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Analytical renormalization group approach to competing orders
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We investigate twisted bilayer graphene near charge neutrality using a generalized Bistritzer-MacDonald
continuum model accounting for corrugation effects. The Fermi velocity vanishes for particular twist angles
properly reproducing the physics of the celebrated magic angles. Using group representation theory, we identify
all contact interaction potentials compatible with the symmetries of the model. This enables us to identify two
classes of quartic interactions leading to either the opening of a gap or to nematic ordering. We then implement
a renormalization group analysis to study the effect of quantum fluctuations on the appearance of these states
for twist angles approaching the first magic value. This combined group theory-renormalization study reveals
that the proximity to the first magic angle favors the occurrence of a layer-polarized, gapped state with a spatial
modulation of interlayer correlations, which we call a nematic insulator.
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I. INTRODUCTION

Fascinating states of matter arise when interactions over-
come the kinetic energy of their constituents. In normal
metals, the screening of the Coulomb interaction renormal-
izes its strength downwards in a dramatic way. But when the
energy of electrons depends very little on the momentum,
i.e., when the energy bandwidth vanishes, even weak inter-
actions become dominant. The latter lead to exotic states,
radically different from those occurring as instabilities of
conventional metals. The prominent example of such systems
is provided by Landau levels in which the strong magnetic
field quenches the kinetic energy, and where in turn interac-
tions give rise to the fractional quantum Hall effects [1,2].
More recently, a different class of materials with a vanish-
ing bandwidth was uncovered in twisted bilayer graphene
(TBG). When two sheets of graphene are rotated with re-
spect to one another by a small angle of about 1.1◦, a large
moiré pattern forms with several thousands of atoms per unit
cell. Remarkably, for some twist angles—the so-called magic
angles—the electrons’ Fermi velocity vanishes exactly [3].
Moreover, the corresponding energy bandwidth is minimal,
and the “active bands” are well separated from excited bands
[3–6].

The prospect of the appearance of exotic correlated phases
led to a tremendous experimental effort, resulting in the
discovery of correlated insulators, possibly-unconventional
superconductivity [7–10], ferromagnetic states and anoma-
lous Hall effect in TBG, but also in thicker van der Waals
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heterostructures such as trilayer graphene [11–14]. The tun-
ability of TBG by electronic gating was crucial to unveil this
remarkably rich phase diagram. While the origin of the super-
conductivity remains unclear [15–22], evidence is mounting
toward the strongest insulator emerging near the first magic
angle at charge neutrality—where band theory alone would
predict a semimetal—with a charge gap of around 0.86 meV
in the most angle-homogeneous devices [23]. Scanning mea-
surements detect a three-fold rotation symmetry breaking by
this state [22,24,25]. The aim of this article is to unveil
the nature of this correlated insulator present in TBG at
charge neutrality when the energy bandwidth vanishes close to
the first magic angle.

The study of interacting phases in systems with vanishing
bandwidth is however notoriously difficult and to achieve the
aforementioned goal, we develop methodology to analyze the
competition between different types of interactions in systems
where the characteristic kinetic energy vanishes. Our strategy
is based on the combination of an algebraic identification of
interactions that preserve the symmetries of the low-energy
description and a renormalization group (RG) approach to
incorporate the effects of quantum fluctuations on the preva-
lence of these competing states. Such an RG procedure treats
all interactions on a equal footing, irrespective of their relative
amplitudes and incorporates the effects of quantum fluctua-
tions beyond mean-field and perturbative approximations. In
the case of TBG, an additional obstacle arises: the absence of
a simple description of the moiré pattern. We resort to a de-
scription of this moiré as a (noninteracting) continuum model
of two twisted layers of graphene coupled nonperturbatively
by several types of interlayer hoppings. The main outcome of
these interlayer hoppings is to decrease the energy bandwidth
and renormalize the associated Fermi velocity, leading to its
vanishing at the magic twist angles.

We then make two simplifying assumptions. The first is
that we consider only contact (short-ranged) interactions.
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FIG. 1. In a continuum model, the relative twist of the top (green)
and bottom (red) layers by an angle θ leads to one mini-Brillouin
zone (mBZ) for each valley of monolayer graphene. The two Dirac
cones of the same valley, Kt and Kb, set the sides the mBZ of size
2K sin(θ/2), where K = |Kt,b| is the Dirac momentum of monolayer
graphene. Electron hoppings between the two layers involve a small
momentum transfer q j , j = 1, 2, 3 between Kt and each of the three
nearest Kb nodes of the mBZ.

The second is that we focus on a model where the val-
leys are treated independently, i.e., we consider interactions
within a single valley. This latter assumption can be viewed
in the context of TBG—where recent theoretical work sug-
gests the interacting ground state is valley polarized—as
a mean-field treatment of valley polarization, assuming it
is the strongest stabilization mechanism, and working from
there.

By formal group theory considerations, we then identify
all symmetry-allowed (short-ranged) interactions and develop
a renormalization group (RG) scheme to study their scale
dependent couplings. The vanishing of the bandwidth when
approaching the magic angle manifests through a singular
behavior of the RG: indeed, any interacting potential, while
usually treated within perturbation theory, now corresponds
to a dominant energy scale. To overcome this difficulty, we
monitor the scaling behavior of all interacting potentials when
approaching the first magic angle. It is noteworthy that our
approach becomes more controlled near the magic angle:
there, the Fermi velocity vanishes and the relative anomalous
corrections scale like 1/(εv) where ε is the small RG control
parameter. We find that, as the twist angle approaches the first
magic value, a state with both a gap opening and a periodic
modulation of interlayer correlations is favored. We call this
phase a nematic insulator.

II. FREE ELECTRON MODEL

Following the seminal work of Ref. [26], we treat TBG as
a periodic moiré superlattice characterized by a twist angle θ .
The top and bottom Dirac cones of the same valley, denoted
Kt and Kb, delineate the mini-Brillouin zone (mBZ) of the
superlattice (Fig. 1). Focusing on the low energy and long
wavelength description of TGB, we restrict ourselves to small
momentum transfers that are diagonal in valley, and thus occur
within a single mBZ [27]. The characteristic kinetic energy
scale of the model, set by the typical difference of kinetic
energy of electrons in different layers, is Ec = 2v0K sin(θ/2),
where v0 and K are respectively the Fermi velocity and the
Dirac momentum of monolayer graphene. In addition to the
kinetic energy in each layer, the single-particle Hamiltonian

FIG. 2. Diagrammatic expansion of the electron self-energy to
order 6 in the interlayer hopping amplitude α = w1/Ec relative to
the kinetic energy Ec. The wavy line represents a pair of opposite
hopping processes, summed over all channels with a transfer of
momentum ±q j , j = 1, 2, 3. Diagram (a) is of order α2, diagram
(b) of order α4, and diagrams [(c)–(e)] are of order α6. The expansion
is nonperturbative in the relative strength β between hoppings off-
diagonal and diagonal in sublattices.

involves two different interlayer hopping amplitudes. First,
the amplitude w1 of interlayer hopping that is off-diagonal
in graphene sublattice is typically of order w1 ≈ 110 meV
[26,28]. Its strength relative to the kinetic energy is mea-
sured by the dimensionless parameter α = w1/Ec. Second, the
amplitude w2 = βw1 of interlayer hopping that is diagonal
in graphene sublattice is measured by the relative strength
β ∈ [0, 1] in comparison to off-diagonal hopping. This rela-
tive strength is difficult to determine precisely in experiments,
being affected by corrugation effects, with typical values
evaluated as β ≈ 0.82 [29,30]. Here we keep β as a free
parameter. Note that our model thus interpolates between the
Bistritzer-MacDonald continuum (BMC) model for β = 1 [3]
and a chirally symmetric continuum (CSC) model for β = 0
[6].

Following Ref. [3], we use a rotated basis where the Dirac
cones Kt,b of the two layers have the same (kx, ky ) coordinates
in the mBZ, and measure all energies in units of Ec (see
Appendix A for details). The effective Hamiltonian then reads
H ′

0 = H0 + Hα with

H0 = i(σ · ∂)τ0, Hα = α

3∑
j=1

e−iq j ·rT +
j + H.c., (1)

where ∂ = (∂x, ∂y) and the hopping matrices T +
j are

T +
j = (β σ0 + ei( j−1)2π/3σ+ + e−i( j−1)2π/3σ−)τ+. (2)

Here we introduced two sets of Pauli matrices, σ and τ , which
describe respectively the sublattice and layer sectors, with
σz = ±1 = A/B and τz = ±1 = top/bottom.

