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Competition between cell types under cell cycle regulation with apoptosis
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Competition between different cell types plays a crucial role in bacterial ecology, developmental biology,
and tumor growth. We study how cells compete in 2D by using both a mean field theory and particle-based
simulations. We employ a mechanical model that incorporates a stylized form of cell cycle regulation to control
cell division events. This is extended to treat multiple cell types with different rates of programed cell death
(apoptosis) and characteristic cell-cycle control pressures. Analytic predictions for the invasion speed and the
coexistence line are in agreement with simulations. Synchronization in the cell division/apoptosis events can
emerge, leading to oscillations in pressure and cell-cycle activity. We also study the invasion or elimination
of small (pre)cancerous colonies. We show how a Laplace pressure at the colony interface, here controlled by
differential cell adhesion, shifts the coexistence line; there are cell types that can invade when starting from a
large colony but will be eliminated if the colony is small.
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Cell competition occurs in a variety of contexts. These
range from essentially collaborative, e.g., mutual organization
of tissues during development or wound healing, to compet-
itive, e.g., different bacterial species challenging each other
for space within some environment. Cell competition not only
maintains tissue homeostasis, but can be seen as the origin
of tumor development when cancer cells outcompete healthy
host cells [1–6]. Recent experimental and simulation stud-
ies have shed light on how stresses impact cell growth and
proliferation [7,8] and how homeostatic pressure differences
influence the competition outcome [9,10]. Previous studies
[11–14] have not incorporated any sort of internal biochem-
ical/genetic regulatory network, e.g., including the cell cycle
and its associated signaling and apoptotic pathways, insofar
as these are not already considered part of the cell cycle. In
what follows, we consider such a generalized form of the cell
cycle. While pressure-dependent apoptosis is a well known
phenomenon, it is important to understand that there are very
few mechanisms by which pressure can directly affect the cell,
apart from at extreme pressure when the cell mechanically
ruptures. Mechanical rupture is a direct physical response at
the level of a cell, but such direct physical effects are not
the focus of the present work. Under less extreme condi-
tions pressure does not directly influence a cell’s decisions
to grow, divide, or die. Rather these decisions are made by
a complex genetic regulatory machine that we refer to as the
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(extended) cell cycle. The cell does not possess a physical
pressure sensor, directly coupled to growth and death. Rather
it indirectly senses mechanical and/or osmotic stresses at the
(supra)molecular level, e.g., via an effect on membrane focal
adhesion complexes or cortical cytoskeletal activity; the pre-
cise mechanism is unknown. The state of these molecules is
then signaled to the cell cycle via biochemical (not physical)
signaling pathways. This information is integrated over some
response time (analogous to τr in the model we use below).
The cell then makes a biochemical decision, based on this
signaling. Note that this is not at all the same picture as a direct
pressure sensor; such a thing does not exist in a cell in any
meaningful sense. It is our belief that a stylized version of the
cell cycle regulatory mechanism must therefore be included if
we are ever to have any prospect of better integrating future
biological experiments (e.g., the effect of genetic manipula-
tions) into a hybrid biochemical-physical model that deals
with the stresses induced in the physical tissue. Indeed such
a model also seems necessary to create a conceptual bridge
between cell biologists, who consider the cell a biochemical
“computer” and physicists, who build models based on the
Newtonian response of generalized fluids.

Competition outcomes in vivo depend both on how pres-
sure affects growth and division and on the rate of apoptosis.
These properties vary between cell lines or following mu-
tations [15–18]. In this study we ask how pressure and
apoptosis together control the competition output. Our pri-
mary question is to ask how the role of pressure-dependent
apoptosis is tensioned against division rate in determining
competition outcomes. We conclude that for “sharp” apop-
totic response, in which cells that have been stressed for
a long time are much more likely to die, the characteristic
pressure underlying the division rate is qualitatively the more
important.
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Tumor development begins with one single mutated cell
but not all such cells will end in tumor formation; many are
eliminated due to some competition with host cells. Only
those that proliferate lead to tumors [19–23]. With this in
mind we will also study how initial conditions impact the
competition outcome.

