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Interaction effects on quantum Hall transitions: Dynamical scaling laws and superuniversality
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We study the role of electron-electron interactions near integer and abelian fractional quantum Hall (QH)
transitions using composite fermion (CF) representations. Interaction effects are encapsulated in CF theories
as gauge fluctuations. Without gauge fluctuations, the CF system realizes a ‘dual’ representation of the nonin-
teracting QH transition. With gauge fluctuations, the system is governed by a gauged nonlinear sigma model
(NLSM) with a θ term. While the transition is described by a strong-coupling fixed point of the NLSM, we
are nevertheless able to deduce two of its properties. With 1/r interactions, (1) the transition has a dynamical
exponent z = 1, and (2) all transitions are “superuniversal”: fractional and integer QH transitions are in the same
universality class. With short-range interactions, z = 2 and the fate of superuniversality remains unclear.
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I. INTRODUCTION

The quantum Hall to insulator transition (QHIT) is one of
the best studied and archetypal families of metallic quantum
critical points [1]. Nevertheless, many fundamental issues
remain poorly understood. For instance, a commonly held
view is that the integer QHIT always has a noninteracting
description—after all, the phases on either side of the tran-
sition have free-fermion prototypes. By contrast, it seems
absurd to suppose that the fractional QHIT may map on to
free particles. Thus, at first glance the integer and fractional
QHITs appear to be completely distinct.

The flaw with this reasoning is the premise that interactions
can be neglected near the integer QHIT: as a point of principle,
adiabatic continuity to free fermion ground states breaks down
at a critical point. Moreover, the very fact that the resistivity
tensor is finite and universal as T → 0 cannot be obtained
from free electrons in a disordered Landau level, since ex-
tended states occur only at one energy [2]. Furthermore,
there is evidence for dynamical scaling laws, which can only
be explained by invoking interactions [3–5]. A description of
the QHIT including both the effects of disorder and interac-
tions has remained elusive.

Motivated by these considerations, we have formulated the
QHIT problem in a dual composite fermion (CF) represen-
tation, where interaction effects are captured by fluctuations
of a dynamical U (1) gauge field. There are two distinct CF
theories that can be used to study the QHIT. The first is the
theory of Halperin, Lee, and Read (HLR) [6], obtained by
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attaching two flux quanta to electrons via a singular gauge
transformation. The second, more recent theory due to Son
involves Dirac CFs, which can be thought of as dual fermionic
vortex degrees of freedom [7]. When gauge fluctuations are
ignored within a mean-field approximation, both CF theories
lead to the same predictions at criticality [8,9].

Here, we proceed further, and take into account gauge fluc-
tuations in the presence of quenched randomness. This allows
us to address integer and fractional QHITs on equal footing.
As we describe, the effective field theoretic description that
incorporates both disorder and interaction effects is a gauged
nonlinear sigma model (NLSM) with a nonzero topological
term. The NLSM provides us with a framework to compute,
at least in principle, fluctuational corrections to the conduc-
tivities in the neighborhood of the transitions. As we show
explicitly, the topological term, which governs the behavior
of the Hall conductivity, behaves differently in the two CF
theories, in the presence of gauge fluctuations. In particular,
in the Dirac CF theory, the topological term—and thus the
Hall conductivity—is unaffected by gauge fluctuations at crit-
icality. Scaling behavior at criticality is therefore determined
by two parameters: disorder (1/σ cf

xx ) and gauge fluctuations,
set by e2

∗, the strength of 1/r interactions (see Fig. 1).
While the critical point itself corresponds to a strong cou-

pling fixed point of the NLSM, we are nevertheless able to
extract from it some robust properties of the critical point.
We show that for the case of 1/r interactions, the transitions
are superuniversal: both integer and fractional QHITs are in
the same universality class [1,10–13]. Superuniversality was
conjectured to hold due to a “law of corresponding states”
relating integer and fractional quantum Hall phases [11].
The conditions underlying superuniversality had remained
unknown. We provide an explicit discussion and show that
superuniversality is guaranteed in the presence of 1/r interac-
tions, provided the compressibility remains finite at the tran-
sition. With short-ranged contact interactions, it is plausible
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FIG. 1. Schematic renormalization group flows at criticality with
U = e2

∗/r from the viewpoint of the Dirac composite fermions with
a random vector potential. The Hall conductivity is not renormalized
by gauge fluctuations at criticality. Hence, at criticality there are two
running couplings, 1/σ cf

xx , the disorder strength, and 1/e2
∗, the gauge

fluctuation strength. At 1/e2
∗ = 0, the mean-field CF theory is valid

and the theory flows toward the IQHIT fixed point of noninteracting
CFs characterized by z = 2. However, when 1/e2

∗ > 0, it becomes
unstable to an interacting fixed point with z = 1 scaling.

that the transitions continue to exhibit superuniversality, but
further analysis is needed to show this unambiguously.

Another important universal property that stems from in-
teraction effects are dynamical scaling laws. At a quantum
critical point, a characteristic time scale ξτ diverges with the
correlation length ξ as ξτ ∼ ξ z, where z is the dynamical
critical exponent. The dynamical exponent plays an important
role near quantum critical points, since it also affects the
temperature dependence of thermodynamic quantities (e.g.,
the singular contribution to the heat capacity C ∼ T d/z), as
well as conductivities. In a strictly noninteracting description
of QHITs, the only characteristic time scales comes from the
behavior of the density of states (DOS) at the critical point:
If the DOS remains finite, then z = d follows automatically.
With interactions, z can change: for example, if 1/r inter-
actions remain unscreened, then z can be unity. In the CF
description, z is determined by the behavior of transverse
gauge fluctuations. As we explicitly show, the gauge boson is
overdamped both for 1/r interactions and short-ranged inter-
actions. But z = 1(z = 2) for 1/r(short-ranged) interactions.
The only requirement for this behavior is a finite conductivity
at the critical point. The finiteness of the dc longitudinal con-
ductivity is guaranteed in our theory since gauge fluctuations
do not renormalize the topological term (in Son’s formulation
of the CF theory), which in turn guarantees, by a corollary of
Laughlin’s gauge argument, that states at the Fermi energy are
not localized.

The paper is organized as follows. We formulate the QHIT
problem in the CF coordinates, including disorder and inter-
actions in Sec. II. A pedagogical derivation of the gauged
nonlinear sigma model description of QHITs is presented
in Sec. III. We explain the origins of the dynamical scaling
relation and superuniversality in Secs. IV and V, respectively.
We summarize our findings and give concluding remarks
in Sec. VI. A derivation of the topological term in the
Halperin-Lee-Read CF theory and the perturbative effects of

gauge fluctuations are presented in the Appendices A and B,
respectively.

