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Gravitational wave matched filtering by quantum Monte Carlo integration
and quantum amplitude amplification
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The speedup of heavy numerical tasks by quantum computing is now actively investigated in various fields
including data analysis in physics and astronomy. In this paper, we propose a quantum algorithm for matched
filtering in gravitational wave (GW) data analysis based on the previous work by Gao et al. [Phys. Rev. Research
4, 023006 (2022)]. Our approach uses the quantum algorithm for Monte Carlo integration for the signal-to-noise
ratio (SNR) calculation instead of the fast Fourier transform used in Gao et al. and searches signal templates with
high SNR by quantum amplitude amplification. In this way, we achieve an exponential reduction of the qubit
number compared with Gao et al.’s algorithm, keeping a quadratic speedup over classical GW matched filtering
with respect to the template number.
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I. INTRODUCTION

Quantum computing [1] is a developing technology and is
expected to speed up some classes of computation that are
intractable in classical computing. The recent rapid advance in
quantum computer development has been stimulating research
on applications of quantum algorithms to concrete problems
in various fields (see Ref. [2] for a recent review).

In this paper, we study an application of some quantum
algorithms to a problem in gravitational wave (GW) exper-
iments, which measures the space-time distortion caused by
GWs with a laser interferometer. A recent paper [3] has
proposed the use of Grover’s search algorithm for matched fil-
tering, which is a commonly used technique to search a signal
buried in noisy data and is widely used in GW data analysis
[4–7]. Given a target signal waveform, called a template, we
take an inner product between a template and data to cancel
out the noise contribution and extract a signal. In fact, the first
GW was detected by the LIGO detectors in 2015 [8], and,
after that, the worldwide GW detector network has observed
tens of GW events using matched filtering [9–11].

A challenging point in GW matched filtering is the large
number of templates. The functional form of a GW signal is
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predicted by general relativity depending on the GW source
such as compact binary coalescence (CBC) [4–7], but it has
some parameters such as masses of the compact objects, spin
parameters, and luminosity distance. In order to get a high
signal-to-noise ratio (SNR), we must perform matched filter-
ing using a template with appropriate parameters. Therefore,
usually, we set sufficiently many points in the parameter space
and run an exhaustive search. That is, we repeat matched
filtering using templates one by one to find those that yield
SNR larger than some threshold. This is an extremely time-
consuming task and expected to be sped up by quantum
computing.

Fortunately, there exists a quantum algorithm for search-
ing, called Grover’s algorithm [12]. Given N data, x1, ..., xN ,
represented as bit strings and a condition F as a function
that maps a bit string to 0 or 1, Grover’s algorithm can find
“marked data” x such that F (x) = 1 making O(

√
N/n) calls to

F , where n is the number of marked data. Therefore, it is often
said that Grover’s algorithm provides a quadratic speedup
over the classical exhaustive search, which has O(N/n) query
complexity. As an application of this, Ref. [3] presented a
quantum algorithm for GW matched filtering. With the SNR
calculation implemented as a quantum circuit, the aforemen-
tioned algorithm can find a template with SNR higher than a
threshold ρth with Õ(M/

√
r(ρth )) complexity,1 where r(ρth )

is the fraction of templates that yield SNR ρ � ρth and M
is the number of points in the time-series data of the detec-
tor output, or, equivalently, the number of frequency bins of
Fourier transformed data. This is in fact a quadratic speedup
over the classical method, which has O(M/r(ρth )) complexity,
with respect to the template number.

1In the big-O notation, we use a symbol Õ(·), which hides logarith-
mic factors in O(·)
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However, this quantum algorithm has the following sub-
tlety. It uses fast Fourier transform (FFT) [13] for the SNR
calculation, which is also used in the usual classical way. FFT
simultaneously calculates SNR for M possible values of a
parameter called time of coalescence, with other parameter
fixed, in O(M log M ) time, whereas naively such a computa-
tion takes O(M2) time without FFT. However, in order to store
the intermediate and final calculation results, FFT requires
O(M ) qubits, which is a somewhat large number since M is
typically of order 4096 Hz × 256 s ∼ O(106), where 4096 Hz
is the sampling frequency and 256 s is the typical duration of
the data segment [7]. This might cause an issue on feasibility,
since fault-tolerant quantum computers will have a limitation
on the number of qubits available even in the future. It is
expected that creating one logical qubit requires thousands
or tens of thousands physical qubits for error correction [14],
and therefore realizing a quantum computer with millions of
qubits is very challenging.

In light of this, we propose an alternative quantum algo-
rithm for GW matched filtering, in which the SNR calculation
with FFT is replaced with the quantum algorithm for Monte
Carlo integration (QMCI) [15]. QMCI is a method to es-
timate an integral given in the finite sum approximation.
Thus, it can be applied to the calculation of SNR, which
includes frequency band integration and is in practice calcu-
lated as a sum of contributions from many Fourier modes.
In this approach, the required qubit number scales on M as
O(poly(log M )), which means an exponential reduction from
the FFT approach. Note that this is not just a straightforward
application of another quantum algorithm to a part of an
existing method, since the use of QMCI causes the following
issue. Unlike FFT, which calculates SNR deterministically,
QMCI inevitably accompanies errors, and thus comparing the
SNR calculated by QMCI with a single SNR threshold ρth

leads to a false alarm that the detector output yields SNR
larger than ρth for some templates despite there being no
such event. As a solution to this, we propose to set two
thresholds ρhard and ρsoft that have the following meanings:
We should never miss events with SNR ρ � ρhard, and we
do not want to be falsely alarmed by events with ρ < ρsoft.
Then, with QMCI accuracy set according to the difference
between ρhard and ρsoft, the proposed algorithm says “there
is a signal” for events with SNR ρ � ρhard with high prob-
ability, “there is no signal” for events with SNR ρ < ρsoft

with certainty, and either of these messages for events with
SNR ρ ∈ [ρsoft, ρhard ). The query complexity in this algorithm
is of order Õ(M/

√
r(ρhard )), which still indicates a quadratic

speedup.
The remaining part of this paper is organized as follows.

Section II introduces the preliminary knowledge. We out-
line GW matched filtering and some building-block quantum
algorithms such as Grover’s algorithm, quantum amplitude
amplification (QAA), quantum amplitude estimation (QAE),
and QMCI. Section III is the main part. Defining GW matched
filtering as a mathematical problem, we explain the existing
algorithm in [3], and present our modified algorithm in detail,
along with estimation of the query complexity and the qubit
number and a plausible setting on thresholds ρhard and ρsoft.
Section IV summarizes this paper. Some proofs are presented
in appendices.

II. PRELIMINARY

A. Notation

Here, we summarize some notations used in this paper.
R+ denotes the set of all positive real numbers. For n ∈ N,
we define [n] := {1, ..., n} and [n]0 := {0, 1, ..., n − 1}. For
any x ∈ R, if |x − y| � ε holds for some y ∈ R and ε ∈ R+,
we say that x is ε close to y and that x is an ε approxi-
mation of y. For any equation or inequality C, 1C takes 1
if C is satisfied, and 0 otherwise. For c ∈ C, c∗ denotes its
complex conjugate. For X = {x1, ..., xn} and Y = {y1, ..., yn},
finite sets of real numbers with same size n, we define the
sample mean Mean(X ) := 1

n

∑n
i=1 xi, the sample variance

Var(X ) := 1
n

∑n
i=1(xi − Mean(X ))2 and the sample covari-

ance Cov(X ,Y ) := 1
n

∑n
i=1(xi − Mean(X ))(yi − Mean(Y )).

For n ∈ N, In denotes the n × n identity matrix. For z ∈ C,
�z and �z are the real and imaginary parts of z.

B. Gravitational wave matched filtering

Here, we outline matched filtering in GW search experi-
ments [4–7]. Suppose that we are given the detector output
s(t ) as a function of time t , which is a sum of the signal h(t )
and the noise n(t ),

s(t ) = h(t ) + n(t ). (1)

We assume that the noise is Gaussian, which means that, for
each f ∈ R+, �ñ( f ) and �ñ( f ) are normal random variables
and

En[ñ( f )ñ∗( f ′)] = 1
2 Sn(| f |)δ( f − f ′) (2)

holds with the single-sided power spectrum density (PSD)
Sn. Here, for any function q(t ) in time domain, q̃( f ) :=∫∞
−∞ dte2π i f t q(t ) is its Fourier transform, En[·] denotes an

expectation with respect to randomness of the noise and δ(·)
is the Dirac delta function. We define the inner product of two
functions q(t ) and q′(t ) in time domain as

(q|q′) := 4�
(∫ ∞

0
df

q̃∗( f )q̃′( f )

Sn( f )

)
. (3)

The matched filtering search is performed by taking an inner
product of s(t ) and an appropriate filter function Q(t ) that
yields a large inner product with the targeted signal. The
function Q(t ) is often called a template and normalized as
(Q|Q) = 1. The template bank, the collection of templates,
is prepared based on theoretically predicted waveform of sig-
nals. The SNR for a detector output s and template Q is then
defined as

ρ = (Q|s)√
En[|(Q|n)|2]

= 4�
(∫ ∞

0
df

Q̃∗( f )s̃( f )

Sn( f )

)
. (4)

By setting a SNR threshold ρth, exhaustive search is per-
formed to find a template that gives a SNR larger than ρth

to claim a detection. In reality, nonstationary detector noise
known as glitches can generate large values of ρ and cause
false detections. To mitigate the effect of glitches, what is
done in practice is to modify the variable used to rank the
events. Instead of the SNR, real GW searches use more com-
plicated ranking statistics, which include signal consistency
tests such as χ2 [16]. In this paper, we will only consider
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the SNR as the ranking statistic for simplicity, but the ideas
of our quantum algorithm could be applied to searches with
more complicated ranking statistics. Hereafter, we write each
Fourier transformed template as Q̃m( f )e−2π i f t0 , where t0 is the
time of coalescence and the dependency on other parameters
(intrinsic parameters) is put into Q̃m. Here, we assume that
there are Ntemp candidates of the intrinsic parameter set in the
template bank and label the functions Q̃m by m ∈ [Ntemp]0.