Model. We model cell growth and division using a
mechanochemical model that incorporates a stylized version
of cell-cycle regulation, similar to that previously used to
study the unrestricted growth of colonies made up of a single
cell type [24]. We first outline how this model can be general-
ized to multiple cell types and then how it can be extended to
include apoptosis, before using it to studying cell competition.
Our stylized model can certainly be extended to include more
biochemically complex responses. Nonetheless, we see it as
about the simplest possible version of a model that combines
a (stylized) cell cycle with a physical description. The actual
parameter values that control it are likely very different in
different systems, as discussed below. Our model is distinct
from others in the literature as it directly controls the cell
volume, and does not involve density explicitly (although they
are related as ρ = 1/v). It also correctly captures the feature
that cell decisions, like division and apoptosis, are controlled
by the cell cycle, an internal biochemical/genetic regulatory
network. Such cell decisions are not directly controlled by
physical variables, like pressure or density, although these do
affect the cell cycle [25,26]. The cell cycle is an orbit in a high
dimensional biochemical/genetic space. Here we simplify by
projecting this onto a stylized two dimensional control space
parametrized by (polar) variables r, the cell cycle activity, and
θ an irreversible angular phase, assumed to advance at a rate
proportional to the activity

θ̇ = ωr . (1)

In our simulations ω is assigned, post division, to each daugh-
ter cell and is drawn from a normal distribution with mean
〈ω〉 = 2π/τdiv and standard deviation τdiv/10, with τdiv being
the nominal division time of an unstressed cell at r = 1. The
activity is assumed to obey

ṙ/r = (1 − r − p/pr )/τr, (2)

involving a cell cycle signal integration time τr and a charac-
teristic reference pressure pr , above which the cells eventually
become quiescent and stop dividing. The cell volume change
between division events is then a combination of growth,
proportional to activity r with a dimensionless growth rate
c, and reversion to a minimal quiescent volume Vq, with a
characteristic recovery time τv

V̇ /V = c θ̇ − (V/Vq − 1)/τv. (3)

Cell division occurs at θ = 2nπ with n ∈ Z and is a process
that replaces one cell with two daughters, each with half the
volume 1×V → 2×V/2 [24]. In what follows we nondimen-
sionalize all times (rates) and lengths in units τdiv = 1 and
Vq = 1.

Cells are assumed to undergo programed cell death at rate
K (r), controlled by the cell cycle [27–30]. We assume a sim-
ple form for the apoptosis rate for each cell

K = k(0)(1 − r)γ (4)

with k(0) the death rate at r = 0. We choose a sharp apoptotic
response near r = 0 by taking γ = 8 in what follows so that
quiescent cells die more frequently than those that are more
actively dividing [28,29,31–34].

Our particle-based simulations in 2D use Eqs. (1) and (4)
to characterize each cell, carrying its own value of r, θ and
V . These equations are parametrized differently for each cell
type: cells of type i have reference pressure pri and apoptotic
rate constant k(0)

i . In general they could also be assigned
different growth rate ci, quiescent volume (area in 2D) Vqi,

and cell cycle times τvi and τri, although in what follows we
set these last four parameters to be the same for all cell types,
for simplicity.

These parameters can vary widely between different or-
ganisms and cell types. In microbial populations, such as E.
coli, cells are known to have a strong resistance to pressure,
with division only stalling during extended, extreme pressure
conditions. Such conditions can occur in long channels, rem-
iniscent of so-called “mother machine” devices [35]. In the
context of our model this means one would expect these sys-
tems to have a high reference pressure pr and a long division
recovery time τr . They also tend to become quiescent, rather
than apoptotic, and so would have a very small value of k(0). In
contrast, MDCK cells are known to be rather sensitive to local
pressure and/or density and quickly switch to quiescent and/or
apoptotic response [36]. Animal epithelial cells also seem to
be rather sensitive to small pressure changes as evidenced by
the growth profile in spheroids [33]. Both cases correspond to
a smaller value of pr , shorter τr, and larger k(0). In the context
of the transition to cancer it is generally agreed that lack of
control of cell cycle regulation combined with apoptotic mis-
function enables the invasion of tumor colonies [37]. We can
model this by either imposing a higher pr or lower apoptotic
rate k(0) for cancer cells, compared with wild-type cells. When
there is intratumor heterogeneity, several tumor colonies can
coexist [38]; although for simplicity, we consider only the case
of two cell types in what follows.

