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Thermodynamic stability and critical points in multicomponent mixtures with structured
interactions
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Theoretical work has shed light on the phase behavior of idealized mixtures of many components with random
interactions. However, typical mixtures interact through particular physical features, leading to a structured,
nonrandom interaction matrix of lower rank. Here, we develop a theoretical framework for such mixtures and
derive mean-field conditions for thermodynamic stability and critical behavior. Irrespective of the number of
components and features, this framework allows for a generally lower-dimensional representation in the space of
features and proposes a principled way to coarse-grain multicomponent mixtures as binary mixtures. Moreover,
it suggests a way to systematically characterize different series of critical points and their codimensions in
mean-field. Since every pairwise interaction matrix can be expressed in terms of features, our work is applicable
to a broad class of mean-field models.
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Determining the phase behavior of mixtures is an important
goal of statistical physics. However, while the thermody-
namics of mixtures with few components is well understood
theoretically [1], most functional mixtures are made up of
a large number of distinct components, and the principles
underlying the phase and critical behavior of such multicom-
ponent mixtures are less clear. There have been substantial
steps towards understanding these systems, but only in limit-
ing cases. Sear and Cuesta [2] and subsequent follow-ups [3,4]
determined conditions for phase separation in idealized mix-
tures with random, independent pairwise interactions. Taking
a very different limit, Sollich and co-workers [5–7] have made
progress for polydisperse mixtures interacting through a con-
tinuous distribution of attributes.

Different from these theoretical studies, many physical
examples are made up of defined components whose in-
teraction structure is governed by the physical details that
underpin them. In phase-separation-prone lipid membranes,
though there are thousands of chemical species, interactions
are thought to be primarily driven by just a few features—
interactions between headgroups, the degree of acyl-chain
saturation, and the mismatch between hydrophobic heights
[8–12]. In protein condensates, interactions are likely medi-
ated by a combination of specific motifs, such as repetitive
binding domains, and less specific electrostatic and hydropho-

*isabella.graf@yale.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

bic interactions [13–15]. This observation suggests that in
both cases the resulting effective pairwise interaction matrix is
nonrandom in a particular way: Its rank, given by the number
of independent features, can be considerably smaller than
its dimension, given by the number of components. In other
examples it might be less clear what features mediate interac-
tions, but an effectively low-rank interaction matrix is likely
common to most mixtures made up of many components.
One class of examples are fluids such as petroleum for which
an approximation in terms of lower-dimensional interaction
parameters has been successfully applied [16].

To systematically investigate the role of such a low-
dimensional interaction structure for phase behavior, in this
paper we develop a theoretical framework to study the phase
behavior of mixtures with many components but structured
interactions. We show that the stability of phases and critical
behavior can be understood in a “feature space,” which is typ-
ically much lower dimensional than the space of component
densities.

I. MEAN-FIELD MODEL

We specifically consider a family of multicomponent mod-
els with a pairwise interaction matrix of variable rank (see
Fig. 1). The mixture is made up of N different component
types. Component type i is characterized by a “feature vector”
�si composed of R real features s(α)

i , α = 1, . . . , R. Each fea-
ture conveys an additive, Ising-like interaction with interac-
tion strength J (α) �= 0 [17]. The corresponding lattice Hamil-
tonian reads H = − ∑R

α=1 J (α) ∑
〈xy〉 σ

(α)(x)σ (α)(y), where∑
〈xy〉 is the sum over all neighboring sites x, y on the lattice

and the spins take the values σ (α)(x) = s(α)
i ∈ R if site x is
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FIG. 1. Model: The multicomponent mixture comprises N different component types (“components”). Component i = 1, . . . , N is
characterized by R features s(α)

i , α = 1, . . . , R, each of which conveys an additive pairwise interaction with interaction strength J (α) between
neighboring components.

occupied by component type i (see Ref. [18] for a related
model with a single feature). In a mean-field approximation,
our system is described by a Flory-Huggins-like free energy
density per kBT [19,20] fN= ∑N

i=1 ρi ln ρi − ∑N
i, j=1 ρiχi jρ j ,

where the densities ρi are subject to the incompressibility
constraint

∑
i ρi = 1. The interaction matrix is given by

χi j :=
R∑

α=1

zJ (α)