The low-energy physics of this model is nontrivial even
without interactions. Indeed, the interlayer couplings prohibit
diagonalizing H ′

0. This forbids the use of a simple effec-
tive theory valid for all twisting angles θ in the vicinity of
the magic values. As a result, we resort to a free electron
model in which interlayer hopping effects are accounted for
by a self-energy, which is calculated in a perturbative expan-
sion in α. Denoting G′

0 and 
 the translationally-invariant
components of the propagator corrected by interlayer hop-
pings and the self-energy respectively, we have (G′

0)−1 =
H0 − ∂τ − 
 ≈ Nψ [v(α, β )i(σ · ∂)τ0 − ∂τ ], where ∂τ repre-
sents the partial derivative with respect to imaginary time, Nψ

is a wavefunction normalization and v(α, β ) the Fermi veloc-
ity renormalized by the hopping processes (see Appendix B).
An expansion to order 6 in α but exact in β, diagrammatically
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FIG. 3. Fermi velocity v(α, β ) renormalized by interlayer hop-
pings at order α6, as a function of the relative strength α of the
hopping amplitude with respect to the kinetic energy. As the twist
angle increases, so does α, and the renormalized velocity vanishes at
the first magic angle encoded in the first magic value α0(β ) where β

sets the asymmetry between diagonal and off-diagonal in sublattice
hoppings. Inset: α0(β ) depends weakly on corrugation effects, i.e.,
on the value of β.

represented in Fig. 2, leads to

Nψv(α, β ) = 1 − 3α2 + α4(1 − β2)2

− 3
49α6(37 − 112β2 + 119β4 − 70β6). (3)

We call α0(β ) the lowest value of α for which this Fermi
velocity vanishes, which sets the first magic angle value to
be approximately 1.1◦. As shown in Fig. 3, this first magic
value depends weakly on the parameter β, and thus on corru-
gation, and ranges from α0(1) = 0.598 for the BMC model to
α0(0) = 0.585 for the CSC model. These constitute our first
results.

III. SYMMETRY-ALLOWED INTERACTIONS

We now identify all short-ranged interaction potentials al-
lowed by the symmetries of the model. In order to do so we
turn to a field theoretic formalism and consider the Euclidean
action, S = S′

0 + Sint, written as a sum of the free electron term

S′
0 =

∫
d2r dτ ψ†(H ′

0 − ∂τ )ψ, (4)

and an interaction term Sint, which includes generic local quar-
tic couplings between the fermionic fields ψ† and ψ . Using
group theoretic methods, detailed in Appendix C, we identify
all couplings allowed by the symmetries of the low energy
model (1) [31]. This amounts to identifying scalar invariants
built as direct products of irreducible representations of the
corresponding symmetry group. We find that the allowed cou-
plings are (i) 8 channels originating from one-dimensional
(1d) corepresentations; and (ii) 4 channels originating from
2d corepresentations:

Sint = −
8∑

i=1

gi

∫
d2r dτ ρ (i)(r)ρ (i)(r)

−
4∑

j=1

λ j

∫
d2r dτ J ( j)(r) · J ( j)(r), (5)

TABLE I. One-dimensional (top) and two-dimensional (bot-
tom) corepresentations (corep.) of the magnetic symmetry group
of the continuum model, with their associated coupling matrices
R̂(i) and M̂

( j)
expressed in terms of the Pauli matrices in sub-

lattice (σ ) and layer (τ ) subspaces. These coupling matrices are
normalized such that Tr[M̂

( j) · (M̂
( j)

)†] = Tr[R̂(i) · (R̂(i) )†] = 4. Each
one-dimensional corep. can either preserve (�) or break the com-
bination of inversion and time-reversal symmetries IT , the mirror
symmetry C2, and the particle-hole antisymmetry P, while preserving
the threefold rotational symmetry C3. The ± exponents label the
eigenvalue of the IT symmetry.

Corep. A+
1 a+

1 A+
2 a+

2 A−
1 a−

1 A−
2 a−

2

R̂(i) σ0τ0 σ0τx σ0τz σ0τy σzτy σzτz σzτx σzτ0

IT � � � �
C2 � � � �
P � � � �
Corep. E+

2 E+
4 E−

2 E−
4√

2 M̂
( j)

στ0 στx στy στz

where the densities ρ (i)(r) = ψ†R(i)(r)ψ and currents
J ( j)(r) = ψ†M ( j)(r)ψ involve coupling matrices R(i)(r) and
M ( j)(r). Following our choice of coordinates for the fields
in Eq. (1), the coupling matrices in the rotated basis, which
enter Eq. (5), are obtained through R(i) = A(r)R̂(i)A†(r) and
M (i) = A(r)M̂

(i)
A†(r), where A(r) is the transformation ma-

trix of the field (see Appendix A). The coupling matrices R̂(i)

and M̂
(i)

are provided in Table I. The couplings gi and λ j

are the amplitudes associated with the corresponding coupling
potentials.

The moiré pattern is invariant under four discrete “sym-
metries”: (i) the 2π/3 rotation C3 = e2iπ/3σzτ0 around the z
axis orthogonal to the bilayer together with (ii) the π rotation
C2 = σxτx around the x axis of Fig. 1 generate the point group
D3, (iii) the composition IT = σxτ0K of inversion and time
reversal is an antiunitary symmetry, where K denotes complex
conjugation, and (iv) the unitary particle-hole antisymmetry
[32] P = σxτz, which satisfies {P, H ′

0} = 0 [33]. The group
generated by D3 and P comprises all unitary operations that
leave the Hamiltonian invariant up to a sign. We refer to this
ensemble as the unitary group D̃3 of the model. It can be de-
composed into the semidirect product D̃3 = {e, P, ē, P̄} � D3,
where e = σ0τ0 is the identity operation, ē = (PC2)2 = −e
and P̄ = ēP. The dichromatic magnetic group M generated
by D̃3 and IT can be written as the direct product M =
D̃3 × {e, IT }. Using the Schur-Frobenius criterion [34–39],
we determine the corepresentations (corep.) of M from the
irreducible representations of D̃3, which can be constructed
from that of D3 by induction and basic properties of linear
representation theory (see Appendix C).

We combine the resulting coupling matrices of Table I
into three sets. The eight interactions originating from 1d
coreps. correspond to the density-density couplings diagonal
in sublattice while preserving C3. Out of these eight couplings,
(i) the four interactions associated with 1d coreps. which
preserves IT are those symmetric on the A/B sublattices, of
the form (ψ†σ0τμψ )(ψ†σ0τμψ ) for μ = 0, x, y, z [40]. They
are distinguished by their breaking of C2 or P symmetries. (ii)
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FIG. 4. Schematic dispersion relation of (a) a gapped layer-
polarized correlated phase and (b) a density modulated phase. While
the gapped phase is characterized by the amplitude of the gap �z

opening at the Kt and Kb Dirac points, the second phase is character-
ized by a shift of these Dirac points of amplitude Gz. This shift leads
to a modulation of the relative amplitude of wavefunctions between
the two layers, revealed in the density |ψt + ψb/2|2 probed, e.g., by
a STM tip located on the top layer. The behavior of this density is
shown (c) without any shift and (d) for a shift Gz = 0.3ey. The spatial
C3 breaking of this phase is clearly manifested by the appearance of
stripes for this density, perpendicular to Gz.

The four interactions associated with 1d coreps., which break
IT are those, which are antisymmetric in the A/B sublattices,
with couplings of the form (ψ†σzτμψ )(ψ†σzτμψ ). Similarly
to set (i), they can break C2 or P. Finally, the (iii) four interac-
tions originating from 2d coreps. are current-current couplings
between the layers, off-diagonal in sublattices, of the form
(ψ†στμψ ) · (ψ†στμψ ). They break all symmetries of the free
model, and in particular the threefold rotational symmetry C3.

IV. NATURE OF THE CORRELATED PHASES

Let us first discuss the nature of the phases induced by
these couplings. The interactions of type (i), symmetric in
sublattices, neither open a gap at the Dirac point nor induce a
density modulation. On the other hand, interactions of type (ii)
generate phases with a gap �μ ∝ gμ〈ψ†σzτμψ〉, reminiscent
of the gap opening in boron nitride, see Fig. 4(a). These
various gapped phases are distinguished by their layer correla-
tions. Current-current interactions of type (iii) lead to radically
different phases, in which the Dirac cones of the two layers
are shifted with respect to each other by a momentum 2Gμ ∝
λμ〈ψ†στμψ〉, as shown in Fig. 4(b). They generate gapless
phases with C3-breaking density modulations. These spatial
modulations are detected when probing the electronic density

from one side of the bilayer, which amounts to coupling
the local probe asymmetrically to the top and bottom wave-
functions, thus scanning some interlayer density of the form
|ψt + rψb|2, where 0 < r < 1 is the asymmetry parameter. In
Fig. 4 we compare the corresponding density for an asymme-
try r = 1/2 in the absence of any instability in Fig. 4(c) with
that in the presence of a C3-breaking instability in Fig. 4(d).
Stripe-like modulations of the interlayer-correlated density
are readily observed in this last case.

