyT gives rise to double degener-
acy on the DB and EA lines due to �̃2 = −1. Then the glide
sectors on the kx = −π plane are switched by �̃.

Next, we show that the definition of Eq. (13) can be ex-
tended to arbitrary values of ky (0 < ky < π ). By classifying
eigenstates of occupied states into two sets I and II, where the
two sets are mutually transformed by �̃, we define

P�̃(ky) = 1

2π

(
γ I

L − γ II
L

)
(0 � ky � π ). (14)

This is reduced to Eq. (13) for ky = 0, π . We note that �̃-
polarization is an integer, and so is ν. Since T -polarization is
gauge-dependent [61], �̃-polarization will also be. However,
the difference of �̃-polarization between ky = 0 and ky = π

is defined in terms of modulo 2, which is gauge-independent
due to the continuous gauge choice on the A plane.

Therefore, when the system is fully gapped and T -
symmetric, P�̃(ky) is a quantized integer and a continuous
function of ky. Thus, from Eq. (12), ν vanishes in gapped
systems with T as discussed in Refs. [29,33]. In other words,
the G-protected TCI phase requires breaking of T -symmetry.

C. Topological invariant ν for Dirac systems with G and T
Although this G-protected topological invariant ν is origi-

nally defined for fully gapped systems, we propose that it can
be extended to gapless systems with T by Eq. (12), as long
as the system is gapped along the two paths A′BA and EDE′
in Eq. (12). For example, by adding a twofold rotation along
the y axis, doubly degenerate states can cross along the E-A
line or the D-B line, and the system become gapless, which
is the case considered in Ref. [21]. In this case, ν can be
nontrivial even when T is preserved, and Q is equal to the
global G-protected Z2 topological invariant ν mathematically
and physically in both the spinless and spinful systems:

Q = ν. (15)

This is counterintuitive since ν is originally defined for
fully gapped systems and it vanishes when the system is T -
invariant [29,33], while Q is associated with the Dirac point in
T -preserving gapless systems. We propose in this paper that
ν is also well-defined by Eq. (12), even for gapless systems,
as long as the system is fully gapped along the two blue
lines marked in Fig. 1(b1). It is nontrivial when the system
is T -invariant and has Dirac cones on the M̄-X̄ line. The
nontrivial Q (=ν) results in topological surface states on the
Gy-preserving (001) surface, which will be discussed in the
next subsection.

D. BSC for Q with a single G
Observing topological states on the surface is the simplest

and most straightforward way to demonstrate the topology of

033170-4



Z2 DIRAC POINTS WITH … PHYSICAL REVIEW RESEARCH 4, 033170 (2022)

the bulk states, due to the BSC. Here we establish BSC for
a nonzero Q with a single G in both the spinless and spinful
systems. In the present case, two Dirac points are projected
onto the M̄-X̄ line satisfying �̃2

y = −1. The Fermi energy is
set at the Dirac point. In this subsection, we will show that
Fermi arcs for a nonzero Q have two possibilities shown in
Figs. 1(b3) and 1(b4) on the Gy-preserved surface BZ, where
the surface states extend either toward M̄ or X̄ . The green
dashed lines are glide-invariant ones, and the green solid lines
are �̃y-invariant ones, with �̃2

y = −1, giving rise to double
degeneracy for surface states.

In gapped systems with Gy symmetry, the bulk Z2 topo-
logical invariant νy is well-defined, and by the BSC it is
equal to the surface Z2 topological invariant νsurface

y which
characterizes how the surface states cross the Fermi energy
(see Sec. S1 of the Supplemental Material for details [60]).
However, in the present gapless system, νy remains well-
defined by Eq. (12), while νsurface

y becomes ill-defined due
to the bulk gap closing along M̄-X̄ . To establish BSC in the
present gapless system, first we break the T symmetry slightly
to open a small bulk gap at the Dirac point. Figures 1(b5) and
1(b6) are two possible nontrivial surface-state connections
with νsurface

y = 1 in gapped band structures without T [29,33],
which has a single unpinned surface Dirac cone along the
glide-invariant lines, M̄-Ȳ -M̄ ′ or X̄ -�̄-X̄ ′, but not both. Next,
we cause the T -breaking perturbation to be zero; all the states
along X̄ -M̄ then becomes doubly degenerate due to �̃2 = −1,
resulting in two kinds of possible surface-state connections,
both without SOC [Figs. 1(b7) and 1(b8)] and with SOC
[Figs. 1(b9) and 1(b10)]. The corresponding Fermi arcs are
shown in Figs. 1(b3) and 1(b4). Remarkably, the doubly de-
generate surface states should start exactly at the Dirac point,
belonging to the DHSSs shown in Fig. 1(b2). These DHSSs
can be interpreted as a superposition of surface states from
two Weyl points with opposite C, and their intersections are
protected along X̄ -M̄ by �̃2

