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Three-dimensional phase separation under a nonstationary temperature field

Rikuya Ishikawa , Marie Tani , and Rei Kurita
Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo 192-0397, Japan

(Received 25 January 2022; revised 11 May 2022; accepted 12 August 2022; published 26 August 2022)

Pattern formation via nonequilibrium dynamical paths has been the focus of much recent attention. An
example is phase separation under the action of a nonstationary temperature field. Under directional quenching
(DQ), where a region at some “quenched” temperature spreads in one direction over time, it has been found that a
variety of patterns (random droplet, lamellar, and columnar patterns) may be formed by controlling the dynamics
of the quenching front in two dimensions. Although a similarly rich phenomenology may be expected in three
dimensions (3D), DQ in 3D would require temperature control in bulk, which is difficult to realize. Instead of
DQ, we fix the temperature gradient through the slab, and control of the surface temperature of both sides of
the slab (gradient cooling, GC). It seems similar to DQ and it is significantly easier to realize experimentally.
Here, we compare the mechanism of the phase separation in DQ with that in GC. It is found that no columnar
pattern is formed in GC. It is also revealed that a pattern formation mechanism in GC is clearly different from
conventional DQ.
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I. INTRODUCTION

Phase separation may occur when a well-mixed binary
system such as a metal alloy or liquid mixture is quenched.
As the phase separation proceeds, a droplet pattern or a bi-
continuous pattern is formed [1–11]. The patterns are related
to macroscopic properties such as mechanical properties [12],
electrical conductivity [13], and thermal conductivity [14].
There have also been many attempts to control pattern for-
mation during phase separation. Examples include double
quenching with two temperature quenches [15], manipula-
tion of the wettability of the surface on which a system is
mounted [16,17], phase separation under a temperature gra-
dient [18], and pattern formation making use of colloidal
inclusions, using both the wettability of the liquid-colloid
interface and the mobility of the colloids themselves [19,20].
Recently, pattern formation using directional quenching (DQ)
in two dimensions (2D), where a quenched region spreads
in one direction, has attracted much attention [21–25]. It is
worth noting that the temperature field in DQ is heteroge-
neous, but finally becomes homogeneous, the same as the
final state of a homogeneous quench, i.e., DQ gives rise to
phase separation via a different dynamical path with the same
destination. It has been reported that three types of patterns are
produced in 2D depending on the speed V of the quenching
front separating low- and high-temperature regions: a ran-
dom droplet and lamellar and columnar (or laterally oriented
lamellar) patterns [21–23]. Recently, we revealed that the
transition between lamellar and columnar patterns is caused
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by an effective confinement effect produced by the quenching
front [25].

However, DQ is an idealized quenching method, since
it requires control over the internal temperature of a bulk
sample. Nevertheless, the parameter dependent formation of
a random droplet, lamellar, and columnar patterns are widely
observed in systems mirroring the idea of DQ, for example,
the aggregation of colloids under radially propagating fronts
[26], phase separation due to temperature gradients formed
around colloids [27,28], recrystallization in sodium chloride
solution on substrates [29,30], and pattern formation due to
phase separation in films and collagen networks [31,32]. In
metallic alloys, eutectic patterns have been observed to self-
assemble perpendicular to the crystal-growth direction when
it solidifies in a certain direction [33–35]. These methods
are called directional solidification or directional ordering
[36]. Rich phenomenology of pattern formations were also
observed in liquid crystals and binary alloys using directional
ordering [37,38]. Such patterns are similar to the columnar
patterns seen in DQ, suggesting a link between directional
solidification and DQ.

The experimental realization of DQ in a three-dimensional
block of material may be quite difficult. Instead of DQ, cool-
ing via an adjacent surface may be considered as an alternative
method. For example, by tuning the temperature of both sides
of a slab of material, we may fix the temperature gradient
across the block; by reducing the temperature of both sides
at the same rate, the gradient is preserved while the system
is driven to quench from one side to the other. We call this
gradient cooling (GC). In this work, we undertook a system-
atic comparison of DQ and GC. It is found that the columnar
patterns of the majority phase seen under DQ are no longer
realized under GC. Although the difference may seem sub-
tle, we found through numerical simulation that the pattern
formation mechanism in conventional DQ and GC is qualita-
tively distinct.
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II. METHOD