In reality, we have a detector output as a sequence of
discrete points in time [7]. Suppose that a sequence of s(t )
is given by {s(τl )}l=0,...,M−1 at M time points τ0 = 0, τ1 =
�t, ..., τM−1 = (M − 1)�t with interval �t . In such a situ-
ation, Fourier transforms are given in the discrete form: for
each k ∈ {0, 1, ..., M − 1}. Thus, we redefine s̃ as

s̃( fk ) := �t
M−1∑
l=0

s(τl )e
2π ikl/M , (5)

where fk = k/T and T = M�t , and similar quantities h̃( fk )
and ñ( fk ) for h(t ) and n(t ). �ñ( fk ) and �ñ( fk ) are still normal
random variables but Eq. (2) is now converted into [17]

En[ñ( fk )ñ∗( fl )] = 1
2 Sn( fk )T δk,l , (6)

where δk,l is the Kronecker delta. Then, the SNR now be-
comes

ρm, j = 4

M�t
�
⎛⎝M

2 −1∑
k=1

Q̃∗
m( fk )s̃( fk )

Sn( fk )
e2π i jk/M

⎞⎠, (7)

for the mth intrinsic parameter set and the time of coales-
cence given as t0 = j�t with j ∈ [M]0.2 Here and hereafter,
we assume that M is even. In the usual way of classical
computing, although it seemingly takes O(M2) computational
time to compute Eq. (7) for all j ∈ [M]0 with m fixed, we
can do this in O(M log M ) time using FFT [13]. This means
that, for a fixed intrinsic parameter set, we can quickly search
the optimal t0 in { j�t} j=0,...,M−1 and obtain the optimal SNR
ρm := max j∈[M]0 ρm, j , which is why t0 is dealt with separately
from other template parameters in the conventional GW data
analysis. On the other hand, for the other intrinsic parameters,
we calculate ρm for each m ∈ [Ntemp]0 one by one until we
get ρm � ρth, which results in the number of floating-point
operations of order

O

(
M log M

r(ρth )

)
(8)

for r(ρth ) > 0. Here

r(ρ) := |{m ∈ [Ntemp]0 | ρm � ρ}|
Ntemp

(9)

is the fraction of intrinsic parameter sets in the template banks
that yields SNRs larger than ρ, with time of coalescence
optimized. When r(ρth ) = 0, we have to go through all the

2The sum in Eq. (7) runs over k ∈ [ M
2 − 1] rather than k ∈ [M]0

because we use the one-sided power spectral density as defined in
Eq. (2). See [7] for the detail.

template and thus the number of floating-point operations is

O(NtempM log M ). (10)

Unlike the above, as we will see later, we do not use FFT
in the proposed quantum method. For later convenience, we
rewrite Eq. (7) as

ρm, j = 2

M

M
2 −1∑
k=1

ρ̃m, j,k,

ρ̃m, j,k := �
(

2Q̃∗
m( fk )s̃( fk )

Sn( fk )�t

)
cos

(
2π jk

M

)
−�
(

2Q̃∗
m( fk )s̃( fk )

Sn( fk )�t

)
sin

(
2π jk

M

)
, (11)

and set ρ̃m, j,0 = 0.

C. Representation of real numbers on qubits
and some basic quantum circuits

In numerical calculations in this paper, we use bit strings
on qubits as fixed-point binary representations of real numbers
and, for x ∈ R, we denote by |x〉 the computational basis
state on a quantum register, which corresponds to x. Unless
otherwise stated, we assume that each register has Ndig qubits,
where Ndig is a sufficiently large positive integer set indepen-
dently from parameters in problems under consideration, and
neglect errors from finite-precision representation.

For computing with real numbers, we use the quantum
circuits for four basic arithmetic operations: addition
Oadd|x〉|y〉|0〉 = |x〉|y〉|x + y〉, subtraction Osub|x〉|y〉|0〉 =
|x〉|y〉|x − y〉, multiplication Omul|x〉|y〉|0〉 = |x〉|y〉|xy〉, and
division Odiv|x〉|y〉|0〉 = |x〉|y〉|x/y〉, where x, y are any real
numbers (y �= 0 for division) and some ancillary registers
may be undisplayed. In fact, concrete circuit implementations
for these operation have been presented [18–33]. These
circuits enable the calculation of rational functions. We also
use quantum circuits for calculation of elementary functions
f such as exponential, trigonometric functions, and so on:
O f |x〉|0〉 = |x〉| f (x)〉 for any x ∈ R. Such circuits can be
implemented through, for example, piecewise polynomial
approximation [34].

In addition to these circuits for numerical calculation,
we now list some oracles used in the proposed quan-
tum algorithm. A comparer Ocomp acts as Ocomp|x〉|y〉|0〉 =
|x〉|y〉(1x�y|1〉 + 1x<y|0〉) for any x, y ∈ R. This is actually
equivalent to subtraction x − y, since, if we adopt 2’s com-
plement method to represent negative numbers, the most
significant digit represents the sign of a number [35]. A Y
rotation with controlled angle gate OCY acts as OCY|θ〉|ψ〉 =
|θ〉 ⊗ RY(θ )|ψ〉, where

RY(θ ) :=
(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)
,

for any θ ∈ R and any single-qubit state |ψ〉. This is im-
plemented as a sequence of fixed-angle controlled Y-rotation
gates |0〉〈0| ⊗ I2 + |1〉〈1| ⊗ RY(θ ) [36], where θ ∈ R is pre-
fixed. We also use the oracle OEqPr

N , where N ∈ N, to generate
equiprobable superposition of states from |0〉 to |N − 1〉:
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OEqPr
N |0〉 = 1√

N

∑N−1
i=0 |i〉. If N = 2n with some n ∈ N, we can

generate such a state by operating a Hadamard gate on each
qubit in a n-qubit register. Also for N that is not a power
of 2, we can implement OEqPr

N by the method in [37] to
generate a state in which a given probability density p(x) is
amplitude-encoded, with p(x) set to the uniform density on
[0, (N − 1)/2n] with n = �log2 N�.

The last oracle we mention here is Omed
N that, for any N

real numbers x1, ..., xN , outputs the median med(x1, ..., xN ):
Omed

N |x1〉 · · · |xN 〉|0〉 = |x1〉 · · · |xN 〉|med(x1, ..., xN )〉. This op-
eration is implemented as follows. First, we transform
|x1〉 · · · |xN 〉 to |xsort

1 〉 · · · |xsort
N 〉, where xsort

1 , ..., xsort
N is a se-

quence made by ascending sort of x1, ..., xN and some
ancillary qubits are not displayed.3 Then, we let the number on
the midmost register be med(x1, ..., xN ). Note that exchange
based sort algorithms such as bubble sort [38] can be imple-
mented since the operation

|x〉|y〉|0〉 → |x〉|y〉|1x�y〉 →
{|y〉|x〉|1〉; if x � y

|x〉|y〉|0〉; otherwise
, (12)

is possible for any x, y ∈ R, where we use Ocomp and
controlled SWAP gates at the first and second arrows, respec-
tively.

Hereafter, we collectively call the above oracles arithmetic
oracles.

D. Grover’s algorithm and quantum amplitude amplification

Grover’s algorithm [12] is a quantum algorithm for search-
ing a “marked entry” x, which satisfies some condition given
as a binary-valued function, from an unstructured database.
Formally, we have the following theorem.

Theorem 1. Let n ∈ N and F : {0, 1}n → {0, 1} is a func-
tion such that F (xtar ) = 1 for one element xtar ∈ {0, 1}n and
F (x) = 0 for any x ∈ {0, 1}n \ {xtar}. Suppose that we are
given an access to an oracle OF on a system consisting of a
n-qubit register and a qubit such that OF |x〉|0〉 = OF |x〉|F (x)〉
for any x ∈ {0, 1}n. Then, for any δ ∈ (0, 1), there exists a
quantum algorithm that, with probability at least 1 − δ, out-
puts xtar making O(

√
N log δ−1) calls to OF , where N := 2n.

This is often called a quadratic speedup over classical
search methods that takes O(N ) time for the same problem.

Besides, there exists a quantum algorithm called QAA
[39,40], which can be seen as an extension of Grover’s al-
gorithm. It is an algorithm to amplify the amplitude of the
“marked state” in a given superposition and obtain the state.
Formally, the following theorem holds.

Theorem 2. Suppose that we are given an access to an
oracle A that acts on a system consisting of a n-qubit register
and a single-qubit register as

A|0〉|0〉 = √
a|φ1〉|1〉 + √

1 − a|φ0〉|0〉 =: |�〉, (13)

where |φ0〉 and |φ1〉 are some quantum states on the regis-
ter and a ∈ [0, 1). Then, for any γ , δ ∈ (0, 1), there exists a

3In this ascending sort operation, unitarity holds in the system
including ancillary qubits.

quantum algorithm QAA(A, γ , δ) that uses O(n) qubits and
behaves as follows:

(i) The output of the algorithm is either of
(A) the message “success” and the quantum state |φ1〉
(B) the message “failure”

(ii) If a � γ , the algorithm outputs (A) with probability at
least 1 − δ, making O( log δ−1√

a
) queries to A.

(iii) If a < γ , the algorithm outputs either (A) or (B),
making O( log δ−1

√
γ

) queries to A.

The procedure of QAA(A, γ , δ) is presented in Algorithm
1. Here, G, the so-called Grover operator, is defined as

G := −AS0A−1Sχ . (14)

Sχ is an operator that acts as Sχ |ψ〉|0〉 = |ψ〉|0〉 and
Sχ |ψ〉|1〉 = −|ψ〉|0〉, where |ψ〉 is any state on the n-qubit
register, and implemented just as a Z gate on the single-
qubit register. The operator S0 acts as S0|0〉|0〉 = −|0〉|0〉 and
S0|�〉 = |�〉 for any other computational basis states |�〉 on
the system. We can implement this using a multicontrolled Z
gate.

Before presenting the proof of Theorem 2, let us roughly
see how Algorithm 1 works. We can show that, for any j ∈ N,

Gj |�〉 = sin ((2 j + 1)θa)|φ1〉|1〉 + cos ((2 j + 1)θa)|φ0〉|0〉
(15)

holds, where θa = arcsin(
√

a) [40]. Therefore, operating
G O(1/

√
a) times on |�〉 makes the amplitude of |φ1〉|1〉

of order 1, which means high probability to obtain 1 on the
single-qubit register.

Now, the proof of Theorem 2 is as follows.
Proof of Theorem 2. To begin with, note some differences

between Algorithm 1 and QSearch in [40]. First, in Algorithm
1, loop 5–104 has a bound L on the iteration number, whereas
QSearch has no bound in the corresponding loop and can
run forever. Second, Algorithm 1 repeats state generations and
measurements in loop 2–4 and loop 7–9, whereas in QSearch
they are not repeated.

Under these differences, Algorithm 1 behaves as follows.
If a � 3

4 , loop 2–4 outputs (A) with probability at least

1 − (1 − a)m1 � 1 −
(

1

4

)m1

� 1 −
(

1

4

)log 1
4

δ

� 1 − δ.

(16)

In this, A is called at most m1 = O(log δ−1) times, regardless
of the value of γ .

On the other hand, if γ � a < 3
4 , the algorithm works as

follows. Loop 7–9 with l = l̃ (a) := �log 3
2

3
4
√

a
� outputs (A)

with probability at least

1 −
[

1 − 1

2

(
1 − 1

2M
√

a

)]m2

= 1 −
(

1

2
+ 1

4M
√

a

)m2

4Here, loop a-b means that the loop from line a to line b in Algo-
rithm 1.
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Algorithm 1. QAA(A, γ , δ), a modified version of QSearch in [40] with c = 3/2.

Input: A in Eq. (13), G in Eq. (15), γ ∈ (0, 1), δ ∈ (0, 1)
1: Set L = �log 3

2

3
4
√

γ
�, m1 = �log 1

4
δ�, and m2 = �log 5

6
δ�.

2: for i = 1 to m1 do
3: Generate |�〉 and measure the single-qubit register. If the outcome is 1, output (A).
4: end for
5: for l = 1 to L do
6: Randomly choose an integer j ∈ [M], where M = �( 3

2 )l�.
7: for i = 1 to m2 do
8: Generate Gj |�〉 and measure the single-qubit register. If the outcome is 1, output (A).
9: end for

10: end for
11: Output (B).

� 1 −
⎛⎝1

2
+ 1

4
√

a
(

3
2

)l̃ (a)

⎞⎠m2

� 1 −
(

1

2
+ 1

3

)log 5
6

δ

=1 − δ, (17)

since, according to [40], one run of line 8 outputs (A) with
probability at least 1

2 (1 − 1
2M

√
a

) if 0 < a < 3/4. The number
of queries to A until we get (A) is evaluated as follows. Since
G contains two calls to A, loop 7–9 with l = l ′ makes at most
O(m2( 3

2 )l ′ ) queries to A for generation of Gj |�〉. Therefore,

until we get (A), A is called O(
∑l̃ (a)

l=1( 3
2 )lm2) times, that is,

O(log δ−1/
√

a) times.
In summary, if γ � a � 1, Algorithm 1 outputs (A) with

probability at least 1 − δ making O(log δ−1/
√

a) queries to A.
To show the statement on the case that a < γ , we need

only to show that the maximum number of queries to A in this
algorithm is O(log δ−1/

√
γ ). This is actually true, since the

number of queries to A in loop 5–10 is O(
∑L

l=1( 3
2 )lm2), that

is, O(log δ−1/
√

γ ), and adding O(log δ−1) queries in loop 2–4
does not change the order.