y = −1 in both the spinless and
spinful systems. Such DHSSs also have a Z2 nature, which
directly follows from the Z2 nature of ν in gapped systems
[29,33]. For example, when there are two Dirac points within
0 < ky < π on the kx = −π plane, two sets of DHSSs are
expected, but they can be annihilated by a continuous change
of surface states without changing the bulk bands.

IV. Q WITH TWO VERTICAL Gs IN SPINLESS SYSTEMS

Z2 Dirac systems with two �̃ have more unresolved mys-
teries, and we find that Q is well-defined only in the spinless
systems, which is beyond people’s expectation [21]. In this
section, we will show that when additional crystalline sym-
metries such as an additional vertical glide symmetry are
present, Q (=ν) can be in the form of a symmetry-based
indicator calculated in terms of irreducible representations at
high-symmetry points.

For example, systems with no. 110 have two glide sym-
metries perpendicular to each other, i.e., Gx = {Mx|0 1

2 0} and
Gy = {My|00 1

2 }. Those two vertical glide symmetries lead to
�̃2

x = −1 at ky = π and �̃2
y = −1 at kz = π , resulting in

Z2 Dirac points at non-TRIM high-symmetry points, e.g., P
and P′. The original formula for the Z2 glide invariant ν is

FIG. 3. Brillouin zones for no. 9 and no. 110 used in the calcula-
tion of the glide-Z2 invariant νy. (a) Half of the Brillouin zone of the
space group no. 9. (b) Brillouin zone of the space group no. 110. Blue
and red lines are the paths for the Berry phases used in the calculation
of νy.

expressed as a sum of integrals in k-space, but it can be
simplified as C2z eigenvalues due to the existence of Gx and
Gy [63,64], which will be explained in detail in the following
subsection.

A. Z2 topological invariant ν for the G-protected TCI phase
for space group no. 110

Under the glide symmetry Gy = {My|00 1
2 }, the Z2 glide

invariant ν characterizing the TCI phase protected by glide
symmetry is written as a sum of integral terms within k
space. It has been shown that ν can be in an expression of
a symmetry-based indicator by adding an additional inversion
symmetry, i.e., by considering space groups no. 13, no. 14,
and no. 15, which is calculated only by the irreducible repre-
sentations at high-symmetry points [62–64].

Here, we focus on spinless systems with space group no.
110, which has two glide symmetries Gx = {Mx|00 1

2 } and
Gy = {My|00 1

2 }. In no. 110, we can define two G-protected
topological invariants νx and νy associated with Gx and Gy,
respectively. In the following, we will show that νx and νy

are equal and given by n/2 mod 2, where n is the number of
occupied bands. Since no. 110 is a body-centered-tetragonal
lattice, the formula of ν here will be greatly different from that
in primitive lattices. Thus, we will start with the formula of νy

for the Gy on no. 9 having the base-centered lattice as follows
[64]:

νy = 1

2π

[∫
A′

Fxydkxdky +
∫
B′

(
1

2
Fzx − F+

zx

)
dkzdkx

]

+ 1

π

(
γY1Y2 − γ +

Y1Y3

)
, (16)

where A′ = {k|kz = 0, 0 < ky, kx + ky < 2π, ky − kx < 2π}
and B′ = {k|ky = 0,−2π < ky < 2π, 0 < kz < 2π} are de-
picted in Fig. 3(a) and Y1(−2π, 0, 0), Y2(0, 2π, 0), and
Y3(2π, 0, 0). Here the formula is altered with a shift along the
kz direction by π from that in Ref. [64] for convenience.

