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When the spins on the frustrated pyrochlore lattice obey the celebrated 2-in-2-out ice rule, they stay in a
correlated disordered phase and break the third law of thermodynamics. Similarly, if the atomic ions on the
pyrochlore lattice move in and outward of the tetrahedra, they may obey a constraint resembling the ice rule. We
discover that a model for pyrochlore molybdates A2Mo2O7 (A = Y, Dy, Tb) exhibits a “supercooled ice” state of
the displacement degrees of freedom of Mo4+ ions, when we take account of the Jahn-Teller (JT) effect. The JT
effect occurs when the lattice distortions reduce the symmetry of the local crystal field, resulting in the orbital-
energy splitting that causes the local energy gain. Unlike the standard JT effect that leads to periodic long-range
ordering, the displacements of Mo4+ ions are disordered following the icelike rule. We microscopically derive
a model that describes this situation by having the 2nd- and 3rd-neighbor interactions between in-out lattice
displacements comparably as strong as the nearest-neighbor interactions of standard ice. There, the well-known
nearly flat energy landscape of the ice state is altered to a metastable highly quasidegenerate icelike liquid
state coexisting with a crystalline-like ground state. Our Monte Carlo simulations show that this liquid remains
remarkably stable down to low temperatures by avoiding the putative first-order transition. The relaxation in
the supercooled JT ice state exhibits glassy dynamics with a plateau structure. They fit the feature of a “good
glass former” very often found in molecular liquids but that has never been observed in material solids. The high
glass-forming ability of the interacting lattice degrees of freedom will play a key role in the spin-glass transition
of the material.

DOI: 10.1103/PhysRevResearch.4.033157

I. INTRODUCTION

The glass-forming liquid is an intriguing state of matter
which has a mixed character of solids and liquids [1]. At a
short timescale, it behaves as a glass, but at a much longer
timescale, it flows as a liquid slowly but unboundedly. There
are numerous examples of glass-forming liquids made of
molecules, polymers, and colloids; they are the metastable
supercooled liquid states, and coexist in the energy landscape
with the thermodynamically stable crystalline solid state [see
Fig. 1(a)]. In lowering the temperature, the timescale to relax
among the metastable basins increases rapidly and the system
eventually behaves as a glass. However, during the cooling
process, the supercooled liquids can easily transit into the
crystalline ground state. Therefore, a stable supercooled liquid
that can kinetically avoid the first-order transition, even by
relatively slow cooling, is called a “good glass former.”

This prototype glass-forming picture [2–4] is established
by the mean-field theory in the large-dimensional limit [5],
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where one predicts a complex free-energy landscape of super-
cooled liquids with exponentially large numbers of coexisting
multivalleys, which is believed to undergo a Kauzmann tran-
sition [6] selecting one of them. The validity of the prediction
in a realistic three-dimensional space, on the other hand, is
currently under debate, and understanding the microscopic
principles of generating such energy landscape is an outstand-
ing unsolved problem of physics.

Solid materials can be an ideal platform to tackle this issue
as they provide possibilities to investigate various liquid states
based on their constituent charges, orbitals, spins, and lat-
tice distortions. Unfortunately, however, glass-forming liquid
states have been scarcely observed among them. In this work,
we find a microscopic model for Jahn-Teller distortions of py-
rochlore molybdates A2Mo2O7 (A = Y, Dy, Tb) that behaves
as an ideal “good glass former.” Although these materials are
known to host a spin-glass phase, they are clean and do not
fit to the spin-glass picture that requires a large amount of
randomness [7–9]. Our supercooled liquid picture in a solid
material serves as a basis of a glass-forming mechanism that
can be directly compared with molecular liquids.

A key factor is a frustration [10] that provides three
indispensable conditions to enable glass-forming liquids:
(1) it allows the liquid state to remain (meta)stable down to
low temperatures, (2) it enhances the glass-forming ability or
the ability to avoid crystallization kinetically [11], and (3) it
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FIG. 1. (a) Schematic energy landscapes for various temperatures; the single free-energy minimum will develop into a coexisting
metastable supercooled liquid state and a crystalline solid ground state below the first-order transition temperature, Tc. When the energy barrier
is high we call the supercooled liquid a “good glass former.” In lowering the temperature the relaxation time (viscosity for a supercooled
molecular liquid) increases rapidly in accordance with the development of energy barriers between multivalleys called “basins” toward the
glass phase. This glass-forming picture is typical of molecular liquids. For frustrated systems on a lattice (materials), the system gradually
crosses over to the quasidegenerate low-energy landscape which remains disordered toward zero temperature. (b) Ice and supercooled JT ice
state on a pyrochlore lattice. Lower panels show an ice rule for a water ice, spin ice, and supercooled JT ice. Red and blue bonds indicate the
in-in and out-out configurations of spins or lattices. The supercooled JT ice consists of bonds that are bent at each vertex, and partially breaks
the 2-in-2-out rule; e.g., 3-in-1-out or 1-in-3-out tetrahedra are inserted as monopoles marked in an oval that is not easy to move and is not
easily annihilated. (c), (d) Schematic energy diagrams of “good” and “bad glass-forming” molecular liquid systems as functions of temperature.
There is a coexistent metastable liquid state and the crystalline ground state for finite temperature range, and the true thermodynamic first-order
transition between the two takes place at a particular Tc. During the cooling process, the thermally activated nucleation may lead to the transition
from the supercooled liquid to the crystalline state.

enables creation of complex free-energy landscape with com-
peting multivalleys [2–5]. Since frustration can be found in a
broader range of systems other than the molecular, polymer,
and colloidal liquids, a natural question arises: can we create a
glass-forming liquid made of other constituents? Spins on the
geometrically frustrated lattice can afford condition (1): in the
spin-ice state [12,13] of the pyrochlore lattice antiferromag-
nets, the strong local constraints called the “ice rule” arising
from the frustration will select the disordered configurations
down to zero temperature [14]. However, it is not a glass-
forming liquid, since their energy landscape is essentially flat
except for small energy barriers [see Fig. 1(a)], satisfying
neither condition (2) nor (3).

A pyrochlore lattice consists of corner-sharing tetrahedra
as shown in Fig. 1(b). In each tetrahedron, the ice rule forces
the spins to have a 2-in-2-out configuration, similarly to the
water ice whose two hydrogen atoms placed at the vertices of
the tetrahedra move toward and the other two away from the
center oxygen as shown in Fig. 1(a). The spin ice has a large

degeneracy that breaks the third law of thermodynamics [15],
while, unlike glasses, they can transform from one to another
by exciting a monopole and moving them without an energy
barrier, which itself is a source of exotic U(1) spin liquids
[16,17].

Recently, another possibility beyond the spin-ice picture
has been suggested experimentally in pyrochlore molyb-
date Y2Mo2O7 that the lattice displacements of the Mo4+

(4d2, S = 1) ion may be disordered and follow a 2-in-2-out ice
rule [18]. Later on, the underlying mechanism of disorder was
speculated to be some sort of Jahn-Teller (JT) effect [18–20].

The conventional JT effect takes place as a local energy
optimization process, which can be simply repeated in space
to optimize the global energy [21–23]: when the orbitals of a
single ion have a degeneracy due to some local symmetries of
the crystal field from its surroundings, the electrons occupying
them can gain energy by the lattice displacements that lower
the crystal-field symmetry and lift the orbital degeneracy.
This competes with the increase of the elastic energy, and an
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energetically optimal, finite lattice displacement occurs. The
JT distortion is usually the same for all ions since the local JT
energy gains of different ions are determined independently of
each other. However, in the pyrochlore lattice, it turns out that
such locally optimal JT energies associated with different ions
conflict with each other, so those lattice displacements cannot
be determined solely by a local crystal field on a single ion.

We describe this correlated JT effect unbiasedly in the
microscopic Ising model, which has the second- and third-
nearest-neighbor interactions, comparably as strong as the
nearest-neighbor ones in the ice model. These second- and
third-neighbor interactions impose a tougher restriction to the
2-in-2-out state. Resultantly, the flat energy landscape of an
ice is altered, developing the multivalley and high barrier
referred to in conditions (2) and (3) for a glass former [see
the one in Fig. 1(a)]. This landscape is anticipated from the
Monte Carlo simulations, indicating two competing phases;
one is the lowest-energy crystalline-like state consisting of
2-in-2-out displacements obeying the bending ice rule. The
other is a supercooled disordered state where lattice distor-
tions of 90% of the tetrahedra have the 2-in-2-out state that
obeys the bending ice rule. Most importantly, the supercooled
liquid turns out to be remarkably stable to be regarded as a
good glass former, possibly having a very high energy barrier
toward crystallization; we call it a “supercooled JT ice” [see
Fig. 1(c)].