To gain further insight into the behavior of these phases
close to the first magic angle, we now study their mean-field
behavior. As we will show later using a renormalization group
analysis, only four out of the twelve couplings are sensitive
to the proximity of the magic angle. They correspond to the
interaction potentials diagonal in layers, and originate from
the a−

1 , a−
2 coreps. of set (ii) with respective amplitude gz, g0,

and the E−
4 , E+

2 coreps. of set (iii) with amplitudes λ0, λz. The
corresponding order parameters satisfy the self-consistency
equations [41]

�0/z = −2g0/z

∫
dω

∫
�

d2q

(2π )3
〈ψ†

q,ωσzτ0/zψq,ω〉, (6a)

G0/z = −2λ0/z

∫
dω

∫
�

d2q

(2π )3
〈ψ†

q,ωστ0/zψq,ω〉. (6b)

The correlators in Eq. (6) are the translationally-invariant
parts of statistical averages computed over the Bloch Hamil-
tonian density H ′

MF = H ′
0 + σ · (G0τ0 + Gzτz ) + σz(�0τ0 +

�zτz ). The corrections by interlayer hoppings of the corre-
lators in Eq. (6) are obtained within a perturbation expansion
in α. Incorporating the hoppings Hα leads to an enhancement
of the order parameters by factors N (G/�)

0/z (α, β ), as is the case
for the renormalization of the Fermi velocity; they are cal-
culated diagrammatically to sixth order in α in Appendix D.
The resulting dependence of each separate order parameter
on the proximity to the magic angle and for various strengths
of the couplings is depicted in Fig. 5. The insulating phases,
characterized by a gap �0 or �z, develop at a critical coupling,
which decreases as the parameter α approaches its magic
value α0. Such gapped phases generically occur in some range
of twist angles around the magic value, in agreement with the
experimental findings of Ref. [42]. At the mean-field level and
for a fixed α, we find that a �0 insulator occurs for weaker
couplings g0 than the couplings gz required for the appear-
ance of the �z insulator. We will see that this hierarchy is
modified when fluctuations are accounted for, demonstrating
the necessity to develop the RG approach. The situation for
the C3 symmetry breaking phases with periodic modulation is
different: While the phase, which is antisymmetric in layers,
characterized by a Gz momentum, is also favored by the van-
ishing bandwidth close to α0, the finite critical strength for the
analogous phase symmetric in layer, associated with G0, does
not depend on α.

By considering the interactions allowed by symmetries
we identified all possible instabilities of TBG. While the
mean-field approximation and related analysis discussed in
this section allowed us to understand the physical meaning
of these instabilities and investigate the behavior of the or-
der parameters close to the magic angle, mean field cannot
be trusted on large scale, nor can it capture accurately the
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FIG. 5. Mean-field order parameters of the leading instabilities as a function of the twisting angle encoded in α and for various coupling
strengths. Layer-polarized gap �z (a) and �0 (b). [(c),(d)] Energy vGz and vG0 of the layer-polarized density modulated phase associated to
shift Gz and G0 of the Dirac cones (here the shifts are oriented along the y axis). The amplitudes of the order parameters are provided for
β = 0.82 and in arbitrary units of 10−2� where � is an energy cut-off.

competition between the instabilities since it neglects quan-
tum fluctuations. The standard technique to handle these
fluctuations is the renormalization group approach, which has
been largely developed to study various competing instabili-
ties of interacting fermions [43,44].

V. RENORMALIZATION GROUP PICTURE

As we have seen, the vanishing of the kinetic energy scale
set by the renormalized velocity v entails that the four nontriv-
ial interactions are relevant close to the first magic angle. In
order to identify the leading instability, we study via a RG ap-
proach the competition between them as α approaches the first
magic value. Our starting point is the field theory described by
the action S = S′

0 + Sint where the quadratic action S′
0 given

in Eq. (4) involves both the kinetic energy and the interlayer
hoppings. We sum over the latter to capture the vanishing
energy scale. Hence, we expand the correlation functions of
the interacting theory not only in the coupling constants but
also in the amplitude of interlayer hoppings.

Motivated by the experimental observations of an in-
sulating behavior at charge neutrality, we carry out a
“particle-hole” Hubbard-Stratonovich transformation suitable
to describe gapped phases (as opposed to superconductors).
We introduce the scalar bosonic fields φi, i = 1, ..., 8 for each
1d channel and the vector bosonic fields ϕ j , j = 1, ..., 4 for
each 2d channel, so that the interaction part of the action (5)
becomes

Sint →
8∑

i=1

∫
dd−1r dτ

(
φ2

i + 2
√

gi φiψ
†R(i)(r)ψ

)

+
4∑

j=1

dd−1r dτ
(
ϕ2

j + 2
√

λ j ϕ j · ψ†M ( j)(r)ψ
)
.

(7)

We expand around the lower critical dimension, setting the
space-time dimension to d = 2 + ε, and renormalize the the-
ory using the minimal subtraction scheme. We introduce the
renormalized couplings g ∈ {gi, λ j} related to the bare ones
by g̊ = μ−εN2

ψZ2
g Z−1

φ g. Here μ is the momentum scale at
which we renormalize the theory and Nψ is the wavefunction

normalization factor generated by interlayer hoppings, which
was introduced previously. The renormalization constants Zg

and Zφ for φ ∈ {φi,ϕ j} absorb the poles of the three-point
vertex and the bosonic self-energy, respectively. We expand
these functions to first order in the interaction couplings using
the Green’s function corrected by interlayer hoppings G′

0 as
the fermionic propagator. This expansion is represented by
the diagrams shown in Fig. 6, where interlayer hoppings are
treated perturbatively to second order in α. We obtain the
RG flow equations for the coupling constants as a function
of the parameters α and β. Crucially, we find that only four
interactions out of twelve have nonzero divergent corrections.
The eight other couplings have a trivial flow, either because
the correction has no pole in ε—these correspond to the four
channels with σ0 sublattice structure; or because the correc-
tion vanishes at low energy—these correspond to the four
channels that are off-diagonal in layer space. We thus restrict
our study to the four-dimensional subspace corresponding to
the instabilities of Table II, which are all associated with a

FIG. 6. [(a), (b)] Polarization (bosonic self-energy) to first order
in the couplings, (a) at order α0 and (b) at order α2. [(c)–(g)] Three-
point vertex to first order in the couplings, (c) at order α0; [(d),(e)] at
order α2 with multiplicity one; [(f),(g)] at order α2 with multiplicity
two. The double line is the fermionic propagator corrected by inter-
layer hoppings, while the dashed line is the bosonic propagator. The
wavy line represents a pair of opposite hopping processes, summed
over all channels with a transfer of momentum ±q j for j = 1, 2, 3.
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TABLE II. Isolated, non-Gaussian critical fixed points (FPs) for
the four nontrivial instabilities.

Channel Coupling M̂ i FPg∗
i (α, β )

a−
2 g0 σzτ0 πvε/(4[1 − 12α2(1 − β2)])

a−
1 gz σzτz πvε/4

E+
2 λ0 στ0/

√
2 πvε/(4[1 − 3α2(1 − β2)])

E−
4 λz στz/

√
2 πvε/(4[1 + 3α2(1 + β2)])

phase transition toward a correlated phase. These relevant
couplings are all diagonal in layer. We now briefly discuss the
essential features of this four-dimensional flow. The Gaussian
fixed point (FP) at the origin is always stable in d = 3. Be-
sides, we identify four critical points, one for each nontrivial
coupling, listed in Table II. They control phase transitions
toward the four correlated phases discussed in the mean-field
analysis. As α approaches the magic value α0, all four critical
FPs collapse towards the Gaussian FP, independently of the
value of the control parameter ε, which only appears to-
gether with a factor of v. Meanwhile, the (Dirac) semimetallic
region, which corresponds to the basin of attraction of the
Gaussian FP, shrinks and disappears completely. As a result,
these four couplings are always relevant close enough to the
magic angle, regardless of the value of the bare interaction
strength. This scenario, which becomes more controlled near
the magic angle, provides a natural way of identifying the
dominant instabilities near the magic angle: they correspond
to the couplings whose critical FPs collapse the fastest to-
wards the origin.

Hence, as follows from Table II, we discard the couplings
g0 and λ0 (the amplitudes of interactions, which are symmetric
in layers) and focus on the competition between the couplings,
which are antisymmetric in layers, of amplitude gz associated
with the layer-polarized gapped phase and λz associated with
the C3-breaking density-modulated phase. This hierarchy of
instabilities differs from the results of the mean-field (MFT)
analysis of Sec. IV, where we found that, within MFT, a
layer-symmetric gap develops on a larger region of twist angle
than its layer-antisymmetric counterpart. This difference high-
lights the crucial effects of quantum fluctuations. We note that,
while the gapped phase is reminiscent of the dynamical mass
generation in the Gross-Neveu model [45,46], the C3-breaking
density-modulated phase is specific to TBG. The competition
between the two most relevant instabilities is dictated by the
following coupled RG flows (for derivation see Appendix E)

−μ
∂gz

∂μ
= −εgz + 4g2

z

πv
+ 4gzλz

πv
[1 − 6α2(1 − β2)], (8)

−μ
∂λz

∂μ
= −ελz + 4λ2

z

πv
[1 + 3α2(1 + β2)]

+ 2λzgz

πv
[1 − 6α2(1 − β2)]. (9)

As mentioned above, all FPs collapse to the origin at the magic
angle. Thus to explore the competition between the phases,
we plot the renormalization flow for the couplings rescaled
by the vanishing velocity. The effect of the proximity to the
magic angle on this competition is shown in Fig. 7, where we