The statement on qubit number is obvious, since every
operation in Algorithm 1 is done by A or G, which is an
operator on the system consisting of a n-qubit register and a
single qubit register. �

Let us make some comments on QAA. First, note that QAA
can be in fact regarded as an extension of Grover’s algorithm,
since the search problem in Theorem 1 can be solved by QAA.
This is because we can generate the following state by OEqPr

N
and OF :

1√
N

∑
x∈{0,1}n

|x〉|F (x)〉= 1√
N

|xtar〉|1〉+ 1√
N

∑
x∈{0,1}n\{xtar}

|x〉|0〉,

(18)

which is in the form of Eq. (13) with |φ1〉 = |xtar〉. Second,
QAA provides a quadratic speedup like Grover’s algorithm.
Instead of QAA, we can repeat generating |�〉 and measuring
the qubit until we get the measurement outcome 1 and the state
|φ1〉. This naive way yields O(a−1) repetitions in expectation.
Therefore, QAA is quadratically faster than this. Third, note
that, in Theorem 2, the marked state is defined as a state in
which some qubit takes |1〉. Although in the original algorithm
the marked state can be set more generally [40], the above

setting is sufficient for the proposed algorithm for GW
matched filtering, as we will see later.

E. Quantum amplitude estimation

Based on QAA, we can construct an algorithm called QAE
for estimating the amplitude of a target state in a superposition
state, or, more specifically, a in the state like Eq. (13) [40].
Roughly speaking, in the algorithm, we generate a superpo-
sition of states in the form of Gj |�〉 with various values of j
by iteratively operating G controlled by some register RQFT,
and outputs an approximation of θa onto RQFT by quantum
Fourier transform (QFT).5 Here, we do not enter details of the
procedure but just present the following theorem, which is a
modification of Theorem 12 in [40], without proof.

Theorem 3. Suppose that we are given an access to an
oracle A in Eq. (13). Then, for any integer t larger than 2, there
is an oracle ÕQAE

A,t that acts as ÕQAE
A,t |0〉 =∑y∈Y αy|y〉, where

some ancillary qubits are undisplayed. Here, Y is a finite set of
real numbers that includes a subset Ỹ consisting of elements
ã satisfying

|ã − a| � 2π
√

a(1 − a)

t
+ π2

t2
, (19)

and {αy}y∈Y are complex numbers satisfying
∑

ỹ∈Ỹ |αỹ|2 �
8/π2. In ÕQAE

A,t , OX is used O(t ) times and O(n + log t ) qubits
are used.

Here are some comments. In the original algorithm
Est_Amp in [40], we measure the state

∑
y∈Y αy|y〉 and obtain

an estimate on a. However, we now stop the procedure at
generation of the state, since, as explained below, we use QAE
as a subroutine for the SNR calculation in searching high
SNR templates by QAA and thus require it to be a unitary
operation. Besides, note that the statement on qubit number is
obvious since Est_Amp in [40] uses only the register RQFT,
which has O(log t ) qubits, along with the system on which A
acts.

5There are some variants of QAE that rely on not QFT but iterative
measurements and processing outcomes [41–50]. However, we do
not use these in this paper since, in the proposed algorithm, we
require QAE to be a unitary operation as a subroutine in QAA, as
mentioned below.
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We often want to enhance the lower bound 8/π2 on the
success probability of QAE to a given high value. We can
accomplish this thanks to the following theorem, which is
Lemma 1 in [15] and originally Lemma 6.1 in [51].

Theorem 4. Let μ ∈ R and ε ∈ R+. Let A be an algo-
rithm that outputs an ε approximation of μ with probability
γ � 3

4 . Then, for any δ ∈ (0, 1), the median of outputs in
12 �log δ−1� + 1 runs of A is an ε approximation of μ with
probability at least 1 − δ.

This implies the following. Letting N be an integer larger
than 12 �log δ−1� + 1, we generate the state

|�N 〉 :=
∑

y1,...,yN ∈Y
αy1 · · · αyN |y1〉 · · · |yN 〉|med(y1, ..., yN )〉

(20)

by operating ÕQAE
A,t on each of the first N registers and using

Omed
N . We rewrite this state as |�N 〉 := α�ε |ψ�ε〉 + α>ε |ψ>ε〉

with α�ε, α>ε ∈ C and the states

|ψ�ε〉 :=
∑
ã∈Z

|ã−a|� 2π
√

a(1−a)
t + π2

t2

βã|φã〉|ã〉,

|ψ>ε〉 :=
∑
ã∈Z

|ã−a|> 2π
√

a(1−a)
t + π2

t2

βã|φã〉|ã〉,
(21)

where Z is some finite set of real numbers, {βã}ã∈Z are com-
plex numbers, and {|φã〉}ã∈Z are states on the first N registers.
Then, |α�ε |2, the squared amplitude of the state |ψ�ε〉, in
which the number ã on the last register satisfies Eq. (19),
is larger than 1 − δ. This technique is used in the quantum
algorithm for Monte Carlo integration, which is explained
next.

F. Quantum Monte Carlo integration

On the basis of QAE, we can construct a quantum algo-
rithm for Monte Carlo integration [15], which we hereafter
call QMCI. Although Monte Carlo integration is generally a
method to estimate integrals, we now consider it as a method
to estimate the mean of X a given set of real numbers, since it
is sufficient for the proposed algorithm. Among some versions
presented in [15], we use the one for the situation where an
upper bound on Var(X ) is given.

Theorem 5. Let N ∈ N and X be a set of N real numbers,
X0, ..., XN−1, whose mean is μ := 1

N

∑N−1
i=0 Xi and sample

variance Var(X ) satisfies Var(X ) � σ 2 with σ ∈ R+. Sup-
pose that we are given an oracle OX that acts on a system
with O(log N ) qubits in total as

OX |i〉|0〉 = |i〉|Xi〉, (22)

for any i ∈ [N]0. Let ε ∈ (0, 4σ ) and δ ∈ (0, 1). Then, there
is an oracle Omean

X ,ε,δ,σ such that

Omean
X ,ε,δ,σ |0〉 =

∑
y∈Y

αy|y〉, (23)

where some ancillary qubits are undisplayed. Here, Y is a
finite set of real numbers that includes a subset Ỹ consisting

of ε approximations of μ and {αy}y∈Y are complex numbers
satisfying

∑
ỹ∈Ỹ |αỹ|2 � 1 − δ. In Omean

X ,ε,δ,σ ,

O

[
σ

ε
log3/2

(
σ

ε

)
log log

(
σ

ε

)
log

(
1

δ

)]
(24)

queries to OX are made and

O
{[

log N + log
(σ

ε

)]
log
(σ

ε

)
log log

(σ

ε

)
log δ−1

}
(25)

qubits are used.
We present the proof in Appendix A.

III. QUANTUM ALGORITHM FOR GRAVITATIONAL
WAVE MATCHED FILTERING

A. Problem and assumptions

Equipped with the above quantum algorithms, we now
consider applying them to GW matched filtering. We start
from formally stating the problem we consider.

Problem 1. Let T, M, and Ntemp be a positive real number,
a positive even integer and a positive integer, respectively.
Define �t := T/M and, for k ∈ [M/2 − 1], fk := k/T . Sup-
pose that we are given a complex sequence {s̃( fk )}k∈[M/2−1], a
function Sn : R+ → R+, and, for every m ∈ [Ntemp]0, a func-
tion Q̃m : R+ → C. Then, determine whether there exists any
(m, j) ∈ [Ntemp]0 × [M]0 such that ρm, j in Eq. (11) exceeds
some given value or not. If there are such integer pairs, find
one of them.

We need some preparations to tackle this problem. First, let
us define some quantities for convenience. The first one is as
follows: for ρ ∈ R+,

r̃(ρ) := #{(m, j) ∈ [Ntemp]0 × [M]0 | ρm, j � ρ}
NtempM

. (26)

Obviously, r̃(ρ) represents the fraction of templates that give
SNRs larger than ρ and is an analog of r(ρ) in Eq. (9). The
next one is about the magnitude of template functions Q̃m

normalized by Sn,

γ := max
(m,k)∈[Ntemp]0×[ M

2 −1]

|Q̃m( fk )|√
Sn( fk )�t

. (27)

We will see in Theorem 6 that the large γ leads to the large
complexity in our algorithm, and also see in Sec. III D 4 that
it is not so large that the quadratic quantum speedup by our
algorithm is ruined.

Next, let us make some assumptions needed to discuss the
quantum algorithm and its complexity. The first one is about
availability of some fundamental oracles.

Assumption 1. We have accesses to oracles ORe and OIm

such that, for every (m, k) ∈ [Ntemp]0 × [ M
2 ]0,

ORe|m〉|k〉|0〉 =
{|m〉|k〉|0〉; if k = 0

|m〉|k〉∣∣�( 2Q̃∗
m ( fk )s̃( fk )

Sn ( fk )�t

)〉
; otherwise

,

OIm|m〉|k〉|0〉 =
{|m〉|k〉|0〉; if k = 0

|m〉|k〉∣∣�( 2Q̃∗
m ( fk )s̃( fk )

Sn ( fk )�t

)〉
; otherwise

(28)
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Algorithm 2. Previous algorithm for GW matched filtering (modified).

Input:
δ ∈ (0, 1).
ρth ∈ R+ the SNR threshold.
An oracle OFFT such that, for every m ∈ [Ntemp]0,

OFFT|m〉|0〉 = |m〉|ρm〉. (30)

1: Combining OEqPr
Ntemp

, OFFT and a comparer, construct an oracle O′
FFT that acts as

O′
FFT|0〉|0〉|0〉 = 1√

Ntemp

Ntemp−1∑
m=0

|m〉|ρm〉|1ρm�ρth 〉. (31)

2: Run QAA(O′
FFT, 1

Ntemp
, δ).

3: if we get the message “failure” then
4: Output the message “there is no signal”.
5: else
6: Measure the first register in the quantum state output by QAA and let the outcome be m.
7: Calculate ρm classically by FFT.
8: if ρm � ρth then
9: Output the message “there is a signal” and m.

10: else
11: Output the message “there is no signal”.
12: end if
13: end if

We will discuss how to implement these in Sec. III D 2. The
next assumption is on the mean and the variance of detector
outputs used in the SNR calculation.

Assumption 2.{
Mean

[(
2�s̃( fk )√
Sn( fk )T

)
k=1,...,M/2−1

]}2

� 1,

{
Mean

[(
2�s̃( fk )√
Sn( fk )T

)
k=1,...,M/2−1

]}2

� 1,

Var

[(
2�s̃( fk )√
Sn( fk )T

)
k=1,...,M/2−1

]
� 4,

Var

[(
2�s̃( fk )√
Sn( fk )T

)
k=1,...,M/2−1

]
� 4. (29)

We will discuss the validity of this in Sec. III D 3. As we
will see in Sec. III C, this assumption is important for the
proposed quantum algorithm, since it leads to the upper bound
on the variance of summands in the SNR calculation, with
which we can use QMCI for variables with bounded variance.