The dynamics of phase separation under homogeneous
quenching is described by the Cahn-Hilliard-Cook equa-
tion [1,4,39]. A modified-Cahn-Hilliard-Cook equation was
proposed for systems with a temperature gradient. This equa-
tion takes account of the concentration transport due to the
temperature gradient [40]. Since the concentration transport
by a temperature gradient is proportional to �T/T , it can
be neglected when the quench is shallow i.e., the tempera-
ture gradient term (Ludwig-Soret effect) is neglected. Here,
we normalize length and time using a correlation length and
characteristic time at an initial temperature; we normalize the
concentration φ by the concentration after phase separation.
The normalized equations are given as

∂φ

∂t
= ∇2[ε(�r, t )φ + φ3 − ∇2φ] − �∇ · �g(�r, t ), (1)

where φ, �r, and t are normalized concentration, normalized
position, and normalized time, respectively. A normalized
temperature ε(�r ) is defined as ε(�r, t ) = [T (�r, t ) − Tc]/(T0 −
Tc), where T0 and Tc are the initial temperature and the crit-
ical temperature, respectively. When ε > 0, the mixed state
becomes stable; when ε < 0, phase separation occurs. Assum-
ing local equilibrium and applying the fluctuation-dissipation
relation, the correlation function of the dimensionless noise
g(�r, t ) can be described as

〈�gi(�r, t )�g j (�r′, t ′)〉 = �(�r )δi jδ(�r − �r′)δ(t − t ′), (2)

where i, j = x, y, z and �(�r ) corresponds to fluctuation
strength. Although �(�r ) is proportional to T (�r ), �(�r ) can
be regarded as constant since the term �T/T (�r ) can be
neglected at any �r. Then we set �(�r ) = 0.001 at any �r,
which corresponds to a noise amplitude at T (�r ) = T0. Here
we note that the thermal noise is given as perturbation for the
instability of the interface, and then the pattern formation is
insensitive for the value of �(�r ).

Due to the apparent difference in the temperature pro-
files, we refer to the system with phase separation driven
by three-dimensional DQ as the discontinuous system, and
the system with a fixed temperature gradient, i.e., the GC
system as the continuous system. To distinguish between the
temperatures of two systems, we denote the temperature in
the discontinuous system as εd and the temperature in the
continuous system as εc. Figure 1 shows the time evolution
of the temperature field for both εd and εc. The temperature εd

of the discontinuous system is set to

εd (z, t ) =
{

1 z > Vdt
−1 z � Vdt

, z ∈ [0, Lz], (3)

where Vd is the speed of the quenching front in the discontin-
uous system, and Lz is the system size in the z direction [see
Fig. 1(a)]. Meanwhile, the temperature εc of the continuous
system is set to

εc(z, t ) = max

(
z − Vct

Lz
,−1

)
, z ∈ [0, Lz], (4)

where Vc is the speed at which the isothermal surface where
εc = 0 moves in the continuous system [see Fig. 1(b)]. One
can see that there is a correspondence between the isothermal

FIG. 1. Time evolution of the temperature in the two systems.
(a) In the discontinuous system, the boundary between εd = −1 and
εd = 1 (quenching front, z = z f ) moves with a constant velocity Vd

from the bottom of the z axis at t = 0. (b) In the continuous system,
the linear temperature gradient is applied in the z direction, and the
temperatures at the top and bottom surfaces are quenched at the same
rate. The isothermal line where εc = 0 moves with constant velocity
Vc.

surface where εc = 0 and the quenching front of the discon-
tinuous system. In an experiment, Vc can be controlled by
tuning the rate at which the temperature of the top and bot-
tom surfaces is quenched. Finally, the temperature becomes
homogeneous as ε = −1 in both systems.

We note that the diffusion of the temperature can be de-
scribed as

∂ε

∂t
= Le∇2ε, (5)

where Le = K
L is Lewis number, K is the thermal diffusion

coefficient, and L is the concentration diffusion coefficient. In
a real system, K is about 10−4 m2/s in metal and 10−7 m2/s
in water, while L is about 10−12 m2/s in metal and 10−9 m2/s
in water. Thus, Le is about 108 in a metallic system and 100
in a water system. Since Le is quite large, the temperature can
be considered in equilibrium in a usual system. That is why
the temperature field is input as an equilibrium state instead
that we simulate the temperature field by the thermal diffusion
equation.