II. QHITS IN THE COMPOSITE FERMION
REPRESENTATION

The standard approach to the study of QH transitions
involves electrons in a perpendicular magnetic field with
quenched disorder and interactions:

L = L0 + Lint,

L0 = c†(r)

[
−i∂t + μ + V (r) − 1

2m
(∂ − iA)2

]
c(r),

Lint = −1

2

∫
d2r′[n(r) − 〈n〉]U (r − r′)[n(r′) − 〈n〉]. (1)

The operator c(r) destroys a spin-polarized electron at po-
sition r, n(r) = c†(r)c(r), B = ∇ × A is the perpendicular
magnetic field, and the interaction potential is denoted by
U (r). In addition, there is a quenched random potential V (r),
which couples to the Dirac electron density, and is obtained
by shifting At → At + V (r). We assume that V (r) is zero on
average and is statistically particle-hole symmetric, i.e. all odd
moments of V (r) vanish. While we focus mostly on U (r) =
e2
∗/r, the case of experimental relevance, we also touch on the

fate of U (r) = U0δ(r), i.e., screened Coulomb interactions.
The problem as formulated in electron coordinates is

formidable; there are no small parameters, since one must
contend with the large external magnetic field leading to Lan-
dau level quantization, and the effects of both interactions and
disorder are crucial and singular. Numerical approaches have
suffered with the difficulty of going beyond the noninteracting
limit, which, as we discussed above, is inadequate for describ-
ing many of the universal and experimentally relevant aspects
of this problem.

Our strategy then, is to consider a different coordinate
system in which the combined physics of interactions and
disorder are perhaps more tractable. We therefore study the
problem from the composite fermion (CF) perspective, which,
as we show, provides new physical insights. We use Son’s
Dirac CF formulation [7] of the half-filled Landau level,
which we briefly review in the next subsection. We then show
how QHITs are realized in the CF framework.

A. Dirac CFs: Brief review

For our purposes, it is sufficient to motivate the Dirac
composite fermion theory by noting that the lowest Landau
level (LLL) limit of a massless Dirac fermion is identical to
that of a nonrelativistic electron: despite the spinor nature of
the Dirac wave functions, only one component is nonzero in
the LLL and the dynamics are thus identical for Dirac and
nonrelativistic electrons. Moreover, in the spirit of critical
phenomena, universal aspects of quantum Hall transitions
are insensitive to whether we choose to work with massless
Dirac fermions or nonrelativistic particles in the LLL, each
of which amount to different ultraviolet regulations of the
same low-energy physics. Furthermore, as observed by Son,
the massless Dirac electron manifestly preserves particle-
hole (PH) symmetry without the need of the LLL limit.

033146-2



INTERACTION EFFECTS ON QUANTUM HALL … PHYSICAL REVIEW RESEARCH 4, 033146 (2022)

Additionally, one can explicitly impart a duality transforma-
tion tantamount to particle-vortex duality to obtain the Dirac
CF theory [14]:

LDirac el. = ic̄γνDν
Ac + 1

8π
AdA + Ldis. + Lint.�⏐�

Lc f = L′
ψ + L′

gauge + L′
dis. + L′

int., (2)

L′
ψ = iψ̄γνDν

aψ + μcf ψ̄γ tψ, (3)

L′
gauge = − 1

4π
adA + 1

8π
AdA, (4)

L′
dis. = − 1

4π
V (r)b, (5)

L′
int. = − 1

2(4π )2

∫
d2r′ U (|r − r′|)b(r′)b(r), (6)

where c, c̄ are the two-component Dirac electron operators,
ψ, ψ̄ are the corresponding Dirac composite-fermions opera-
tors, Dν

a ≡ ∂ν − iaν , γ ν satisfy the relations {γ μ, γ ν} = 2gμν

and gμν is the metric tensor with the signature (−,+,+).
Further, A represents the background electromagnetic gauge
field while a is the emergent gauge field. The shorthand
AdB = εμνλAμ∂νBλ with greek indices μ = t, x, y, and εμνλ

is the Levi-Civita tensor. The Chern-Simons term for A in the
Dirac electron Lagrangian density, reflects the parity anomaly
[15]: in a properly regularized theory, a single massless two-
component Dirac fermion in d = 2 + 1 breaks time-reversal
and has a half-integer Hall conductance in units of e2/h =
1/2π . Anticipating a finite density of CFs, we have intro-
duced a CF chemical potential μcf . The duality transformation
above is stated in a continuum limit for simplicity, but it
can formally be defined on a lattice and implemented as an
exact mapping among lattice partition functions [16]. We will,
however, mainly be interested in the continuum formulation of
the duality mapping as stated above.

B. Disorder and interactions in the Dirac CF theory

Since at appears linearly in the CF lagrangian, it acts as a
Lagrange multiplier and enforces the following constraint via
its equation of motion:

ρcf ≡ ψ̄γ tψ = B

4π
. (7)

Thus, the CF density is fixed by the external magnetic field,
and it is in this sense that the Dirac CFs are to be viewed as
“vortices” of the Dirac electron.

Interactions in Lint are of density-density form; in the dual
frame, they are captured in L′

int, using the fact that the electro-
magnetic charge density is given by

ρEM ≡ δLc f

δAt
= B − b

4π
. (8)

C. Mean-field theory of the integer QHIT

Since the random potential V (r) couples to the magnetic
field b in the dual theory, the U (1) gauge field must contain a
fluctuating piece, and a quenched random piece [19]. Thus, to

accommodate quenched randomness in the CF representation,
we shift a j (r, t ) → a j (r, t ) + a′

j (r), and a′
j (r) are chosen from

spatially independent Gaussian random distribution,

P[a′] = e−πNF τ
∫

d2ra′(r)2
, (9)

where NF is the density of states at the Fermi level.
In the mean-field approximation, we neglect the fluctua-

tions of the U (1) gauge field beyond its equations of motion.
To formulate the mean-field theory carefully, it is useful to
rearrange terms in part of the CF Lagrangian of Eq. (2) as

iψ̄ /Daψ + μcf ψ̄γ tψ − adA

4π
+ AdA

8π

≡ Lψ [ψ̄, ψ, a] + Lgauge[a, A], (10)

with

Lψ [ψ̄, ψ, a] = iψ̄ /Daψ + μcf ψ̄γ tψ − ada

8π

Lgauge[a, A] = (a − A)d (a − A)

8π
, (11)

so that the full CF theory takes the form

Lc f = Lψ [ψ̄, ψ, a] + Lgauge[a, A] + L′
dis + L′

int. (12)

We do this to define a properly regularized Dirac theory, which
can in principle be defined on a lattice. Indeed, the second
term in Lψ [ψ̄, ψ, a] comes from the fact that on a lattice, there
will be a massive doubler fermion, which generates a level 1/2
Chern-Simons term. The electrical current Jμ = δLc f /δAμ is
given by

Jμ = εμνλ

4π
∂ν (Aλ − aλ), (13)

whereas the equation of motion of aμ results in

jμψ ≡ δLψ

δaμ

= εμνλ

4π
∂ν (Aλ − aλ). (14)