2kBT
s(α)

i s(α)
j =:

R∑
α=1

C(α)s(α)
i s(α)

j , (1)

for a lattice coordination number z. For R features, the inter-
action matrix is of rank r � R. While this decomposition into
features may be motivated by the physics of interactions, any
real and symmetric interaction matrix χi j can be decomposed
in this way, with R � N , eigenvectors s(α)

i , and eigenvalues
C(α)|s(α)|2; see Ref. [16] for a related (eigen)decomposition
in the context of petroleum. A (precise) way to think about
the features is thus as eigenvectors of the interaction ma-
trix. Furthermore, as long as interactions are pairwise and
meaningfully described by mean-field theory, our choice of
representing components in terms of additive Ising-like fea-
tures is entirely general. For now, we assume all eigenvalues
to be positive but discuss the general case in the SM [21] and
briefly below.

II. THERMODYNAMIC STABILITY AND
CRITICAL POINTS

The main challenge in working with mixtures with N � 1
components is that they are embedded in a very high di-
mensional space of densities. We now develop an analytic
framework, wherein the mixtures are instead represented in
the corresponding, potentially much lower dimensional fea-
ture space. To this end, we use matrix inversion techniques
and will then successively derive conditions for local ther-
modynamic stability and the occurrence of different series of
critical points.

In general, the thermodynamic behavior of the multicom-
ponent mixture is determined by the free energy landscape
in the N-dimensional space of densities �ρ (N ). Due to the
incompressibility constraint, the densities are not indepen-
dent, ρN = 1− ∑N−1

i=1 ρi, leaving the free energy density f
a function of N − 1 densities and temperature. The mixture
is (locally) thermodynamically stable if the Hessian matrix
(i, j = 1, . . . , N − 1)

Hi j := ∂2 f

∂ρi∂ρ j
= δi j

1

ρi
+ 1

ρN︸ ︷︷ ︸
=:Ki j

−
R∑

α=1

r (α)
i r (α)

j︸ ︷︷ ︸
:=(UU T )i j

(2)

is positive definite. Here, r (α)
i :=

√
2C(α)(s(α)

i − s(α)
N ) is the

rescaled and shifted feature vector. While in the presence of
a solvent, component N is most straightforwardly associated
with this solvent, all physical results are ultimately indepen-
dent of the choice of reference point. At high temperatures
(large T → small C(α) → small r (α)), the system is domi-
nated by entropy (H ≈ K), and all eigenvalues of the Hessian
matrix are positive; the system is thermodynamically stable
to perturbations which are local in composition. At lower
temperatures, one or more of the eigenvalues can become
negative, implying that the system can spontaneously lower
its free energy by phase separating along the corresponding
eigenvector. The boundary of local thermodynamic stability
is called the spinodal. It corresponds to the submanifold of
compositions and temperature where the smallest eigenvalue
of the Hessian matrix is zero. Since a matrix is invertible if and
only if all of its eigenvalues are nonzero, the spinodal is also
the submanifold where the matrix becomes singular for the
first time, starting from all positive eigenvalues. Here, we take
advantage of the fact that H is the sum of a positive definite
matrix K with inverse K−1

i j = δi jρi − ρiρ j and a lower-rank
contribution UU T arising from interactions [Eq. (2)]. Anal-
ogously to Ref. [22], we use the Woodbury matrix identity
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FIG. 2. (a1) and (b1) Illustration of two multicomponent mixtures with N = 1000 different component types (small, colorful disks; area
of diski ∼ density ρi) in (R = 2)-dimensional feature space, together with the first principal component (first PC; red dashed line) of their
respective covariance matrix Cov. Both mixtures exhibit a variance of 1 along the first PC and are thus located on the spinodal. The relative
enrichment δρi/ρi of component i = 1, . . . , 1000 along the initial direction of phase separation right at the spinodal (color code; arbitrary
units) is determined by the projection E (1)

i of the feature vector (relative to the mean) onto the first PC of Cov; see Eq. (4). Coarse-graining
the multicomponent mixture as an effective binary mixture that preserves the location of the system with respect to the spinodal and critical
manifold (by conserving the second and third cumulant along the first PC of Cov) leads to a composition as shown by the large, translucent
disks; see SM [21] for details. For a critical mixture (a), the composition of the binary mixture is symmetric, for a noncritical one (b), the
densities of the two components are different. Note that all results are independent of global rotations or translations of the feature vectors
or reflections s(α)

i → −s(α)
i ∀i [21]. (a2) and (b2) For the multicomponent mixture to be critical, the skewness of the distribution of relative

enrichments has to be zero [mixture 1 in (a1) vs mixture 2 in (b1)]; see Eq. (5).