FIG. 7. Renormalization flow of the couplings gz and λz at β =
0.82 [29,30], (a) for a weak interlayer hopping amplitude, α = 0.1α0;
and (b) close to the first magic angle, α � α0. As α approaches α0,
the blue semimetal region shrinks to the origin. To study the competi-
tion between the couplings we rescale them by the vanishing velocity
v. The red critical FPs control the transitions toward the gapped
(red region) or density-modulated (green region) phases. The black
source FP gives rise to a crossover region (mixed state). It migrates
away from the vertical axis as we increase α, thus expanding the
density-modulated region.

compare the flow close to the first magic angle (b) with that for
the case when interlayer hopping is suppressed (a) [47]. This
comparison shows that the proximity to the magic angle favors
the occurrence of density modulations. The large scale behav-
ior is dominated by the fastest diverging coupling, whether gz

or λz. Within our perturbative RG analysis, a crossover line
separates the corresponding regions, whose parametric equa-
tion reads λz = gz[1 + 6α2(1 − β2)]/[6α2(3 − β2)]. Around
the crossover line, both order parameters coexist over a large
range of length scales, corresponding to the appearance of
a gapped, periodically modulated state, asymmetric in layers
and breaking the C3 and IT symmetries. We call it a nematic
insulator by analogy with phases discussed in Ref. [48]. This
nematic insulating behavior is characterized by a runaway RG
flow of both λz, gz. While the asymptotic behavior of such a
runaway flow cannot be quantitatively described by the per-
turbative RG technique we developed, the latter is known to
generally successfully capture the nature of the corresponding
emerging phase [43,44]. Moreover, the appearance of a run-
away flow accurately captures the existence of the instability
over a wide range of coupling parameters in the proximity of
the magic angle.

VI. DISCUSSION AND OUTLOOK

Applying group theory supplemented by a renormaliza-
tion group approach, our paper concludes that the proximity
to the first magic angle in TBG favors a gapped nematic
state at charge neutrality. Within a valley polarized assump-
tion, we have identified the associated order parameter whose
spatial correlations display C3 breaking modulations. A gap
as in our nematic state at charge neutrality was experi-
mentally observed both in scanning tunneling microscopy
studies [14,24,25,49] as well as in four-terminal transport
measurements [23]. Similarly, nematic ordering, or threefold
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symmetry breaking, was reported in [22,24,25]. All of these
experimental observations strongly support the occurrence of
a nematic insulating state at charge neutrality in TBG, as we
identify in our study. Furthermore, our analysis is fully con-
sistent with the robustness of this state to a weakening of the
interactions as was experimentally demonstrated in Ref. [50].
While the appearance of such a nematic gapped phase was
previously theoretically viewed as an explicit C3 symmetry
breaking effect [51], we have identified an intrinsic mecha-
nism relying on quantum fluctuations and captured within the
renormalization group formalism.

Finally we note that our RG approach reveals a gapped
nematic behavior in the perturbative scaling regime, but does
not rule out that other correlations develop at much smaller
length scales, including those of intervalley-coherent and
generalized-ferromagnetic insulating states recently discussed
in Refs. [52–56]. While our valley-symmetric assumption can
be viewed as a mean-field treatment of such perturbations
occurring on smaller scales, incorporating intervalley corre-
lations into a full RG treatment would drastically complicate
calculations. Nevertheless, we believe that our results, which
show that two out of twelve intravalley couplings become
most important, provide a natural starting point to incorporate
these additional interactions.

The energies of these ground states seem to be very close
to each other, suggesting a strong sensitivity to experimen-
tal conditions [56]. Finally, the occurrence of an analogous
nematic insulating state close to quantum spin Hall phase tran-
sitions raises the questions of its relation with the topological
nature of the underlying semimetal [33,51,57].
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APPENDIX A: CHANGE OF BASIS

The Hamiltonian describing the low-energy physics near
the two twisted Dirac cones at Kt,b originating from a single
valley of graphene can be written as [58]

Ĥ =
∫

d2r ψ̂†

(
v0σ ·(i∂ + q1

2

)
T̂ †(r)

T̂ (r) v0σ ·(i∂ − q1
2

)
)

ψ̂. (A1)

The momentum q1 = Kt − Kb gives the relative displacement
of the Dirac momentum K of each layer due to the twist,
while v0 is the Fermi velocity of graphene. Notice that there
are three equivalent K points in monolayer graphene, each
leading to one copy of the Hamiltonian Ĥ with a relative
displacement q j , j = 1, 2, 3, where the momenta q2 and q3
are obtained through a rotation of q1 by an angle of 2π/3 and

4π/3 respectively. The interlayer hopping matrix T̂ (r) reads⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T̂ (r) =
3∑

j=1

e−i(q j−q1 )·rT +
j + H.c.

Tj = tAA

3
σ0 + tAB

3
(σ+e−2i( j−1)π/3 + H.c.)

, (A2)

where tAA and tAB are the hopping amplitudes in the AA and
AB/BA regions, respectively.

Hamiltonian (A1) is simplified by rotating the basis [3]

ψ̂ (r, τ ) = A1(r)ψ (r, τ ), Aj (r) = e−i(q j ·r/2)τz , (A3)

which brings the Dirac cones to the same momentum,

H =
∫

d2r ψ†

(
v0σ · i∂ T †(r)

T (r) v0σ · i∂

)
ψ, (A4)

where T (r) = ∑3
j=1 e−iq j ·rT +

j . Applying the same change of
basis to quartic terms in the action, e.g., corresponding to a
density-density interaction of the form

Sint = g
∫

d2r dτ ψ̂†(r, τ )R̂ψ̂ (r, τ )ψ̂†(r, τ )R̂ψ̂ (r, τ ), (A5)

we arrive at

Sint = g
∫

d2r dτ ψ†(r, τ )R(r)ψ (r, τ )ψ†(r, τ )R(r)ψ (r, τ )

(A6)

with the rotated interaction matrix

R(r) = 1

3

3∑
j=1

A†
j (r)R̂A j (r). (A7)

Though both R̂ and R(r) describe contact interactions, while R̂
is space independent, R(r) depends in general on the position
as a consequence of Eq. (A7).

(i) If R̂ is diagonal in layer, i.e., proportional to τ0/z, it
commutes with Aj (r) so that R(r) = R̂.

(ii) If R̂ is not diagonal in layer, i.e., proportional to τx/y, it
does not commute with Aj (r) so that R(r) differs from R̂. In
that case, R(r) is modulated periodically over a distance of the
order of the moire lattice constant. Indeed, we have⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
3

3∑
j=1

A†
j (r)τxA j (r) = f1(r)τx + f2(r)τy

1
3

3∑
j=1

A†
j (r)τyA j (r) = f2(r)τx + f1(r)τy

, (A8)

with f1(r) = 1
3

∑3
j=1 cos(q j ·r), f2(r) = 1

3

∑3
j=1 sin(q j ·r).

These results also apply to current-current quartic
interactions, where R̂ is replaced by a vector of matrices
M̂.

APPENDIX B: DIAGRAMMATIC TECHNIQUE FOR THE
NONINTERACTING THEORY

To expand any observable in interlayer hoppings in the
absence of interactions, it is not mandatory to resort to a
field theoretical approach. We do so however, because it is
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FIG. 8. Translational invariant part of the self-energy, 
α (k, �), at order (a) α2, (b) α4, and [(c)–(e)] α6. At order six, the hopping (wavy)
lines can be (c) nested, (d) in a row, or (e) crossed. Interlayer hoppings are summed over up to three momenta denoted generically as q j , ql ,
and qk , with j, l, k = 1, 2, 3. The straight-solid lines represent the fermionic propagator of the decoupled bilayer, G0(k,�), given by Eq. (B1).
(f) Translational invariant part of the fermionic propagator corrected by interlayer hopping, G′

0(k, �), given by Eq. (B11).

useful for applying RG when interactions are included. To that
end we need to introduce the Feynman rules specific to this
unusual field theory. The free fermionic propagator associated
to the action of the decoupled bilayer S0 = ∫

d2r dτ ψ†(H0 −
∂τ )ψ reads

G0(k,�) = (σ ·k − i�)−1 (B1)

in Fourier space, where k is the momentum, � the Mat-
subara frequency, and we omitted the identity matrices σ0

and τ0 for simplicity. When drawing Feynman diagrams, we
represent the free propagator (B1) with a solid line. We re-
serve q and ω for the internal momentum and Matsubara
frequency and use k and � for external ones. Any correlation
function can be written as an ensemble average 〈...〉0 over
S0. In particular for the time-ordered two-point function we
have

〈T ψψ†〉′0 = 〈T ψψ† e−Sα 〉0

〈e−Sα 〉0
, (B2)

where 〈...〉′0 denotes the ensemble average over the quadratic
action S′

0 = S0 + Sα , which includes the hopping action Sα =∫
d2r dτ ψ†Hαψ , from which an expansion order by or-

der in α can be carried out. The two-point function (B2)
is nondiagonal in momentum space, since Sα reduces the
continuous translational symmetry to the discrete transla-
tional symmetry over the reciprocal lattice R, which is the
Z-module generated by the (linearly dependent) family of
vectors {q j, j = 1, 2, 3}. For every vector b in R, we define
the component G′

0(b, k,�) of the two-point function such
that 〈

T ψk,�ψ
†
k+q,�

〉′
0 =

∑
b∈R

G′
0(b, k,�)δ(b − q), (B3)

for all momenta k, q and frequency �. We focus on how
interlayer hoppings renormalize the dispersion relation, so
that we are mainly interested in the translational invariant
part G′

0(k,�) = G′
0(0, k,�) of the fermionic propagator, rep-

resented in Fig. 8(f) as a double line. Successive interlayer
hoppings that transfer the momenta (η1q j1 , ..., ηmq jm ) in this
precise order—where η1, ..., ηm = ±, with the plus sign for
a hopping to the top layer, and a minus sign to the bottom
layer—give a nonzero contribution to G′

0(k,�) if the follow-
ing conditions are met.