From these relations, and the definitions of linear response,
Ei = ρi jJ j, e j = ρ

ψ
i j j j

ψ , it follows that the resistivity tensors
satisfy

ρab = ρ
ψ

ab + 4πεab, ε =
(

0 1
−1 0

)
. (15)

The single-particle Hamiltonian associated with Lψ is also
properly regularized, and involves a massless Dirac fermion
along with a massive doubler fermion:

Hcf = H1 + H2, H1 = σ.(p − a′) − μcf ,

H2 = σ.(p − a′) − mσ z − μcf , m 	 μcf , (16)

where a′ ≡ a′(r) is again the quenched random vector poten-
tial, the Dirac fermions are at a finite chemical potential μcf

in accordance to Eq. (7) and σ = σx, σy are the Pauli matrices.
Having defined the theory properly, we may now safely ignore
H2 since the mass term is large compared to the chemical
potential. It will play a role in contributing −1/4π to the CF
Hall conductivity.

The mean-field phase diagram is then obtained by permit-
ting the quenched random magnetic field to have a nonzero
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FIG. 2. A schematic of the density of states of a Dirac fermion
in the presence of a vector potential disorder a′

j (r). We define a
tuning parameter b0 ≡ 1

L2

∫
d2r ∇ × a′(r). In subfigure (a), b0 = 0,

and the Hall conductivity is σ cf
xy = 0 at all Fermi-energies as a result

of the average time-reversal symmetry. This implies that all states are
extended due to Laughlin’s gauge argument [17]. In subfigure (b),
b0 
= 0 and all the nonzero energy states are localized. There exist
zero modes, the number of which is equal to total number of flux
quanta passing through the system [18]. These zero-modes lead to the
Hall conductivity σ cf

xy = sgn[b0]
4π

at any positive Fermi-energy. Thus,
the Dirac CFs exhibit an IQHT when we tune the average magnetic
field across b0 = 0.

time-independent average b0:

b0 ≡ 1

L2

∫
d2r ∇ × a′(r). (17)

This quantity acts as the tuning parameter for the QHIT, and
the critical point occurs at b0 = 0.

An essential role is played by the Dirac CF zero modes
[18] (Fig. 2). When b0 
= 0, the zero modes of H1 are anal-
ogous to the lowest Landau level [20] and contribute a Hall
conductance of sgn[b0]

4π
. Due to disorder, the nonzero energy

states are localized when b0 
= 0. Therefore, the total Hall
conductance of the CFs, including the contribution from the
massive doubler in H2 is given by

σ cf
xy =

{
sgn[b0]−1

4π
, b0 
= 0,

− 1
4π

, b0 = 0,
(18)

which when translated to electrical response via Eq. (15),
corresponds to the ν = 1 → 0 transition. This is the CF for-
mulation of the integer QHIT, within mean-field theory.

A crucial property of the CF mean-field theory is that at
criticality, delocalized states occur at all energies: states at the
Fermi level remain compressible and give rise to a nonzero
T = 0 dc conductivity. This will play a crucial role in the
conclusions that follow. The existence of delocalized states
follows from the parity anomaly of the Dirac fermion: a half-
integer Hall conductivity arising from UV degrees of freedom
(on a lattice, it originates from massive doubler fermions)
ensures, by a corollary of Laughlin’s gauge argument [17] that
states must be delocalized, irrespective of the Fermi level. As
we show in Sec. III, this feature continues to hold with gauge
fluctuations.

An important universal property of the QHIT are the
critical exponents associated with diverging length and time
scales. Since all states at the chemical potential are localized
for b0 
= 0, the characteristic length scale, the localization
length ξ , diverges as |b0|−ν , where ν is a critical exponent (not
to be confused with the filling fraction). The noninteracting
QHIT has been studied extensively in the electron represen-
tation via numerical simulations of the Chalker-Coddington
model. In a recent numerical study of the mean-field IQHIT
in the dual CF representation, two of us have found ν =
2.56 ± 0.02 in agreement with numerical studies in the elec-
tron representation [9]. Thus, this provides us with confidence
that the CF mean-field theory above faithfully captures the
relevant physics. Finally, as mentioned in the Introduction,
the dynamical critical exponent governing the critical slowing
down is determined solely by the finite density of states at
the chemical potential, and z = d = 2 for the CF mean-field
theory as well as the electron counterpart.

We next discuss the mean-field description of abelian frac-
tional QHITs.

D. Abelian fractional QHITs

A distinctive advantage of the CF approach over the elec-
tron approach [21] is that it enables us to study fractional and
integer QH transitions on equal footing. We will consider here
transitions from a class of abelian fractional QH states with
filling fraction ν = 1/(2m − 1), m = 1, 2, . . ., to insulating
phases. In the CF representation, the effective theory takes the
same form, namely,

Lc f = Lψ [ψ̄, ψ, a] + Lgauge[a, A] + L′
dis + L′

int, (19)

where L′
dis,L′

int, and Lψ are the same as before, but Lgauge is
generalized to [22]

Lgauge = 1

4π

1

2m
(a − A)d (a − A). (20)

For m = 1, we recover the description of the integer QH
transition.

The mean-field description of fractional QHITs proceeds
identically as before. We include the contribution to aj from
quenched disorder and treat all gauge fluctuations at the level
of the classical equations of motion. A consequence of this
approximation is that the behavior from Lψ is the same as in
the IQHIT, with the only change being the relation between
the resistivity tensors, due to the change in Lgauge:

ρab = ρψ,ab + 4πmεab. (21)
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This condition, in conjunction with the fact that the Dirac
fermions undergo a ν = −1 → 0 transition, captures the cor-
rect mean-field phase diagram.

The fact that in the mean-field approximation, the sector
describing the Dirac CFs is unchanged in both the IQHIT
and the FQHIT case has significance. It implies that the lo-
calization length exponent ν and the dynamical exponent z is
trivially the same for both cases. This is the sense of “supe-
runiversality” that was put forward in Ref. [11]. However, at
the level of CF mean-field theory it is not surprising—since
the behavior of CFs in the disordered environment is identical
in both cases. Such superuniversality is somewhat reminiscent
of Landau’s mean-field theory of phase transitions, in which
all continuous transitions have the same mean-field exponents
regardless of their nature. A far less trivial issue is the extent to
which interaction effects preserve superuniversality. This has
proven to be notoriously difficult to address in electron co-
ordinates. As we show, the CF formulation readily addresses
this issue.