B. Previous algorithm

Before the quantum algorithm, we review the algorithm
proposed in [3]. It is shown as Algorithm 2, which is a modi-
fied version of Algorithm 2 in [3]. Given a SNR threshold ρth,
this algorithm outputs the message “there is a signal” and m ∈
[Ntemp]0 such that ρm � ρth with probability at least 1 − δ, if
there exists such m. Note that Algorithm 2 in our paper uses
QAA instead of QAE on O′

FFT|0〉|0〉|0〉 in Algorithm 2 of [3],
which does not affect the scaling of the complexity on M
and Ntemp. Also note that we can implement OFFT in Eq. (30)

by arithmetic oracles, since FFT is actually a sequence of
arithmetic operations.6

The number of queries to arithmetic oracles in this algo-
rithm is7

O

(
M log M√

r(ρth )

)
, (32)

when r(ρth ) > 0 and

O(
√

NtempM log M ) (33)

when r(ρth ) = 0. We can see this as follows. QAA makes
O(1/

√
r(ρth )) calls to O′

FFT and thus to OFFT when r(ρth ) > 0,
and O(

√
Ntemp) calls to them when r(ρth ) = 0. Besides, the

number of queries to arithmetic oracles in OFFT is of or-
der O(M log M ) like the number of floating-point operations
in FFT on a classical computer. Combining these, we get
the complexity bounds in Eqs. (32) and (33). They show a
quadratic speedup over the classical complexity of Eqs. (8)
and (10) with respect to 1/r(ρth ) and Ntemp.

When it comes to qubit number, Algorithm 2 uses O(M )
qubits, since FFT calculates ρm,0, ..., ρm,M−1 simultaneously
and thus use O(M ) registers to store intermediate and final
calculation results.

6In fact, implementation of FFT as a quantum circuit has been
studied in [52].

7Although Eqs. (32) and (33) do not have a factor log Ntemp,
while Eq. (35) in [3] has, we omit this reasonably assuming that
M log M � log Ntemp.
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C. Proposed algorithm and its complexity

1. Idea

The previous algorithm for GW matched filtering ex-
plained above uses FFT for the SNR calculation. On the other
hand, from the formula Eq. (11) for SNR, we conceive the
following idea: can we use QMCI for the SNR calculation? As
we will see later, we can construct an oracle Oρ to calculate
the summand ρ̃m, j,k in the SNR calculation in Eq. (11) making
O(1) uses of ORe and OIm, and thus apply QMCI following
Theorem 5. If we can set a bound σ 2 on the sample variance of
{ρ̃m, j,k}k=1,..., M

2 −1 and the accuracy ε in the SNR calculation,
the query complexity with respect to ORe and OIm is of order
Õ(σ/ε).

This QMCI-based approach has a benefit on the qubit num-
ber reduction. As shown in Eq. (25), the number of qubits
QMCI uses scales on M as O(polylogM ), since the SNR
given as Eq. (11) is a mean of O(M ) terms. This means large
reduction compared to the number required by FFT, which is
of order O(M ). This provides a large benefit, since quantum
computers will have a limitation on qubit capacity even in the
future as mentioned in Introduction.

When it comes to the query complexity, the QMCI-based
method is roughly same as the previous FFT-based algorithm.
One might concern that the proposed method might worsen
the scaling on M due to the expansion of the space searched
by QAA. Unlike FFT, which simultaneously calculates ρm, j

for all j ∈ [M]0, QMCI is performed for each j. Thus, the
search in the parameter space of m ∈ [Ntemp]0 to find a large
ρm in the previous algorithm is replaced with the search
in a larger parameter space of (m, j) ∈ [Ntemp]0 × [M]0 to
find a large ρm, j . This means that the iteration number in
QAA increases from Õ(1/

√
r(ρth )) to Õ(1/

√
r̃(ρth )), which

is Õ(σ
√

M/ε
√

r(ρth )) at maximum since r̃(ρth ) > r(ρth )/M.
Combining the aforementioned query complexity of the SNR
calculation by QMCI, we bound the total number of queries
to ORe and OIm as Õ(σ

√
M/ε

√
r(ρth )). Fortunately, since we

can set σ = O(
√

M ) and ε = O(1) as we will see below,
the query complexity is resultingly Õ(M/

√
r(ρth )), which is

same as the number of queries to arithmetic oracles in the
FFT-based method. Note that this is a reasonable comparison,
since ORe and OIm are constructed by arithmetic oracles, with
the aid of the quantum random access memory (QRAM) [53],
as explained later.

We should also note that the nature of QMCI causes the
following issue. The output of QMCI inevitably accompa-
nies an error, and thus, even if the SNR of a given template
calculated by QMCI exceeds the threshold ρth, its true SNR
might be below ρth. We may think that we can evade such
a misjudge by setting the accuracy ε in QMCI extremely
small, but it comes with large complexity. Therefore, we
need to reasonably set the accuracy: following the nature of
the problem under consideration, we should derive the er-
ror tolerance for SNR and set the QMCI accuracy matching
it.

For this, we propose the following way. We consider GW
matched filtering as a system that alarms us when the detector
output seems to contain a signal. Besides, we consider the two
levels of SNR threshold denoted by ρhard and ρsoft, which have
the following meaning.

(i) If some templates have SNR ρ � ρhard for a given
detector output, we want to be alarmed with certainty.

(ii) We never want to be falsely alarmed when all tem-
plates have SNR ρ < ρsoft.

(iii) When no template has SNR ρ � ρhard but some have
ρ ∈ [ρsoft, ρhard ), it is not needed but fine to be alarmed.

In this situation, we set the QMCI accuracy to (ρhard −
ρsoft )/2 and judge a template as matched if its SNR calculated
by QMCI exceeds (ρhard + ρsoft )/2 and mismatched other-
wise. In this strategy, with high probability, a template with
a true SNR ρ � ρhard is judged as matched and that with a
true SNR ρ < ρsoft is judged as mismatched. A template with
a true SNR ρsoft � ρ < ρhard is an intermediate case where the
data may contain a signal near the threshold and can be judged
as either matched or mismatched due to the QMCI error. We
present an illustration of this strategy in Fig. 1. We discuss
how to set the two levels ρhard and ρsoft in Sec. III D 1.

Note that “match” and “mismatch” discussed here are the
result of quantum computation for a given detector output, and
do not necessarily mean the result correctly indicates whether
there is a GW signal or not. In fact, a false detection can occur
due to the random instrumental noise, which is not taken into
account here. It is, on the other hand, relevant to how we
set the thresholds of ρhard and ρsoft . See Sec. III D 1 for more
detailed discussion.

Based on this idea, we design a quantum algorithm for GW
matched filtering in the following part.

2. Supporting lemma on the variance of summands in the SNR calculation

Here, as a preparation to present the algorithm, let us prove the following lemma on the variance of summands in the SNR
calculation, which follows from Assumption 2.

Lemma 1. Under Assumption 2,

Var({ρ̃m, j,k}k=0,...,M/2−1) � 80Mγ 2 (34)

holds for every (m, j) ∈ [Ntemp]0 × [M]0.
Proof. We can write ρ̃m, j,k = ρ̃

(1)
m, j,k + ρ̃

(2)
m, j,k + ρ̃

(3)
m, j,k + ρ̃

(4)
m, j,k with

ρ̃
(1)
m, j,k =

√
M�
(

Q̃∗
m( fk )√

Sn( fk )�t

)
2�(s̃( fk ))√

Sn( fk )T
cos

(
2π jk

M

)
,

ρ̃
(2)
m, j,k = −

√
M�
(

Q̃∗
m( fk )√

Sn( fk )�t

)
2�(s̃( fk ))√

Sn( fk )T
cos

(
2π jk

M

)
,
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FIG. 1. An illustration of the current strategy. For every template, if the SNR calculated by QMCI exceeds (ρhard + ρsoft )/2, we judge it as
matched, and otherwise we judge it as mismatched. With QMCI accuracy (ρhard − ρsoft )/2, this leads to a correct judgment for templates with
a true SNR ρtrue < ρsoft and ρtrue � ρhard with high probability.

ρ̃
(3)
m, j,k = −

√
M�
(

Q̃∗
m( fk )√

Sn( fk )�t

)
2�(s̃( fk ))√

Sn( fk )T
sin

(
2π jk

M

)
,

ρ̃
(4)
m, j,k = −

√
M�
(

Q̃∗
m( fk )√

Sn( fk )�t

)
2�(s̃( fk ))√

Sn( fk )T
sin

(
2π jk

M

)
. (35)

We see that

Var
({

ρ̃
(1)
m, j,k

}
k=0,...,M/2−1

)
� Mean

({(
ρ̃

(1)
m, j,k

)2}
k=0,...,M/2−1

)
� Mγ 2Mean

({(
2�(s̃( fk ))√

Sn( fk )T

)2}
k=1,...,M/2−1

)

= Mγ 2

[
Var

({
2�(s̃( fk ))√

Sn( fk )T

}
k=1,...,M/2−1

)
+
(

Mean

({
2�(s̃( fk ))√

Sn( fk )T

}
k=1,...,M/2−1

))2]
� 5Mγ 2, (36)

where the second inequality follows from(
ρ̃

(1)
m, j,k

)2 = M

[
�
(

Q̃∗
m( fk )√

Sn( fk )�t

)]2

cos2

(
2π jk

M

)(
2�(s̃( fk ))√

Sn( fk )T

)2

� Mγ 2

(
2�(s̃( fk ))√

Sn( fk )T

)2

, (37)

for k ∈ [ M
2 − 1] and ρ̃

(1)
m, j,0 = 0, and the last inequality follows from Assumption 2. Similarly, we have Var({ρ̃ (2)

m, j,k}k=0,...,M/2−1) �
5Mγ 2, Var({ρ̃ (3)

m, j,k}k=0,...,M/2−1) � 5Mγ 2 and Var({ρ̃ (4)
m, j,k}k=0,...,M/2−1) � 5Mγ 2. Combining these with

Var({ρ̃m, j,k}k=0,...,M/2−1)

=
4∑

a=1

Var
({ρ̃ (a)

m, j,k}k=0,...,M/2−1
)+

∑
a,b=1,...,4

a �=b

Cov
({ρ̃ (a)

m, j,k}k=0,...,M/2−1, {ρ̃ (b)
m, j,k}k=0,...,M/2−1

)

�
4∑

a=1

Var
({ρ̃ (a)

m, j,k}k=0,...,M/2−1
)+

∑
a,b=1,...,4

a �=b

√
Var
({ρ̃ (a)

m, j,k}k=0,...,M/2−1
)
Var
({ρ̃ (b)

m, j,k}k=0,...,M/2−1
)
, (38)

we obtain Eq. (34). �

3. Main result

Then, the following is our main result, a quantum algorithm for GW matched filtering and a theorem on its query complexity
and the number of qubits used.

Theorem 6. Under Assumptions 1 and 2, consider Problem 1. Let ρsoft and ρhard be real numbers such that 0 <
ρhard−ρsoft

8
√

5Mγ
< 4,

and δ be a real number in (0,1). Then, there is a quantum algorithm that uses

O

{[
log M + log

( √
Mγ

ρhard − ρsoft

)]
log

( √
Mγ

ρhard − ρsoft

)
log log

( √
Mγ

ρhard − ρsoft

)
log

(
NtempM

δ

)}
(39)

qubits and behaves as follows:
(i) The algorithm outputs either of
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(A) a message “there is a signal” and an integer pair (m, j) ∈ [Ntemp]0 × [M]0 such that ρm, j � ρsoft,
(B) a message “there is no signal”.