In this simulation, we set � = 0.001 for all �r. We used
periodic boundary conditions in the xz and yz planes, and
set a free surface in the xy plane. The system size is Lx :
Ly : Lz = 128 : 128 : 128. Hydrodynamic interactions were
neglected. The effect of latent heat was also neglected. The
initial concentration field is set to be asymmetric, with an av-
erage concentration of φ̄ = 0.1. First, we annealed the whole
system for a long time at ε(�r ) = 1 for the discontinuous
system, and ε(z) = z/Lz for the continuous system. DQ or
GC is then initiated at t = 0. All simulations were repeated
five times starting from different initial states. The data and
error bars shown are the mean and standard deviations over
the five runs.

III. RESULTS

A. Pattern formation

First, we study the V dependence of the pattern formation
during phase separation in the discontinuous and continuous
systems. The pattern is classified when the top surface is
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FIG. 2. Patterns at different V . The pattern is classified when the
top surface is quenched below ε = 0. Symbols correspond to points
simulated. Circles, diamonds, triangles, and squares correspond to
random droplet, random droplet-lamellar coexistence, lamellar, and
columnar patterns, respectively. Panel (a) is for the discontinuous
system, and panel (b) is for the continuous system.

quenched below ε = 0. Figures 2(a) and 2(b) show what pat-
terns are found at different front velocities. White and black in
the patterns correspond to the majority and minority phases,
respectively. In the discontinuous system, columnar, lamellar,
and random droplet patterns are formed as Vd is increased,
just like in two-dimensional DQ [21,25]. On the other hand, in
the continuous system, lamellar and random droplet patterns
are formed, but no columnar pattern is formed at least for
Vc � 0.005 (each pattern is also shown in Fig. 3).

Next, we show the time evolution of the patterns in the
discontinuous system. Figure 3(a1) shows the time evolution
of the xz section of the droplet pattern for the discontinuous
system when Vd = 10 (y = Ly/2) at t = 130, 500, and 1000
from left to right. Figure 3(a2) shows the xy section of the
pattern (z = Lz/2) at t = 1000. The speed of the front Vd is
faster than the dynamics of phase separation; a random droplet
pattern is thus formed just like for homogeneous quenching.
Figure 3(b1) shows lamellar pattern formation in the xz sec-
tion when Vd = 0.05 (y = Ly/2) at t = 200, 1400, and 4000.
Figure 3(b2) shows the pattern in the xy section (z = Lz/2)
at t = 4000. It is clear that the concentration is homoge-
neous in the xy section, confirming the lamellar structure.
At an early stage, the majority phase appears as a layer on
the bottom surface, since φ̄ = 0.1. A layer of the minor-
ity phase subsequently appears above the emerged majority
layer. This process alternates to create a lamellar pattern.
Figure 3(c1) shows an xz section of the pattern (y = Ly/2)
when Vd = 0.007 at t = 3600, 9600, and 19 500. Again, the
majority phase initially appears as a layer on the bottom
surface. However, unlike in the case of the lamellar pattern,
the minority phase appears perpendicular to the layer of the
majority phase. Figure 3(c2) shows an xy section (z = Lz/2) at
t = 19 500. It is found that the majority phase has a cylindrical
shape, and the minority phase forms a background matrix.
Here we note that the interface between the majority and
minority phases is flat in two-dimensional DQ and the lamel-
lar pattern geometrically equivalent to the columnar pattern
[25]. However, in three-dimensional DQ, a geometric distinc-
tion (curvature) emerges between the two phases due to an

FIG. 3. Time evolution of the patterns during phase separation.
Panels (a)–(c) correspond to the discontinuous system and panels
(d)–(e) correspond to the continuous system. Panels (1) correspond
to the xz section at y = Ly/2. Panels (2) correspond to xy section at
z = Lz/2 at the same time when the right image of panels (1), respec-
tively. (a) Random droplet pattern when Vd = 10 at t = 130, 500, and
1000. (b) Lamellar pattern when Vd = 0.05 at t = 200, 1400,

and 4000. (c) Columnar pattern when Vd = 0.007 at t = 3600, 9600,
and 19 500. (d) Random droplet pattern when Vc = 1 at t = 100, 150,
and 256. (e) Lamellar pattern in the xy plane (y = Ly/2) when
Vc = 0.01 at t = 5000, 12 800, and 25 600. The lamellar pattern be-
comes clear gradually over time in panel (e): this is different from
pattern evolution in the discontinuous system. In addition, a colum-
nar pattern is not formed in the continuous system at least when
Vc � 0.005.

increase of dimension. This geometric difference ultimately
leads to a significant difference in the coarsening process (see
section D). In addition, we also note that the formation of a
background matrix of the minority phase is in itself different
from what is seen during phase separation in homogeneous
quenching.