Cells are physically modeled as disks with area V , having a
strong repulsive interaction with all cells and a weaker, short-
ranged attraction with cells of the same type, as described in
[24]. These serve to maintain confluence while minimizing
cell overlap. Cells moving on a substrate experience a friction
force, opposing their velocity, with friction constant ζ = 0.01,
non-dimensionalized in units of the smaller reference pres-
sure. We neglect active cell motility for simplicity. Our choice
of sliding friction and a lack of motility are natural assump-
tions for nonmotile E. coli. Epithelial tissues can have strong
friction with the substrate due to cell adhesions and active
motile forces exerted by the cells are important in determining
their motion, particularly near colony edges. While we neglect
motility in the present work we have previously shown that
our model qualitatively reproduces several key properties of
motile colonies such as their cell area distributions, their cell
division times, and the crossover from exponential growth
to a growth regime in which the tissue boundary moves at
constant speed [24]. Because motile stresses are not a focus
in this work we neglect them. In what follows we assume
that the B cells have the smaller reference pressure, without
loss of generality. The dynamics is then overdamped and is
numerically determined by using force balance to solve for
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FIG. 1. (a) Simulation snapshots showing the invasion of A cells
(red) at the expense of B (blue), simulated in a periodic box of size
30×30. The cells are pre-equilibrated, separated by a virtual wall
that is removed at t = 0. Below is shown (b) the evolution of cell
number N , (c) cell cycle activity r, and (d) the cell-type-averaged
pressure p (color denotes cell type); dashed lines represent the cell-
type reference pressures. Note the emergence of synchronisation
in birth/death manifested in oscillations in these mechanochemical
variables. Here prA/prB = 1.5, k(0)

B = 0.1, k(0)
A /k(0)

B = 60, τr = τv = 1;
the A cells invade even though they have a much larger apoptotic
death rate. (e) Shows the peak value of the squared mode ampli-
tude in the power spectrum a2

A = Maxω〈|NA(ω)|2〉 as a function of
τr = τv . This reveals a role for the cell cycle parameters in the os-
cillations. (f), (g) Shows the corresponding peak (power) frequency
ωA = ArgMaxω〈|NA(ω)|2〉 for a range of k(0)

A , k(0)
B and prA/prB with

color hues representing different k(0)
B and lightness of the amplitude

aA. For details, see SM and Fig. S11.

the cell velocities. Cell division events create two overlapping
disks, oriented along an axis with random direction, with the
same combined area as their mother. Results from a typical
simulation are shown in Figs. 1(a)–1(d); see also Supple-
mental Material movies [39]. Here synchronization in cell
division/apoptosis events leads to oscillations in the pressure,
as well as both the number and activity of the proliferating
(A) species, with a timescale of a few division times. This
synchronization appears quite robust as it persists across a
broad regime of parameters, see Figs. 1(e)–1(g) and S1 to
S9. We find that the amplitude of the oscillations increases
with the cell cycle times τr and τv . The frequency of the
oscillations increases with the death rate of the cell type but
is independent of the reference pressure. This synchronization
is reminiscent of developmental processes [40–44], although
signaling mechanisms are likely to be more complex in this
context. Oscillations like these cannot be recovered in litera-
ture models that do not contain a faithful representation of the
cell-cycle oscillator as there is no oscillator to entrain (phase

FIG. 2. Phase diagram for cell competition. Color bars indicate
the change in A cells as 	 = [NA(t = 100τdiv ) − NA(0)]/NA(0). The
prediction for the coexistence line, obtained from the continuum the-
ory, is shown as dashed lines. Panels (a)–(c) show the outcome from
equal initial volumes of A and B in a channel setting, as shown in
Fig. 1(a). Three different values of k(0)

B are shown. The system shown
in Figs. 1(a)–1(d) corresponds to the star 
 in panel (b), just below
the coexistence line. Panels (d)–(f) show three different initial condi-
tions containing small initial colonies of A cells (NA(0) = 19, 7, 1 as
sketched in the insets) in host B tissue at k(0)

B = 0.1. These are results
of simulations in periodic systems of size 30×30.

lock) in such models. We see this as an important feature of
our work.

Figure 2 shows the results from a suite of simulations
performed under different conditions. The line where A and B
cells coexist indefinitely is seen to be in good agreement with
the continuum analysis developed below. See also Figs. S1 to
S9 and SM movies 1-6.