(ii) If r(ρhard ) > 0, the algorithm outputs (A) with probability at least 1 − δ. In the algorithm, the number of queries to ORe

and OIm is of order

O

[
γ
√

M

(ρhard − ρsoft )
√

r̃(ρhard )
log3/2

(
γ
√

M

ρhard − ρsoft

)
log log

(
γ
√

M

ρhard − ρsoft

)
log

(
NtempM

δ

)
log δ−1

]
, (40)

and thus

O

[
γ M

(ρhard − ρsoft )
√

r(ρhard )
log3/2

(
γ
√

M

ρhard − ρsoft

)
log log

(
γ
√

M

ρhard − ρsoft

)
log

(
NtempM

δ

)
log δ−1

]
. (41)

(iii) If r(ρsoft ) = 0, the algorithm outputs (B) with certainty. In the algorithm, the number of queries to ORe and OIm is of
order

O

[
γ M
√

Ntemp

ρhard − ρsoft
log3/2

(
γ
√

M

ρhard − ρsoft

)
log log

(
γ
√

M

ρhard − ρsoft

)
log

(
NtempM

δ

)
log δ−1

]
. (42)

(iv) If r(ρhard ) = 0 and r(ρsoft ) > 0, the algorithm outputs either (A) or (B). In the algorithm, the number of queries to ORe

and OIm is of order as in Eq. (42).
Proof. We first present the algorithm, and then prove the statements on the query complexity and the qubit number.

Algorithm

The algorithm is shown in Algorithm 3. Note that, because of Lemma 1, we can set σ , the upper bound on the variance of
{ρ̃m, j,k}k=0,...,M/2−1, as in line 1.

Query complexity and qubit number

We describe this part in B since it is rather technical. �
On the probability that we obtain the output (A) in the case that r(ρhard ) = 0 and r(ρsoft ) > 0, we now give not a rigorous

analysis but a qualitative comment. That probability is affected by the dependence of |αρ,y|2 on y, where αρ,y appears in Eq. (44).
In other words, it is affected by the probability distribution of the output of Omean

ρ,ε,δ′,σ , the oracle to compute the SNR by QMCI.
Omean

ρ,ε,δ′,σ is designed so that
∑

ỹ∈Ỹm, j
|αρ,ỹ|2 � 1 − δ, which means that the output is distributed almost within the ε neighborhood

of the true SNR value ρm, j . Hence, for (m, j) ∈ [Ntemp]0 × [M]0 such that ρm, j � ρhard, it is almost certain that the output
of Omean

ρ,ε,δ′,σ exceeds ρmid and such (m, j) is judged as “matched”, which means that such (m, j) can be found by QAA in
Algorithm 3. On the other hand, as ρm, j decreases beyond ρhard, the probability of such (m, j) being judged as “matched”
decreases too and becomes almost 0 when ρm, j < ρsoft. From this observation, we see the following. If r(ρhard ) > 0, Algorithm
3 outputs (A) with probability at least 1 − δ, as Theorem 6 states. As maxm, j ρm, j decreases from ρhard to ρsoft, the probability
of the output (A) decreases to 0. For more detailed analysis on this change of the probability, we need to know the dependence
of |αρ,y|2 on y concretely, but it is difficult since, although the probability distribution of the output of a single QAE is known
[40], the QMCI we are using now is the combination of the multiple QAEs (see A) and thus it is hard to analytically obtain the
probability distribution of its output.

We also comment that, when r(ρhard ) > 0 or r(ρhard ) = 0, r(ρsoft ) > 0, repeating Algorithm 3 enhance the probability to
obtain the output (A): if that probability in a single run of Algorithm 3 is pA, the probability that we obtain (A) at least once in
n runs is 1 − (1 − pA)n.

D. Remarks on settings and assumptions

Now, we discuss the validity on the settings and assump-
tions in the algorithm proposed above.

1. Setting of two thresholds

In Algorithm 3, we set the two SNR thresholds, ρhard

and ρsoft, whose meanings are explained in Sec. III C 1. We
consider the following is a plausible way to set them. First,
let us denote a common value of the SNR threshold as
ρcom, e.g., ρcom = 88 [8]. Note that the calculated SNR, in

8In the absence of the astrophysical signal, SNR follows the
Rayleigh distribution. The false alarm probability of each template is
given by pfa,temp = exp[−ρ2

com/2]. The resolution of the coalescence

general, has fluctuations due to the random detector noise,
and its variance is 1 under the current normalization of the
templates. Thus, even without the QMCI error, events with
ρ ∈ [ρcom, ρcom + 1) could have a true SNR value smaller
than the threshold, while events with ρ > ρcom + 1 are very

time �tstart is determined by the mismatch between two waveforms
having slightly different coalescence times. If we set the mismatch
is 5% and the waveforms is monochromatic with the frequency of
100 Hz, we get �tstart ∼ O(10−3) sec. Then, for the observation
period of Tobs, the expected number of false alarm events is es-
timated by Nfa ∼ pfa,tempNtempTobs/�tstart . Assuming Tobs = 107sec,
�tstart = 10−3 sec, and Ntemp = 106, we should set the SNR threshold
to ρcomp ∼ √2 ln(1010 × Ntemp) ∼ 8.6 if we suppress Nfa to O(1). See
Ref. [54] and Chap.7 of Ref. [55].
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Algorithm 3. Proposed algorithm for GW matched filtering.

1: Set ε = ρhard−ρsoft
2 , σ = 4

√
5Mγ and δ′ = δ

4NtempM .

2: Combining ORe, OIm and some arithmetic oracles, construct an oracles Oρ such that, for every (m, j, k) ∈ [Ntemp]0 × [M]0 × [ M
2 ]0,

Oρ |m〉| j〉|k〉|0〉 = |m〉| j〉|k〉|ρ̃m, j,k〉. (43)

3: On the basis of Theorem 5, using Oρ , construct an oracle Omean
ρ,ε,δ′,σ such that, for every (m, j) ∈ [Ntemp]0 × [M]0,

Omean
ρ,ε,δ′,σ |m〉| j〉|0〉 = |m〉| j〉

∑
y∈Ym, j

αρ,y|y〉, (44)

where Ym, j is a finite set of real numbers that includes a subset Ỹm, j consisting of ε approximations of ρm, j and {αy}y∈Ym, j are complex
numbers satisfying

∑
ỹ∈Ỹm, j

|αρ,ỹ|2 � 1 − δ.
4: Construct an oracle OAE that performs the following operation

|0〉|0〉|0〉|0〉 →
√

1

NtempM

Ntemp−1∑
m=0

M−1∑
j=0

|m〉| j〉|0〉|0〉

→
√

1

NtempM

Ntemp−1∑
m=0

M−1∑
j=0

|m〉| j〉
∑

y∈Ym, j

αρ,y|y〉|0〉

→
√

1

NtempM

Ntemp−1∑
m=0

M−1∑
j=0

|m〉| j〉
∑

y∈Ym, j

αρ,y|y〉(1y�ρmid |1〉 + 1y<ρmid |0〉), (45)

where ρmid := ρhard+ρsoft
2 . In Eq. (45), we use OEqPr

Ntemp
and OEqPr

M at the first arrow, Omean
ρ,ε,δ′,σ at the second arrow, and a comparer with |ρmid〉

on an undisplayed ancillary register at the last arrow.
5: Run QAA(OAE, 1

2NtempM , δ

2 ).

6: if we get the message “failure” then
7: Output the message “there is no signal”.
8: else
9: Measure the first two registers in the quantum state output by QAA and let the outcome be (m, j).

10: Calculate ρm, j classically.
11: if ρm, j � ρsoft then
12: Output the message “there is a signal” and (m, j).
13: else
14: Output the message “there is no signal”.
15: end if
16: end if

likely to exceed the threshold. In light of this, it is reasonable
to set ρsoft = ρcom and ρhard = ρcom + 1, that is, ρsoft = 8 and
ρhard = 9 for ρcom = 8. In this setting, Algorithm 3 detects
events with ρ � 9 with high probability and never falsely
alarms us for events with ρ < 8, and events with ρ ∈ [8, 9) are
detected or missed depending on fluctuations by the detector
noise and the QMCI error.

2. Implementation of ORe and OIm

Here, we discuss the validity of Assumption 1, that is,
implementability of ORe and OIm. If we have accesses to the
following oracles OhSRe, OhSIm, OQRe, and OQIm such that, for
every (m, k) ∈ [Ntemp]0 × [ M

2 − 1],

OhSRe|k〉|0〉 = |k〉
∣∣∣∣�( h̃( fk )

Sn( fk )

)〉
,

OhSIm|k〉|0〉 = |k〉
∣∣∣∣�( h̃( fk )

Sn( fk )

)〉
(46)

and

OQRe|m〉|k〉|0〉 = |m〉|k〉|�Q̃m( fk )〉,
(47)

OQIm|m〉|k〉|0〉 = |m〉|k〉|�Q̃m( fk )〉,
we can combine these along with arithmetic oracles to con-
struct ORe and OIm (note that the remaining factor 2/�t is
just a known real number independent of m and k).

OQRe and OQIm are in fact implementable. To see this, note
that Q̃m( fk ) is given as an explicit function of intrinsic param-
eters and fk = k/T by theories of GW sources such as CBCs
[4–7]. Therefore, if we can relate the index m to intrinsic
parameter values by some elementary function, which is in
fact possible under simple lattice-like template spacing such
as [5], we can write Q̃m as an explicit function of m and k and
thus construct OQRe and OQRe using arithmetic oracles.

On the other hand, h̃( fk )/Sn( fk ) is a factor determined
by the experimental data and not represented by an explicit
function. We therefore resort to QRAM [53]. This enables us
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to access N recorded data xk labeled by k ∈ [N]0 and load a
specified entry onto a register as

|k〉|0〉 → |k〉|xk〉 (48)

in superposition in O(log N ) time. It takes O(M ) time to
register {�( h̃( fk )

Sn ( fk ) )}k=1,..., M
2 −1 and {�( h̃( fk )

Sn ( fk ) )}k=1,..., M
2 −1 into a

QRAM in advance of running Algorithm 3, but this is ex-
pected to be less time-consuming than Algorithm 3 itself,
which has Õ(

√
NtempM ) query complexity.