E. QHITs with Gauge fluctuations

Next, we take into account the interaction lagrangian den-
sity, L′

int, which in CF coordinates restores gauge fluctuations,
since L′

int sets the kinetic term for the transverse gauge
boson:

L′
int = −1

2

∫
d2r′

(4π )2 b(r, t )U (x − x′)b(r′, t ). (22)

In Coulomb gauge, the dynamical fields have a temporal a0

and transverse components aT . Interactions U (r) depend only
on the transverse gauge boson: for U (r) = e2

∗/r, the interac-
tion lagrangian takes the form

L′
int = − e2

∗
16π

∫
d2q |q|aT (−q)aT (q), (23)

a j (q) = iε jkq jaT (q)

q
. (24)

For the case of contact interactions, U (r) = U0δ(r),

L′
int = − U0

16π

∫
d2q q2aT (−q)aT (q). (25)

With short-range interactions, gauge fluctuation effects are
stronger and the interplay between disorder and interactions
remains more subtle. We will discuss the effects of short-
ranged interaction on QHITs in Sec. V.

III. COMPOSITE FERMION NONLINEAR SIGMA MODEL

At length scales large compared to the mean-free path, the
CFs are strongly scattered by the disorder and the diffusive
modes are the emergent low-energy degrees of freedom. The
nonlinear sigma model (NLSM) [23–26] serves as a frame-
work to study the interplay of these diffusive modes and the
gauge fluctuations. In this section, we present a pedagogi-
cal derivation of the NLSM in the CF coordinates that will
form the basis of further theoretical analysis of the abelian
FQHITs.

We work in imaginary time and disorder average using the
replica trick. Ignoring the external fields for the moment, the

partition function of the replicated Son’s theory is

ZNr =
∫ Nr∏

α=1

D[ψ̄α, ψα]D
[
aα

μ

]
e−S,

S = Sψ + Sdis. + Sa,

Sψ = −
∑
α,n

∫
d2r ψ†α

n (iωn + μ + iσ j∂ j )ψ
α
n

− i√
β

∑
n,m,α

∫
d2r aα

μ(ωn − ωm)ψ†α

n γ τγ μψα
m,

Sdis. = −
∑
α,n

∫
d2r a′

j (r)ψ†α

nσ jψ
α
n ,

Sa = 1

2(4π )2

∑
α

∫
d2r d2r′ U (|r − r′|)bα (r′)bα (r), (26)

where Nr is the number of replicas, ψ† ≡ −ψ̄γ τ , γ τ =
σz, γ

τ γ j = −iσ j , ωn = (2n+1)π
β

, and β is the inverse temper-
ature. The greek letter superscripts correspond to the replica
indices and n, m are the frequency indices. Further, the Fourier
transform convention is

ψn(q) ≡ 1√
β

∫
d2r

∫ β

0
dτ eiωnτ−iq.rψ (r, τ ). (27)

Using the probability distribution in Eq. (9) to perform
disorder averaging, we obtain the following four-fermion
interaction:

Sdis. = − 1

2πNF τ

∫
d2r

(∑
α,n

ψ†α

nσ jψ
α
n

)2

= 1

2πNF τ

∑
nm,αβ

∫
d2r

[(
ψ†α

n ψβ
m

)(
ψ†β

mψα
n

)

−(
ψ†α

n σzψ
β
m

)(
ψ†β

mσzψ
α
n

)]
. (28)

The second term is unimportant since the Dirac spinor mag-
netization is not conserved. We decouple the first term using a
Hubbard-Stratonovic field: Q = Q† ≡ Qαβ

nm(r) and obtain the
following action:

S = Sψ,Q + Sa,

Sψ,Q =
∫

d2r

[
−

∑
nm,αβ

ψ†α

n

[(
G−1

0

)αβ

nm
+ i

2τ
Qαβ

nm

+ 1√
β

(
iAαβ

τ,nm + σ jAαβ
j,nm

)]
ψβ

m + πNF

4τ
Tr[Q2]

]
,

(29)

G−1
0 ≡ i� + μ + iσ j∂ j, (30)

Aαβ
μ,nm ≡ aα

μ(ωn − ωm)δαβ, (31)

�αβ
nm ≡ ωnδnmδαβ. (32)

Q has a nonzero saddle point value Q = � that gives rise to
a finite lifetime for the CFs. In addition, the Goldstone mode
fluctuations around this saddle point give rise to the diffusive
degrees of freedom. As a first step in deriving the effective
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field theory of QHIT, we use the equation of motion of Q to
obtain the saddle point solution:

Q = i

πNF

∫
d2r Trσ

[
1

G−1
0 + i

2τ
Q

]
, (33)

� = sgn[�], (34)

where Trσ indicates trace over the spinor indices.
The Goldstone modes result from the fact that to zeroth

order in A and �, the action in Eq. (29) is invariant un-
der the unitary transformation U ≡ U αβ

nm : ψ → Uψ,ψ† →
ψ†U †, Q → UQU †. And, the saddle-point solution Q = �

spontaneously breaks the U (2NrNω ) symmetry down to
U (NrNω ) × U (NrNω ). Where we consider a frequency cutoff
�c such that |ωn| < �c and 2Nω is the number of Matsubara
frequencies inside this interval. The unitary symmetry implies
that the full set of saddle-point solutions, i.e., U�U †, is given
by the following conditions:

Q2 = 1, Tr[Q] = 0. (35)

We now obtain the long wavelength, low-energy effective
field theory by expanding the action to leading order in the
variations of Q and the gauge field. As mentioned earlier, it is
a NLSM of the diffusive modes interacting with a gauge field.
Let us first integrate out the fermions:

Sψ,Q → −Tr log

[
G−1

0 + i

2τ
Q + 1√

β
(iAτ + σ jA j )

]

+ πNF

4τ

∫
d2r Tr[Q2]. (36)

There are a few critical issues that we need to account
for. First, the effective action obtained by derivative ex-
pansion must preserve gauge invariance [25]. To this end,
we note that the low-energy degree of freedom transforms
as Qtt ′ → ei�(r,t )Qtt ′e−i�(r,t ′ ) under the gauge transformation:
ψ → ei�(r,t )ψ, aμ → aμ + ∂μ�.

Second, Son’s theory contains a single Dirac fermion. We
interpret the frequency and replica indices as flavor indices
and thus the Dirac fermion is 2 + 0-dimensional. As such, it
contains a chiral anomaly that gives rise to an imaginary term
in the action. In Sec. III A, we show that this is, in fact, the
topological term proposed by Pruisken [27] with a coefficient
that corresponds to the QHIT. We provide an explicit and
pedagogical derivation of the topological term of the NLSM.

With these considerations, we obtain the gauged NLSM
action:

S = SQ + Stop + Sa, (37)

SQ = πNF

∫
d2r Tr

[
D

4
(DjQ)2 −

(
� + Aτ√

β

)
Q

]
, (38)

Stop = 1

16

∫
d2r ε jkTr[Q∂ jQ∂kQ], (39)

Sa = 1

2(4π )2

∑
α

∫
dτd2rd2r′ U (|r − r′|)bα (r′)bα (r)

+ NF

2

∑
α

∫
d2rdτ

(
aα

τ

)2
, (40)

DjQ ≡ ∂ jQ − i√
β

[A j, Q], (41)

where D ≡ v2τ/2 is the diffusion constant and v = 1 is the
Fermi velocity. The second term in Eq. (40) results from
the Debye screening due to the finite compressibility of
the CFs.

