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Effects of pairing gap and band gap on superfluid density in the inner crust of neutron stars
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Calculations of the superfluid density in the inner crust of neutron stars using different approaches are in strong
disagreement, which causes a debate on the accountability of pulsar glitches based on superfluidity. Using a
simple unified model, we study the dependence on approximation of the superfluid density in a periodic potential.
In comparison with the Hartree-Fock-Bogoliubov theory, which treats the effects of the band gap and the pairing
gap on equal footing, we examine a Hartree-Fock-BCS-type (HF-BCS-type) approximation in which the former
is preferentially incorporated and another approximation in which the latter is preferentially incorporated. We
find that, when the pairing gap and the band gap are comparable as in the inner crust of neutron stars, they need
to be treated on equal footing, and the HF-BCS approximation can considerably underestimate the superfluid
density even if the pairing gap is much smaller than the Fermi energy. Our result suggests that the validity of the
HF-BCS approximation for evaluating the superfluid density in neutron star crusts is questionable.
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I. INTRODUCTION

Neutron stars are very accurate natural clocks spinning at
a regular period. However, it is also known that their spin-
ning rate sometimes suddenly increases and then relaxes to
that before the spin up. This phenomenon is called a glitch,
which is a long-standing problem of neutron star physics. A
promising model for glitches is based on neutron superfluidity
in the crust of neutron stars [1–5]. In the inner crust, nuclei
form a crystalline lattice, and neutrons permeating the lattice
form a superfluid which possesses quantized vortices [6,7].
It is thought that, while the vortices are usually pinned to
the nuclei consisting of a normal fluid, the sudden collective
unpinning of the vortices releases the angular momentum of
the superfluid to the normal fluid, which is observed as a
glitch [8–13]. The neutron superfluid density is a fundamental
quantity for understanding glitches since it is directly related
to the strength of the glitches.

Although the superfluid can flow without friction, it can
still be entrained by the lattice of nuclei mainly due to the
band gap caused by the periodic lattice. To estimate the en-
trainment effect, Chamel [14] performed a three-dimensional
band calculation of neutrons in the inner crust based on the
Hartree-Fock (HF) approximation. He obtained a considerable
reduction of the superfluid density to one tenth of the believed
value. Such a low value of the superfluid density is not large
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enough to explain the observed strength of the glitches, and
the standard glitch model based on neutron superfluidity in
the crust runs into serious difficulties. Consequently, the en-
trainment effect on the superfluid density has attracted great
interest [15–20].

However, the pairing effect is neglected in the HF approx-
imation, and its importance was pointed out in Ref. [16].
Equal-footing treatment of the pairing gap and the band gap
leads to recovery of the superfluid density that is around 70%
of the believed value. On the other hand, Chamel [17] reported
an updated calculation showing that the superfluid density is
still low even if the pairing effect is included by the BCS
approximation. Therefore, the problem of superfluid density
in neutron star crusts is still controversial. The disagreement
between these studies suggests that the superfluid density de-
pends on the approximation method whether or not the pairing
gap and the band gap are included on equal footing.

There was a recent development in the study of the en-
trainment effect on the slab phase of neutron star matter
[18,20]. The slab phase has one-dimensional periodic layers
of nuclei like lasagna [21,22] and provides a simple setup
for calculations. A self-consistent band calculation without
pairing in Ref. [18] yielded the reduction of the effective mass
of neutrons in the slab phase by a factor of 0.65–0.75 from
their bare mass. In addition, a time-dependent self-consistent
band calculation in Ref. [20] also reported the reduction of the
collective mass of neutrons. In the latter work, the reduction of
the mass was interpreted to be caused by a counterflow of the
dripped neutrons along the direction opposite to the motion
of the slab. These studies claim that the entrainment effect
enhances the mobility of the dripped neutrons and the con-
ventional scenario of the glitch phenomena based on neutron
superfluidity is still tenable for the slab phase. However, the
slab phase is a thin layer of the inner crust, and the interpreta-
tion of the glitch is still unclear for the entire inner crust.
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Another recent direction is related to the impurity disorder
of the lattice [19,23]. An effect of structural disorder on neu-
tron superfluidity in the crust has been studied using a model
of an amorphous metallic alloy [19]. The resulting superfluid
density is sufficient to explain glitch phenomena in contrast to
that of the regular lattice.