As a matter of fact, supercooled liquids are rarely found
in systems other than molecular liquids. The charge glass
phase in the organic θ -ET2X crystal exceptionally exhibits
a supercooled liquid behavior, but it transits into a long-
range ordered phase on slowly cooling the sample [24]. Two
mechanisms are known to destabilize supercooled liquids as
shown in Fig. 1(d); one is the Kirkwood instability which
is the local instability of a liquid state toward crystallization
[25–27]. The other is the nucleation process of the crystal
phase from the liquid phase [11]. In principle, the latter cannot
be avoided since the free energy of the crystalline state is
lower than that of the liquid state. In theory, a supercooled
paramagnetic phase coexisting with long-ranged orders such
as ferromagnets is conceivable, but only proved to exist in
large-dimensional (mean-field) frustrated models [27–29].

Supercooled liquids can be a source of glass. Indeed, we
have previously shown that a thermodynamic glass transition
in a model similar to our JT ice Hamiltonian becomes a
glass [20]; there we take account of the S = 1 spin degrees
of freedom of Mo4+ ions and couple them with the JT ice
degrees of freedom. This explains the disorder-free spin-glass
transition of A2Mo2O7 (A = Y, Dy, Tb) [30–35]. The super-
cooled JT ice without quenched disorder is thus a naturally
arising phenomenon in a clean three-dimensional bulk crys-
talline solid, which had not been conceived in either theories
or experiments.

The paper is organized as follows. In Secs. II and III we
analyze the elastic and JT energies of electrons on Mo4+

ions on the pyrochlore lattice when the lattice displacement
of Mo4+ ions takes place, finding that the softest low-energy
modes move the Mo4+ ions in and out of the unit tetrahedron.
The in-out displacements change the relative angle of Mo-O
bonds and lower the crystal-field symmetry, and the resultant
JT energy gains are associated with a variety of types of

FIG. 2. Local structure around a Mo4+ ion in A2Mo2O7. Shaded
and open circles represent Mo4+ and O2− ions, respectively. The
ellipsoid on the center Mo4+ ion represents the elastic potential from
the surrounding O2− ions [see Eq. (4)]. We take the local Z axis in the
[111] direction with its origin at the Mo4+ ion. The angle θ0 of Mo-O
bond about the Z axis determines both the mechanical property and
the orbital energy level splitting due to the trigonal crystal field.

in-out displacements. In Sec. IV we derive an effective JT ice
model based on the energetics obtained in the former sections.
We derive an effective unbiased Ising-type Hamiltonian that
reproduces the microscopic energetics of the JT distortions,
which reveals that the in-out displacements of several Mo4+

ions on the pyrochlore lattice interact with each other. In
Sec. V we perform a Monte Carlo simulation on the JT ice
model, and discover a supercooled liquid behavior. The rel-
evance to the material systems and the implications of the
present results are discussed in the final section.

II. ELASTIC ENERGY

In this section, we evaluate the elastic energy loss due to
lattice displacements. As shown in Fig. 2, each Mo4+ is oc-
tahedrally coordinated by six oxygen ions O2− which forms a
trigonal crystal field, since among the eight faces of octahedra,
a pair of triangles facing each other in the [111] direction of
the figure is closer than the other pairs [34,36,37]. It is thus
convenient to choose the Z axis along the [111] direction. The
positions of the ligands Ri = (Xi,Yi, Zi ) (i = 1, 2, . . . , 6) can
be written as

Ri = a1(sin θi cos φi, sin θi sin φi, cos θi ), (1)

where a1 = aMo-O is the lattice constant of the Mo-O bond,

θ1 = θ2 = θ3 = θ0,

θ4 = θ5 = θ6 = π − θ0, (2)

and

φ1 = 0, φ2 = 2π/3, φ3 = 4π/3,

φ4 = π, φ5 = 5π/3, φ6 = π/3. (3)
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Here, θ0 is the only parameter that controls the geometric and
mechanical properties of the system.

A. Single ion

Now, to obtain the vibrational eigenmode of a single Mo4+

we consider a two-body potential v(|R − Ri|) which only
depends on the distance between the Mo4+ and the ligand. For
the system to be stable against (de)compression, the second
derivative v′′(a1) must be positive.

For the fixed Ri, one can regard

V1(R) =
6∑

i=1

v(|R − Ri|) (4)

as a one-body potential, and then the 3 × 3 Hessian matrix of
the potential is given by

Hμν = ∂2V1(R)

∂X μ∂X ν
, (5)

where X μ, X ν = X,Y, Z . We obtain twofold degenerate
eigenvalues λ1 and nondegenerate eigenvalues λ2 as

λ1 = (−3 sin2 θ0 + 6)
v′(a1)

a1
+ 3 sin2 θ0v

′′(a1), (6)

λ2 = (−6 cos2 θ0 + 6)
v′(a1)

a1
+ 6 cos2 θ0v

′′(a1). (7)

The doubly degenerate eigenmodes corresponding to λ1 are
confined to the displacements within the X -Y plane, and
nondegenerate eigenmodes corresponding to λ2 represent the
stretching along the Z axis. Using λ1 and λ2, the one-body
potential can be written in an ellipsoidal form,

V1(R) = 1
2λ1(X 2 + Y 2) + 1

2λ2Z2. (8)

In Fig. 2, the shaded ellipsoid describes the potential.
In the case of the regular octahedron with θoct

0 =
cos−1(1/

√
3) ≈ 54.74◦, λ1 is equal to λ2. The value of θ0

of the pyrochlore spin glass A2Mo2O7 is much larger than
θoct

0 , e.g., θ0 ≈ 61.76 in the case of Y2Mo2O7 [34,36,37].
Therefore, from Eqs. (6) and (7), we can easily find that λ2

is smaller than λ1 if

v′(a1)

a1
< v′′(a1). (9)

Let us suppose that v(r) can be represented by the 12-6
Lennard-Jones potential as

v(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (10)

where ε is the energy scale of the potential and σ can be
regarded as the size of the ion. In this case, σ corresponds
to the sum of ionic radii of Mo4+ and O2−. The equilibrium
position r0 which satisfies v′(r0) = 0 is r0 = 21/6σ . If r > r0,
the force between ions is attractive, and otherwise repulsive.
To satisfy Eq. (9), a should be smaller than (7/2)1/6σ . In the
case of Y2M2O7, the ionic radii of Mo4+ and O2− are 0.65 (Å)
and 1.38 (Å), respectively, and their sum 2.03 (Å) is compara-
ble with the lattice constant a1 = 2.03 (Å), which fulfills the
above condition [18,38]. We find λ1/λ2 � 1.94, which means
that the lattice displacement along the Z axis is the softest.

FIG. 3. (a) One-body (V1) and two-body (V2) potentials on single
tetrahedron represented by the ellipsoids and zigzag bonds, respec-
tively. (b) Lowest eigenvalue λ of the Hessian matrix in Eq. (16)
including the two-body vibrational energy scaled by the coupling
constant g of V2. At g �= 0 the fourfold degeneracy of the lowest
energy, λ2, of the one-body potential is lifted to the three 2-in-2-out
modes and a single all-in-all-out mode.

Intuitively, this is because the direction corresponding to λ2

has larger spacing to avoid the repulsive force v(a) from the
ligands.

B. Single tetrahedron

Next we consider the vibrational mode of a single tetra-
hedron of Mo4+ ions as shown in Fig. 3(a). The positions of
Mo4+ ions are ri = (xi, yi, zi ) (i = 1, 2, 3, 4) and their equi-
librium positions r0

i = (x0
i , y0

i , z0
i ) are

r0
1 = a2/

√
2(0, 0, 0), r0

2 = a2/
√

2(1, 1, 0),

r0
3 = a2/

√
2(1, 0, 1), r0

4 = a2/
√

2(0, 1, 1), (11)

where a2 = aMo-Mo is the lattice constant of the Mo-Mo bond
and it is given by

a2 = a1

(√
2

3
cos θ0 −

√
1

3
sin θ0

)
. (12)

We consider a correction to the elastic energy due to the two-
body interaction V2(|r − r′|) between Mo4+ ions in addition
to the one-body potential V1(R) given by Eq. (4). Here, the
second derivative V ′′

2 (a2) should be positive to keep the equi-
librium position stable. For simplicity, we suppose V ′

2 (a2) = 0
although the case of nonzero V ′

2 (a2) leads to qualitatively the
same result. The total energy of a tetrahedron is given by

Evib({ri}) =
4∑

i=1

V1(Ri ) + g
∑
i< j

V2(|ri − r j |), (13)

where g is a small parameter that represents the energy scale
of V2 and Ri = (Xi,Yi, Zi ) is⎛

⎜⎝
Xi

Yi

Zi

⎞
⎟⎠ =

⎛
⎜⎜⎝

− 1√
6

− 1√
6

2√
6

1√
2

− 1√
2

0

1√
3

1√
3

1√
3

⎞
⎟⎟⎠

⎛
⎜⎝

x̂i

ŷi

ẑi

⎞
⎟⎠ (14)

with

x̂i = (
a2/

√
2 − 2x0

i

)(
xi − x0

i

)
,

ŷi = (
a2/

√
2 − 2y0

i

)(
yi − y0

i

)
, (15)

ẑi = (
a2/

√
2 − 2z0

i

)(
zi − z0

i

)
.
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FIG. 4. (a) Lifting of the e′
g orbital degeneracy. (b) Local structure before (left) and after 2-in-2-out distortion (right). The red and blue

lines represent the in-in and out-out bonds, respectively. The oxygen ion between in-in bonds is displaced away from the tetrahedron while the
one between out-out bonds gets closer. (c) The oxygen displacements of in-in, in-out, and out-out bonds. Black dots represent the center of the
Mo4 tetrahedron. (d) The oxygen displacements viewed from directly above.