We also study the invasion or elimination of small
(pre)cancerous colonies, see Figs. 2(d)–2(f). Here a Laplace
pressure arises due to a surface tension at the colony in-
terface, here controled by differential cell adhesion; we set
the attraction between A and B cells to zero. This shifts the
coexistence line. A noteworthy result is that there are cell
types that can invade when starting from a large colony but
will be eliminated if the colony is small, i.e., they lie between
the corresponding coexistence lines. As the initial colony size
is decreased it becomes more likely that stochastic colonies go
extinct purely due to chance, leading to less precise agreement
with the noiseless continuum theory. These results are broadly
consistent with what is known from experimental studies [6]:
small tumors often do not invade and there is an established
role in stresses from the tumor “microenvironment”.

Continuum theory. With a view to better understanding the
simulation results we compare with a mean field theory. Here
we construct v to be the division-adjusted mean volume of a
cell. In the mean field this can be written

v̇/v = r(c − ln 2) − (v − 1)/τv. (5)
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The term −r ln 2 reflects halving in cell volume due to
cell division with rate r. An unstressed cell with r = 1
has division-adjusted mean volume v
 = 1 + τv (c − ln 2). In
what follows we choose v
 = 5 and τr = τv = 1. The conti-
nuity equation involves the local cell velocity u and must be
adjusted to account for apoptosis at rate K (r)

∇ · u = v̇/v + r ln 2 − K (r). (6)

Here v̇/v accounts for changes in the mean cell volume, r ln 2
is the cell growth rate, and K (r) is the death rate. Note that
cell division is volume preserving and so does not appear in
Eq. (6) explicitly.

We assume cells move on a substrate with a friction coeffi-
cient ζ , determining the gradient of pressure p assumed to be
of Darcy-like form

∇p = −ζu. (7)

This constitutive relationship is appropriate for quasi-2D
systems in which cells reside on a frictional substrate. For
tissues in 3D, if an external frame of reference is absent, a
covariant description may be required. In this case the leading
order stress gradients would depend on second spatial deriva-
tives of the local velocity field [45]. However, it remains an
open question whether a Darcy-like term still dominates in
cell colonies in 3D, e.g., due to the role of a semi-permanent
extra-cellular matrix. The question of whether frictional inter-
actions come from some sort of contact friction/lubrication
or from direct adhesion is immaterial, at least at the level
of Newtonian theories (like ours) that involve only a friction
coefficient (or viscosity) although it is possible that non-
Newtonian viscoelastic effects may also play a role.

In the presence of the flow field u the laboratory-frame
cell activity r and volume v are given by the advected forms
of Eqs. (2) and (5). In what follows we will study two cell
colonies in physical contact with ui, ri, vi, and pi describing
each of the two cell types i ∈ {A, B}. In order to determine the
system dynamics in general one must simultaneously solve for
all these variables using two sets of equations of the form of
Eqs. (2) and (5) to (7) with continuity of pressure and velocity
as boundary conditions.

Channel flow. Following the geometry of most of our sim-
ulations we consider cells confined in a periodic 2D channel,
aligned along the x direction. The interface between the two
cell types is parallel to the y direction. We seek solutions in
which there is a steady-state front of dividing cells moving
with constant speed s. We transform according to z = x − st
so that the boundary between A (z < 0) and B (z > 0) cells lies
at z = 0 and the equations can be cast in 1D by symmetry. We
use a prime (′) to denote ∂

∂z and write the comoving, advected
versions of Eqs. (2) and (5) to (7) as

p′
i = −ζui, (8)

(ui − s)r′
i = ri(1 − ri − pi/pri )/τr, (9)

(ui − s)v′
i = vi(ri(v
 − 1) − (vi − 1))/τv, (10)

u′
i = cri − (vi − 1)/τv − k(0)

i (1 − ri )γ . (11)