(i) Total momentum is conserved, i.e.,
∑m

r=1 ηrq jr = 0.
(ii) Consecutive hopping processes affect different layers,

i.e., η2r = −η2r−1 for all r = 1, ..., n/2.
In particular, condition (ii) forbids odd numbers of inser-

tions, so that all correlation functions can be expanded in α2,

and entails that a hopping sequence is determined by the mo-
menta and the sign of only the first hopping process η = η1.
Joined with condition (i), it also yields that the transfer of a
momentum at one point of the diagram must be followed by
the transfer of the opposite momentum at another point. Thus
we can join insertions of opposite momenta by a wavy line
like in Figs. 8(a)–8(d).

We now introduce the translational part 
α (k,�) of the
self-energy as

G′
0(k,�)−1 = G0(k,�)−1 − 
α (k,�). (B4)

The contributions to 
α (k,�) come from the connected
two-point diagrams that conserve total momentum and
that cannot be cut by one stroke into two subdiagrams
that conserve themselves total momentum. Expanding
Eq. (B2) to sixth order in α, we can decompose it
as 
α (k,�) = 
2

α (k,�) + 
4
α (k,�) + 
6,nes

α (k,�) +

6,row

α (k,�) + 
6,cro
α (k,�). In the following we use the

shortcut η̄ = −η with η = ±, and j, l, k = 1, 2, 3. The
second-order contribution [Fig. 8(a)] reads


2
α (k,�) = α2

∑
η, j

T η̄
j G0(k + ηq j,�)T η

j . (B5)

The fourth-order contribution [Fig. 8(b)] reads


4
α (k,�) = α4

∑
η, j =l

T η̄
j G0(k + ηq j,�)

× T η

l G0(k + ηq j − ηql ,�)

× T η̄

l G0(k + ηq j,�)T η
j . (B6)

The sixth-order contribution splits into three terms. The first
diagram hosts three nested hopping lines [Fig. 8(c)],


6,nes
α (k,�) = α6

∑
η,l =( j,k)

T η̄
j G0(k + ηq j,�)

× T η

l G0(k + ηq j − ηql ,�)

× T η̄

k G0(k + ηq j + ηqk − ηql ,�)

× T η

k G0(k + ηq j − ηql ,�)

× T η̄

l G0(k + ηq j,�)T η
j . (B7)

The second diagram hosts two hopping lines in a row, embed-
ded in a third one [Fig. 8(d)],
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6,row
α (k,�) = α6

∑
η, j =(l,k)

T η̄
j G0(k + ηq j,�)T η

l G0(k + ηq j − ηql ,�)T η̄

l G0(k + ηq j,�)

× T η

k G0(k + ηq j − ηqk,�)T η̄

k G0(k + ηq j,�)T η
j . (B8)

The third diagram consists in three crossing hopping lines [Fig. 8(e)],


6,cro
α (k,�) = α6

∑
η, j =l =k

T η̄

k G0(k + ηqk,�)T η

l G0(k + ηqk − ηql ,�)T η̄
j G0(k + ηq j + ηqk − ηql ,�)

× T η

k G0(k + ηq j − ηql ,�)T η̄

l G0(k + ηq j,�)T η
j . (B9)

Within a low-energy theory where k,� � 1, we can further expand to order two in momentum k, and one in Matsubara
frequency �, which results in


α (k,�) =
[

3α2 − α4(1 − β2)2 + 3α6

49
(37 − 112β2 + 119β4 − 70β6)

]
σ ·k τ0 + [3α2β2 − 9α4β2(1 − β2)]

(
0 ik2

−ik∗2 0

)
τz

+
[

3α2(1 + β2) + 2α4(1 + 7β2 + 4β4) + 3α6

28
(8 + 16β2 + 376β4 + 187β6)

]
i�σ0τ0, (B10)

where k = kx + iky. If one keeps only the correction to the linear dispersion, the translational part of the fermionic propagator
corrected by interlayer hoppings can be massaged into

G′
0(k,�) = N−1

ψ (vσ ·k − i�)−1 (B11)

with the normalization of the wave function Nψ = 1 + 3α2(1 + β2) + 2α4(1 + 7β2 + 4β4) + 3
28α6(8 + 16β2 + 376β4 +

187β6), and the Fermi velocity dressed by interlayer hoppings

v = 1 − 3α2 + α4(1 − β2)2 − 3
49α6(37 − 112β2 + 119β4 − 70β6)

1 + 3α2(1 + β2) + 2α4(1 + 7β2 + 4β4) + 3
28α6(8 + 16β2 + 376β4 + 187β6)

, (B12)

as given in Eq. (3). We remind that v is expressed in units of the Fermi velocity v0 of monolayer graphene.

APPENDIX C: SYMMETRIES OF THE MODEL

1. Complete symmetries

The symmetries of the single-particle Hamiltonian H ′
0 =

H0 + Hα of Eq. (1) are highly constrained by the interlayer
hopping term. Indeed, the Hamiltonian of the decoupled bi-
layer H0 = iσ ·∂τ0, is invariant under the layer pseudospin
rotational group U(1), and the Poincaré group R1+2

�

O(1, 2), where � indicates a semidirect product. The hopping
Hamiltonian Hα = α

∑3
j=1 e−iq j ·rT +

j + H.c., breaks Lorentz
invariance, continuous space translations and layer plus pseu-
dospin rotational symmetry. The symmetry group is thus
reduced to the symmorphic space-time group R × (a1Z +
a2Z) � D3, composed of time translation R, discrete trans-
lations on the moiré lattice a1Z + a2Z, where a1 and a2 are
the superlattice vectors, and the point group D3 generated by
the rotation C3 around the z axis and the rotation C2 around
the x axis,

D3 = {
e,C3,C2

3 ,C2,C2C3,C2C
2
3

}
. (C1)

Henceforth we disregard the translational symmetries and
focus on the magnetic group generated by the point group D3

and the two special “symmetries” IT and P. These operations
act by conjugation on the single-particle Hamiltonian H ′

0 in
a four-dimensional representation (4d rep.), denoted as �,
whose unitary matrix representation we now define.

The operation C3 rotates the bilayer by an angle 2π/3
around the z axis perpendicular to the bilayer . Only the
sublattice pseudospin is rotated, while the layer pseudospin
is unaffected, so that

�(C3) = e2iπ/3σzτ0. (C2)

The operation C2 rotates the bilayer by an angle π around
the x axis of Fig. 1 at mid-distance between the layers. Both
sublattices and layers are flipped, so that

�(C2) = σxτx. (C3)

The composition of inversion I and time reversal T , denoted
as IT , is antiunitary and represented by

�(IT ) = σxτ0K, (C4)

where K denotes the complex conjugation of the ma-
trix elements. The operations R defined in Eqs. (C2)–(C4)
are pure symmetries of the Hamiltonian, which means
that �(R)−1H ′

0(Rr, Rt ) �(R) = H ′
0(r, t ) for R = C3,C2, and

�(R)−1H ′
0(Rr, Rt )∗ �(R) = H ′

0(r, t ) for the antiunitary ele-
ment R = IT . Finally, the unitary particle-hole operation P
reverses the energy, and acts in real space as a reflection
x �→ −x. Its matrix representation reads

�(P) = σxτz. (C5)

Following Ref. [33] we define P as a unitary operation in
order to have a single antiunitary generator (IT ), unlike the
convention of Ref. [57]. This operation is an antisymmetry of
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TABLE III. Classes of conjugation of the unitary group D̃3, with their names (first line) and their elements (second line). e is the identity
operator, ē the 2π rotation of a spin one half, and R̄ denotes the product ēR for any operator R.