Next, we look at time evolution of the patterns in the con-
tinuous system. Figure 3(d1) shows an xz section (y = Ly/2)
of the pattern when Vc = 1 at t = 100, 150, and 256 from left
to right. Figure 3(d2) shows an xy section (z = Lz/2) of the
same pattern at t = 256. Since the phase separation cannot
keep up with the temperature change, a random droplet pattern
is formed, much like the discontinuous system. Figure 3(e1)
shows an xz section (y = Ly/2) of the pattern when Vc = 0.01
at t = 5000, 12 800, and 25 600. Figure 3(e2) shows an xy
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section (z = Lz/2) of the same pattern when t = 25 600. It is
confirmed that a lamellar pattern is formed when Vc = 0.01.
However, we note that the lamellar pattern only becomes grad-
ually clear over time: this is different from pattern evolution
in the discontinuous system.

B. Stability of the lamellar pattern in the discontinuous system

Here, we investigate the mechanism behind columnar
pattern formation in the discontinuous system. In two-
dimensional DQ, the majority layer appears first, followed
by fluctuations at its interface [25]. We note that the analy-
sis for the fluctuations at the interface in 3D is statistically
more reliable than that in 2D. When the fluctuations are large
enough to be stable, a columnar pattern is formed. It was also
reported that the fluctuations become large when the distance
between the interface and the quenching front is short. In
three-dimensional DQ, the interface of the first majority layer
is a two-dimensional plane, making it suitable for a more
quantitative analysis. To quantitatively evaluate the concen-
tration fluctuations at each z, we define the concentration
variance σ (z, t ) by the following formula:

σ (z, t ) =
∫

dxdy[φ(x, y, z, t ) − 〈φ(z, t )〉x,y]2

LxLy
, (6)

where

〈φ(z, t )〉x,y =
∫

dxdyφ(x, y, z, t )

LxLy
. (7)

When σ (z, t ) is zero, the concentration field is uniform in the
xy plane.

Figure 4(a) shows σ (z, t ) as a function of z and t when
Vd = 0.04 in the discontinuous system. When Vd = 0.04, a
lamellar pattern is formed. Note that darker regions corre-
spond to larger σ (z, t ). σ (z, t ) shows a peak when a new
layer is formed [see inset in Fig. 4(a)], suggesting that it
corresponds to interfacial fluctuations. Here, we define zm(t )
as the position where σ (z, t ) is largest at t ; we confirm that
zm(t ) corresponds to the position of the interface between the
layers. We also define t = τ as the time at which σ (zm, t ) is
maximized. Here, we define τ0 as a time when the interface
begins to fluctuate. Thus, τ − τ0 is the time period for growing
the fluctuations. Figure 4(b) shows that Vd dependence of
τ − τ0 in the discontinuous system. It is found that τ − τ0

increases with decreasing Vd .
To clarify the origin of interfacial fluctuations, we also

computed a structure factor S(q) by Fourier transforming the
concentration field in the plane at z = zm when Vd = 0.04 in
the discontinuous system. It is found that S(q) has a broad
peak at q = qm = 6; note that qm remains almost constant
between t = 190 and 240 [Fig. 5(a)]. In addition, the peak in-
tensity S(qm) increases exponentially over time at early times
[Fig. 5(b)]. These features are the same as what is expected
in the Cahn linear regime during spinodal decomposition [4].
Thus, this suggests that the interfacial fluctuations may be
related to spinodal decomposition. We note that the cor-
relation length of interfacial fluctuations in this system is
Lx/qm ≈ 21. It is different from the correlation length in or-
dinal spinodal decomposition (≈13 obtained by homogeneous
quenching in 2D). In DQ, the concentration field in the z direc-

FIG. 4. (a) σ (z, t ) when Vd = 0.04 in the discontinuous system.
Darker regions correspond to larger σ (z, t ). The red dashed line
shows the position of the quenching front [z = z f (t )]; the yellow
dashed line shows the position of the interface between layers [z =
zm(t )]. The insets are the patterns at y = Ly/2 at the times indicated
by green dashed lines, enlarged over the area enclosed by (x, z) =
(0, 0) - (30,30). (b) Vd dependence of τ − τ0 in the discontinuous
system. τ − τ0 increases with decreasing Vd .

tion is inhomogeneous, affecting the spinodal decomposition
at the interface. We note that any further theoretical discussion
is difficult since a linear stability analysis would be required
for nonsteady, heterogeneous systems. It was reported that the
lamellar pattern is again formed for much smaller V ≈ 10−4

in Ref. [23]. It means that the system cannot be regarded as
steady state even though V = 0.005.