[23] on K and UU T to invert H and find that the Hessian
matrix is invertible if and only if 1 − U T K−1U =: 1 − Cov
is invertible; see SM [21]. Here, Cov is the covariance matrix
between the (rescaled) features:

Covαβ = 〈
r (α)r (β )

〉(N )

�ρ − 〈
r (α)

〉(N )

�ρ
〈
r (β )

〉(N )

�ρ , (3)

where the averages are taken with respect to the probability
measure given by the mixture composition �ρ (N ): 〈X 〉(N )

�ρ =∑N
i=1 ρiXi. The rank of the covariance matrix RCov corre-

sponds to the maximal number of linearly independent feature
vectors, RCov � R [21].

Thermodynamic stability. These results imply that the mix-
ture becomes unstable when the largest eigenvalue of the
covariance matrix λ(1) = 1. Importantly, this condition is in-
dependent of the number of component types, including as
limits the two-component mean-field Ising model and the
infinite-component limit as discussed in the context of poly-
disperse systems [5,24].

Direction of instability. In order to find the initial direction
of phase separation at the spinodal, we next determine the
eigenvector corresponding to eigenvalue 0 (1) of the Hes-
sian (covariance) matrix: If 1 − Cov is invertible, the inverse

of the Hessian matrix is given by H−1 = K−1 + K−1U (1 −
Cov)−1U T K−1. Using the eigendecomposition of the covari-
ance matrix in terms of its (descending) eigenvalues λ(γ ),
γ = 1, . . . , R, and corresponding orthonormal eigenvectors
V (γ ) (whose dependency on �ρ (N ) we drop for conciseness),
Covαβ = ∑R

γ=1 λ(γ )V (γ )
α V (γ )

β , the inverse of the Hessian is

H−1
i j = δi jρi − ρiρ j + ∑R

γ=1
1

1−λ(γ ) e
(γ )
i e(γ )

j , with

e(γ )
i := ρiE

(γ )
i := ρi

R∑
α=1

V (γ )
α

(
r (α)

i − 〈
r (α)

〉(N )

�ρ
)
. (4)

Close to the spinodal (λ(1) ≈ 1), the dominant term is
1

1−λ(1) e(1)(e(1) )T . Correspondingly, on the spinodal, e(1) is the
eigenvector of the Hessian with eigenvalue 0 [25] and co-
incides with the direction of instability He(1) = 0 (see also
Ref. [5] for polydisperse systems). Equation (4) implies that
the relative enrichment δρi/ρi ∼ e(1)

i /ρi = E (1)
i of component

i along the initial direction of phase separation at the spin-
odal (“partition coefficient”) is given by the deviations of the
features from their mean, projected onto the first principal
component (PC) of the feature distribution; see Fig. 2.
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Ordinary critical points. The spinodal marks the edge of
local thermodynamic stability. Except at special points, the
spinodal lies within the binodal, the region of global thermo-
dynamic stability. Points where the spinodal and binodal make
contact are critical points (cp’s). At a usual critical point �ρ (cp),
two phases become indistinguishable, corresponding to two
minima and one maximum of the tilted Landau free energy
f → f − ∑

i ρi∂i f |cp merging into one minimum. This merg-
ing occurs when the change in free energy along the direction
of instability δ f = f (ρ (cp) + εe(1) ) − f (ρ (cp) ) is zero up to
order � 3 in ε. The first-order term of the tilted free energy
is zero by definition, and (∂i∂ j f )e(1)

i |cp = 0 as �ρ (cp) lies on
the spinodal, yielding the following additional condition for
the critical point:

(∂i∂ j∂k f )e(1)
i e(1)

j e(1)
k

∣∣
cp

= 0 → 〈
(E (1) )3

〉
cp

= 0, (5)

where the average is with respect to the density at the critical
point �ρ (cp); see SM [21] (compare also Ref. [5]). Thus the
third cumulant (skewness) of the partition coefficient needs
to be zero at a critical point; see Fig. 2. This condition on the
third cumulant extends and substantiates the notion that binary
systems and systems composed of ideal random copolymers
are critical if their mixture composition is symmetric [26,27].