Class e ē 2C3 2C̄3 2PC2 2PC2C3 2PC2C2
3

Elements {e} {ē} {
C3,C2

3

} {
C̄3, C̄2

3

} {PC2, P̄C2}
{
PC2C3, P̄C2C2

3

} {
P̄C2C3, PC2C2

3

}
Class 6P 6C2

Elements
{
P, PC3, PC2

3 , P̄, P̄C3, P̄C2
3

} {
C2,C2C3,C2C2

3 , C̄2, C̄2C3, C̄2C2
3

}

the Hamiltonian, which means that �(P)−1H ′
0(Pr, Pt ) �(P) =

−H ′
0(r, t ). This antisymmetry is lost when the angular de-

pendence of the kinetic terms σ±θ/2 · k is kept, when terms
quadratic in momentum are included in the single-particle
Hamiltonian, or when intervalley scattering is permitted [57].
Since � is faithful rep., we can infer the multiplication table
of the magnetic group from that of the matrix representation
of the four generators.

2. Unitary group

The unitary group D̃3 generated by D3 and P can be cast
into the semidirect product

D̃3 = {e, P, ē, P̄} � D3, (C6)

where ē = (PC2)2 and a barred operator represents the prod-
uct of this operator by ē. The classes of conjugation of D̃3 are
given in Table III. The double group DD

3 = D3 × {e, ē} is a
normal subgroup of D̃3, while D3 is not. To find the irreducible
representations (irrep.) of D̃3—listed in Table IV—we can
either find them from scratch using the composite operator
method [34], or construct them by induction and other tricks
from that of D3. Let us illustrate the second method.

The two 1d irrep. of the quotient group D̃3/DD
3 = {e, P}

generate the irreps A1 and a1. The irrep. A1 and A2 of D3

induce the reps A1 ↑ D̃3 ∼ A1 ⊕ a1 ⊕ E3 and A2 ↑ D̃3 ∼ A2 ⊕
a2 ⊕ E3 respectively, where ⊕ denotes a direct sum and ∼
the equivalence of rep. The commutator subgroup [D̃3, D̃3] is
isomorphic to D3, whose index |D̃3/D3| = 4 gives the number
of 1d irrep. Hence we have found all 1d irrep. The cardinal of
the group being |D̃3| = 24, the remaining irrep. are five 2d
irrep., including E3. We can decompose the 4d rep. � defined
by Eqs. (C2)–(C4) and (C5) as � ∼ E1 ⊕ E5. The 2d irrep.
E of D3 induces the rep. E ↑ D̃3 ∼ E1 ⊕ E2 ⊕ E4 ⊕ E5, where

the remaining irrep. E2 and E4 can be found by orthonormality
of the characters.

3. Magnetic group

The group generated by D̃3 and IT is the dichromatic
magnetic group

M = D̃3 × {e, IT }. (C7)

To find the corepresentations (corep.) of M, we apply the
Schur-Frobenius criterion [35–39] to each irrep. of D̃3. The
Schur-Frobenius criterion states the following. For any irrep
ρ of D̃3, let us define the rep. ρ ′ : D̃3 → Mn(C), R �→ ρ(IT ·
R·IT −1)∗. We are necessarily in one of the three following
scenarios. (i) and (ii) Either ρ is equivalent to its primed coun-
terpart, in which case there exists an invertible matrix U such
that ρ ′ = UρU −1. (i) if UU ∗ = ρ(IT 2), there is no Kramer
degeneracy: the corep. issued from ρ has the same dimension
as ρ and satisfies ρ(IT ) = ±U . (ii) If UU ∗ = −ρ(IT 2), the
corep. issued from ρ has twice the dimension. (iii) Or ρ is
not equivalent to its primed counterpart, in which case ρ ′ is
necessarily equivalent to another irrep. of D̃3, and the corep.
has again twice the dimension of ρ, and coincides with ρ ⊕ ρ ′
on D̃3.

It turns out that all irrep. of D̃3 pertain to case (i), except
E1 and E5 = E ′

1, which fall into case (iii). In the former case,
each irrep. leads to two corep., with ρ(IT ) = ±1 for the 1d
irrep. or ρ(IT ) = ±σx for the 2d irrep., where σx represents
here a generic Pauli matrix, but has nothing to do with the
pseudospin. In the latter case, the one corep. formed by E1

and E5 is equivalent to the 4d rep. �. In the following, we
write each corep. with an exponent ± to indicate whether the
eigenvalues of ρ(IT ) are +1 or −1.

TABLE IV. Table of characters of the unitary group D̃3. Each column corresponds to a class of conjugation, and each line to an irrep. We
use the symbols A and E prescribed by Mulliken’s notation; the symbol a denotes a 1d irrep. whose character differs than one on antisymmetric
operators.

Irrep. e ē 2C3 2C̄3 2PC2 2PC2C3 2PC2C2
3 6P 6C2

A1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1 −1 1 −1
a1 1 1 1 1 −1 −1 −1 −1 1
a2 1 1 1 1 1 1 1 −1 −1
E1 2 −2 −1 1 0

√
3 −√

3 0 0
E2 2 2 −1 −1 2 −1 −1 0 0
E3 2 −2 2 −2 0 0 0 0 0
E4 2 2 −1 −1 −2 1 1 0 0
E5 2 −2 −1 1 0 −√

3
√

3 0 0
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TABLE V. List of the functions fil (α, β ) appearing in the RG flows of the four nontrivial channels a−
2 , a−

1 E+
2 , and E−

4 . The interaction
matrices associated to each of these channels are indicated in the first line of the table.

fil a−
2 (σzτ0 ) a−

1 (σzτz ) E+
2 (στ0/

√
2) E−

4 (στz/
√

2)

a−
2

4
π

[1 − 12α2(1 − β2)] − 4
π

[1 − 6α2(1 − β2)] 4
π

[1 − 6α2(1 + β2)] 4
π

[1 + 6α2(3 − β2)]
a−

1 − 4
π

[1 − 6α2(1 − β2)] 4
π

4
π

[1 − 6α2(1 − β2)] 4
π

[1 − 6α2(1 − β2)]
E+

2
2
π

[1 − 6α2(1 + β2)] 2
π

[1 − 6α2(1 − β2)] 4
π

[1 − 3α2(1 − β2)] − 12
π

α2β2

E−
4

2
π

[1 + 6α2(3 − β2)] 2
π

[1 − 6α2(1 − β2)] − 12
π

α2β2 4
π

[1 + 3α2(1 + β2)]

4. Quartic interactions

The direct product �† ⊗ � dictates how the bilinear ψ
†
i ψ j

with i, j = 1, ..., 4, transforms under the magnetic group M.
The Clebsch-Gordan series reads

X (�† ⊗ �)X −1 = A+
1 ⊕ a+

1 ⊕ A+
2 ⊕ a+

2 ⊕ A−
1 ⊕ a−

1

× ⊕ A−
2 ⊕ a−

2 ⊕ E+
2 ⊕ E+

4 ⊕ E−
2 ⊕ E−

4 ,

(C8)

where the transformation matrix X contains the Clebsch-
Gordan coefficients, which can be found using the formula
[35]

Xik,γ mX ∗
jl,γ n = nγ

|M|
∑

R∈M
ργ (R)∗mn�

†(R)i j�(R)kl , (C9)

where ργ is the γ th irrep. in the series (C8), with dimension
nγ , and |M| = 48 is the cardinal of the magnetic group. The
coefficients of the matrices Mγ of Eq. (5) that transforms by
conjugation according to the irrep. ργ are listed in the γ th
column of X , i.e., for a, b = 1, ..., 4, the two components of
the vector Mγ read(

M (1)
γ

)
ab = Xab,γ 1,

(
M (2)

γ

)
ab = Xab,γ 2. (C10)

To find the quartic interaction that preserve the magnetic
group M we must find all copies of the trivial irrep. A+

1
into the product (�† ⊗ �) ⊗ (�† ⊗ �). By inspecting the
characters, it is clear that only products of the same irrep.
decompose themselves into a copy of A+

1 . For the 1d irrep.
ρ = A+

1 , a+
1 , A+

2 , a+
2 , A−

1 , a−
1 , A−

2 and a−
2 , the decomposition is

simply

ρ ⊗ ρ = A+
1 . (C11)

Thus the quartic interaction corresponding to one of these
irreps is of the form M ⊗ M, where M is found applying
Eqs. (C8) and (C10). The interaction matrices for these eight
1d irreps are listed in Table I. For the 2d irreps, we have

Eη

2 ⊗ Eη

2 ∼ Aη

1 ⊕ Aη

2 ⊕ Eη

4 , (C12)

Eη

4 ⊗ Eη

4 ∼ Aη

1 ⊕ Aη

2 ⊕ Eη

2 , (C13)

for η = ±. For each of these irreps, the invariant combination
transforming as A+

1 is M ⊗ N , where (M, N ) is the basis of
the two-dimensional space on which the irrep acts. The inter-
action matrices for these four 2d irreps are listed in Table I.