3. The mean and variance of detector outputs

Here, we see the validity of Assumption 2 as fol-
lows. First, from Eq. (6), for xk := 2�ñ( fk )/

√
Sn( fk )T and

yk := 2�ñ( fk )/
√

Sn( fk )T with k ∈ [ M
2 − 1], we see that

x1, ..., x M
2 −1, y1, ..., y M

2 −1 are independent standard normal
variables. We assume that M � 1 and thus the sample means
and the sample variances of {xk}k and {yk}k are equal to
the population means and the population variances, that is,
0 and 1, respectively. We also assume the usual situation
that the signal is much smaller than the noise. More con-
cretely, we assume that, for every k ∈ [ M

2 − 1], |uk| � 1
and |vk| � 1 hold, where uk := 2�s̃( fk )/

√
Sn( fk )T and vk :=

2�s̃( fk )/
√

Sn( fk )T , and thus that |Mean({uk}k=1,...,M/2−1)| �
1, |Mean({vk}k=1,...,M/2−1)| � 1, Var({uk}k=1,...,M/2−1) � 1,
and Var({vk}k=1,...,M/2−1) � 1 hold. Under these assumptions,
we can obtain

∣∣∣∣Mean

({
2�h̃( fk )√
Sn( fk )T

}
k=1,...,M/2−1

)∣∣∣∣2 � (|Mean({xk}k=1,...,M/2−1)| + |Mean({uk}k=1,...,M/2−1)|)2 � 1,

∣∣∣∣Mean

({
2�h̃( fk )√
Sn( fk )T

}
k=1,...,M/2−1

)∣∣∣∣2 � (|Mean({yk}k=1,...,M/2−1)| + |Mean({vk}k=1,...,M/2−1)|)2 � 1,

Var

({
2�h̃( fk )√
Sn( fk )T

}
k=1,...,M/2−1

)
� (
√

Var({xk}k=1,...,M/2−1) +√Var({uk}k=1,...,M/2−1))2 � 4,

Var

({
2�h̃( fk )√
Sn( fk )T

}
k=1,...,M/2−1

)
� (
√

Var({yk}k=1,...,M/2−1) +√Var({vk}k=1,...,M/2−1))2 � 4. (49)

4. Magnitude of γ

Here, we study the magnitude of γ defined in Eq. (27).
Note that the template Q is normalized as (Q|Q) = 1, that is

4

M
�
⎛⎝M

2 −1∑
k=1

|Q̃m( fk )|2
Sn( fk )�t

⎞⎠ = 1. (50)

Since γ is defined as the square root of the maximum sum-
mand in the sum of the left-hand side of Eq. (50), γ can take
values in the following range:

1√
2 − 4

M

� γ �
√

M

2
, (51)

where the lower bound corresponds to the case in which all
summands have the same value and the upper bound cor-
responds to the case where only one summand contributes.
Therefore, we expect that γ = O(1) unless Q̃m( f ) is steeply
peaked around some frequency. Let us see whether this holds
for the following two types of GWs: those from CBCs and
continuous gravitational waves (CGWs).

(A) CBC
If GW interferometers and signals are broadband, we will

be closer to the lower bound in Eq. (51) where a significant
fraction of the summands have similar values and so γ will be
of order O(1).

In Fig. 2, we show an explicit example of this, where
we compute the value of γ according to Eq. (27) for the
CBC case, modeled using templates Q computed with the
IMRPhenomPv2 waveform [56]. The value of γ only depends

on the amplitude evolution of the waveform, which is mostly
depend on the component masses, parameterized via the total
mass M = m1 + m2 and the mass ratio q = m2/m1. We study
total masses between 1M� and 300M�, mass ratios between
0.2 and 1, and for this example, we set the spins to 0. For the
noise PSD, Sn( f ), we use the Advanced LIGO design sensitiv-
ity [57]. We assume a sampling rate of 2048 Hz, and low and
high frequency cutoffs of 20 Hz and 1024 Hz, respectively.

In Fig. 2, we can observe that γ is of order O(1) in all
the parameter space studied. The minimum value of γ is 2.50
at M = 126M�, q = 1.00, which is the point where the SNR
is most homogeneously spread out across frequencies due to
the location of the merger (where |Q̃( f )|2 ∝ f −4/3 instead of

FIG. 2. γ computed with Eq. (27) using the IMRPhenomPv2

waveform [56] with spins set to 0 for the template Q and the Ad-
vanced LIGO design sensitivity PSD for Sn( f ) [57]. We assume a
sampling rate of 2048 Hz, and low- and high-frequency cutoffs of
20 Hz and 1024 Hz, respectively.
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|Q̃( f )|2 ∝ f −7/3 as in the inspiral [58]) being just before the
most sensitive frequency range of the interferometer. On the
other hand, the maximum value of γ is 4.66 at M = 300M�,
q = 0.20. For the very largest masses, we observe that γ tends
to increase due to the fact that the higher the mass, the more
the template is shifted towards smaller and smaller frequen-
cies, until only the frequencies close to the low frequency
cutoff contribute. Nonetheless, γ still takes O(1) values for all
masses that can be expected to be seen by the ground-based
detectors.

(B) CGW
An all-sky search of the CGWs is known as the most

time consuming task in the gravitational wave astronomy (see
[59–63] for reviews). CGWs can be modeled by a quasi-
monochromatic waveform,

Q(t ) = Aei�(t ), �(t ) = 2π f0

(
t + r(t ) · n

c

)
, (52)

where f0 is the GW frequency at initial time, r(t ) is the
detector’s location, and n is the unit vector pointing toward

the CGW source. Here, we ignore ḟ , the change rate of the
frequency, just for brevity. First of all, the template must be
normalized. The norm of the waveform model (52) is

N = (Q|Q) = 2
∫ ∞

−∞
df

|Q̃( f )|2
Sn( f )

∼ 2

Sn( f0)

∫ T/2

−T/2
dt |Q(t )|2

= 2A2T

Sn( f0)
. (53)

Here, the noise PSD is assumed to be constant in the frequency
range where the CGW exists. The normalized template is

Q̂(t ) = Q(t )√
N

=
√

Sn( f0)

2T
ei�(t ). (54)

Then the Fourier transform of the normalized template is
given by

Q̃( f ) =
∫ T/2

−T/2
dt Q̂(t )e−2π i f t ∼

√
Sn( f0)

2T

∫ T/2

−T/2
dt exp

[
2π i( f0 − f )t + 2π i f0

RES

c
cos(��t )

]

∼
√

Sn( f0)

2T

∞∑
n=−∞

inJn

(
2π f0RES

c

)∫ T/2

−T/2
dt exp[2π i( f0 − f )t + in��t]

∼
√

Sn( f0)

2T

∞∑
n=−∞

inJn

(
2π f0RES

c

)
sin [π ( f0 − f )T + n��T/2]

π ( f0 − f ) + n��/2
∼
√

Sn( f0)

2T

√
2

π
· c

2π f0RES
· T . (55)

Here we approximated the detector’s motion by the orbital
motion of the earth: r(t ) = RES cos(��t ), where RES is the
distance between the sun and the earth, and �� is the angular
velocity of the earth’s orbital motion. We used the Jacobi-
Anger expansion

eiz cos θ =
∞∑

n=−∞
inJn(z)einθ , (56)

and the asymptotic form of the Bessel function

Jn(z) →
√

2

πz
cos

(
z − 2n + 1

4
π

)
for |z| → ∞. (57)

In the last line, we assume f = f0 and the n = 0 term domi-
nates the other terms. Therefore, the γ factor is estimated as

γ ∼ |Q̃( f )|√
Sn( f0)�t

∼
√

T

�t
· c

2π f0RES
. (58)

Assuming the typical values, �t ∼ 10−3 sec, T ∼
107 sec, and f0 = 102 Hz, we get γ ∼ O(102).

Thus, γ for CGWs typically becomes larger than that in the
CBC case, but our quantum algorithm is still expected to be
faster than the classical method in terms of query complexity
because of the large template number in a CGW search, as
we see in the followings. To estimate the grid points taken
in the template parameter space, we now focus on the grid

number on the sky, that is, the unit sphere of n. Consider-
ing the detector’s motion with respect to the CGW source,
the sufficiently fine angular resolution is roughly estimated
by

�θ ∼ λ

2RES
∼ 10−5[rad], (59)

where λ is the wavelength of CGWs. Thus, we need Ngrid ∼
4π/(�θ )2 ∼ 1011 grid points to cover the entire sky. The ratio
of the query complexity of our algorithm to the classical one
is O(γ /

√
Ngrid ). For γ = 102 and Ngrid = 1011, this factor is

much smaller than 1, which means that our algorithm still
provides the quantum speedup. Note that, the number of grid
points for the template search increases if we consider not
only n but also f0 and ḟ , in which case the advantage of our
algorithm becomes more prominent.

Here, we assume the coherent approach in which we simul-
taneously analyze the entire strain data. In reality, because of
limitation in the computational resources, the standard today’s
commonly-used approach is the semicoherent one, in which
we divide the strain data into many short segments, carry
out matched filtering for each segment, and combine them.
Because most of the semicoherent methods are based on the
matched filtering approach, our algorithm would be applicable
for the semicoherent methods. Naively speaking, semicoher-
ent search has fewer templates, so we may have less gain in
quantum speedup, but it may be compensated by a smaller
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value of γ . However, because of the more complicated proce-
dure in the semicoherent methods, it is not straightforward to
estimate the total gain, so we postpone the discussion on this
point to future works.

IV. SUMMARY

In this paper, we proposed a quantum algorithm for GW
matched filtering based on Ref. [3], which has investigated
the application of Grover’s search algorithm. Our method,
described in details in Sec. III C, uses QMCI for the SNR
calculation of Eq. (11) instead of FFT used in the classical
method and in Ref. [3], and searches high SNR templates by
QAA, running QMCI as a subroutine. To deal with the erro-
neous nature of QMCI, we propose to set two thresholds ρhard

and ρsoft such that the proposed algorithm returns “there is a
signal” for events with SNR ρ � ρhard with high probability
and “there is no signal” for events with SNR ρ < ρsoft with
certainty.

Our main results are summarized in Eqs. (40), (41),
and (42). By neglecting the logarithmic dependencies, we
can see that the proposed algorithm has Õ(M/

√
r(ρth ))

and Õ(M
√

Ntemp) query complexity for r̃(ρhard ) > 0 and
r̃(ρhard ) = 0, respectively. This still indicates a quadratic
speedup with respect to the template number Ntemp and the
same order of complexity with respect to the number of time-
series data points M compared to the algorithm of Ref. [3],
which is summarized in Sec. III B. We note that the choice of
ρhard and ρsoft, the accuracy of QMCI in other words, mildly
affects the complexity, but according to the discussion in
Sec. III D 1, we take ρhard − ρsoft = 1, and thus not changing
the factor.

The advantage of this algorithm is that it requires only
qubit number that logarithmically scales on M as described
in Eq. (39), contrary to the FFT-based method that requires
O(M ) qubits. Therefore, this algorithm is expected to be bene-
ficial in the situation that quantum computers have a limitation
on qubit number, which is likely to occur due to the large
overhead for quantum error correction. A possible drawback
of the proposed algorithm compared to the algorithm in [3]
is that, to load the detector output data onto a register in
superposition in QMCI, it uses QRAM, whose experimental
realization is challenging [64].

In any case, we believe that proposing multiple ways of
applying quantum methods that have different pros and cons is
highly meaningful in taking advantage of quantum computing
in future GW experiments, given today’s uncertainty on what
the future quantum computers will be. Discussions for ap-
plying quantum computing in experimental physics have just
started. We anticipate that more proposals will follow not only
for GW data analysis but also for other heavy data analyses in
various physical and astronomical experiments.
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APPENDIX A: PROOF OF THEOREM 5

The quantum algorithm for estimating the mean of vari-
ables with bounded variance is given as Algorithm 3 in [15].
In order to use it as a subroutine in QAA, we now want
to present it as a unitary transformation. That is, we aim to
remove measurements in the original algorithm in [15]. Then,
the modified algorithm outputs a quantum state in which
the computational basis states corresponding to approxima-
tions of the mean have squared amplitudes summing up to
almost 1.

We first present the following theorem on the mean esti-
mation method for a bounded variable. The method and the
theorem are almost the same as Algorithm 1 and Theorem 2.3
in [15] in a specific case. But, to be self-contained, we now
present them with proof. Note that, although Algorithm 1 in
[15] is a procedure containing measurements, the following
is a unitary transformation with no measurement to generate
some quantum state.