As alluded to earlier, the coefficient of the topological
term, Stop, corresponds to the CF theory being at the IQHIT
from νcf = −1 to νcf = 0. This confirms our expectations
of Sec. II C in the NLSM language. Remarkably, for Dirac
CFs, the topological term is unaffected by the gauge field
(see Sec. III A and Ref. [28]). It reflects the fact that at
criticality, the massless component of the Dirac fermion has
“time-reversal symmetry” [29] and any Hall conductance only
arises from the massive UV degrees of freedom, which can-
not couple to low-energy diffusive fluctuations. This property
of Dirac fermions guarantees that gauge fluctuations do not
renormalize the Hall conductivity at criticality. Thus, by
Laughlin’s gauge argument, we are guaranteed of the exis-
tence of delocalized states at the Fermi level, even as the
theory itself flows to strong coupling. We note in passing, that
in other CF theories, such as that of Halperin, Lee, and Read
[6], the contribution to σ cf

xy is entirely from low-energy quasi-
particles, which do couple to diffusive modes. In this case the
CF Hall conductance is renormalized by gauge fluctuations,
as we show in Appendix A.

Solving the NLSM for the realistic case of finite inter-
actions strength and σ cf

xx ∼ O(e2/h) is prohibitively difficult.
Nevertheless, we can study the effect of gauge fluctuations
on the diffusive degrees of freedom in the limit 1/σ cf

xx →
0, 1/e∗2 → 0 using perturbation theory where e2

∗ corresponds
to the strength of interactions. In Appendix B, we compute
the corrections to the CF longitudinal conductivity due to the
gauge fluctuations arising from Coulomb interactions in this
limit and show that they are irrelevant. Therefore, the RG
flow in this regime is toward the noninteracting CF limit and
suggests the schematic RG flow shown in Fig. 1.

An important distinction between the traditional electron
version of IQHIT and the CF theory presented in this paper
is that the perturbation theory in Coulomb interaction is con-
trolled by the parameters e2

∗ and 1/e2
∗, respectively. The two

theories, therefore, correspond to two different limits of the
interacting IQHIT problem. The 1/e2

∗ → 0 limit, where the
CF theory is applicable, has the advantage of being able to
treat integer and fractional QHITs at equal footing. As we
show in the following sections, it is a better starting point
since it can naturally explain the z = 1 dynamical scaling and
superuniversality of QHITs.

We considered a pure vector potential disorder in this sec-
tion. However, in addition, the Dirac fermions may experience
a random mass [30] and random chemical potential. For this
generalized disorder, the general form of the effective field
theory is the same as the one derived in this section because
the composite-fermion density is the only slow mode and the
NLSM remains in the unitary symmetry class.

A. Topological term in the Dirac CF theory

In this subsection, we show that the chiral anomaly of Dirac
fermion contributes an imaginary term in the NLSM action
that is identical to the topological term. Following Ref. [8],
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we start with the following term in the action of Eq. (29):

Sψ = −
∫

d2r ψ†

[
i� + iAτ√

β
+ μ + iσ j∂ j

+ i

2τ
Q + σ jA j√

β

]
ψ. (42)

In what follows, we will take � → 0 and Aτ → 0 for
a leading order analysis. Thus, the Dirac fermion essen-
tially becomes 2 + 0-dimensional with the temporal and
replica components playing the role of flavor indices. Upon
parametrizing the saddle point Q = u�u† and transforming
fermions via a unitary transformation ψ → uψ,ψ† → ψ†u†,
we obtain

Sψ = −
∫

d2r ψ̄
[
μ + iσ j∂ j + i

2τ
� + σ jB j

]
ψ, (43)

Bj ≡ iu†

(
∂ j − i

A j√
β

)
u, (44)

where [31] ψ† has been reinterpreted as ψ̄ in the 2 + 0-
dimensional theory. We partition the gauge field Bj into two
components:

Bj = Cj + Hj, (45)

Cj ≡ 1

2
(Bj + �Bj�), (46)

Hj ≡ 1

2
(Bj − �Bj�), (47)

[Cj,�] = {Hj,�} = 0, (48)

DjQ = ∂ jQ − i√
β

[A j, Q] = iu[�, Bj]u
†. (49)

Gauge transformations that commute with � do not modify
the saddle point, this implies that Cj are unbroken gauge
degrees of freedoms while Hj are Goldstone modes as seen
from Eq. (49). So, we can drop Hj in the chiral anomaly
analysis.

The mass matrix for the 2 + 0-dimensional Dirac fermions
is M = �/2τ − iμ. The masses for positive frequencies and
negative frequencies are related as m+ = −m∗

−. We make
these masses complex conjugates of each other via the chiral
rotation ψ → U (α)ψ, ψ̄ → ψ̄U (α), where α = 1, U (α) ≡
e−iαγ 5(�−1) π

4 and γ 5 ≡ iσxσy = −σz. The action transforms to

Sψ = −
∫

d2r ψ̄
[
μ� + i

2τ
+ iσ j∂ j + σ jCj

]
ψ. (50)

The Jacobian J of the transformation leads to an imaginary
piece in the action [32]:

J = exp

[
− i

2π

π

4

∫
d2r Tr[γ 5(� − 1) /D2]

]
,

= exp

[
ε jk i

2π

π

4

∫
d2r Tr

[
(� − 1)FC

jk

]]
, (51)

FC
jk ≡ ∂ jCk − ∂kCj − i[Cj,Ck]. (52)

After some straightforward algebra, we obtain

FC
jk = 1

2
√

β

[
u†FA

jk u + �u†FA
jk u�

] − i

4
[[Bj,�], [Bk,�]],

(53)

FA
jk ≡ ∂ jAk − ∂kA j . (54)

We next employ the idea of anomaly matching, namely, that
the chiral anomaly induced Jacobian is present at all length
scales and does not undergro renormalization group flow.
Consequently, it can be expressed in terms of either the
UV or the IR degrees of freedom (the latter in our case
correspond to the matrix Q). More explicitly, using Eq. (49),
we can express the field strength as

FC
jk = 1

2
√

β

[
u†FA

jk u + �u†FA
jk u�

] + i

4
u†[DjQ, DkQ]u.

(55)

We then obtain J = e−Stop , with

Stop = ε jk

16

∫
d2r

[
Tr[QDjQDkQ] − 2i√

β
Tr

[
QFA

jk − FA
jk

]]

= ε jk

16

∫
d2r Tr[Q∂ jQ∂kQ]. (56)

We have dropped the Tr[FA
jk ] term since it is a constant.