The 12 × 12 Hessian matrix is given by

Hμν
i j = ∂2Evib({ri})

∂xμ
i ∂xν

j

= δi j

(
∂2V1(Ri )

∂xμ
i ∂xν

i

+ g
∑
j �=i

∂2V2(|ri − r j |)
∂xμ

i ∂xν
i

)

+ g(1 − δi j )
∂2V2(|ri − r j |)

∂xμ
i ∂xν

i

, (16)

where xμ
i , xν

i = xi, yi, zi and δi j is the Kronecker delta. The
minimum eigenvalue λ of Eq. (16) is obtained which is clas-
sified by the type of lattice displacement. When the two-body
potential is absent at g = 0 we have fourfold degenerate eigen-
values λ = λ2 of the one-body potential V1, which are the
three 2-in-2-out modes and one all-in-all-out mode. A finite
g or namely V2 term lifts the degeneracy and the 2-in-2-out
becomes the softest mode as shown in Fig. 3(b). Here, we
applied the standard form of elastic energy, V2(r) = (|r| −
a2)2/2, without loss of generality. In this way, the ice-type
lattice distortion is selected.

III. ENERGY SPLITTING BY JAHN-TELLER EFFECT

The trigonal crystal field splits the t2g orbitals into the a1g

and the doubly degenerate e′
g states, as shown in Fig. 4(a).

One of the two d electrons on the Mo4+ is accommodated in
the a1g orbital and the other in one of the doubly degenerate e′

g
orbitals, taking the high-spin state based on Hund’s rule. The
doubly degenerate e′

g orbitals are JT active.
The in-out displacement of a single Mo4+ ion alone is

not enough to lift the degeneracy of the e′
g orbitals. In fact,

when the six O2− ions surrounding the Mo4+ ion stay in
the regular position, the displacement of Mo4+ along the Z
axis does not break the trigonal symmetry. The symmetry is

broken when the O2− ion between two neighboring Mo4+

ions moves as shown in Fig. 4(b). The x-ray measurements
show that the fluctuation of the Mo-O distance is smaller than
that of the Mo-Mo distance by an order of magnitude [39].
This means that Mo4+ and O2− ions move coherently overall
and the Mo-O distances remain unchanged. To be precise,
the distortion of two adjacent Mo4+ ions is coupled to the
displacement of the O2− ion in between them; if the two Mo4+

ions move both inside the tetrahedra (in-in), the O2− moves
away from the Mo-Mo bond, and if Mo4+ ions take the out-out
configuration the O2− ion moves closer to the Mo-Mo bond as
shown in Fig. 4(c). Accordingly, the relative positions of O2−
ions given in Eqs. (1)– (3) are modified. Note that the longi-
tude φ’s are invariant for the in-out displacements shown in
Fig. 4(d).

Now, we consider a neighboring A-B pair of Mo4+ ions,
and the O2− ion between them. We define the displacement of
the Mo4+ ions as δA, δB whose sign corresponds to in (+) or
out (−) as shown in Fig. 4(c). The relative angle of O2− from
the ith Mo4+ ion is obtained up to the first order of (δ/a) as

θδA-δB = θ0 + �A
δA

a
+ �B

δB

a
, (17)

where

�A = sin θ0 + cos θ0/2
√

2

(sin θ0 − cos θ0/
√

2)(sin θ0 + √
2 cos θ0)

, (18)

�B = 3 cos θ0/2
√

2

(sin θ0 − cos θ0/
√

2)(sin θ0 + √
2 cos θ0)

. (19)

Then, the δ dependence of the e′
g energy levels is evaluated as

follows. Using the expansion with spherical harmonic func-
tions Ykm(θ, φ), the Coulomb potential v(r) from the crystal
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field for d electrons is given by

vcry(r) = A00 +
2∑

m=−2

A2mr2C(2)
m (θ, φ)

+
4∑

m=−4

A4mr4C(4)
m (θ, φ) (20)

with

Akm =
√

4π

2k + 1

Ze2

ak+1

6∑
i=1

Y ∗
km(θi, φi ), (21)

C(k)
m (θ, φ) =

√
4π

2k + 1
Ykm(θ, φ). (22)

Here, Z = 2 is an ionic charge of O2− and e is the ele-
mentary charge. The coefficient Akm depends on the relative
positions of the ligands from the Mo4+ ion. In the case of
the trigonal crystal field, we find that Akm is nonzero for
m �= 0,±3 because of the 3-fold rotational symmetry, and
Akm = (−1)mAk−m due to the reflection symmetry with re-
spect to the X -Z plane. Hence, the crystal potential of the
trigonal crystal field is obtained as

vtri(r) = Atri
00 + Atri

20r2C(2)
0 (θ, ϕ) + Atri

40r4C(4)
0 (θ, ϕ)

+ Atri
43r4

[
C(4)

3 (θ, ϕ) − C(4)
−3 (θ, ϕ)

]
, (23)

where Atri
km represents the coefficient given in Eq. (21) for the

trigonal crystal field. Hereafter, we suppose that the electron is
localized enough, and consider the crystal-field potential up to
the second order with respect to (r/a) discarding higher-order
terms. The a1g and e′

g orbitals which are the eigenstates of the
potential are

|a1g〉 = R42(r)Y20(θ, φ), (24)

|e′
g±〉 = ∓ 1√

3
R42(r)[

√
2Y2∓2(θ, φ) ± Y2±1(θ, φ)], (25)

where R42(r) is the radial part of the wave vector. The orbital
energies of a1g and e′

g are obtained as

Ea1g = 〈a1g|vtri(r)|a1g〉 = 2
7 Atri

20r2, (26)

Ee′
g
= 〈e′

g±|vtri(r)|e′
g±〉 = − 1

7 Atri
20r2, (27)

where

r2 =
∫ ∞

0
r2|R42(r)|2r2dr = 504

(
aB

ZMo

)2

. (28)

Here, aB = 0.529 Å is the Bohr radius and ZMo = 42 is the
atomic number of molybdenum. The coefficient

Atri
20 = 3Ze2(3 cos2 θ0 − 1)/a3 (29)

takes a negative value if θ0 > θoct
0 = cos−1(1/

√
3). Note

that the off-diagonal components are zero since all
bases are orthogonal to each other, i.e., 〈e′

g±|vtri(r)|e′
g∓〉 =

〈e′
g±|vtri(r)|e′

g±〉 = 0.
We now treat the effect of lattice distortion δ/a  1, which

modifies the angle in Eq. (17) as perturbation to the trigonal
crystal field. The degeneracy of the e′

g orbital is lifted by the

perturbation if the off-diagonal component 〈e′
g±|vtri(r)|e′

g∓〉
takes a nonzero value, which is given by

〈e′
g+|vice(r)|e′

g−〉 =
√

6

21

(
2
√

2Aice
2−1 − Aice

22

)
r2, (30)

where Aice
km represents the coefficient given in Eq. (21) for the

perturbed trigonal crystal field. From the eigenequation,∣∣∣∣ Ee′
g
− λ 〈e′

g+|vice|e′
g−〉

〈e′
g+|vice|e′

g−〉∗ Ee′
g
− λ

∣∣∣∣ = 0, (31)

we obtain

λ = Ee′
g
± |〈e′

g+|vice(r)|e′
g−〉|, (32)

and the off-diagonal component determines the degree of the
splitting of energy levels.

We consider a situation where the central Mo4+ ion moves
into the upper tetrahedron, i.e., the displacement δ0 > 0 [see
Fig. 4(b)]. Using the variable δ j on the nearest-neighboring
site ( j = 1, 2, . . . , 6) and Eq. (17), the angles θ j of six Mo-O
bonds about the Z axis can be written as

θ j =
{

θ0 + (
�A

δ0
a + �B

δ j

a

)
, j = 1, 2, 3,

π − θ0 + (
�A

δ0
a − �B

δ j

a

)
, j = 4, 5, 6.