APPENDIX D: MEAN-FIELD THEORY

Here we consider only the four relevant instabilities related
to interactions proportional to σzτ0/z and στ0/z with coupling
constants g0/z and λ0/z respectively. The corresponding order
parameters, which we denote �0/z and G0/z, can be found
in the mean-field approximation by solving the appropriate
self-consistent equations. For the sake of simplicity we write
down these equations separately for each instability. Upon
introducing an ultraviolet cut-off �, these equations read

�0/z = −2g0/z

∫
dω

∫
�

d2q

(2π )3
〈ψ†

q,ωσzτ0/zψq,ω〉, (D1a)

G0/z = −2λ0/z

∫
dω

∫
�

d2q

(2π )3
〈ψ†

q,ωστ0/zψq,ω〉, (D1b)

where the momentum integral runs over a square of side �.
The correlators in Eq. (D1) are the translationally-invariant
parts of statistical averages computed over the Bloch Hamil-
tonian density H ′

MF = H ′
0 + σ · (G0τ0 + Gzτz ) + σz(�0τ0 +

�zτz ). The perturbative expansion of the correlators in α can
be done along the lines of computing the self-energy. We have
previously found that the propagator corrected by interlayer
hoppings G′

0 is of the form (B11); similarly, the mean-field
Hamiltonian becomes

H ′
MF �→ Nψ

[
vσ ·((k + N (G)

0 G0
)
τ0 + N (G)

z Gzτz
)

+ σz
(
N (�)

0 �0τ0 + N (�)
z �zτz

)]
. (D2)

The effect of interlayer hoppings is to enhance the order pa-
rameters by factors N (G/�)

0/z (α, β ), which are the counterparts
of the renormalized Fermi velocity for the matrix structures
corresponding to those order parameters. They are calculated
diagrammatically to sixth order in α and satisfy

NψN (�)
0 = 1 + 3α2(1 − β2) + 2α4(1 − β2)(1 + 2β2) + 1

28α6(24 − 80β2 + 352β4 − 233β6), (D3a)

NψN (�)
z = 1 − 3α2(1 − β2) + 2α4(1 − β2)(1 − 4β2) − 1

28α6(56 − 304β2 + 872β4 − 561β6), (D3b)

vNψN (G)
0 = 1 − 3α2 + α4(1 − β2)2 − 3

49α6(37 − 112β2 + 119β4 − 70β6), (D3c)

vNψN (G)
z = 1 + 3α2 + α4(1 + 10β2 + β4) + 3

49α6(9 + 441β4 + 70β6), (D3d)
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where the wavefunction normalization Nψ is given in Appendix B. In the main text, we plotted the order parameters corrected
by interlayer hoppings, i.e., the quantities �′

0/z = N (�)
0/z �0/z and G ′

0/z = N (G)
0/z G0/z, which satisfy the self-consistency equations

�′
0/z = g0/zN

(�)
0/z �2

vNψ

F (�′
0/z ), (D4a)

G ′
0/z = λ0/zN

(�)
0/z �2

Nψ

F0/z(G ′
0/z ), (D4b)

where for simplicity we assume the shift momenta to be aligned along a crystallographic axis of the moire pattern, here along
the y axis. The dimensionless functions F and F0/z read

F (x) = 2x

π2
[− log(

√
x2 + 2 − 1) + log(

√
x2 + 2 + 1) − 2x cot−1(x

√
x2 + 2) + 2 coth−1(

√
x2 + 2)], (D5a)

F0(x) = 1

π2
[−√

y− + √
y+ + tanh−1(

√
y−) − tanh−1(

√
y+) − y− coth−1(

√
y−) + y+ coth−1(

√
y+)], (D5b)

Fz(x) = 1

2π2

[
x2 log

(
1 − x

1 + x

)
− 2x2 tanh−1(x) + (1 − 2x) log(

√
y− − 1) − (1 + 2x) log(

√
y+ − 1)

+ z+ log(
√

y+ + 1) − z− log(
√

y− + 1) + 2(
√

y+ − √
y−)

]
, (D5c)

where y± = 2 + x(x ± 2) and z± = 1 + 2x(x ± 1).

APPENDIX E: RENORMALIZATION

1. Hubbard-Stratonovitch decoupling

We aim at finding the most relevant insulating state near
charge neutrality. It is therefore practical to decouple the in-
teractions in the direct, particle-hole channel, to evince order
parameters of the form 〈ψ†Mψ〉 for M ∈ {Ri, M j}, where the
bracket 〈...〉 denotes the ensemble average over the complete
action S = S′

0 + Sint.
Using Hubbard-Stratonovitch transformations, we intro-

duce one auxiliary bosonic field for each interaction, whose
ground-state value in the correlated phase is a constant solu-
tion of the classical equation of motion. We must distinguish
between the 1d corep., for which a scalar field φi for i =
1, ..., 8, is sufficient, and the 2d corep., for which a two-
component field ϕ j = {ϕ j,1, ϕ j,2} must be introduced, for j =
9, ..., 12. Such transformation enables to recast the action for
quartic fermion interactions (5) into

Sint[ψ
†, ψ] → SHub[ψ†, ψ, φ]

=
8∑

i=1

∫
d2r dτ

(
φ2

i + 2
√

gi ψ
†φiRiψ

)

+
12∑
j=9

∫
d2r dτ

(
ϕ2

j + 2
√

λi ψ
†ϕ j · M jψ

)
, (E1)

where the sum runs over both 1d and 2d irreps.. For simplicity
we dropped the spatial and time dependencies of the fields
in Eq. (E1). The action for quartic fermion interactions thus
splits into a bosonic quadratic action (the first term in the
parenthesis), and a three-point vertex, which takes the form
of a Yukawa coupling (the second term in the parenthesis).

2. Renormalization procedure

The field theory described by the sum of action S′
0 and

action SHub (E1) has critical dimension dc = 2, which entails

that in d = 3 space-time dimensions, we expect that all inter-
actions lead to quantum critical points that are perturbative in
the small parameter ε = d − 2. From now onwards, we work
in Fourier space and express all fields and integrals in terms of
the momentum q and the Matsubara frequency ω. A general
Fourier-transformed field is written φq,ω for the bosonic case,
or {ψq,ω, ψ†

q,ω} for the fermionic case, where ψ†
q,ω = (ψq,ω )†

denotes the conjugate of the Fourier-transformed field ψq,ω.
To renormalize the field theory, we assume that the complete
action S is actually expressed in terms of bare fields {φ̊, ψ̊}
for φ ∈ {φi,ϕ j} and couplings g̊ for g ∈ {gi, λ j}, which are ill
defined in the interacting theory. The physical parameters and
fields—written without the ˚ symbol—are connected to their
bare counterparts through the so-called Z constants.

We define define the Z constants for the fields such that

φ̊ = Z1/2
φ φ, ψ̊ = Z1/2

ψ ψ. (E2)

To regularize the theory, we work in an isotropic space-time of
dimension d = 2 + ε, and introduce a mass scale μ to make
the regularized couplings dimensionless. A renormalized cou-
pling g is linked to its bare value g̊ by

g̊ = μ−εN2
ψZ2

g Z−1
φ g. (E3)

We included the normalization of the wavefunction Nψ in the
redefinition of the couplings in order to compensate at all loop
orders those arising from the corrected fermionic propagator
G′

0, given in Eq. (B11). Owing to dimensional regularization,
we must promote the Pauli matrices in S0 to a Clifford algebra
in arbitrary dimension d , satisfying the anticommutation rules
{σi, σ j} = 2δi j for i, j = 1, ..., d . Using Eqs. (E2) and (E3),
we find the renormalized action SR = SR,0 + SR,α + SR,φ +
SR,int, where the quadratic, decoupled action reads

SR,0 =
∫

q,ω

ψ†
q (σ ·qτ0 − iωσ0τ0)ψq. (E4)
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FIG. 9. One-particle irreducible diagrams at one loop, up to order two in interlayer hoppings. The double line stands for the fermionic
propagator corrected by interlayer hoppings of Fig. 8(f), the dashed line for the bosonic propagator, and the wavy line for the sum of interlayer
hoppings of opposite momenta ±ηq j , for η = ± and j = 1, 2, 3. Polarization �i at zero external momentum and fixed Matsubara frequency,
for the field φi at order (a) α0 and (b) α2. Three-point vertex Vil at order (c) α0 and [(d)–(g)] α2, whose hopping line is (d) internal, (e) external,
(f) isolated, and (g) crossed.

The quadratic hopping action reads

SR,α = α
∑

η

3∑
j=1

∫
q,ω

ψ†
q T η

j ψq+ηq j
. (E5)

The renormalized bosonic part of the action is given by

SR,φ =
8∑

i=1

Zφi

∫
q,ω

(
φ2

i

)
q +

12∑
j=8

Zϕ j

∫
q,ω

(
ϕ2

j

)
q. (E6)

Finally, the renormalized interaction between fermionic and
bosonic fields is

SR,int = 2μ−ε/2Nψ

[
8∑

i=1

Zgi

√
gi

∫
q,ωq,p,ωp

ψ†
q (φi )q−pRiψp

+
12∑
j=1

Zλ j

√
λ j

∫
q,ωq,p,ωp

ψ†
q (ϕ j )q−p ·M jψp

]
. (E7)

In Eqs. (E4)–(E7), we have omitted dependence of the fields
on frequency and used the shorthand∫

q,ω

=
∫
Rd

dd−1q dω

(2π )d
. (E8)

To fix values of the Z constants we use the minimal subtrac-
tion (MS) scheme, i.e., we absorb in them only the divergent
parts of the diagrams. Inspecting Eqs. (E6) and (E7), we see
that the constant Zφ can be found from the divergences of the
polarization, i.e. the bosonic self-energy, while the constant
Zg can be determined by absorbing the divergences of the
three-point vertices. Before computing explicitly the diagrams
for the polarization and vertices let us outline the general
strategy.