Notably, the conditions themselves (λ(1) = 1 on spinodal,
skewness = 0 at a critical point) are valid irrespective of the
mixture composition or feature distribution. To illustrate this
generality, for Fig. 2 we randomly generated the components’
features (R = 2) either via a multivariate Gaussian with zero
mean [Figs. 2(a1) and 2(a2)] or as two independent features
following a Poisson distribution (plus Gaussian noise) with
nonzero mean and a Gaussian, respectively [Figs. 2(b1) and
2(b2)]. In both cases, the mixture composition is drawn from
a uniform distribution over the N − 1 simplex [21]. This pro-
cedure results in interaction matrices of rank 2, while “usual”
random matrices have full rank [28].

Higher-order critical points. At an nth-order critical
point �ρ (cp), n phases become indistinguishable. For a sin-
gle order parameter (density) ρ, this condition corresponds
to the merging of n minima and n − 1 maxima into a
single minimum of the tilted Landau free energy. The
free energy expansion around the critical point is then of
the order 2n: δ f ∼ O(δρ2n). In a high-dimensional den-
sity space, the phases that become indistinguishable when
crossing the nth-order critical point �ρ (cp) do not neces-
sarily lie on a straight line. Instead, the phases merge
along a more general smooth curve ρi(ε) = ρ

(cp)
i + δρi(ε)

in density space, parametrized by ε [25]; see also Ref. [5]:
δρi(ε) = ∑∞

m=1
εm

m! ϒ
(m)
i , for some vectors �ϒ (m), m ∈ N, with∑

k
�ϒ (m)

k = 0 to conserve the incompressibility constraint.
The (tilted) free energy change δ f (ε) = f (�ρc + δ�ρ(ε)) −
f (�ρc), whose first-order term vanishes, should be of order
2n in ε: δ f (ε) = ∑∞

k=2
1
k!

∑
i1,...,ik

∂k f
∂ρi1 ···∂ρik

|cpδρi1 · · · δρik =
O(ε2n). At the same time, the system has to be stable against
fluctuations in orthogonal directions. Thus we determine the
curve δ�ρ around �ρ (cp) in a way that it minimizes the free en-
ergy change δ f up to the respective order [21]. Systematically
minimizing and setting the coefficients in front of εm to zero,
we find the following conditions for an nth-order critical point

in terms of the partial exponential Bell polynomials Bm,l [21]:

1

2

R∑
α=1

m−1∑
k=1

(
m

k

)〈
r (α)(k)

〉
cp

〈
r (α)(m−k)

〉
cp

=
m∑

l=2

(−1)l (l−2)!
〈
Bm,l (

(1),(2), . . .)
〉
cp, 2 � m � 2n−1,

(6)

which only depend on the vectors ϒ (m) =: ρ (cp)(m), m =
1, . . . , n − 1, determined recursively, namely, (1) = E (1) and

(m) =
m∑

l=2

[
B̃m,l−〈B̃m,l〉cp +

R∑
α=2

E (α)

1−λ(α)

〈
E (α)B̃m,l

〉
cp

]
,

where B̃m,l := (−1)l (l−1)!Bm,l ((1), . . . , (m−l+1)). In the
case of a single feature, R = 1, this recursion is solved by
(m) = ∂m

ε (eε
√

2Cs/〈eε
√

2Cs〉cp)|ε=0, and the conditions for an
nth-order critical point reduce to κ

(s)
2 = kBT/(zJ ) (spinodal)

together with κ (s)
m = 0 ∀m = 3, . . . , 2n − 1. Here, κ (s)

m is the
mth cumulant of the spin s with respect to �ρ (cp). Thus the
more cumulants (order m � 3) of the spin distribution are
zero, the more phases become indistinguishable and the higher
the order of the critical point can be. Merging of phases nec-
essarily happens along the single direction of instability, and
there is only one series of higher-order critical points—the one
just discussed. This is not true for R > 1, which we discuss
next.