(33)

Substituting Eq. (33) in Eq. (21) and using Eq. (30), we find
that the energy splitting depends on {δ j} up to the first order
of (δ/a) as

|〈e′
g+|vice(r)|e′

g−〉| = η

a
|P({δ j∈∂0})|, (34)

where

η = 1

14
(−4

√
2 cos 2θ0 + sin 2θ0)�B

r2

a2

Ze2

a
(35)

and

P({δ j∈∂0}) = (δ1 + δ4) + (δ2 + δ5)e
2π
3 i + (δ3 + δ6)e

4π
3 i.

(36)

Here, δ j∈∂i denotes the indices of the six surrounding Mo4+

ions centered by the ith Mo4+ ion. Interestingly, the energy
splitting does not depend on the displacement of the central
Mo4+ ion, δ0, because the contribution is canceled out be-
tween the upper and lower tetrahedra. To briefly summarize,
we obtained the orbital-energy splitting of a Mo4+ ion in the
linearly combined form of the displacements {δ j} of the six
adjacent Mo4+ ions.

IV. MICROSCOPIC HAMILTONIAN
OF THE JAHN-TELLER ICE

The JT energy is the sum of the elastic energy and the
orbital-energy splitting. For the latter, we have so far focused
on “local” orbital energy gain on a single Mo4+ ion with
displacement δ0, given as Eqs. (34) and (36). By summing
up these local contributions, the JT Hamiltonian of the whole
system (i = 1, 2, . . . , N ) is given as

H = λ

2

N∑
i=1

δ2
i − η

a

N∑
i=1

|P({δ j∈∂i})|. (37)
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For simplicity, we consider only the softest in/out displace-
ment of the Mo4+ ions, which safely allows us to abbreviate
the V2 term in Eq. (13). The parameter λ is the elastic energy
scale corresponding to λ2 in Eq. (8).

The essential energetics of Eq. (37) can be described more
simply by introducing a set of Ising variables {σ j} with
σ j = ±1 that represents the in and out lattice displacements.
Here, we replace δ j∈∂i → δ̄iσ j∈∂i by approximating δ̄i > 0 as
the “locally averaged” amplitude of the lattice displacements
around the ith Mo4+ ion. The Hamiltonian is rewritten as
H = ∑N

i=1 e(i)
JT with

e(i)
JT = λ

2
δ̄i

2 − δ̄i
η

a
|P′({σ j∈∂i})|. (38)

Here, the first term of Eq. (38) representing the mean elastic
energy can be intuitively regarded as that of the Einstein
model taking the oscillation unit as a pair of tetrahedra sharing
the ith Mo4+ ion. The term for the orbital energy splitting in
Eq. (36) is rewritten as

P′({σ j∈∂0}) = (σ1 + σ4) + (σ2 + σ5)e
2π
3 i + (σ3 + σ6)e

4π
3 i.

(39)

Equation (38) takes the minimum value,

e(i)min
JT = −ε|P′({σ j∈∂i})|2, ε = η2

2λ
, (40)

when

δ̄∗
i

a
= η|P′({σ j∈∂i})|

λ
. (41)

The value of δ̄i
∗ is locally determined by |P′({σ j∈∂i})| and may

depend on i. This approximates well the situation where |δi|
can vary depending on i when considering the Hamiltonian
defined as a summation of Eq. (36) of all ions. However, the
only important point here is that the elastic energy increases
in square and the orbital splitting energy increases linearly
in δi, which guarantees that there is a finite value |δi| > 0
that optimize the total energy. It is natural to expect that
such |δi| does not vary much from ion to ion. We confirmed
numerically in a small-size cluster that the results basically
remain qualitatively unchanged even if we approximate |δi| to
be i-independent.

Since |P′({σ j∈∂i})| and |P′({σ j∈∂k})| share some σ j’s and
thus are correlated, the summation of the local minimums of
−|P′({σ j∈∂i})| are not necessarily the global minimum. To see
this in more detail, we focus on the local JT energy gain e(0)min

JT
around the 0th Mo4+ ion in Eq. (40). We stress here that it does
not depend on its own displacement, σ0, but on other Mo4+

ion’s σ j . Table I displays the value of the JT energy e(0)min
JT for

all distortion patterns (i)–(vi) (see Fig. 5 for the corresponding
images). Here, these patterns are classified according to the
symmetry of the crystal field. From Eq. (39) it is obvious
that the threefold rotational symmetry of the upper and lower
triangles will erase the terms and suppress the JT energy gain,
which is reflected in cases (i) and (ii). The reflection symmetry
in (iv) and (vi) works in different manners; for case (iv) if the
pair (σ2, σ3) on the upper triangle are the same and if they
are also the same as (σ4, σ6), they will cooperatively increase
|P′|, whereas for case (vi), the latter has a different sign from
the former and suppresses |P′|. For cases (iii) and (v) the

TABLE I. JT energy emin
JT of a single Mo4+ ion surrounded by six

Mo4+ with displacements {σ j∈∂0}, i = 1 ∼ 6. Tu, Tl, and R represent
the threefold rotational symmetry of the upper tetrahedron, that of
the lower tetrahedron, and the reflection symmetry, respectively. The
in/out displacement of the center Mo4+ ion (σ0 = ±1) does not
change the crystal field or emin

JT . The symmetry operations on {σ j} that
do not change the crystal field of all patterns are tuning over all dis-
placements {σ j} → {−σ j} and/or exchanging the configurations of
upper and lower triangles as (σ1, σ2, σ3) ↔ (σ4, σ5, σ6). Right panel
shows the example of lattice displacements and the surrounding six
O2− ions for case (ii). The total flux that comes in and out of the pair
of tetrahedra classifies the energy of cases (iv) and (vi). For the lattice
distortion patterns listed here, see Fig. 5.

CF symmetry emin
JT (σ1, σ2, σ3; σ4, σ5, σ6) �

(i) Tu, Tl, R 0 (+,+, +; ∓, ∓, ∓) 0, ±6
(ii) Tu, R −4ε (+,+, +; ∓, ±, ±) ±4, ±2
(iii) −4ε (+,−, −; −, +, −) ±2
(iv) R −16ε (+,−, −; +, −, −) ±2
(v) −12ε (+,−, −; +, −, +) 0
(vi) R 0 (+,−, −; −, +, +) 0

above-mentioned symmetries are absent, while the latter has
slightly higher symmetry between the upper and lower trian-
gles; in case (v), rotating the upper triangle by 2π/3 and by
turning over (σ1, σ2, σ3), it matches (σ4, σ5, σ6), which means
that apart from the small cancellation of phase factors, |P′| is
relatively large. Case (iii) has much lower symmetry and has
smaller |P′|.

For later convenience on connecting the in-in and out-out
bonds of more numbers of tetrahedra, we also classify cases
(i)–(vi) by the total flux defined as

� =
6∑

i=1

σi. (42)

If � > 0 or <0 the flux flows in or out of a pair of tetrahedra.
The cases � = 0 show some sort of symmetry between upper
and lower triangles, which are fulfilled in cases (i) and (vi).

An important difference from the ice rule is that the in-out
configurations do not necessarily show one-to-one correspon-
dence with the JT energy. For example, as shown in panels
(i-a) and (i-b) of Figs. 5, depending on whether the center
Mo4+ moves upward or downward, the (i-a) 4-in/4-out and
(1-b) 3/1-in-1/3-out are realized but its own |P′| at the center
Mo4+ remains the same. Notice, however, it does change the
|P′|’s of the six surrounding Mo4+’s.

Indeed, the total JT energy depends sensitively on the
combinations of these 12 patterns over the whole lattice.
The locally lowest energy −16ε is realized in case (iv)
with {σ j∈∂0} = (σ1, σ2, σ3; σ4, σ5, σ6) = (+,−,−; +,−,−).
However, this distortion gives the 2-in-2-out pattern for
upper/lower tetrahedra, but the lower/upper tetrahedra have
1-in-3-out, which keeps the 3-fold rotational symmetry about
another Z axis defined along the connection to the other tetra-
hedron. This will raise the JT energy of the neighboring Mo4+

ion on that axis.
On the other hand, in case (v-a) with {σ j∈∂0} =

(+,−,−; +,−,+), the distortion consists of only 2-in-2-out
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FIG. 5. Displacements of Mo4+ ions corresponding to (i)–(vi) given in Table I. For each pattern, the two cases where the center Mo4+ ion
moves to the upper tetrahedron (a) (top row) and moves to the lower tetrahedron (b) (bottom row) are shown. The local energy associated with
the center Mo4+ ion is the same for (a) and (b) (see text). Red and blue bonds represent in-in and out-out bonds, respectively.

types. The energy becomes −12ε and JT energies of the
neighboring Mo4+ ions can afford −12ε as well. It is expected
that the bulk JT energy resultantly becomes the lowest when
all the tetrahedra take the 2-in-2-out structure, i.e., the ground
state. Notice that although panel (v-b) of Fig. 5 is the 3-in-
1-out/1-in-3-out it has the same −12ε, whereas these two
differ in the JT energy about the six {σ j} ions, and hence
the non-2-in-2-out structure pattern tends to raise the total JT
energy.