To sum up, we have explicitly derived the topological
term of the NLSM using anomaly matching, and conclude
that the topological term consists of ordinary derivatives, not
covariant derivatives. This implies that at criticality, gauge
fluctuations do not affect the running of θ . In the Appendix,
we provide a similar explicit derivation of the topological term
for the composite fermion theory of Halperin, Lee, and Read.
Interestingly, we find that the topological term in that theory
is expressed in terms of covariant derivatives. Thus, gauge
fluctuations will affect the Hall conductivity at criticality in
HLR theory.

IV. DYNAMICAL SCALING LAW

Having explicitly derived the NLSM in the composite
fermion representation in the previous section, we deduce
some of its robust consequences in the remainder of the paper.
We first consider the leading effects of gauge fluctuations in
the presence of interactions and disorder. The first important
quantum corrections involve Debye screening of aτ , due to the
finite compressibility of the critical CF metal, and overdamp-
ing of the transverse gauge boson. In the clean limit, Landau
damping sets the dynamical scaling laws. By contrast, with
disorder, and by the existence of delocalized states at critical-
ity, the Kubo formula implies that the quantum correction to
the transverse gauge boson via the current-current correlator
is simply �T T (q, ω) = |ω|σ cf

xx , where σ cf
xx is the conductivity

of CFs. As a consequence, the transverse gauge boson is
overdamped with z = 1 scaling with inverse propagator

D−1
T (q, ω) = |ω|σ cf

xx + e2
∗

8π
|q|. (57)

We can understand the z = 1 scaling from a complementary
perspective of overdamped plasmons as follows [33]. At crit-
icality, the nonzero CF conductivity in turn implies a nonzero
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electrical conductivity σxx = 1/(4π )2σ cf
xx . It follows from this

that Coulomb interactions alter the relaxation of the electric
charge density ρe via

iωRρe = 2πσxxq2U (ωR, q) = 2πe2
∗σxx|q|ρe + · · · (58)

= e2
∗

8πσ cf
xx

|q|ρe + · · · , (59)

where ωR refers to the frequency in the real time. The
first equation can be derived as follows. An electric charge
density fluctuation creates a spatially varying Coulomb po-
tential U (ωR, q) = e2

∗ρ(ωR, q)/|q| and the system responds
to this electric field by generating the relaxing current: Ji =
σi j (−iq jU ). This in conjunction with the continuity equation,
i.e., iωRρe = iqiJi gives the plasmon dispersion of Eq. (58)
[34]. The dynamics of plasmons are overdamped as op-
posed to reactive, i.e., they are dissipative. As such, we note
that the z = 1 scaling relation is not equivalent to Lorentz
invariance.

An interesting prediction of the plasmons being the source
of z = 1 scaling is that the overdamped dispersion is indepen-
dent of the disorder strength, assuming σ cf

xx flows to a universal
value at the QHIT fixed point. This may explain the observa-
tions of Ref. [5], where the data taken from different samples
collapse on the z = 1 scaling curve, despite the fact that
the individual samples contain varying amounts of disorder
[35].

Although the transverse gauge propagator can be obtained
to leading order in the nonlinear sigma model, we emphasize
that the z = 1 scaling relation only requires a nonzero linear
response conductivity of CFs. It is thus a robust property of
the critical point that occurs at σ cf

xx = O(e2/h).

V. ABELIAN FRACTIONAL QH TRANSITIONS:
SUPERUNIVERSALITY

A distinctive advantage of the CF approach over the elec-
tron approach [21] is that it enables us to study fractional
and integer QH transitions on equal footing. We will consider
here transitions from a class of abelian fractional QH states
with filling fraction ν = 1/(2m − 1), m = 1, 2, . . ., to insult-
ing phases. In the CF representation, we generalize L′

gauge of
Eq. (4) to [22]

L′
gauge = − i

4π

(
1 − m

2m

)
ada + i

2π

1

2m
adA − i

4π

1

2m
AdA,

(60)
where we have Wick rotated to Euclidean time. For m = 1, we
recover the description of the integer QH transition; for m > 1
there is now a Chern-Simons (CS) term for aμ.

With 1/r interactions, all transitions are in the same uni-
versality class regardless of the value of the integer m. The
reason for this, is that at criticality, the CF metal remains
compressible even with quenched randomness. As a result, the
CF degrees of freedom exhibit Debye screening. More explic-
itly, the temporal component aτ obtains a quantum correction
�ττ (q, ω) = NF + · · · , and fluctuates above a “massive” sad-
dle, where NF is the density of states at the Fermi energy. In
Coulomb gauge, the CS term takes the form λaτ qaT , where q
is the transverse momentum, and λ is given by the first term

in Eq. (60). Upon integrating out aτ , the effective Lagrangian
for aT (leaving aside their coupling to CF degrees of freedom
for the moment) takes the form

L′
eff [aT ] � 1

2
aT (−q)

[
e2
∗

8π
|q| + σ cf

xx |ω| + O(λ2q2)

]
aT (q).

(61)

We have neglected the constant O(B2) correction to L′
gauge

after integrating out aτ [36]. Thus, since the CS term is
subleading in the presence of Coulomb interactions at criti-
cality, it immediately follows that fractional and integer QH
transitions are in the same universality class, with identical
critical exponents ν, CF conductivity tensor, and dynami-
cal scaling set by an overdamped transverse gauge boson.
Again, the robustness of this conclusion rests on the fact
that the critical point has a metallic description in terms of
delocalized composite fermion states. The notion of supe-
runiversality in previous studies had remained conjectural
[11] (for a more recent discussion, see Ref. [37]); here we
have provided direct arguments based on the presence of 1/r
interactions.

The CS term of the emergent gauge field is irrelevant for
the properties of the CFs, however, it determines the dictio-
naries between the CF and electromagnetic conductivities.
The resulting electron conductivities are consistent with the
correspondence rules conjectured in Ref. [11].

The arguments above are easily repeated in the case of
short-range interactions, with

L′
int = U0

16π
q2aT (−q)aT (q). (62)

In this instance, gauge fluctuation effects are stronger and
the interplay between disorder and interactions remains more
subtle. Integrating out aτ and invoking the Kubo formula,

L′
eff [aT ] = 1

2
aT (−q)

[(
U0

8π
+ λ2

NF

)
q2 + |ω|σ cf

xx

]
aT (q).

(63)

Thus, we can expect that at the critical point, z = 2. How-
ever, the CS term does not decouple in this case, and more
sophisticated analysis is needed to conclude whether or not
the transitions are superuniversal.