To obtain the formula for no. 110, we first make a co-
ordinate transformation from the base-centered lattice to the
body-centered-tetragonal lattice. This is straightforward be-
cause no. 9 is a subgroup of no. 110 Then with the other glide
symmetry Gx, we show that three surface-integral terms vanish
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by symmetry constraints, with the remaining term as

νy = 1

π

(
γM1M2 − γ +

M1M3

)
, (17)

where M1(−2π, 0, 0), M2(0, 2π, 0), and M3(2π, 0, 0) are
TRIM of no. 110 [see Fig. 3(b)]. In spinless systems, we can
utilize the C2z symmetry as a result of Gx and Gy symmetries.
(Such a rule is broken in the spinful case, which is because
the commutation relations between Gx and Gy change. This
is consistent with the ill-definedness of Q in spinful systems
with two glide symmetries.) Since C2z and Gy commute with
each other, we can evaluate eiπνy via the sewing matrix below:

(−1)νy =
∏

i

ζi(M )

ζi(X )

ζ+
i (�)

ζ+
i (M )

. (18)

Here ζ is the C2z eigenvalues and ζ+ is the C2z eigenvalues for
the Gx = +e−ikz/2 sector. Because M and � are on the common
C2z invariant line, they share the same C2z and Gx eigenvalue.
Thus, νy can be simplified as

(−1)νy =
∏

i

ζi(�)

ζi(X )
. (19)

We note that there are two inequivalent X points for no.
110, but we do not need to distinguish them in Eq. (19)
because they are on the same C2z axis due to the nonprimitive
nature of the lattice. Therefore, we obtain

νx = νy, (20)

and we can simply write ν = νx = νy in the following. In fact,
this formula is equal to the symmetry-based indicator μ2 for
T -breaking spinless systems with no. 27 (Pcc2) having two
glide symmetries Gx and Gy, given by Ref. [34]

μ2 = 1

4

∑
k: TRIMs at kz=0

(n+
k − n−

k ). (21)

We can directly show μ2 = ν as follows. In no. 27, there are
four TRIM on kz = 0: �̃ (0,0,0), M̃ (π, π, 0), X̃ (π, 0, 0), Ỹ
(0, π, 0). The Brillouin zone for no. 27 is half of that for no.
110, and each of these four TRIM in no. 27 corresponds to
two k points in no. 110, i.e., X̃ point (and also Ỹ ) corresponds
to two non-TRIM points in no. 110. Such correspondence
shows that two states with C2z = 1 and −1 present in no. 27
will give no contribution to μ2. The M̃ point corresponds to
X (π, π, 0) and X ′ (−π, π, 0) in no. 110, which are in fact
on the common C2z axis, sharing the same C2z eigenvalue.
Similarly, �̃ point corresponds to � (0,0,0) and M (2π, 0, 0)
in no. 110, which are also on the common C2z axis, sharing
the same C2z eigenvalue. Thus, we obtain

μ2 = 1
4 {2(n+

� − n−
� ) + 2(n+

X − n−
X )}

≡ −(n−
� + n−

X ) (mod 2), (22)

from which μ2 = ν follows.
At �, there are four 1D irreps �1, . . . , �4 with C2z = 1 and

one 2D irrep �5 with two states having C2z = −1. Thus, all
the irreps contribute trivially to the product of ν. On the other
hand, the irrep at the X point is a 2D one with opposite C2z

eigenvalues, therefore the product for ν is equal to

ν = N/2 (mod 2), (23)

TABLE I. Spinless systems with Z2 Dirac points associated with
QHSSs.

Space Two vertical glide Momenta used for
group mirrors Location Eq. (19)

no. 73 {Mx| 1
2 , 1

2 , 0};
{My| 1

2 , 0, 0}
W �, T

no. 110 {Mx| 1
2 , 1

2 , 0};
{My| 1

2 , 1
2 , 0}

P �, X

no. 142 {Mx| 1
2 , 1

2 , 0};
{My| 1

2 , 0, 0}
P �, X

no. 206 {Mx| 1
2 , 1

2 , 0};
{My| 1

2 , 0, 0}
P �, N

no. 228 {Mx| 1
2 , 3

4 , 0};
{My| 3

4 , 1
2 , 0}

W �, X

no. 230 {Mx| 1
2 , 1

2 , 0};
{My| 1

2 , 0, 0}
P �, N

where N is the number of occupied bands. Thus, ν is nontrivial
when N = 4m + 2 (m is an integer) and trivial when N = 4m.

In fact, it is also discussed in Ref. [34] that ν is solely
determined by the filling of the system in no. 106 and no. 110,
which are supergroups of no. 27. The topological nature of
this topologically nontrivial phase has not been understood so
far [34]. However, as shown in our paper, this symmetry-based
indicator μ2 is in fact the G-protected topological invariants νx

and νy. In this subsection, we have shown these properties for
gapped systems. In the next subsection, we will see them also
for gapless systems.