In this way, although a given set of {σ j} j = 1 ∼ 6 will
determine the local JT energy based on Eq. (39), the |P′|’s be-
longing to the neighboring tetrahedra are strongly correlated.
To provide better physical insights into this correlation effect,
we construct an effective Hamiltonian of the whole system
which faithfully reproduces the JT energy in Table I for all
local variables:

Hσ =ε

(
2

∑
〈i, j〉

σiσ j +
∑
〈〈i, j〉〉

σiσ j − 2
∑
〈〈〈i, j〉〉〉

σiσ j

)
− 6εN, (43)

where 〈i, j〉, 〈〈i, j〉〉, and 〈〈〈i, j〉〉〉 denote the summations
over the nearest-neighbor (NN) Mo4+-displacement pairs, the
second-NN pairs, and the third-NN pairs, respectively. For
example, the second-NN pairs are (σ1, σ6), and the third-NN
pairs are (σ1, σ4) and (σ1, σ5) in Fig. 5. In the pyrochlore
lattice, we have two species of tetrahedra with dark and light
colors in Fig. 1(a), where we take σi = +1/ − 1 when the
Mo4+ ions move into/out of the dark tetrahedra.

The first term of Eq. (43), i.e., the NN interaction, is
the same as the spin-ice model that remains disordered
down to zero temperature whose ground state is macroscopi-
cally degenerate. In general, adding second-NN and third-NN
interactions lifts this ground-state degeneracy except for the
specific parameter sets [40–42]. In our Eq. (43), these longer-

range interactions are as strong as the NN interaction so that
they cannot be regarded merely as perturbations; the important
consequence is a bending ice rule. Under the standard ice
rule, all the tetrahedra have one red bond and one blue bond.
We show in Fig. 6(a) two connected tetrahedra viewed from
the top. If we place a certain pair of red-blue bonds at the
upper-right tetrahedron, the lower-left tetrahedron can take
three different patterns, where the bonds with different colors
are always connected one-to-one. However, as we saw for case
(v) in Table I, our JT ice rule prohibits the two connected
bonds from aligning in the same direction. We call this a
bending ice rule, that excludes the third pattern in Fig. 6(a).
Figure 6(b) shows one of the ground states that fulfills the
bending ice rule: the red and blue bonds alternatively align and
are bent at all vertices. Here, a repeated structure in a unit cell
period is shown, and there are twelve such regular states. Al-
though one cannot exclude the possibility that there are several
nonperiodic patterns of the same energy, we confirmed that the
bending rule throughout the crystal will significantly reduce
the number of configurations of the ground state, which will
be discussed in Appendix A.

Still, one may suspect other possibilities that there can be a
non-2-in-2-out structure with −12ε that join the ground state,
or the three −12ε tetrahedra can be replaced by two −16ε and
one −4ε which we call a “trimer.” To understand the difficulty
of lowering the energy by including such irregular structures
beyond the bending ice rule, we show in Fig. 6(c) some
examples starting from the pattern allowed by the bending ice
rule. In the flip-1 process, the ion marked with a star moves
out, and a trimer (−16ε,−16ε,−4ε) is created. However, this
process will influence the energy of the other three ions on
the lower-right tetrahedron, creating one −16ε and two −4ε

which are higher in energy.
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flip-3

flip-1 flip-2

Jahn-Teller ice
all 2-in-2-out

ground state

(b)

(c)

(a)

bending rule

FIG. 6. (a) Three choices of bond connections between two tetra-
hedra following the ice rule when the upper-right one is given. The
first two patterns fulfill the bending ice rule and are allowed in the
Jahn-Teller ice. Blue and red bonds represent in-in and out-out bonds,
respectively. (b) Example of the configuration of bonds following
the bending ice rule, which forms the ground state. (c) Examples
of flipping σi, namely, converting in/out to out/in of an ion marked
with a star from the Jahn-Teller ice. Circles/squares/triangles are the
−16ε, −4ε, 0 ions, respectively. The −12ε ions forming the ground
state are not marked. We call the shaded triangles formed by 3-in or
3-out as monopoles of spin ice.

Unlike the standard ice rule, not only the ions on the two
tetrahedra sharing a star site but those belonging to the other
six tetrahedra around them are influenced by a single flip.
The created 1-in-3-out and 3-in-1-out are called monopoles
following the convention of spin ice, although these two are
not free and thus are not true monopoles. When we perform
flip 2, the former monopole moves to the lower left, and the
center tetrahedron recovers 2-in-2-out. Here is another differ-
ence from the freely moving monopoles in the spin ice: the
bending rule is broken and the energy increases significantly.
Flip 3 is another example of creating a pair of monopoles,
which shows similar energetics. These examples imply that
creating irregular structures will raise energy in each process.
Although there might be some chance of creating a locally sta-
ble trimer (−16ε,−16ε,−4ε), surrounded by −12ε’s when
approaching from the high-temperature random configuration,
once such local structure is created it is difficult to lower
the energy except by overcoming a high-energy barrier over
several flips.

In the next section, we find rather unexpectedly that the
liquid state survives down to the lowest temperatures as a
metastable liquid state, which is the consequence of the above-
mentioned energetics.

V. MONTE CARLO SIMULATION

To investigate the nature of the JT ice model at finite
temperatures, we perform a Monte Carlo simulation based on
the effective Hamiltonian Eq. (43) at finite temperatures. We
consider a periodic system of cubic geometry consisting of
L3 unit cells with a total number of lattice sites N = 16L3.
At each Monte Carlo step (MCS), we sequentially perform
a single-lattice-flip Metropolis update for all lattice sites. In
the following, we discuss the thermodynamic, structural, and
dynamic properties of the model.

A. Thermodynamic properties

In measuring the thermodynamic properties, we perform
both the cooling and heating simulations. In cooling, fully
equilibrated initial configurations are prepared at a high
enough temperature kBT/ε = 6.00 and the temperature is
lowered by a small step �(kBT/ε) = 0.01, where we take
τcool = 1.0 × 106 MCS for equilibration and the same 1.0 ×
106 MCS for taking a thermal average 〈· · ·〉 at each tempera-
ture. The cooling-rate dependencies are separately examined
for τcool = 1.0 × 101 to 105. We perform 10 independent runs
for the system size L = 6, 8, 9, 10, 12 and evaluate the sta-
tistical errors of the observables. For heating (L = 9), we
construct ground-state configurations explicitly as the initial
configurations, and take �(kBT/ε) = 0.01 with 1.0 × 106

MCS for both equilibration and thermal average.
Figures 7(a)–7(d) show the thermodynamic quantities ob-

tained by cooling and heating. The temperature dependence
of the internal energy E/ε clearly exhibits disagreement be-
tween the cooling and heating processes at kBT/ε � 5.1.
This suggests that the system remains in a supercooled liquid
state. In the heating protocol, the internal energy gradually
increases up to kBT/ε ∼ 5.2 and exhibits a sudden jump. This
jump may be regarded as an indication of the stability limit
of the superheated crystalline state (see Fig. 1). As we will
see shortly, the equilibrium first-order transition between the
liquid and crystalline state is expected at a lower temperature
Tc ∼ 4.05ε/kB.

The internal energy obtained in the cooling protocol shows
somewhat complicated size dependence. This is reflected in
the specific heat obtained as

C/kB = 1

N (kBT )2
(〈E2〉 − 〈E〉2). (44)

As shown in Fig. 7(b), there appear peak structures whose
positions depend very sensitively on the system size L.
The number of peaks also varies with L: a single peak in
L = 8, double peaks in L = 9, 12, and triple peaks in L =
10. The overall profile of C in the background of these
peaks shows a broad maximum of around kBT/ε ∼ 4.5.
Since the height/width of the peaks does not systemati-
cally grow/decrease with L, we consider that they are not
the indication of thermodynamic phase transitions but just
the crossover where the correlation satisfying the bending
ice rule grows. Correspondingly, the fractions of the 2-in-2-
out structure and the distortion pattern (v) increase around
the specific heat peaks (see Figs. 8 and 11). The domain
growth occurs anisotropically and discretely because of the
severe condition of the bending ice rule, as mentioned in
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FIG. 7. Temperature dependence of thermodynamic quantities
obtained by the Monte Carlo simulations for different system sizes
L in the JT ice model. (a) The internal energy E , (b) heat capacity
C, (c) entropy S/kB, and (d) free energy F . The energy is shown per
lattice site in units of ε.

FIG. 8. The fraction of (a) 2-in-2-out structure P2−2 and (b) 3-in-
1-out/1-in-3-out structure P3−1 of all the tetrahedra obtained by the
Monte Carlo simulations for different system sizes L in the JT ice
model.

Sec. V B in detail. Therefore, the intriguing size dependencies
of the peak positions imply competition among several low-
energy configurations whose energies depend sensitively on
the boundary condition.