Theorem 7. Let N ∈ N and X be a set of N real numbers
X0, ..., XN−1 ∈ [0, 1]. Suppose that we are given an oracle OX
that acts as Eq. (22). Then, for any integer t larger than 2, there
is an oracle Omean

X ,t that acts as Eq. (23), where some ancillary
qubits are undisplayed. Here, Y is a finite set of real numbers
that includes a subset Ỹ consisting of elements μ̃ satisfying

|μ̃ − μ| � C

(√
μ

t
+ 1

t2

)
, (A1)

with μ = 1
N

∑N−1
i=0 Xi and a universal real constant C, and

{αy}y∈Y are complex numbers satisfying
∑

ỹ∈Ỹ |αỹ|2 � 8/π2.
In OX , O(t ) queries to OX are made and O(log N + log t )
ancillary qubits are used.

Proof. Combining OEqPr
N and OX , we can construct an ora-

cle O′
X on a system with O(log N ) qubits in total such that

O′
X |0〉|0〉 = 1√

N

N−1∑
i=0

|i〉|Xi〉, (A2)

and, combining this with some arithmetic oracles, we can
construct an oracle O′′

X that acts as

O′′
X |0〉|0〉|0〉 = 1√

N

N−1∑
i=0

|i〉|Xi〉(
√

Xi|1〉 +
√

1 − Xi|0〉),

(A3)
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Algorithm 4. QMCI algorithm with measurements.

Input: oracle OX in Eq. (22), an upper bound σ of Var(X ), accuracy ε ∈ (0, 4σ ), and δ ∈ (0, 1)

1: Set L := �log2( 32σ

ε
)�, J := 12�log δ−1� + 1, K := 12�log( 64(L+1)

5 )� + 1, t0 := � 32σD
√

log2( 32σ
ε )

ε
�, where D is a universal constant given

in [15].
2: for j = 1, ..., J do
3: Randomly choose an integer i j from [N]0 and generate the state OX |i j〉|0〉 = |i j〉|Xi j 〉. Measure the second register in the computational

basis and let the outcome divided by σ be m̃ j .
4: for l = 0, 1, ..., L do
5: Let X̃+

j,l := {X̃ +
l,1(m̃ j ), ..., X̃ +

l,N (m̃ j )} and X̃−
j,l := {X̃ −

l,1(m̃ j ), ..., X̃ −
l,N (m̃ j )}, where, for i ∈ [N]0 and m ∈ R, X̃ ±

l,i (m) is given as

X̃ +
0,i(m) :=

{ 1
4

( Xi
σ

− m̃
)
; if 0 � 1

4

( Xi
σ

− m̃
)

< 1

0; otherwise
,

X̃ −
0,i(m) :=

{− 1
4

( Xi
σ

− m̃
)
; if − 1 < 1

4

( Xi
σ

− m̃
)

< 0

0; otherwise
(A7)

when l = 0, and

X̃ +
l,i (m) :=

{ 1
4·2l

( Xi
σ

− m̃
)
; if 2l−1 � 1

4

( Xi
σ

− m̃
)

< 2l

0; otherwise
,

X̃ −
l,i (m) :=

{− 1
4·2l

( Xi
σ

− m̃
)
; if − 2l < 1

4

( Xi
σ

− m̃
)
� −2l−1

0; otherwise
(A8)

when l � 1.
6: Construct an oracle OX̃+

j,l
(resp. OX̃−

j,l
) such that OX̃+

j,l
|0〉|0〉 = 1√

N

∑N−1
i=0 |i〉|X̃ +

l,i (mj )〉 [resp. OX̃−
j,l
|0〉|0〉 = 1√

N

∑N−1
i=0 |i〉|X̃ −

l,i (mj )〉] by

combining OEqPr
N , OX and some arithmetic oracles.

7: Using OX̃+
j,l

, construct an oracle Omean
X̃+

j,l ,t0
that acts like Eq.(23), that is, Omean

X̃+
j,l ,t0

|0〉 =∑y∈Y+
j,l

αy|y〉, where a real number set Y+
j,l

includes a subset Ỹ+
j,l such that, for every μ̃ ∈ Ỹ+

j,l , |μ̃ − μ+
j,l | � C(

√
μ+

j,l

t0
+ 1

t2
0

) holds with μ+
j,l := 1

N

∑N−1
i=0 X̃ +

j,l,i and that∑
μ̃∈Ỹ+

j,l
|αμ̃|2 � 8/π 2.

Similarly, using OX̃−
j,l

, construct an oracle Omean
X̃−

j,l ,t0
that acts as Omean

X̃−
j,l ,t0

|0〉 =∑y∈Y−
j,l

αy|y〉, where a real number set Y−
j,l includes a

subset Ỹ−
j,l such that, for every μ̃ ∈ Ỹ−

j,l , |μ̃ − μ−
j,l | � C(

√
μ−

j,l

t0
+ 1

t2
0

) holds with μ−
j,l := 1

N

∑N−1
i=0 X̃ −

j,l,i and that
∑

μ̃∈Ỹ−
j,l

|αμ̃|2 � 8/π 2.

8: Generate K copies of the quantum state Omean
X̃+

j,l ,t0
|0〉 (resp. Omean

X̃−
j,l ,t0

|0〉) and measure them in the computational basis. Let the median of

the measurement outcomes be ˜̃μ+
j,l (resp. ˜̃μ−

j,l ).
9: end for

10: Set μ̃ j := σ (m̃ j + 4
∑L

l=0 2l ( ˜̃μ+
j,l − ˜̃μ−

j,l )).
11: end for
12: Output the median of μ̃1, ..., μ̃J .

where the last ket corresponds to an ancillary qubit. Note that
we can write the right-hand side as

√
μ|�1〉|1〉 +

√
1 − μ|�0〉|0〉, (A4)

where |�1〉 and |�0〉 are some quantum states on the first two
registers. Then, as stated in Theorem 3, using O′′

X O(t ) times,
we can construct Omean

X ,t that acts as

Omean
X ,t |0〉 =

∑
y∈Y

αy|y〉, (A5)

where a real number set Y includes a subset Ỹ such that, for
every μ̃ ∈ Ỹ ,

|μ̃ − μ| � 2π
√

μ(1 − μ)

t
+ π2

t2
� π2

(√
μ

t
+ 1

t2

)
(A6)

holds and that
∑

μ̃∈Ỹ |αμ̃|2 � 8/π2. Since O′′
X contains one

query to OX and uses O(log N ) qubits, the statements on the

query complexity and the qubit number immediately follows
from Theorem 3. �

We then prove Theorem 5.
Proof of Theorem 5. Our Theorem 5 is almost the same as

Theorem 2.5 in [15] in a specific case and we now just aim
to modify Algorithm 3 in [15] so that all intermediate mea-
surements are removed and that the output is a quantum state,
see Eq. (23). Let us start by presenting the method with mea-
surements as Algorithm 4, which outputs an ε approximation
of μ, according to Theorem 2.5 in [15]. Note that, although
the procedure looks different from that in Algorithm 3 in [15],
it is actually almost the same and the difference arises just
because we explicitly write the steps that are originally shown
separately as Algorithm 2 in [15], in lines 7 and 8. There
are only two differences, which enhance the lower bound of
the success probability from 2

3 , the original value in [15], to
1 − δ. First, K , the number of repeated state generations and
measurements in line 8, is different from that in Algorithm
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2 in [15]. The current setting of K makes the probability
that, for each ( j, l ) ∈ [J] × [L + 1]0, ˜̃μ+

j,l (resp. ˜̃μ−
j,l ) becomes

an estimate of μ+
l, j (resp. μ−

l, j) with desired accuracy larger

than 1 − 5
64(L+1) (see Theorem 4). Thus, the probability that

2(L + 1) estimations of μ+
j,0, ..., μ

+
j,L, μ−

j,0, ..., μ
−
j,L simulta-

neously succeed is larger than (1 − 5
64(L+1) )2(L+1) � 27

32 , and
therefore, the probability that μ̃ j is ε close to μ is larger
than 8

9 × 27
32 = 3

4 ( 8
9 is a lower bound on the probability for

|σ m̃ j − μ| � 3σ ; see [15]). Second, Algorithm 4 in this paper
has the loop on j = 1, ..., J , which means that Algorithm 3
in [15] itself is repeated J times and that the median of the
outputs is taken. This makes the lower bound of the success
probability of the μ estimation from 3

4 to 1 − δ.
Now, let us present the implementation of this algorithm

without intermediate measurements. For a preparation, we
randomly choose J integers from [N]0 and let them i1, ..., iJ .
Then, on a four-register system initialized as |i j〉|0〉|0〉|0〉,
we perform OX and a division to yield |i j〉|m̃ j〉|0〉|0〉, where
m̃ j := Xij /σ . Furthermore, combining OEqPr

N , OX and some
arithmetic oracles, we construct an oracle OX̃+

j,l
that acts on

|i j〉|m̃ j〉|0〉|0〉 as

OX̃+
j,l
|i j〉|m̃ j〉|0〉|0〉 = |i j〉|m̃ j〉

(
1√
N

N−1∑
i=0

|i〉|X̃ +
l,i(m̃ j )〉

)
. (A9)

Similarly, we obtain an oracle OX̃−
j,l

that acts as

OX̃−
j,l
|i j〉|m̃ j〉|0〉|0〉 = |i j〉|m̃ j〉

(
1√
N

N−1∑
i=0

|i〉|X̃ −
l,i(m̃ j )〉

)
.

(A10)

Using OX̃+
j,l

and OX̃−
j,l

O(t0) times, we can construct oracles

Õmean
X̃+

j,l ,t0
and Õmean

X̃−
j,l ,t0

, which resemble Omean
X̃+

j,l ,t0
and Omean

X̃−
j,l ,t0

in Al-

gorithm 4, respectively, but act as

Õmean
X̃+

j,l ,t0
|i j〉|m̃ j〉|0〉 = |i j〉|m̃ j〉

⎛⎝∑
y∈Y+

j,l

αy|y〉
⎞⎠,

(A11)

Õmean
X̃−

j,l ,t0
|i j〉|m̃ j〉|0〉 = |i j〉|m̃ j〉

⎛⎝∑
y∈Y−

j,l

αy|y〉
⎞⎠,

where Y±
j,l and αy are described in Algorithm 4 and some

registers are not displayed. Then, on an appropriate number
of registers, some of which are initialized to |i1〉, ..., |iJ〉, we
use OX , Õmean

X̃+
j,l ,t0

and Õmean
X̃−

j,l ,t0
to generate the following quantum

state:

J⊗
j=1

|i j〉|m̃ j〉 ⊗
⎡⎣ L⊗

l=0

⎛⎝ ∑
y+

j,l,1∈Y+
j,l

αy+
j,l,1

|y+
j,l,1〉

⎞⎠⊗ · · · ⊗
⎛⎝ ∑

y+
j,l,K ∈Y+

j,l

αy+
j,l,K

|y+
j,l,K 〉

⎞⎠
⊗
⎛⎝ ∑

y−
j,l.1∈Y−

j,l

αy−
j,l,1

|y−
j,l,1〉

⎞⎠⊗ · · · ⊗
⎛⎝ ∑

y−
j,l,K ∈Y−

j,l

αy−
j,l,K

|y−
j,l,K 〉

⎞⎠⎤⎦

=
J⊗

j=1

|i j〉|m̃ j〉 ⊗

⎡⎢⎢⎢⎢⎣
L⊗

l=0

∑
y+

j,l,1∈Y+
j,l ,··· ,y+

j,l,K ∈Y+
j,l

y−
j,l,1∈Y−

j,l ,··· ,y−
j,l,K ∈Y−

j,l

(
K∏

k=1

αy+
j,l,k

αy−
j,l,k

)
|y+

j,l,1〉 · · · |y+
j,l,K 〉|y−

j,l,1〉 · · · |y−
j,l,K 〉

⎤⎥⎥⎥⎥⎦. (A12)