B. Topological invariant ν (=Q) for the Dirac semimetal phase
with two vertical Gs

When time-reversal symmetry is preserved in space group
no. 110, the states are always fourfold degenerate at the mo-
menta of Z2 Dirac point. Thus, one cannot have a gap with
n = 4m + 2 (m is an integer). A T -breaking perturbation is
required for the topological crystalline insulator (TCI) phase
with nontrivial ν, as we discussed in the previous section.
Thus we consider the case in which the T is slightly bro-
ken to open a tiny bulk gap, where we can safely apply the
bulk-surface correspondence for the G-protected topological
invariants νx and νy.

In the present case of gapless systems, ν in Eq. (12) is ill-
defined because of the presence of the bulk Dirac point on
the blue lines in Fig. 1(b1), but instead we can use Eq. (19)
to safely define ν. Equation (19) is a new formula for Q(=ν)
calculated by the symmetry data at TRIM, and as we have
seen, it is also equal to the symmetry-based indicator μ2 in
Eq. (22). μ2 is also entangled with filling-enforced topological
crystalline insulators when there is a full gap of the system,
because μ2 is related to the filling N by μ2 ≡ N/2 (mod 2)
in space group no. 110. Therefore, insulators with N = 4m +
2 (mod 2) (m is an integer) are nontrivial in no. 110 [64].

We note that Eq. (19) still holds for other space groups
listed in Table I with proper high-symmetry momenta. Fur-
thermore, only no. 73, no. 110, and no. 142 can be converted
to filling-enforced topological crystalline insulators when T -
symmetry is broken.
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FIG. 4. Z2 Dirac points with T - and two vertical G-symmetries
and associated QHSSs. (a) Locations and Fermi arcs for Z2 Dirac
points on the surface BZ preserving Gx and Gy. Green (orange)
dashed/solid lines are Gy(x)-invariant/�̃2

y(x)= − 1 lines. Purple solid
lines are Fermi arcs, which will change to (b) when the energy
changes. (c), (d) Two possible surface-state connections for quad-
helicoid surface states after breaking T , which corresponds to
topological crystalline insulators with two nontrivial G-protected
topological invariants νx=νy=1. Surface Dirac cones located at X̄ in
(c) and Ȳ in (d) will evolve to QHSSs contributed by nontrivial Q in
(e) and (f), respectively. (e), (f) Two different surface-state connec-
tions in T -preserving systems with nontrivial Q, which correspond
to the Fermi arcs shown in (a) and (b), respectively. TRS denotes
time-reversal symmetry. (g) Illustration for quad-helicoid surface
states, where the purple lines show the gapless nature of the surface
states along Ȳ -�̄-X̄ directions. (h) Surface-states calculation obtained
by the tight-binding model for no. 110 with two vertical glide sym-
metries, where two Z2 Dirac points are projected onto M̄. Purple and
blue lines represent the surface states from the top surface and bottom
surface of the slab, which show quantum spin-Hall-like flows along
Ȳ -�̄-X̄ directions, resulting in quad-helicoid surface states.

C. BSC for Q with two vertical Gs in spinless systems

Now we will show BSC for Q with two vertical G, sim-
ilarly to cases with one G in Sec. III D. Figures 4(a) and
4(b) show the surface BZ on the (001) surface preserving two
vertical G. In T -preserving spinless systems with two vertical
G, Z2 Dirac points are projected to M̄ on the (001) surface
BZ, which makes νsurface

x and νsurface
y ill-defined. By borrowing

similar analysis on systems with one G, first we introduce
a T -breaking perturbation to open a small gap for Z2 Dirac
points to make νsurface

x and νsurface
y well-defined and be equal

to νx(=νy), which will give rise to two possible nontrivial
surface-state connections with a single surface Dirac cone
pinned at X̄ and Ȳ , respectively, as summarized in Figs. 4(c)
and 4(d). Next, when the T symmetry is restored, doubly
degenerate surface states along the surface BZ boundaries
protected by �̃2

x = −1 = �̃2
y will appear. The corresponding

surface-state connections for QHSSs along high-symmetry
lines are shown in Figs. 4(e) and 4(f).