We evaluate the entropy S/kB of the system associated with
the crystalline and supercooled liquid states using the specific
heat data as

S(T ) = S(Tref ) +
∫ T

Tref

dT

T
C, (45)

where S(Tref ) is the entropy at a reference temperature Tref .
The results are shown in Fig. 7(c) together with the equilib-
rium entropy at high enough temperatures obtained by the
high-temperature expansion (HTE) (see Appendix B for de-
tails). For the crystalline state, we chose Tref = 0 and S(Tref ) =
0 and used the specific heat C obtained by the heating pro-
tocol. For the supercooled liquid state we choose S(Tref ) of
the HTE data at Tref = 30ε/kB and use the specific heat C
obtained by the cooling protocol. The T → 0 limit of the
supercooled liquid branch suggests the existence of some
residual entropy of ∼0.05kB.
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Using the internal energy E and entropy S obtained above
(for L = 9), we evaluate the free energy F = E − T S of the
system in the crystalline and supercooled liquid state as shown
in Fig. 7(d). The results indicate a first-order thermodynamic
transition point from the liquid to crystalline state at Tc ∼
4.05ε/kB.

The cooling/heating process we observed suggests that
the phase transition can be kinetically avoided easily even
when the system is annealed extremely slowly. Indeed, al-
though our cooling rate τcool = 1.0 × 106 MCS is quite slow
we do not find any sign of phase transition for all system
sizes. The cooling-rate dependence for the internal energy is
examined explicitly over different τcool = 1.0 × 101 to 1.0 ×
106 MCS [see Fig. 13(a) in Appendix C], and the data are
found to gradually saturate to the behavior for the slowest
cooling rate in Fig. 7(a) without any hint of crystallization.
This indicates a remarkably stable feature of our super-
cooled liquid state against the crystallization, meaning that
the present system can be classified as a good glass-forming
liquid.

B. Structural properties

To further understand the nature of the crystalline and
supercooled liquid state, we examine the fraction of the (4 −
n)-in-n-out/n-in-(4 − n)-out structure (n = 0, 1, 2) of the lat-
tice distortions denoted as Pn−(4−n). There are 16 different
configurations per each tetrahedron, consisting of 4-in/out,
four 3-in-1-out/1-in-3-out, and six 2-in-2-out.

In the disordered high-temperature limit, the 2-in-2-out
fraction approaches P2−2 → 6

16 = 0.375 while P3−1 → 8
16 =

0.5. As shown in Fig. 7(a), P2−2 already exceeds 0.6 at
kBT/ε � 6 while the fraction of 3-in-1-out/1-in-3-out struc-
ture is P3−1 ∼ 0.4 as shown in Fig. 7(b). Similarly to the
internal energy, the data obtained by the cooling and heat-
ing agree at high enough temperatures kBT/ε > 5.1 but not
at lower temperatures. In the heating protocol, for which
the initial system is prepared as the ground state, P2−2

remains very close to 1 and P3−1 to 0 at low enough
temperatures.

In the cooling protocol, P2−2 shows a nearly discontin-
uous upturn, whose location depends on L in accordance
with the appearance of the peaks in the specific heat [see
Fig. 7(b)]. These discontinuities are expected to disappear
in the bulk limit since the magnitude of jump in P2−2 de-
creases for larger L. Toward the low-temperature limit, P2−2

saturates to ∼0.9, which is lower than 1 of the ground state.
The stableness of the supercooled liquid state is confirmed
in the cooling-rate dependence of P2−2 [see Fig. 13(b) in
Appendix C].

Although the peaks/jumps in C and P are not regarded as
phase transitions, their nonsystematic and highly sensitive L
dependence suggests that there is an underlying competition
between different types of short-range orderings, characteris-
tic of the frustrated systems. To visualize this competition, we
calculate the static structure factor of the lattice displacement
degrees of freedom σi = ±1 (i = 1, 2, . . . , N ) given as

Sq =
〈∣∣∣∣∣ 1

N

N∑
i=1

σie
iri·q

∣∣∣∣∣
2〉

, (46)

where ri is the position of the lattice site and
q = (nh, nk, nl )π/L is the wave vector with integers
nh, nk, nl (−2L � nh, nk, nl � 2L). Here, the unit length
is taken as the side length of the cubic unit cell. In Figs. 9(a)
and 9(b), we show Sq observed during the cooling process. At
kBT/ε = 5.0 the system is in the paramagnetic phase, where
we find weak spots at q = (0, 2π/3, 2π/3), (0, 4π/3, 4π/3),
and the equivalent wave vectors. This peak corresponds to
having a threefold periodic structure of the 2-in-2-out
patterns. The example is depicted in the right panel of Fig. 9,
where the bending rule shown in Fig. 6(b) is kept. Notice
that this structure indicates the development of short-range
order at these temperatures. When the system moves to
the supercooled liquid region at kBT/ε = 3.0, these peaks
shift slightly off these commensurate wave numbers, and
their intensity becomes larger. These overall peak positions
agree between different L’s but their precise positions vary
sensitively for different L (see Appendix D). The results mean
that these incommensurate structures are stabilized from
among numerous choices in the supercooled liquid state as
the periods that optimally fit the particular choice of small
system size by accident.

In the disordered phase in a continuum or in a spin-glass
model on a bipartite lattice with spatially random interac-
tion, we cannot extract any particular wave number, which
characterizes the nature of correlation. However, in the spin-
ice model, the disordered phase is not built on the mixture
of fully different random configurations but of the ice-type
configurations [12,14], and the structure factor exhibits a par-
ticular profile called the “pinch point” at (π/2, π/2, π/2).
In the same manner, the peaks of the structure factor in our
calculation which we mentioned as short-range order is a
manifestation of the disordered state based on the bending ice
rule.

For the heating process in Fig. 9(c) at the same kBT/ε =
3.0, the aforementioned peaks are absent, and instead, we find
the peaks at q = (π, 2π, 0), which corresponds to the ground-
state configuration we chose as a regular configuration among
several choices.

Figure 10(a) shows the snapshot of the supercooled liquid
phase at kBT/ε = 3.0. The Mo4+ ions with emin

JT = −12ε hav-
ing 2-in-2-out tetrahedra on both sides are dominant which
is not explicitly shown (see Table I). Instead we visualize
the Mo4+ ions with non-2-in-2-out structures: those with
the lowest JT energy emin

JT = −16ε in red and −4ε in blue.
The former are surrounded by the latter and form disordered
networks which fluctuate in time [43]. Indeed, the two reds
and one blue unit can be regarded as a trimer, which has
an equivalent energy −16ε × 2 − 4ε = −12ε × 3 with the
2-in-2-out ground state. However, generating such a trimer
without the energy loss from the ground state is a very rare
event. Figure 10(b) shows the snapshot of the crystalline-like
state in the heating process at kBT/ε = 3.0, where P2−2 starts
to deviate from 1. We only find a very few red-blue pairs of
excitations while not the trimers. To quantitatively evaluate
the nature of excitations, we plot in Fig. 11 the distribution of
(i)–(vi) ions obtained by the Monte Carlo averages at different
temperatures and heating/cooling processes. In the cooling
process, the ratio of (ii) to (iv) is overall 1:2, indicating that
the trimer structure develops. At the same time, (iii) also
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FIG. 9. Density plot of the static structure factor Sq of the JT ice model obtained for (a) kBT/ε = 5.0 and (b) kBT/ε = 3.0 in the cooling
process, and (c) kBT/ε = 3.0 in the heating process for L = 9. We plot three slices in the q space as q = (qx/2π, qy/2π, 0), (0, qy/2π, qz/2π ),
and (qx/2π, 0, qz/2π ). We show in the right panel the threefold periodic 2-in-2-out structure running along the [110] direction, which gives
(±4/3, ±4/3, 0) peak indicating the short-range order. The blue square indicates the size of a unit cell.

contributes to the energy −4ε, which indicates that the trimer
structures are not perfectly kept which is the reason why the
supercooled liquid has an energy density higher by 0.2ε than
the ground state E = −6ε [see Fig. 7(d)].

Contrastingly, in the heating process, the local structures
other than (v) start to be excited only when we exceed the true
first-order transition temperature. There, the density of (ii),
(iii), and (iv) do not differ much, and from the snapshots, it is
confirmed not to originate from the trimers.

For these reasons, we consider that the 2-in-2-out tetra-
hedra with a bending rule are required in the ground-state
manifold, and exciting other patterns is a rare event that
starts to happen when the temperature is increased up to
the phase transition point. The supercooled liquid possesses
a trimerlike structure but it accompanies several nontrimer
structures. These excited structures fluctuate in the sea of
2-in-2-out, which contributes to a significantly large en-
tropy of ∼0.05kB. However, eliminating these local structures
requires high energy and the entropy of the ground state
is possibly order-0, indicating that it is difficult to reach

the ground state once we fall into the supercooled liquid
phase.