Solving these equations and matching the boundary values in
a general setting is numerically tedious. However, we antici-

pate that cell types will often be quite closely matched, e.g.,
mutant strains of the same bacteria or cancer/healthy tissue
where tumor growth rates are usually extremely slow. In such
cases the boundary will be moving slowly and spatial varia-
tions in the pressure and other variables will be small. This
motivates a perturbative approach in which we will expand
the variables about their values deep in the bulk (on either
side of an interface). Denoting small variables with a δ-prefix
we have s = δs, ui = δui, vi = v̄i + δvi, pi = p̄i + δpi, and
ri = r̄i + δri with the v̄, p̄, and r̄ values representing the bulk
values at z → −∞ (the A phase) or z → ∞ (the B phase). At
zeroth order the cells are stationary with homeostatic activity
r̄i, volume v̄i, and pressure p̄i that are completely determined
by the death rate k(0)

i and reference pressure pri according to

1 − r̄i − p̄i/pri = 0, (12)

r̄i(v
 − 1) − (v̄i − 1) = 0, (13)

r̄i ln 2 − k(0)
i (1 − r̄i)γ = 0. (14)

At first order,

δp′
i = −ζ δui, (15)

0 = δri + δpi/pri, (16)

0 = δri(v
 − 1) − δvi, (17)

δu′
i = [

ln 2 + k(0)
i γ (1 − r̄i )γ−1

]
δri, (18)

from which one can show

δp′′
i = q2

i δpi, (19)

with a recovery length q−1
i defined by

qi =
√

ζ
(

ln 2 + k(0)
i γ (1 − r̄i )γ−1

)
/pri. (20)

The boundary conditions at the interface z = 0

pA(0) = pB(0), (21)

uA(0) = uB(0) = s, (22)

then determine the problem and hence the interface velocity

s = qAqB

ζ

p̄A − p̄B

qA + qB
. (23)

We compare Eq. (23) with the interface speed obtained from
simulations in Fig. 3 and find good agreement close to the
coexistence line. The discrepancy between the theory and
simulations on moving away from the coexistence line are due
to a combination of factors, including (i) failure of the per-
turbative analysis, (ii) the emergence of interface roughness
in the simulations, and (iii) the emergence of synchronization
(global oscillations) not captured in the theory that maps dis-
crete division and death events into a continuous process. The
coexistence line in Fig. 2 corresponds to matched homeostatic
pressures p̄A = p̄B except in panels (d)–(f) where we instead
solve for p̄A = p̄B + 	p with 	p the Laplace pressure. This
is extracted by averaging the intercell forces from appropriate
calibration simulations, see Fig. S10 for details.

Discussion and conclusion: We can see from Fig. 2(c) that
a cell type with a characteristic pressure pr only 30% larger
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FIG. 3. The mean interface speed s, positive when A is invading,
is nonzero off the coexistence line and is in best agreement with the
mean field theory Eq. (23) (solid lines) close to coexistence. In panels
(a)–(c) prA/prB is varied at constant k(0)

A /k(0)
B = 1; in (d)–(f) k(0)

A /k(0)
B

is varied at constant prA/prB = 1. For these cuts on the phase plane
the coexistence line lies at prA/prB = 1 and k(0)

A /k(0)
B = 1. Here the

periodic simulation box size is 200×30.

can invade another unless its death rate k(0) is more than two
orders of magnitude greater. The significance of this for biol-
ogy is in how the reference pressure seems to naturally emerge
as a strong control mechanism for cell invasion, even though
the fact that cancer cells typically have severely impaired
apoptotic response is commonly understood as the primary
reason for their invasiveness.

In this work we develop a model for competing cell
colonies that employs a mechanical model combined with a
stylized form of cell cycle control, incorporating apoptosis.

We study the competition between two cell colonies with dif-
ferent characteristic cell cycle control pressures and apoptosis
rates. The outcome depends on both apoptotic rate constants
and the ratio of the two characteristic cell cycle pressures.
Using both simulations and a mean field theory we identify
the coexistence line and show how the characteristic pressure
can naturally emerge as the stronger control parameter. We
further predict the invasion speed, away from coexistence. We
also show how interfacial tension between different cell types
can suppress the invasion of small cell colonies (tumours).
Finally, we observe that the birth/death events of invading
cells can partially synchronize, leading to the emergence of
global oscillations in cell number, pressure, and cell cycle
activity. Such a feature is inaccessible at the qualitative level
in models that do not encode an explicit oscillator, and is
reminiscent of similar synchronisation in developmental
biology. We hope that these predictions motivate experimental
studies on timescales of many division events not typically the
focus of current experiments.
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