Next, we show how Vd depends on σ (zm, τ ) in a range
where lamellar patterns are formed. The triangles in Fig. 6
correspond to σ (zm, τ ) in the discontinuous system. It is found
that σ (zm, τ ) is large not only near the boundary between
random droplets and lamellae, but also near the boundary
between lamellae and columns. This suggests that the stability
of the lamellar pattern is affected by Vd .

Here, we consider the stability of the lamellar pattern.
Because of the asymmetric initial concentration (φ̄ = 0.1),
a layer of the majority phase is initially formed at the base.
It is expected that the layer is stable when the flux in the
z direction jz is much larger than the flux in the x direc-
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FIG. 5. Structure factor of interfacial fluctuations when Vd =
0.04 in the discontinuous system. (a) S(q) has a peak at wavelength
qm = 6 and S(qm ) grows with time. (b) S(qm ) increases exponentially
over time at earlier stages, as shown by the solid line. This sug-
gests that the growth of interfacial fluctuations is related to spinodal
decomposition.

tion jx or y direction jy. We investigated how the flux near
the interface depends on Vd . We computed the flux using
ji = ∇i[εφ + φ3 − ∇2φ], where i = x, y, z. Furthermore, we
defined a parameter γ as follows:

γ = 〈| jx(zm, τ )|〉x,y + 〈| jy(zm, τ )|〉x,y

2〈| jz(zm, τ )|〉x,y
, (8)

where

〈| ji(zm, τ )|〉x,y =
∫

dxdy| ji(x, y, zm, τ )|
LxLy

. (9)

γ < 1 when the flux in the z direction is dominant, and vice
versa. The circles in Fig. 7 show the Vd dependence of γ . We
also show the distance �z(τ ) (=z f − zm) between the quench-
ing front z f (τ ) and the interface position zm(τ ) at t = τ . When
Vd � 2, γ and σ (zm, τ ) increase with increasing Vd [also see
Fig. 6]. Because of the large �z(τ ), the growth of the interface
does not keep up with the migration of the quenching front.
Thus, fluctuations grow above the interface or in bulk due to
spinodal decomposition. Meanwhile, when 0.3 � Vd � 1, γ

is small and σ (zm, τ ) is also small. Therefore, it is confirmed

FIG. 6. V dependence of σ (zm, τ ). Triangles and circles corre-
spond to σ (zm, τ ) in the discontinuous system and the continuous
system, respectively. σ (zm, τ ) is large near the pattern boundaries.
This suggests that the stability of the lamellar pattern is affected by
V .

FIG. 7. Vd dependence of γ (circles) and �z(τ ) (triangles) in the
discontinuous system. When Vd � 2, γ and �z increase with increas-
ing Vd . This indicates that fluctuations grow above the interface or in
bulk due to spinodal decomposition. When 0.3 � Vd � 1, γ is small
and the lamellar pattern is stable. When Vd � 0.2, γ increases with
decreasing Vd and �z(τ ). The effective confinement induced by the
quenching front suppresses jz, making the lamellar pattern unstable.

that the lamellar pattern is stable when the flux in the z di-
rection is dominant. When Vd � 0.2, γ increases again with
decreasing Vd and σ (zm, τ ) becomes larger. In this region, it is
found that �z(τ ) is small. Since a mixed state is stable above
z = z f , concentration flow across the quenching front is not
desirable; this means that jz at z = z f is small. Therefore, the
quenching front can be regarded as an effective boundary con-
dition. This effective confinement becomes stronger when �z
is small, inducing a smaller jz. As a result, γ becomes large,
and the stability of the lamellar pattern decreases. When Vd

is even smaller, the lamellar pattern finally becomes unstable
and a columnar pattern is formed. This result is consistent with
pattern formation in two-dimensional DQ [25], indicating that
the mechanism behind pattern formation is independent of
spatial dimensions.