Here, doubly degenerate surface states also start exactly
from the Dirac point at M̄ and connect either to X̄ or to Ȳ
with the protection of �̃2

y = −1 or �̃2
x = −1 along the BZ

boundaries. Away from the M̄-X̄ or M̄-Ȳ line, this degener-
acy will be split toward the conduction and valence bands,
showing the QHSSs with two quantum spin Hall (QSH) -like
flows along Ȳ -�̄-X̄ directions, as marked by the purple lines
in Fig. 4(g). This conclusion is supported by our tight-binding
model calculation for no. 110 shown in Fig. 4(h), where the
purple (blue) lines represent the surface states obtained from
the top (bottom) of the slab (see Sec. S1 of the Supplemental
Material for details [60]). The surface-state filling at X̄/M̄ and
X̄ ′/M̄ ′ will be changed by 1 when the surface states cross
through the Z2 Dirac points, showing the helicoid nature of
the surface states.

In spinful systems with two vertical Gs, Q for the bulk
Dirac point is ill-defined because of the presence of other bulk
degeneracies at TRIM on the �̃2 = −1 planes, in contrast to
spinless systems. Therefore, the BSC will also be eliminated.

Thus we have shown that the Z2 monopole charge Q char-
acterizing MHSSs only has a global nature in k-space, and it
is not a local quantity. This automatically guarantees that the
MHSSs will survive perturbations that split the Dirac point
into a nodal ring or a pair of Weyl points, as seen in the
following material example.

V. Z2 DIRAC MATERIAL Li2B4O7 WITH QHSSs

QHSSs are the consequence of BSC for Z2 Dirac points
with two vertical G, as well as the bridge for connecting Q, ν,
and μ2. By following Table I, we propose an experimentally
synthesized material candidate Li2B4O7 with no. 110 [65] and
two Z2 Dirac fermions in its spinless electronic band structure,
associated with QHSSs. As shown in Figs. 5(a) and 5(c), all
the fourfold band crossings at P and P′ are Z2 Dirac points,
which will be projected onto the corner point M̄ on the (001)
surface. Figure 5(b) is the surface-state calculation on the
(001) surface, following the k-path marked in Fig. 5(d). Two
groups of anticrossing helical surface states with different
Fermi velocity (chirality) together with degenerate surface
states along surface BZ boundaries show the QHSSs feature
of Li2B4O7.

QHSSs can also be obtained in systems with Z2 Weyl
dipoles. After breaking C′

4z symmetry, the symmetry of
Li2B4O7 is lowered to no. 45 and two Z2 Dirac points split
into two pairs of Z2 Weyl dipoles along the kz direction, i.e.,
W1 + W2 and W ′

1 + W ′
2 , respectively, as shown in Figs. 5(b)

and 5(d). Since �̃x and �̃y are still preserved in no. 45, each
pair of Weyl dipole will also carry a nonzero Q and lead
to QHSSs on the (001) surface, as shown in Figs. 5(g) and
5(h), which are quite similar to those from two Z2 Dirac
points. Within a pair of Weyl dipoles, W1 and W2 cannot be
annihilated with each other due to the nonzero Q, although
their total monopole charge C is zero, which is different from
general Weyl semimetals.

VI. CONCLUSION

We present a full understanding of the topology of
GT -protected Z2 Dirac points in this paper. We offer the
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FIG. 5. (a) Crystal structure and band structure for Li2B4O7. (b) BZ and surface BZ for both no. 110 and no. 45 along the [001] direction.
(c), (d) Spinless band structure of Li2B4O7 for no. 110 and no. 45, respectively. Parts (e), (f) and (g), (h) are QHSSs calculated on the (001)
surface for no. 110 and no. 45, respectively, where the k paths in (e) and (g) are marked by the black dashed lines in (f) and (h), respectively.
Parts (f) and (h) are the Fermi arcs calculated around two Z2 Dirac points located at M̄.

gauge-invariant formula for Z2 monopole charge Q protected
by (GT )2 = −1, and we find that Q can only be defined
globally in k-space. Q can be formulated into a simpler form
in terms of irreducible representations at two high-symmetry
momenta when two vertical Gs are present. DHSSs can be
obtained in both spinless and spinful systems with one G,
while QHSSs can only be obtained in spinless systems with
two vertical G. QHSSs in spinless Z2 Dirac systems are
also the bridge to unify GT -protected Q, G-protected ν,
G-protected symmetry-based indicator μ2, and even filling-
enforced topological crystalline insulators. We also offer a

material candidate Li2B4O7 and a list of space groups having
QHSSs.
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