VI. SUMMARY

We have studied QH to insulator transitions in the compos-
ite fermion representation, which provides a new perspective
on the problem. In the CF representation, delocalized states
occur at all energies at criticality. We have concluded that
z = 1(z = 2) for 1/r(short-range) interactions. We have also
shown that with 1/r interactions, the transitions are superuni-
versal. Moreover, in the Dirac CF theory, the Hall conductance
is not renormalized at criticality by gauge fluctuations. Fur-
ther study including nonperturbative effects of disorder are
needed to determine the localization length exponent ν. We
will report on these developments elsewhere. On the exper-
imental front, further studies of QH transitions with gates
will be of fundamental importance to shed light on dynamical
scaling laws and superuniversality in the presence of screened
Coulomb interactions. We have provided an explicit proof that
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the transitions with 1/r interactions are superuniversal. Our
conclusions go beyond previous conjectures based solely on
the mean-field approximation and take into account gauge
fluctuations. With screened interactions, arguments for su-
peruniversality remain more subtle, and will likely produce
distict finite temperature crossovers. We shall report on such
phenomena in future studies.
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APPENDIX A: TOPOLOGICAL TERM IN THE
HLR THEORY

In this Appendix, we derive the topological term in the
gauged nonlinear sigma model (NLSM) for the Halperin-
Lee-Read (HLR) [6] composite-fermion (CF) theory. The
HLR theory differs from Son’s theory [7] in the fact that the
composite-fermion (CF) does not have a Berry phase around
the Fermi surface and the emergent gauge field has a Chern-
Simons term. As such, we expect the topological term to have
covariant derivatives unlike the case of Son’s theory which
contains regular partial derivatives (see maintext Sec. III A).

In Refs. [9,20,39,40], the presence of spatially correlated
potential and magnetic flux disorders was shown to be a
crucial ingredient to obtain a consistent description of the
half-filled Landau level in terms of the nonrelativistic CFs.
It was shown that the HLR CF theory exhibits emergent
particle-hole (PH) symmetry and tunes the CFs at νcf = −1
to νcf = 0 IQHIT transition. The correlated potential and
magnetic flux disorders can be interpreted as the CFs ex-
periencing a random magnetic field in the presence of a
Zeeman term with a gyromagnetic ratio of g = 2. In this
Appendix, we make use of such a disordered HLR theory
in the presence of gauge fluctuations given by the following
lagrangian:

L = η†

[
∂τ − iaτ + b′(r)

2m
− μ

− 1

2m
(∂ j − ia′

j (r) − ia j )
2

]
η + · · · , (A1)

where η, η† are the annihilation and creation operators of the
nonrelativistic CF field, m is the CF mass that controls the
density of states at fermi energy μ, aμ is the fluctuating part
of the emergent gauge field and εi j∂ia′

j (r) = b′(r) is the dis-
ordered magnetic field. The third term b′(r)η†η corresponds
to the g = 2 Zeeman term and generates the spatially corre-
lated magnetic flux and chemical potential disorders. “· · · ”
include additional terms such as the Chern-Simons term and
gauge field kinetic energy that will not be important in this
Appendix.

To derive the topological term, we add and subtract a g = 2
Zeeman term for the fluctuating gauge field:

L = η†

[
∂τ − iaτ + b′(r) + b

2m
− μ

− 1

2m
(∂ j − ia′

j (r) − ia j )
2

]
η − bη†η

2m
+ · · · .

(A2)

Now, we perform the fermionic Hubbard-Stratonovic transfor-
mation of Ref. [8] and map the g = 2 theory to a Dirac theory
with a random vector potential:

L = −�†[μ + ivσ j (∂ j − ia′
j (r) − ia j )]� − bη†η

2m

+ η†Da
τ η + · · · , (A3)

� ≡ (η χ )T , �† ≡ (η† χ†), where χ, χ† are the fermionic

Hubbard-Stratonovic field, Da
μ ≡ ∂μ − iaμ, and v ≡

√
μ

2m .

This lagrangian is nearly identical to Son’s Dirac theory in the
presence of vector potential disorder except for the presence
of an additional Chern-Simons term for the emergent gauge
field and the second to last term. Therefore, the derivation of
the NLSM and the topological term is almost identical in the
HLR case. A minor difference is that only the η component of
the Dirac field � has a time-derivative term.

To see how the additional − bη†η

2m term in the lagrangian
changes the topological term, we perform disorder averaging
using the replica trick and introduce the constrained NLSM
field Q to get

L = −�†

[
μ + ivσ jD

a
j + i

2τ
Q + b

4m
(σz + 1)

]
� + · · · ,

(A4)

where we have used the fact that γ τ = σz and ignored the
time-derivative term. Also, the replica indices have been sup-
pressed for brevity. Let us integrate out fermions:

Leff. = −Tr log

[
μ + ivσ j∂ j + v√

β
σ jA j

+ i

2τ
Q + B

4m
√

β
(σz + 1)

]
+ · · · , (A5)

where B ≡ ε jk∂ jAk . To first order in the last term, we get

Leff. = i

4
√

β
Tr[QB] + · · · = iε jk

8
√

β
Tr

[
QFA

jk

]
. (A6)

If we repeat the chiral anomaly analysis of the maintext
Sec. III A on Eq. (A4), we will find that this additional term
leads to the introduction of covariant derivatives in the topo-
logical term of Eq. (56). Therefore, the HLR topological term
is given by

Stop = ε jk

16

∫
d2r Tr

[
QDa

j QDa
kQ

]
. (A7)
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APPENDIX B: PERTURBATION THEORY IN GAUGE
FLUCTUATIONS AT LARGE CF CONDUCTIVITY

In this section, we obtain the quantum corrections to the
gauge-field and the diffusive degrees of freedom that result
from the coupling between them. We consider σ cf

xx 	 e2/h
and the limit of strong Coulomb interactions. As such, the
results of this Appendix strictly pertain to the experiments
done at weak disorder and will not tell us much about the
critical point at σ cf

xx ∼ O(e2/h). Nevertheless, we can make
interesting statements about the RG flow in the regime of
validity of the perturbation theory. As we will show, the gauge
fluctuations can be neglected in this limit.

To perform a perturbative analysis, we expand the NLSM
around the saddle point in the following way [23]:

Q =
⎛
⎝ ω > 0 ω < 0√

1 − V †V V †

V −√
1 − VV †

⎞
⎠ω > 0

ω < 0, (B1)

Q =
∞∑

n=0

Q(n), Q(0) = �, (B2)

Q(1) =
(

0 V †

V 0

)
, (B3)

Q(2) = −Q(1)2
�

2
, Q(3) = 0, Q(4) = −Q(1)4

�

8
, · · · . (B4)

It is useful to write the action with covariant derivatives ex-
panded out:

S = Stop + Sa,(0) + Sa,(1) + Sa,(2),

Sa,(0) = πNF

∫
d2r Tr

[D

4
(∂ jQ)2 − �Q

]
, (B5)

Sa,(1) = − iπσ cf
xx√
β

∫
d2r Tr[A jQ∂ jQ]

− πNF√
β

∫
d2r Tr[Aτ Q], (B6)

Sa,(2) = −πσ cf
xx

2β

∫
d2r Tr

[
A jQA jQ − A2

j

]
+ NF

2

∑
α

∫
d2rdτ

(
aα

τ

)2

+ 1

2(4π )2

∑
α

∫
dτd2rd2r′ U (|r − r′|)bα (r′)bα (r).