C. Stability of the lamellar pattern in the continuous system

Next, we consider the stability of the lamellar pattern in the
continuous system. Shown by the circles in Fig. 6, σ (zm, τ )
monotonically decreases with decreasing Vc in the continuous
system. Since the interfacial fluctuations are small, columnar
patterns are not formed in the continuous system at least
for Vc � 0.005. To predict the pattern for Vc < 0.005, the
difference between the pattern formation mechanism for DQ
and GC needs to be clarified. Here, we consider the time
evolution of the concentration profile in both systems. Fig-
ure 8 shows the time evolution of 〈φ(z, t )〉x,y when V = 0.1
(lamellar patterns are formed in both systems) in Fig. 8(a)
the discontinuous system and in Fig. 8(b) the continuous sys-
tem. In the discontinuous system, the phase separation occurs
such that layers form sequentially in the quenched region,
reaching values of φ = ±1; this means that a large concentra-
tion difference is formed near the interface. This causes a large
jz near the interface, which stabilizes the lamellar pattern. On
the other hand, in the continuous system, a lamellar pattern
is still formed, but the value of φ is not ±1. Instead, the
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FIG. 8. Time evolution of 〈φ(z, t )〉x,y when V = 0.1. (a) In the
discontinuous system, layers of majority and minority phases form
sequentially. (b) In the continuous system, lamellar patterns form in
the entire quenched region, and the amplitude of 〈φ(z, t )〉x,y gradu-
ally increases over time.

equilibrium concentrations are φ = ±√−ε. The cooling in
the GC case is not a deep quench near the surface of zero
temperature. The pattern asymptotically approaches φ = ±1
over time, together with the changing local temperature. Here
we note that the flux in the continuous system is a few orders
of magnitude smaller in all directions than in the discontinu-
ous system, and that the system nearly reaches a steady state.
In the continuous system, when Vc is small, the temperature
changes slowly and a lamellar pattern is formed in the entire
quenched region from an early stage. Therefore, it is expected
that the lamellar pattern becomes stable with decreasing Vc,
and that a columnar pattern is not formed in the continuous
system even when Vc < 0.005.

D. Pattern formation and coarsening process

We investigate the pattern formation process of lamellar
pattern at the early stage. We define η as the lamellar thickness
at the bottom. We define the lamellar thickness as the length
of the lowest region where 〈φ(z, t )〉x,y > 0.5. Figure 9 shows

FIG. 9. Time evolution of η when V = 0.1. Triangles and circles
correspond to η in the discontinuous system and in the continuous
system, respectively. We define the lamellar thickness as the length
of the lowest region where 〈φ(z, t )〉x,y > 0.5. In the discontinuous
system, η saturates quickly. In contrast, in the continuous system, it
takes a long time before η saturates.

the time evolution of η when V = 0.1. In the discontinuous
system, η saturates quickly. In contrast, in the continuous
system, it takes a long time before η saturates. This result
is consistent with that φ in the continuous system gradually
increases with time as shown in Fig. 8(b).

We also investigate the coarsening process of the patterns
after the system is entirely quenched. The coarsening process
is decided only by the structure, rather than by the quenching
methods (DQ or GC). First, we investigate the coarsening of
the lamellar pattern. No coarsening is observed in the lamellar
pattern at later times since coarsening is fundamentally driven
by curvature of the interface [4]; the interface is flat in the
lamellar pattern. This is not the case for the columnar patterns
which formed in the discontinuous system; it has curvature
and therefore coarsens. As shown in Fig. 10(a), we define
λ as the thickness of the majority phase layer formed at the
bottom of the system, and ζ as the diameter of a column at
z = Lz/2. Figure 10(b) shows the time evolution of λ and ζ

for five independent runs. ζ is only given for times when the
cross section of the column is circular. It is found that both λ

and ζ increase with time. It suggests that a formed cylindrical
pattern should be stable since the cylinder becomes wider with
time. We also note that the system reaches an equilibrium
state when λ is constant after a long time. The reason why the
power varies from run to run largely could be that the small
system size of this simulation plays a significant effect. It is
expected that a simulation of a larger system will provide a
more accurate estimate.