Multiple directions of instability. A series of critical points
distinct from the previously discussed higher-order critical
points occurs when the largest eigenvalue 1 of Cov is D-
fold degenerate [21]. To ensure stability along any direction
in the corresponding D-dimensional subspace of eigenvec-
tors, the third cumulant of all vectors in the subspace then
needs to equal 0. For example, a system has a critical point
with two unstable directions if it has a twofold degenerate
maximal eigenvalue, λ(1) = λ(2) = 1, and if the four dis-
tinct third cumulants κ (αβγ ) := 〈E (α)E (β )E (γ )〉cp with αβγ =
111, 112, 122, 222 are zero. In general, a (D + 1)th-order
critical point with D degenerate unstable directions has codi-
mension

(D+1
2

) + (D+2
3

)
: It requires tuning

(D+1
2

)
parameters

for Cov to have its D largest eigenvalues equal to 1 [29] and(D+2
3

)
for the third cumulants [21].

The emergent symmetry of these critical points is reminis-
cent of the order-parameter symmetry in q-state Potts models,
with q = D + 1. In two dimensions there are known to be crit-
ical transitions in the q-state Potts model for q � 4 [30], but in
mean-field these transitions are first order [31,32] except for
the case of the Ising model, q = 2 [33,34]. Our results show
that it may be possible to have critical transitions in mean-
field models that have the symmetry of q-state Potts models,
but only in models with sufficient flexibility. For q = 3, an
example of an N = 6 component model with R = 2 features
is given explicitly in the SM [21].

III. MODEL EXTENSIONS

So far we have focused on a mean-field free energy whose
interaction matrix has positive eigenvalues and whose com-
ponents are of the same size. We now briefly discuss how
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the previously discussed conditions generalize to the case
of negative interaction strengths and comment on compo-
nents with different sizes as in the original Flory-Huggins
theory [19,20] in the SM [21]. If the feature interaction
strengths J (γ ) are all positive, the pairwise interactions sat-
isfy 2χi j − (χii + χ j j ) < 0 ∀i, j, and interactions between
alike components are always energetically preferred com-
pared with dislike components. To resolve this limitation,
we consider the general case with R+ “positive” attractive
features and R − R+ “negative” repulsive ones: J (α) > 0 ∀α =
1, . . . , R+ and J (α) < 0 ∀α = R+ + 1, . . . , R. Performing an
analysis that is conceptually similar to but more intricate
than that performed before, the spinodal criterion is λ

(1)
C̄

=
1. Here, λ

(1)
C̄

is the largest eigenvalue of the real, symmet-
ric matrix C̄ = C(++) − C(+−)(1 + C(−−) )−1C(−+), which is
determined by the covariances among the subsets of pos-
itive (+) and negative (−) features; see SM [21]. C̄ has
dimensions R+ × R+ and can be interpreted as represent-
ing a multicomponent system with R+ positive features and
effective, reduced interactions. The extent to which the neg-
ative features influence the phase behavior depends on the
relative correlations between all features. If for each dom-
inant positive feature, there is a highly correlated negative
feature of similar strength, their effects will roughly cancel,
and the mixture will not phase separate. Conversely, if the
dominant positive features driving phase separation correlate
weakly with the negative features, thermodynamic stability
is barely modified by the presence of the latter. At the spin-
odal, the direction of instability is ē(1)

i = ρi
∑R+

α=1 φ(1)
α [π (α)

i −∑R−R+
β,γ=1 C(+−)

αβ (1 + C(−−) )−1
βγ ν

(γ )
i ] in terms of the first eigen-

vector φ(1) of C̄ and the deviations of positive (π ) and negative
(ν) features from the mean; see SM [21]. We observe that
this direction of instability again corresponds to (a combina-
tion of) feature deviations from the mean, projected onto the
first principal component φ(1) (now of the “effective covari-
ance matrix” C̄). Roughly speaking, the relative sign of the
contributions of the negative and positive features depends
on whether they are correlated or anticorrelated (negative or
positive sign). Finally, performing the same analysis as for
the original model, we find an analogous condition for the
ordinary critical point: 〈(Ē (1) )3〉cp = 0, where ē(1)

i =: ρiĒ
(1)
i .