(B7)

The Gaussian level propagator of Q(1) is

〈
Q(1)αβ

nm(q1)Q(1)γ δ

kl (−q2)
〉
0 = 2

πNF

�(−ωnωm)

Dq2
1 + |ωn − ωm|

× δ(2)(q1 − q2)δαδδβγ δnlδmk .

(B8)

Notice that 〈Q(1)(q)Q(1)(−q)〉0 ∝ 1
σ cf

xx
. This means that the ex-

pansion in powers of Q(1) is controlled by the small parameter
1/σ cf

xx .

Additionally, in transverse gauge, the propagator of aT for
Coulomb interactions, i.e., U (r) = e2

∗/r is

a j (q) = iε jkq jaT (q)

q
, (B9)〈

aα
T (ωn, q1)aβ

T (−ωm,−q2)
〉
0

= 8π

8πσ cf
xx |ωn| + e2∗q

δ(2)(q1 − q2)δαβδnm. (B10)

1. Gauge-boson self-energy

The leading order correction to the gauge-boson propaga-
tor can be obtained to second order in the gauge coupling and
Q(1):

S�[aμ] ≡ 1

2

∫
d2q aα

μ(ωn, q)�μν,αβ
nm (q)aβ

ν (−ωm,−q).

(B11)

For the spatial part of �μν , we obtain the following term in
the second-order expansion in powers of the diffuson-gauge
coupling term of Eq. (B6) and re-exponentiating the answer

� jk,αβ
nm

(1) = −σ cf
xx

|ωn|Dqjqk

Dq2 + |ωn|δ
αβδnm. (B12)

From Eq. (B7), we get the saddle point answer and two ad-
ditional terms. One of them is obtained by replacing both Qs
by Q(1) and the second by replacing of the Qs by � and the
other by Q(2). The latter term vanishes in the replica limit since
〈Q(2)〉0 ∝ Nr . So, we get

� jk,αβ
nm

(2) = σ cf
xx δ

αβδnm − σ cf
xx δn,0δm,0

4π

×
∑
n′,m′

∫
d2q′ �(−ωn′ω′

m)

Dq′2 + |ωn′ − ωm′ | . (B13)

We can show that the second term does not contribute in the
replica limit since we have a replica-symmetric saddle point.
To see this explicitly, let us consider a simplified action of the
form:

S[x] = 1

2

∑
αβ

(aδαβ + b)xαxβ, (B14)

with α = 1, 2, . . . , Nr − 1, Nr . Eigenvalues of the inverse
propagator matrix are a, a, . . . , a, a + Nrb. In the replica
limit, all of them converge to a and thus we can ignore b, i.e.,
the second term in Eq. (B13).

Overall, we get the following for the spatial components of
the polarization tensor:

� jk,αβ
nm (q) = σ cf

xx |ωn|δαβδnm
|ωn|δ jk + D(q2δ jk − q jqk )

Dq2 + |ωn| .

(B15)

Similarly,

�ττ,αα
nn (q) = NF

Dq2

Dq2 + |ωn| , (B16)

�τ j,αα
nn (q) = � jτ,αα

nn (q) = σ cf
xx

ωnq j

Dq2 + |ωn| , (B17)
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where �μν,αβ
nm = �μν,αα

nn δαβδnm. It can be easily verified
that this satisfies the Ward-Takahashi identities qμ�μν =
�νμqμ = 0 when we use the Fourier transform convention
of Eq. (27). Let us convert the self-energy to transverse
gauge:

�T T,αα
nn (q) = σ cf

xx |ωn|, (B18)

�τT,αα
nn (q) = �T τ,αα

nn (q) = 0. (B19)

The first equation is the source of the z = 1 dynamical scaling
when added to the bare Coulomb term ∝ e2

∗|q||aT |2.

2. Diffuson self-energy: Quantum corrections to conductivity

In principle, there are three different possible processes
that can contribute to the quantum corrections to the dif-
fusion propagator. First, since we found that aτ is gapped
at the saddle point, it mediates an effective density-density
interaction with a constant form-factor which leads to
the “standard” Altshuler-Aronov correction. Second, there
are Hartree-type current-current gauge interactions, which in
the 1/r case are known to be much less singular than for the
short-range interaction because such processes are dominated
by large transferred momenta up to kF [41]. Fortunately, re-
sulting logarithmic corrections of both types are well under
control since the absence of spin degeneracy guarantees the
marginal irrelevancy of the coupling and suppression of the
triplet instability [42]. Finally, one has to investigate the fate
of exchange current-current diagrams involving a j . In this Ap-
pendix, we present such corrections in the NLσM framework
and demonstrate, in full agreement with Ref. [43], that they
saturate in the IR limit.

The leading correction to the conductivity of diffusons
comes from the second-order expansion in powers of the

action in Eq. (B6). In β → ∞ limit, we get

SQ,1 ∼ 2πσ cf
xx

√
πT τ

e2∗
√

Dτ

∫
d2q Dq2Q(1)αβ

nm(q)Q(1)βα

mn(−q),

(B20)

where we have done the momentum integral first and set the
external frequencies to zero (dc limit). We then expanded in
powers of ω2 and integrated over the region πT < ω2 < 1/τ .
We have ignored the constant piece that changes the zero
temperature conductivity by a small amount for small 1/e2

∗.
Further, we also get the following from the same term:

SQ,2 ∼ 2π2σ cf
xx

e2∗β
√

D

∫
d2q

δαβDq2

√|ωn − ωm|
× Q(1)αβ

n,n−p(q)Q(1)βα

m,m+p(−q). (B21)

Notice that this is completely regular since |ωn − ωm| �
2π/β and there is one extra sum over frequencies. Similar
to Ref. [43], these terms lead to

√
T dependence of the cor-

rections to conductivity.
In addition, we get the following corrections from the first

term in Eq. (B7):

SQ,3 ∼ 2σ cf
xx

e2∗
√

Dτ

∫
d2q

[
|ωn − ωm|Q(1)αβ

nm(q)Q(1)βα

mn(−q)

− πδαβ

β
Q(1)αβ

n,n−p(q)Q(1)βα

m,m+p(−q)

]
. (B22)

The first term renormalizes the coefficient of |ω| in the
diffuson propagator. Since the corrections to diffusons are
small, we conclude that gauge fluctuations are unimportant
to this order. Also notice that these quantum corrections
are controlled by the small parameter:

√
D/e2

∗
√

τ ∝ �/e2
∗τ ,

where � is the mean-free path. In terms of the renormal-
ization group, the gauge fluctuations are irrelevant for large
σ cf

xx .
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