IV. DISCUSSION

Here we discuss the strength of the confinement effect
in both discontinuous and continuous systems. In the dis-
continuous system, Fig. 8(a) shows that there is a clear
separation between 〈φ(z, t )〉x,y = 0.1 in the high-temperature
region (εd = 1) and 〈φ(z, t )〉x,y = ±1 in the low-temperature
region (εd = −1). The quenching front has the effect of
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FIG. 10. (a) λ is the thickness of the majority phase layer formed
at the bottom and ζ is a diameter of the column at z = Lz/2. (b) The
time evolution of λ and ζ when Vd = 0.005 at a later stage for five
runs. Both λ and ζ increase over time.

geometrically restricting the space (a finite-size effect) and
suppressing the flux beyond the front (a boundary effect).
When �z is comparable to the droplet size where it is a few
times larger than the correlation length in bulk ξ0 (≈11 ob-
tained by the homogeneous quenching in 3D) [see Fig. 7], the
effective finite-size effect prevents the formation of a random
droplet pattern, creating a lamellar pattern [41]. When �z
becomes even smaller (3–4 at Vd = 0.05), jz is suppressed by
the boundary effect of the quenching front, becoming com-
parable to jx and jy. We defined another correlation length
ξd (3–4) where jz becomes comparable to jx and jy. At this
point, the lamellar pattern becomes unstable and transitions to
a columnar pattern (Fig. 11).

FIG. 11. Relation between the pattern diagram and �z in the
discontinuous system. When �z is smaller than the droplet size
which is a few times larger than the correlation length in bulk ξ0,
the space is geometrically restricted, and then a lamellar pattern is
formed. Furthermore, when �z is smaller than the correlation length
ξd , the flux in the z direction is suppressed and the layered pattern
becomes unstable. Thus, a columnar pattern is formed.

In the continuous system, the space is geometrically re-
stricted in the same way as in the discontinuous system since
phase separation is restricted to the region where εc > 0.
Thus, a lamellar pattern is formed. However, the restoring
force for the concentration difference is weak around the
isothermal surface where εc = 0; the flow through this surface
is suppressed. That is, the isothermal surface where εc = 0
cannot be regarded as a wall in any way. Therefore, the lamella
structure is formed in the entire quenching region even at an
early stage, preventing the formation of columnar patterns.

Next, we discuss the reason why interfacial fluctuations
can occur but also decay over time during the formation of
lamellae [see Fig. 4(a)]. The position of the interface zm slowly
increases when the interface is formed, while the position of
the quenching front z f changes significantly faster than zm.
Before t = τ , �z is temporarily smaller than ξd , allowing
interfacial fluctuations to grow. A little later, �z exceeds ξd ,
stabilizing the lamellar pattern. On the other hand, when Vd is
too small and the time period over which �z < ξd is long, the
fluctuations grow enough to form the columnar pattern [see
Fig. 4(b)].

Finally, we compare our results with experiments looking
at eutectic crystal growth in a temperature gradient. In the
continuous system, no pattern perpendicular to the isothermal
surface is formed. However, in eutectic experiments per-
formed in the same way as in the continuous system, a pattern
perpendicular to the isothermal surface has indeed been ob-
served [33]. The eutectic system is different from the simple
system considered in this simulation. Two order parameters
are at least related in the eutectic system; a nonconserved
order parameter, describing the liquid-solid transition, and
the concentration, which is a conserved one, describing the
transition between the two solids.

V. SUMMARY

We study three-dimensional phase separation patterns in
two distinct systems, a discontinuous system with a step-like,
moving quenching front, and in a continuous system where a
constant-temperature gradient is maintained while the temper-
atures of both extremities of a sample are reduced at the same
rate. Depending on the migration speed V of the quenching
front and the isothermal surface where εc = 0, three types
of patterns (random droplet, lamellar, columnar patterns) are
formed in the discontinuous system and two types of patterns
(random droplet, lamellar patterns) are formed in the contin-
uous system. It is expected that there are two characteristic
lengths to determine the patterns (Fig. 11). When the effec-
tive confinement distance �z is smaller than the correlation
length in bulk ξ0, the space is geometrically restricted and a
pattern parallel to the wall is formed. Meanwhile, when �z
is smaller than a distance ξd , where the flux in the z direction
is suppressed such that it is comparable to the flux in the xy
direction, a pattern perpendicular to the wall is formed. On
the other hand, the isothermal surface where εc = 0 cannot
suppress the flux in the z direction in the continuous system,
meaning that ξd do not exist and a columnar pattern cannot be
formed in the continuous system. Thus, we conclude that the
mechanism of pattern formation using a temperature gradient
is significantly different from that by DQ. We hope that this
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study will lead not only to the development of new physical
understanding of pattern formation, but also be applied to the
engineering of microscopic structures.
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