C. Dynamic properties

To understand further the nature of the supercooled liquid
state, we analyze the relaxational dynamics in more detail. To
this end, we measure the autocorrelation function of lattice
displacement degrees of freedom σi = ±1 given as

C(t ) = 1

N

N∑
i=1

〈σi(0)σi(t )〉, (47)

where t is the time measured in units of MCS. The ini-
tial configuration at t = 0 is prepared in equilibrium state
at kBT/ε = 6.00 similarly to the slow-cooling protocol. Fig-
ure 12(a) shows C(t ) measured at different temperatures. At
high enough temperatures, kBT/ε ∼ 5.0, C(t ) relaxes expo-
nentially with time. However, on lowering the temperature the
relaxation curve exhibits a plateau whose value shifts to higher
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FIG. 10. Snapshots of the configuration of the system were ob-
served in cooling (top) and heating (bottom) processes, correspond-
ing to the supercooled liquid and crystalline states, respectively. The
blue and red points represent Mo4+ ions with Jahn-Teller energy
emin

JT = −4ε [type (ii) in Table I] and −16ε [type (iv) in Table I],
respectively. Otherwise, the Mo4+ ions not shown have emin

JT = −12ε.
Here L = 9 and kBT/ε = 3.0. Only the configurations inside 5 ×
5 × 5 cells are shown. See also Supplemental Material [43].

positions for lower temperatures. Such two-step relaxation is
a universal feature of supercooled glass-forming liquids [1].
The first relaxation toward the plateau state is called β relax-
ation, reflecting the short-time thermal fluctuation within the
metastable states in which the system is temporarily trapped.
Eventually, C(t ) leaves the plateau and starts to relax further,
which is called α relaxation.

As shown in Fig. 12(a), the α relaxation can be fitted by
the stretched exponential form,

C(t ) ∝ e−(t/τ )βs
, (48)

FIG. 11. The fraction of the displacement types (i)–(vi) in Table I
observed in the cooling and heating processes at kBT/ε = 3.0 and
5.0 for L = 9.

FIG. 12. Relaxational dynamics in the supercooled liquid phase.
(a) Autocorrelation function C(t ) for L = 9 at various temperatures.
(b) Relaxation time τ and the stretching factor βs (inset) obtained
by fitting the data in panel (a) using Eq. (48). The broken lines in
(a) represent the fitted curves. The inset shows the stretching factor
βs as a function of inverse temperature ε/kBT .
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and the temperature dependence of the relaxation time τ is
well fitted by the Arrhenius law,

τ ∝ e
Eb

kBT , (49)

with a rather high energy barrier Eb/ε = 40.8 ± 1.1. The
stretching factor βs strongly depends on the temperature and
decreases with lowering the temperature, as shown in the inset
of Fig. 12(a). Again, this stretched exponential decay is a
universal feature observed in supercooled liquids [1]. If τ

diverges at some temperature, it indicates a thermodynamic
phase transition. However, in our case, τ follows a simple
Arrhenius law in Eq. (49), indicating that the system remains
in the supercooled liquid state down to zero temperature with
the indication of neither crystalline nor glass transitions. This
kind of feature is often called a “strong glass” [44].

Closer inspection of Fig. 12(a) reveals the secondary
plateau with a lower height that emerges at kBT/ε < 4.0 at
t � 1.0 × 105. We leave the further investigation of this rich
glassy dynamics for future investigations.

VI. DISCUSSION AND SUMMARY

We analyzed theoretically the JT effect in a family of
pyrochlore molybdates A2Mo2O7 (A = Y, Dy, Tb) from a
microscopic point of view. We examined in detail how the
lattice distortions will influence both the elastic energy and
the orbital energies in a crystal field through three processes.

First, we evaluated how the local on-site potential on the
Mo4+ ion generated from the surrounding six oxygen ions
varies when it moves from the equilibrium position, finding
that the in-out displacement along the Z axis is the softest
among the three displacement modes. Next, by consider-
ing the elastic two-body interaction between the neighboring
Mo4+ ions, we showed that the 2-in-2-out is the softest among
all the vibrational modes of a single tetrahedron. Notice that
this conclusion applies only to the B site (Mo4+ ion) of
A2B2O7 forming a pyrochlore lattice and neither to the A site
nor to the B site of the AB2O4 with spinel structure.

In the third step, we examined the e′
g-orbital energy

splitting of Mo4+ ion induced by various in-out lattice dis-
placements, which changes the location of the surrounding six
oxygen ions and modifies the crystal field. By examining all
possible displacement patterns, we clarified that the displace-
ment of Mo4+ ions is energetically correlated over the third
NN, namely between all ions belonging to adjacent tetrahedra.
Among all these patterns, the 2-in-2-out is the most favored,
but unlike the standard spin-ice Hamiltonian, not all the 2-in-
2-out join the lowest energy manifold, and there remain only
limited numbers of 2-in-2-out states which satisfy the bending
ice rule in the ground state.

By introducing the Ising variables that represent the
in/out lattice displacements of Mo4+ ions, we derived the
microscopic effective lattice Hamiltonian with two-body in-
teractions between the nearest-neighbor, second-NN, and
third-NN of the pyrochlore sites. This Hamiltonian faithfully
reproduces the above-mentioned local JT energies. The ex-
istence of large second- and third-NN interactions implies a
tougher constraint called the bending ice rule: among the 2-in-
2-out structures, those connecting the in-in and out-out bonds

running in the same direction are excluded, whose phase space
is significantly limited from the standard ice rule.

From the Monte Carlo simulations on the JT ice model,
a more intriguing feature about the low-temperature state is
clarified. In the cooling down, the system is trapped to the
supercooled liquid state consisting of about 90% of the 2-
in-2-out and 3-in-1-out/1-in-3-out for the rest. This state is
higher in energy than the ground state, and even though we
take an extremely slow cooling rate, the first-order thermo-
dynamic transition from the supercooled liquid to the ground
state is avoided. Its dynamics is characterized by the two-step
relaxation of the autocorrelation function of a typical super-
cooled liquid, and the timescale of the α relaxation follows
a simple Arrhenius law, gradually slowing down toward zero
temperature. We call this state a supercooled JT ice.

A very stable feature of the supercooled JT ice compared
to the standard molecular supercooled liquid indicates two
distinct features: there is a high free-energy barrier from the
supercooled JT ice to enter a ground state. Both states have
degeneracies while the former has much larger degeneracy,
contributing to the entropy density of ∼0.05kB. These two
features make a supercooled JT ice a good glass former,
characterized by a metastable state that sustains down to zero
temperature.

The lattice degrees of freedom are highly frustrated by
themselves. However, its low energy structure has a notable
difference from the standard spin ice or water ice. For the
standard ice, the ground state has a residual entropy which
amounts to about 30% of the total entropy, and the excitation
takes place locally as a pair of monopoles, with its energy
being extensive at the classical level. Therefore, the ice state
gradually crosses over to the paramagnetic state at high tem-
peratures. If an extra energy scale is added to the Hamiltonian,
such as dipolar interactions [45,46] or RKKY interactions
[40,47], some of the states are selected as a ground state that
has lower energy than the ice state, and the spin ice will
undergo a first-order transition. Contrastingly, in the super-
cooled JT ice, even though there appears such ground state,
the first-order transition from the metastable supercooled JT
ice to the ground state is nearly prohibited due to a high energy
barrier. It is known in the previous studies of spin-ice systems
that the dynamics of an ice-type model with further-neighbor
interactions becomes slower than the one with only NN inter-
actions [41,42], in agreement with our observation. However,
in the spin ice, taking second-NN and third-NN interactions as
comparable to or larger than the NN interaction is unphysical.
Therefore, our supercooled JT ice is a more distinct example
of realizing such a situation in a natural manner.

Based on the present results, we now discuss the rele-
vance of our supercooled JT ice with the glass phase. In
several previous theories of pyrochlore magnets, the effect
of lattice displacements is examined by assuming that they
energetically favor a standard ice rule. For example, for the
Ising-spin-lattice coupled Hamiltonian in Ref. [19], the 2-in-
2-out lattice displacements couple to the amplitude of the
Ising spin-spin interactions, and yield a spin-lattice liquid
state.

We have previously proposed the Heisenberg-spin and
lattice coupled model and discovered the simultaneous spin-
lattice glass transition without quenched randomness [20].
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There, the lattice-lattice interactions of the first term in
Eq. (43) are considered, and the spin-lattice coupling is mi-
croscopically derived in the form that the lattice displacement
σi changes the sign of the Heisenberg spin-spin interaction.
At around the glass transition point, the 2-in-2-out lattice
displacements dominate the configuration of the lattice, i.e.,
P ∼ 0.9–1. If we further take account of the second-NN
and third-NN terms in Eq. (43), the simple 2-in-2-out lattice
displacement is replaced by the supercooled JT ice, and we
expect that the system will show a stronger tendency toward a
glass transition.