3. Preliminary mathematical remarks

Taking into account the interlayer hopping is done into
two steps. We first draw the diagrams without insertion the
hopping matrices, and then replace all solid lines by double
lines. This corresponds to replacing free propagators by the
propagators dressed by interlayer hoppings, like in the polar-
ization shown in Fig. 9(a). In second step we include wavy
lines, i.e., hopping matrices, connecting different propagators
[see Fig. 9(b)]. This splitting allows us to explicitly extract
factors of v−1, where v is the Fermi velocity corrected by in-
terlayer hoppings (B12) and which vanishes at the first magic

angle. We restrict our computation to order α2, which is the
first nontrivial order.

When expanding product of matrices and integrating the
trace, useful relations can be found in Refs. [59–61]. The
Feynman trick,

1

AB
=

∫ 1

0

dx

Ax + B(1 − x)
, (E9)

valid for any expressions A and B, enable to linearize prod-
ucts of denominators. For the four relevant interactions we
consider here, the space-time integrals are isotropic and can
be computed in arbitrary dimension d using∫

dd Q

(2π )d

Q2a

(Q2 + m2)b

= �(b − a − d/2)�(a + d/2)

(4π )d/2�(b)�(d/2)
m−2(b−a−d/2),

(E10)

for any reals a and b, and where Q = (q, ω) is the relativistic
d momentum. The dummy mass m → 0 plays the role of an
infrared regulator and � denotes Euler’s Gamma function,
which satisfies

�(−n + x) = (−1)n

n!

[
1

x
+ �(n + 1) + O(x)

]
(E11)

for all real x and integer n; this relation is usually used with
x = ε. In Eq. (E11), � = (ln �)′ is Euler’s Digamma function,
which does not intervene at one loop, since we discard all
finite quantities in the MS scheme.

4. Polarization

The one-loop polarization �i is the self-energy of the
auxiliary field φi (for i = 1, ..., 12). If �i(k,�) denotes
the corrected propagator of the bosonic field, we have
�−1

i (k,�) = Zφ − �i(k,�). The one-loop diagrams con-
tributing to the polarization at zero external momentum k = 0
and fixed frequency � are drawn in Fig. 9. The polarization at
order α0 reads

�0
i = −4giN

2
ψ

∫
q,ω

Tr[MiG
′
0(q, ω)·M iG

′
0(q, ω)]. (E12)

Notice that for the sake of generality, we will write all inter-
action matrices as the vectors M i, which can either denote a
single matrix Ri for i = 1, ..., 8, or a two-component vector

033168-13



ERIC BRILLAUX et al. PHYSICAL REVIEW RESEARCH 4, 033168 (2022)

M i for i = 8, ..., 12. The polarization at order α2 reads

�1
i = −4giN

2
ψα2

∑
η, j

∫
q,ω

Tr[MiG
′
0(q, ω)T η̄

j G′
0(q + ηq j, ω)

· M iG
′
0(q + ηq j, ω)T η

j G′
0(q, ω)]. (E13)

The pole of the integral in Eq. (E12) per number of fermion
flavors n (equal to four in our case), is given by �0

i =
−4ngiIi/vε where

Ii = lim
ε→0

vεN2
ψ

n

∫
q,ω

Tr[MiG
′
0(q, ω) · MiG

′
0(q, ω)]

=
{

1
2π

if Mi has the sublattice structure σz,

1
4π

– σ.

(E14)

In Eq. (E13) we can use again the separation of energy
scales : The theory is meaningful only at low energy, i.e., for
q, ω � 1, so that G′

0(q + ηq j, ω) can be replaced by

G′
0(ηq j, 0). This results in �1

i = −3α2χihi(β )�0
i where χi

equals either +1 for the interaction matrices σzτ0 and στz

or −1 for the interaction matrices σzτz and στ0; and the
corrugation-dependent function hi(β ) equals either 1 − β2 or
1 if the interaction matrix matches σ0 or σz in the pseudospin
sector, respectively. This fixes the renormalization constant to

Zφi = 1 − 4ngiIi[1 + 3α2χihi(β )]

vε
. (E15)

5. Vertices

We denote the one-loop contribution to the three-point
vertex of interaction i renormalized by interaction l by Vil .
The one-loop vertices at zero external momentum k = 0 and
fixed frequency � are drawn in Figs. 9(c)–9(g) and computed
in Eqs. (E16)–(E20). For the vertices correcting an interaction
i associated to a 2d channel, we write the vertex for only
one component of the matrix Mi, simply denoted as Mi. The
three-point vertex at order α0, given by diagram shown in
Fig. 9(c), reads

V 0
il = N3

ψ (2
√

gi )(4gl )
∫

q,ω

Ml G
′
0(q, ω)MiG

′
0(q, ω) · Ml . (E16)

The three-point vertex at order α2 (mixed diagram with two interlayer hopping) have either multiplicity one, or two. Those with
multiplicity one nest either an internal hopping line, as in Fig. 9(d),

V 1,int
il = N3

ψ (2
√

gi )(4glα
2)

∑
η, j

∫
q,ω

Ml G
′
0(q, ω)T η̄

j G′
0(q + ηq j, ω)MiG

′
0(q + ηq j, ω)T η

j G′
0(q, ω) · Ml , (E17)

or an external hopping line, as in Fig. 9(e),

V 1,ext
il = N3

ψ (2
√

gi )(4glα
2)

∑
η, j

∫
q,ω

T η̄
j G′

0(ηq j, ω)Ml G
′
0(q, ω)MiG

′
0(q, ω) · Ml G

′
0(ηq j, ω)T η

j . (E18)

The mixed diagrams with multiplicity two nest either an isolated hopping line, as in Fig. 9(f),

V 1,iso
il = 2N3

ψ (2
√

gi )(4glα
2)

∑
η, j

∫
q,ω

T η̄
j G′

0(ηq j, ω)Ml G
′
0(q + ηq j, ω)T η

j G′
0(q, ω)MiG

′
0(q, ω) · Ml , (E19)

or a hopping line that crosses the interaction line, shown in Fig. 9(g),

V 1,cro
il = 2N3

ψ (2
√

gi )(4glα
2)

∑
η, j

∫
q,ω

Ml G
′
0(η̄q j, ω)T η̄

j G′
0(q, ω)MiG

′
0(q, ω) · Ml G

′
0(ηq j, ω)T η

j . (E20)

Similarly, we can define the pole of the integral appearing in Eq. (E16) as

Jil = lim
ε→0

vεN2
ψ

n

∫
q,ω

Tr[Ml G
′
0(q, ω)MiG

′
0(q, ω) · Ml Mi] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if (Mi, Ml ) match (σ, σ ),
−1
4π

– (σ, σz ),
−1
2π

– (σz, σ ),
1

2π
– (σz, σz ),

(E21)

such that V 1,in
il = V 1,ext

il = 3α2χihi(β )V 0
il with V 0

il = Nψ (2i
√

gi )(4glJil/vε). We also define the pole appearing in the sum of the
diagrams with multiplicity two as

Kil (β ) = lim
ε→0

vεN4
ψ

n

∑
η, j

∫
q,ω

Tr[Ml G
′
0(ηq j, ω)T η

j G′
0(q, ω)MiG

′
0(q, ω) · Ml (MiT

η̄
j G′

0(ηq j, ω) + G′
0(η̄q j, ω)T η̄

j Mi )], (E22)

such that V 1,iso
il + V 1,cro

il = Nψ (2i
√

gi )(8α2gl Kil (β )/vε). The integrals Jil are numerical constants, dependent of neither the
number of fermion flavors n nor the corrugation parameter β, while Kil (β ) depends on the corrugation parameter. Using
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commutation relations between interaction and hopping matrices, we can express all vertices (E16)–(E20) in terms of Jil and Kil

only. We then find the vertex renormalization constant to be

Zgi = 1 − 4

vε

∑
l

gl [(1 + 6α2hi(β )χi )Jil + 2α2Kil (β )]. (E23)

6. RG flow equations

We express Zi = Z2
gi

Z−1
φi

to first order in the coupling constants as

Zi = 1 +
12∑

l=1

fil (α, β )gl

vε
, (E24)

where

fil (α, β ) = 4[(nIiδil − 2Jil ) + 3α2hi(β )χi(nIiδil − 4Jil ) − 4α2Kil (β )]. (E25)

and v is the Fermi velocity (B12). We provide the explicit expressions of the fil functions in terms of α, β for the four non-trivial
channels a−

2 , a−1, E+
2 , E−

4 in Table V. We compute the RG flow equations by deriving Eq. (E3) with respect to μ at constant
bare couplings. This yields

−∂ log gi

∂ log μ
= −ε + v−1

12∑
l=1

fil (α, β )gl . (E26)
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