Further, adding some registers and performing Omed
K , we obtain

J⊗
j=1

|i j〉|m̃ j〉 ⊗

⎡⎢⎢⎢⎢⎣
L⊗

l=0

∑
y+

j,l,1∈Y+
j,l ,··· ,y+

j,l,K ∈Y+
j,l

y−
j,l,1∈Y−

j,l ,··· ,y−
j,l,K ∈Y−

j,l

(
K∏

k=1

αy+
j,l,k

αy−
j,l,k

)
|y+

j,l,1〉 · · · |y+
j,l,K 〉|y−

j,l,1〉 · · · |y−
j,l,K 〉| ˜̃μ+

j,l〉| ˜̃μ−
j,l〉

⎤⎥⎥⎥⎥⎦, (A13)

where ˜̃μ+
j,l = med(y+

j,l,1, ..., y+
j,l,K ) and ˜̃μ+

j,l = med(y−
j,l,1, ..., y−

j,l,K ). Moreover, adding further registers and using arithmetic
oracles, we obtain

J⊗
j=1

|i j〉|m̃ j〉 ⊗

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
L⊗

l=0

∑
y+

j,l,1∈Y+
j,l ,··· ,y+

j,l,K ∈Y+
j,l

y−
j,l,1∈Y−

j,l ,··· ,y−
j,l,K ∈Y−

j,l

(
K∏

k=1

αy+
j,l,k

αy−
j,l,k

)
|y+

j,l,1〉 · · · |y+
j,l,K 〉|y−

j,l,1〉 · · · |y−
j,l,K 〉| ˜̃μ+

j,l〉| ˜̃μ−
j,l〉

⎤⎥⎥⎥⎥⎦⊗ |μ̃ j〉

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, (A14)
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where μ̃ j := σ (m̃ j + 4
∑L

l=0 2l ( ˜̃μ+
j,l − ˜̃μ−

j,l )). Finally, performing Omed
J yields the state⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

J⊗
j=1

|i j〉|m̃ j〉 ⊗

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

L⊗
l=0

∑
y+

j,l,1∈Y+
j,l ,··· ,y+

j,l,K ∈Y+
j,l

y−
j,l,1∈Y−

j,l ,··· ,y−
j,l,K ∈Y−

j,l

(
K∏

k=1

αy+
j,l,k

αy−
j,l,k

)
|y+

j,l,1〉 · · · |y+
j,l,K 〉|y−

j,l,1〉 · · · |y−
j,l,K 〉| ˜̃μ+

j,l〉| ˜̃μ−
j,l〉

⎞⎟⎟⎟⎟⎠⊗ |μ̃ j〉

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭⊗ |μ̃〉,

(A15)

where μ̃ = med(μ̃1, ..., μ̃J ). As Algorithm 4, if we mea-
sure the last register in this final state, we obtain an
ε-approximation of μ with probability at least 1 − δ. This
means that the final state, Eq. (A15), can be written as
Eq. (23), with some registers undisplayed. We therefore regard
the above unitary transformation to generate Eq. (A15) as
Omean

X ,ε,δ,σ .
Lastly, let us consider the statements on the query com-

plexity and the qubit number. Note that we generate the state
of Eq. (A12) by O(J ) uses of OX and

O(JKL) = O

[
log

(
σ

ε

)
log log

(
σ

ε

)
log δ−1

]
(A16)

uses of Õmean
X̃+

j,l ,t0
and Õmean

X̃−
j,l ,t0

, along with initialization of

some registers to |i1〉, ..., |iJ〉, and the transformation from
Eq. (A12) to Eq. (A15) is done by only arithmetic oracles.
Also note that, in Õmean

X̃+
j,l ,t0

and Õmean
X̃−

j,l ,t0
, OX̃+

j,l
, and OX̃+

j,l
are called

O(t0) = O[ σ
ε

log1/2( σ
ε

)] times. The number of calls to OX in
Õmean

X̃+
j,l ,t0

and Õmean
X̃−

j,l ,t0
is also of the same order, since each of OX̃+

j,l

and OX̃+
j,l

contains one call to OX . Combining these observa-
tions, we see that the number of uses of OX in generating
Eq. (A15) is given by Eq. (24). When it comes to qubit num-
ber, we note that, as stated in Theorem 7, Õmean

X̃+
j,l ,t0

and Õmean
X̃−

j,l ,t0

use O(log N + log t0) = O(log N + log( σ
ε

)) qubits, and thus
we useO((log N + log( σ

ε
)) × JKL) qubits, which is of order

as in Eq. (25), in preparing Eq. (A12). Also note that added
registers in transformation from Eq. (A12) to Eq. (A15) is
O(JL). From these observations, the total number of qubits
used in generating Eq. (A15) is given by Eq. (25). �

APPENDIX B: REMAINING PART OF
THE PROOF OF THEOREM 6

The remaining part of the proof.
Query complexity and qubit number
We consider the following cases separately.
(i) r(ρhard ) > 0
In this case, there exists (m, j) ∈ [Ntemp]0 × [M]0 such that

ρm, j � ρhard. For such (m, j),

|y − ρm, j | � ε ⇒ y � ρmid (B1)

holds for any y ∈ R (recall that we are now setting ε =
ρhard−ρsoft

2 ), and thus∑
y∈Ym, j
y�ρmid

|αρ,y|2 �
∑

y∈Ym, j
|y−ρm, j |�ε

|αρ,y|2 � 1 − δ′ � 1

2
(B2)

holds. Using this, p1, the probability that we obtain 1 when we
measure the last qubit in the final state in Eq. (45), is evaluated
as

p1 = 1

NtempM

Ntemp−1∑
m=0

M−1∑
j=0

∑
y∈Ym, j
y�ρmid

|αρ,y|2

� 1

NtempM

∑
(m, j)∈[Ntemp]0×[M]0

ρm, j�ρhard

1

2

= r̃(ρhard )

2
� 1

2NtempM
. (B3)

Therefore, by QAA(OAE, 1
2NtempM , δ

2 ), we get the state

|ψ〉 := 1√
p1

Ntemp−1∑
m=0

M−1∑
j=0

|m〉| j〉
∑

y∈Ym, j
y�ρmid

αρ,y|y〉, (B4)

with probability at least 1 − δ
2 .

On the other hand, note that, for (m, j) ∈ [Ntemp]0 × [M]0

such that ρm, j < ρsoft,

y � ρmid ⇒ |y − ρm, j | > ε ⇒ y /∈ Ỹm, j (B5)

holds for any y ∈ R, and thus we have∑
y∈Ym, j
y�ρmid

|αρ,y|2 =
∑

y∈Ym, j\Ỹm, j
y�ρmid

|αρ,y|2 �
∑

y∈Ym, j\Ỹm, j

|αρ,y|2 < δ′.

(B6)

This means that p�ρsoft the probability that we obtain (m, j)
such that ρm, j � ρsoft when we measure the first two registers
in |ψ〉 is evaluated as

p�ρsoft = 1

p1

∑
(m, j)∈[Ntemp]0×[M]0

ρm, j�ρsoft

∑
y∈Ym, j
y�ρmid

1

NtempM
|αρ,y|2

=

∑
(m, j)∈[Ntemp]0×[M]0

ρm, j�ρsoft

∑
y∈Ym, j
y�ρmid

|αρ,y|2∑
(m, j)∈[Ntemp]0×[M]0

∑
y∈Ym, j
y�ρmid

|αρ,y|2

= 1 −

∑
(m, j)∈[Ntemp]0×[M]0

ρm, j<ρsoft

∑
y∈Ym, j
y�ρmid

|αρ,y|2∑
(m, j)∈[Ntemp]0×[M]0

∑
y∈Ym, j
y�ρmid

|αρ,y|2

� 1 − 2NtempMδ′ = 1 − δ

2
, (B7)
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where, at the inequality, we use∑
(m, j)∈[Ntemp]0×[M]0

ρm, j<ρsoft

∑
y∈Ym, j
y�ρmid

|αρ,y|2 �
∑

(m, j)∈[Ntemp]0×[M]0
ρm, j<ρsoft

δ′ �
∑

(m, j)∈[Ntemp]0×[M]0

δ′ = NtempMδ′ (B8)

and ∑
(m, j)∈[Ntemp]0×[M]0

∑
y∈Ym, j
y�ρmid

|αρ,y|2 = NtempM p1 � 1

2
. (B9)

In summary, by the algorithm, we get (m, j) such that ρm, j � ρsoft with probability at least (1 − δ
2 )2 � 1 − δ.

The query complexity is evaluated as follows. Until we get an output, QAA(OAE, 1
2NtempM , δ

2 ) calls OAE

O

(
log δ−1

√
p1

)
= O

(
log δ−1

√
r̃(ρhard )

)
(B10)

times. As stated in Theorem 5, OAE makes

O

[
σ

ε
log3/2

(σ

ε

)
log log

(
σ

ε

)
log

(
1

δ′

)]
= O

[ √
Mγ

ρhard − ρsoft
log3/2

( √
Mγ

ρhard − ρsoft

)
log log

( √
Mγ

ρhard − ρsoft

)
log

(
NtempM

δ

)]
(B11)

calls to Oρ . The number of calls to ORe and OIm is of the same order, since Oρ contains O(1) calls to them. Combining these
observations, we obtain the estimations given by Eqs. (40) and (41) for the number of calls to ORe and OIm in the algorithm.

The number of qubits used in this algorithm is dominated by that required to perform OAE in Eq. (45), since QAA does not
require additional qubits. The number of qubits used for the operation in Eq. (45) is estimated as follows. The first two registers
have

O(log Ntemp + log M ) (B12)

qubits in total. Besides, according to Theorem 5, the third register and ancillary registers used for Omean
ρ,ε,δ′,σ at the second arrow

have

O

{[
log M + log

(σ

ε

)]
log

(
σ

ε

)
log log

(
σ

ε

)
log

(
1

δ′

)}
(B13)

qubits in total. Eq. (B13) becomes Eq. (39) under the setting on ε, σ , and δ′ in Algorithm 3. Since Eq. (B12) is subdominant to
Eq. (39), we have an upper bound on the total qubit number as Eq. (39).

(ii) r(ρsoft ) = 0
If QAA(OAE, 1

2NtempM , δ
2 ) outputs “failure”, the algorithm outputs “there is no signal”. In case QAA outputs some quantum

state |ψ〉 by error, the algorithm goes to the second step where ρm, j is classically calculated for (m, j) ∈ [Ntemp]0 × [M]0 given by
the first two registers in |ψ〉. The output of the classical computation should be smaller than ρsoft , since we are now considering
the case of r(ρsoft ) = 0, which means that ρm, j < ρsoft holds for any (m, j) ∈ [Ntemp]0 × [M]0. Accordingly, the algorithm
outputs “there is no signal” at the second step. In summary, at any rate, the algorithm outputs this message, if r(ρsoft ) = 0.

According to Theorem 2, in any cases, the number of calls to OAE in QAA(OAE, 1
2NtempM , δ

2 ) is at most O(
√

NtempM log δ−1).
As stated above, the number of calls to ORe and OIm in OAE is given by Eq. (B11). Combining these, we obtain the bound
Eq. (42) for the number of queries to ORe and OIm in the algorithm.

Since QAA(OAE, 1
2NtempM , δ

2 ) runs on the same system in any cases, the discussion on qubit number is the same as Case (i).
(iii) r(ρhard ) = 0 and r(ρsoft ) > 0
Since the evaluation on the maximum number of calls to ORe and OIm obtained in Case (ii) also applies to this case, we have

the same query complexity bound of Eq. (42). The discussion on qubit number is also the same as Case (ii). �
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