The spin-glass material, Y2Mo2O7, is a candidate of the
supercooled JT ice, since the experiments show a variety of
different types of lattice displacements of Mo4+ ions which
may possibly follow an ice rule. This material undergoes a
spin-glass transition at 22 K. The scale of the JT energy of
this material is evaluated by substituting with Eqs. (40) and
(41) the lattice constant a ≈ 2.03 Å, the amplitude of the JT
distortion δ̄∗ ≈ 0.121 Å, and the angle θ0 = 61.76◦, which
are taken from Ref. [18]. The resultant JT energy per site is
obtained as 12ε/kB ≈ 54.5 K. In our Monte Carlo simulation,
the supercooled JT ice develops at around kBT ∼ 4ε, namely
at 10–30 K, where P2−2 grows rapidly, which is consistent
with the spin-glass transition 22 K of the material. Below
the transition temperature, the lattice displacement freezes but
since this freezing is irregular, the crystal may safely keep its
symmetry on an average.

There are some other pyrochlore materials whose lattice
structure may show icelike properties. MgTi2O4 is a py-
rochlore material where Ti3+ carries quantum spin-1/2 and
shows a 2-in-2-out type of lattice displacement at 260 K
[48,49]. However, the lower temperature phase is a valence
bond crystal where the spins form a regular 2-in-2-out dimer-
ized state and the frustration is lost. In the tetragonal phase,
where the material is located, the orbital degeneracy is ab-
sent, which means that in addition to the elastic property
of the lattice the JT energetics of electrons is important for
the realization of the JT ice. By a slight substitution of Mg
ions to the nonmagnetic Ti ions, Mg1+xTi2−x enters a cubic
phase, showing a suppression of susceptibility and an icelike
structural fluctuation [50]. We may consider it as a recovery
of JT activeness together with the introduction of site random-
ness, and the cubic phase may be regarded as some sort of
JT ice phase. Lu2Mo2O7 is another candidate which shall be
classified as one of the family members of the molybdates
we focused on. This material has spin-1 carried by the two
electrons on 4d orbitals, and shows a spin-glass behavior.
However, for an oxynitride Lu2Mo2O5N2 with spin-1/2 the
glass phase disappears and the resultant phase is regarded as
a spin liquid [51]. Although the size of spins may play some
role to explain the different behavior of the two materials, the
disappearance of a glass phase may also be attributed to the
lack of the JT effect, since we consider that the spin-glass
transition is a cooperative transition of the JT lattice and the
spin degrees of freedom.

The discovery of a good glass-forming supercooled liq-
uid phase of lattice degrees of freedom elucidated at the
microscopic level is remarkable, because it can be a source
of intrinsic disorder without quenched randomness in solids.

This possibility shall be explored in future studies both in
theories and in experiments.
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APPENDIX A: BENDING ICE RULE

We discuss the degree of degeneracy of the ground state
of the JT ice model in Eq. (43), which follows a bending ice
rule. First, we recall the estimation of the ground-state entropy
introduced by Pauling for water ice or spin ice, which amounts
to Swater ice = kB ln(3/2)N/2. This value coincides with the one
obtained by the mean-field approximation which we expand
in the following: a corner-sharing network of tetrahedra, in-
cluding the pyrochlore lattice and checkerboard lattice, can
be divided into two subgroups, i.e., dark- and light-colored
tetrahedra, as shown in Fig. 1(a). Only the tetrahedra with
different colors are connected at each corner. If we assign
2-in-2-out structures on all dark tetrahedra independently of
each other, the number of states amounts to 6N/4. For a light
tetrahedron connected to the four dark tetrahedra having 64

choices of 2-in-2-out structures, the probability of a light
tetrahedron to also satisfy the 2-in-2-out is 3/8 on average.
Hence, we can roughly estimate the number of the ground
states as

Wwater ice = 6
N
4

(
3

8

) N
4

=
(

3

2

) N
2

, (A1)

and the entropy becomes

Swater ice/N = kB

N
loge

(
3

2

) N
2

≈ 0.203kB. (A2)

It is known that the exact solution of a checkerboard ice
is Sice = 0.216kB [52] and the numerical evaluation of the
pyrochlore ice is Sice = 0.205kB [53], which deviates only
by 1%.

Next, we employ this estimation to the JT ice model given
in Eq. (43). When we independently put 2-in-2-out structures
on all the dark tetrahedra, the probability that a light tetrahe-
dron among four nearest-neighbor dark tetrahedra satisfies the
bending rule mentioned in Sec. IV is 2/27. The number of the
ground states then becomes

WJT ice = 6
N
4

(
2

27

) N
4

=
(

2

3

) N
2

. (A3)

However, this estimation is unphysical since the number
WJT ice decreases with increasing system size and approaches
zero in the thermodynamic limit, which indicates a negative
residual entropy. This suggests that the mean-field evaluation
which assumes that there is an extensive degeneracy does not
apply to the JT ice. In fact, we find that there are at least 12
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FIG. 13. Cooling-rate dependencies of (a) internal energy E/ε

and (b) fraction of 2-in-2-out structure P2−2. In all cases, the system
is fully equilibrated initially at kBT/ε = 6.00 and then the temper-
ature is lowered by a small step �(kBT/ε) = 0.01 where we take
τcool MCS both for equilibration and for taking thermal averages
〈· · ·〉 at each temperature. Here we display results for τcool = 1.0 ×
101, 102, 103, 104, 106 with L = 9.

states that satisfy the JT ice rule and have a periodic structure
in a period of a unit cell.

Another way of considering the ice rule is roughly given
as follows: let us first consider standard ice, and not classify
the color of red and blue bonds. For a given ice configu-
ration of a dark tetrahedron in Fig. 6(a) putting two bonds
without connecting inside the tetrahedron, we find three dif-
ferent 2-in-2-out configurations for each of the surrounding
light tetrahedra. This means that we have 3N/2 configura-
tions for uncolored bond connections which are exact for
both the checkerboard and the pyrochlore lattice. However,
we need to assign red and blue alternatively to these bonds,
and the probability of having a proper connection for a sin-
gle light tetrahedron is roughly 0.5 when the patterns of the
surrounding four dark tetrahedra are determined. This will
yield Wwater ice = (3/2)N/2. In the same context, for the JT
ice, we can assign a noncolored bond as 2N/2 following a
bending rule. When assigning blue and red colors, we need
to divide it by 2, and the resultant configuration number can

FIG. 14. Density plot of the static structure factor Sq of the
JT ice model obtained at kBT/ε = 3.0 for several system sizes
L = 6, 8, 10, 12 in the cooling process. We plot three slices
in the q space as q = (qx/2π, qy/2π, 0), (0, qy/2π, qz/2π ), and
(qx/2π, 0, qz/2π ).

be WJT ice ∼ (2/2)N/2 = 1. This may suggest that the entropy
of the JT ice is zero, and WJT ice � 12 is of less than the
order N .

APPENDIX B: HIGH-TEMPERATURE EXPANSION

To obtain the entropy in the high-temperature limit, we
perform the high-temperature expansion for the JT ice model.
Supposing that the inverse temperature β = ε/kBT is small
enough, i.e., β  1, we can write the partition function up to
the second order with respect to β as

Z = Tr
{σi}

exp(−βH )

≈ Tr
{σi}

[
1 − βH + β2H2

2

]
, (B1)

where Tr{σi} represents the sum of all microscopic states.
Using the relations Tr{σi}1 = 2N , Tr{σi}

∑
i, j σiσ j = 0, and

Tr{σi}(
∑

i, j σiσ j )2 = Npair2N [Npair: total number of (i j) pairs],
we obtain

Z ≈ 2N (1 + 15Nβ2ε2). (B2)
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The free energy per spin is calculated as

F

N
≈ − 1

β
(loge 2 + 15β2ε2). (B3)

Finally, we obtain the entropy in the high-temperature limit as

S

N
= − 1

N

dF

dT
= kB(loge 2 − 15β2ε2). (B4)

APPENDIX C: COOLING-RATE EFFECTS

In Figs. 13(a) and 13(b) we show the internal energy and
the fraction of 2-in-2-out structure obtained by different cool-
ing rates. The cooling-rate dependence appears at kBT � 4.8.
When we slow down the cooling rate, the energy decreases,
and P2−2 increases, while we find that the dependencies of the

cooling rate are well converged when the equilibrating MCS
is larger than 104.

APPENDIX D: SIZE DEPENDENCIES
OF THE STRUCTURE FACTORS

In Fig. 14 we show the static structure factor for several
system sizes L = 6, 8, 10, 12 in the supercooled liquid state.
The peaks near (±4π/3,±4π/3, 0) and (0,±4π/3,±4π/3)
but slightly off these points are observed for different L, which
corresponds to the nearly threefold periodic short-range order-
ing. However, the precise peak positions differ for different
sizes, indicating that the size and the periodic boundary con-
ditions of a finite-size lattice pin the most favorable structures.
This result indicates that there is an underlying competition of
different orders in the supercooled JT ice phase.
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