IV. DISCUSSION

In this paper, we consider a general mean-field model for
multicomponent mixtures with an arbitrary pairwise inter-
action matrix χi j of variable rank which we decompose in
terms of different “features” mediating additive interactions
between the components. The analytic conditions we derive
for the spinodal and (higher-order) critical points only depend
on the distribution of components in feature space. Specifi-
cally, the spinodal and submanifold of ordinary critical points
are determined exclusively by the variance and third cumulant
of the component distribution projected along the first princi-
pal component of the feature covariance matrix (Fig. 2).

This representation in feature space is reminiscent of
the dimensional reduction obtained for polydisperse systems
whose excess free energy only depends on a few generalized
moments of the attributes [5–7]. While the derivation of the

“moment free energies” relies on either a division of density
space into a subspace of moments and its “transverse” space
or on combinatorial arguments [5,6], here we instead exploit
the fact that the condition for the Hessian matrix to become
singular only depends on an R-dimensional matrix originating
from the interaction structure. A related simplification of the
spinodal condition in terms of a lower-dimensional matrix has
been achieved for Flory-Huggins models with an excess free
energy depending only on a finite number of moments of the
molecular weight distribution [35–37].

The representation in feature space also suggests a princi-
pled method for finding coarse-grained binary mixtures with
similar properties. By choosing the composition and interac-
tion strength of the binary mixture so as to preserve the second
and third cumulant along the first principal component, the
coarse-grained binary mixture maintains the location of the
multicomponent system with respect to the spinodal and crit-
ical manifold; see Fig. 2 and SM [21].

In addition, our analysis allows for a systematic iden-
tification of the codimension of different series of critical
points in multicomponent systems; see also Refs. [38,39]. For
instance, we find that, in the absence of symmetries, a tricrit-
ical point has codimension four in mean-field. Furthermore,
higher-order critical points with symmetry reminiscent of the
q-state Potts model require tuning of

(q
2

) + (q+1
3

)
parameters.

For the (q = 3)-states Potts model, this counting suggests a
codimension of 7 for the critical point, which is larger than
the one accessible with just N = 3 components but feasible
for a mean-field model with N = 6 components and R = 2;
we explicitly construct such a (q = 3)-states-Potts-like model
containing a critical point [21].

Our results offer an appealing avenue towards understand-
ing intracellular liquid-liquid phase separation [15] and the
critical phase behavior observed in cell-derived plasma mem-
branes [40]. These mixtures are composed of thousands of
proteins (and lipids), and depending on the conditions, small
domains form spontaneously. The number of coexisting do-
mains appears to be orders of magnitude smaller than the
number of components and is thus well below the limit set
by Gibbs’s phase rule [41]. In cell-derived plasma mem-
branes, while true phase separation occurs when cooling them
below the critical temperature [42], nanoscopic domains ob-
served at physiological temperatures [43] have been suggested
to be critical fluctuations close to a thermodynamic critical
point in the two-dimensional (2D) Ising universality class
[40]. Strikingly, specific lipids and proteins robustly partition
into specific phases—seemingly under fairly broad conditions
[44]. Our work offers an interpretation of this experimental
observation: Phase behavior is determined by just a few im-
portant features. Looking for such a low-dimensional feature
space representation might help to make sense of the growing
amount of experimental data generated by proximity-labeling
techniques [45] and should provide important insights into the
physical characteristics underlying intracellular phase separa-
tion. In these biological systems, effects of finite dimension
(two or three) and sequence-dependent interaction patterns
[46,47] will likely quantitatively, but not qualitatively change
the mean-field picture we present here. Finally, our analytic
theory only makes predictions about local thermodynamic
properties but cannot now make statements about the global
phase behavior, which would require knowledge of the full
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free energy landscape [1,3,4,48,49]. Whether global phase
behavior can be understood in feature space is an interesting
question for future research.
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