In the present paper, we will shed light on the dependence
of the superfluid density on the approximation method and
the importance of the equal-footing treatment of the pairing
and band mixing. The previous results were obtained with
large-scale self-consistent band calculations, and thus, it is
not clear what causes the differences among these results.
Therefore, in the present work, we take a simple minimal
model of a fermionic superfluid under a periodic potential
with three bands, including the pairing � and the band mixing
V . With this minimal model, we compare the following three
methods: (i) We directly solve the Bogoliubov–de Gennes
(BdG) equations with V and � on equal footing, which is
the so-called HF-Bogoliubov theory. (ii) We first incorporate
only the band mixing by V and then include the particle-hole
mixing by �. This method can be regarded as the HF-BCS
approximation [24]. (iii) We first incorporate only the particle-
hole mixing by � and then include the band mixing by V .
Methods (ii) and (iii) are approximations of method (i). We
shall demonstrate that the resulting superfluid density shows a
significant difference among the three methods when � ∼ V
even if � is much smaller than the Fermi energy EF as in
the case of superfluid neutrons in the inner crust. Especially,
the superfluid density from method (ii) can be considerably
smaller than that from method (i) in such a situation. We also
discuss the implication of our result for the superfluid density
in the inner crust of neutron stars.

This paper is organized as follows. We present our minimal
model in Sec. II and explain the details of the three methods
to calculate the superfluid density in Sec. III. In Sec. IV,
we present the results, showing that there is a considerable
difference in the superfluid density among the three methods
when � ∼ V even if � � EF . The implications of our results
for the superfluid density of the inner crust of neutron stars are
discussed in Sec. V. Finally, concluding remarks are given in
Sec. VI.

II. MODEL

The BdG equations in one dimension with the superfluid
momentum Q are written as [16,25](

H ′
Q(x) �(x)

�(x) −H ′
−Q(x)

)(
ui(x)
vi(x)

)
= εi

(
ui(x)
vi(x)

)
, (1)

where i is the shorthand index for the Bloch momentum and
the band indices, ui and vi are the quasiparticle amplitudes of
state i, εi is the corresponding quasiparticle energy, �(x) is
the pairing gap, and H ′

Q(x) is given by

H ′
Q(x) = 1

2m

(
−i

∂

∂x
+ Q

)2

+ Vext (x) − μ(Q). (2)

Here, m is the bare neutron mass, and μ(Q) is the chemical
potential. We choose the external potential Vext with the fol-

lowing sinusoidal form:

Vext (x) = V (eiKx + e−iKx ), (3)

where the magnitude V of the periodic potential is a real
constant and K is the reciprocal lattice vector. We self-
consistently determine the Q dependence of μ such that
n(Q) = n(Q = 0), where n(Q) is the particle density at μ(Q).
We consider periodic solutions such that the quasiparticle
amplitudes uk (x) and vk (x) for quasimomentum k are given
by Bloch states:

uk (x) =
∑

j=0,±1

ũk+ jK ei(k+ jK )x, (4)

vk (x) =
∑

j=0,±1

ṽk+ jK ei(k+ jK )x, (5)

where we restrict ourselves to three bands j = 0,±1 for
simplicity.

Substituting Eqs. (4) and (5) into Eq. (6), we get(
H̃ ′(k, Q) �̃

�̃ −H̃ ′(k,−Q)

)(
ũk

ṽk

)
= εk

(
ũk

ṽk

)
, (6)

where ũk = (ũk+K , ũk, ũk−K ), ṽk = (ṽk+K , ṽk, ṽk−K ), and
�̃ = diag(�,�,�). Here, we have neglected the momentum
dependence of �(k). H̃ ′(k, Q) in the diagonal blocks is given
by

H̃ ′(k, Q) =
⎛
⎝ξ (k + K, Q) V 0

V ξ (k, Q) V
0 V ξ (k − K, Q)

⎞
⎠, (7)

with

ξ (k, Q) = 1

2m
(k + Q)2 − μ(Q). (8)

Equations (6), (7), and (8) constitute our minimal model with
three Bloch bands. The explicit matrix form of our model is
given in Appendix A. In this simple model, both the strength
V of the external periodic potential characterizing the band
gap and the strength � of the particle-hole mixing char-
acterizing the pairing gap are introduced as predetermined
parameters.

III. METHODS

The superfluid density ns is defined as the second-order
derivative of the energy density e with respect to Q:

ns = ∂2e

∂Q2

∣∣∣∣
Q=0

. (9)

To obtain the superfluid density, we have to calculate the
energy density. The energy density of the system described
by the BdG equations is given by

e =
∫ K/2

−K/2

dk

2π

∑
i

[2(μ − εi )|vi|2 + �∗uiv
∗
i ]. (10)

Here, we take a summation of i over the positive eigenvalue
modes. In method (i), we straightforwardly calculate the en-
ergy density (10) with the solutions of Eq. (6). The superfluid
density from this method is denoted by ns

BdG. Method (i) is the
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so-called HF-Bogoliubov theory, which incorporates V and �

on equal footing, and provides the reference result to examine
methods (ii) and (iii), which are further approximations of
method (i). Below, we explain the energy density and the
superfluid density from methods (ii) and (iii).

A. Method (ii)

First, we consider only the band mixing by V and solve the
eigenvalue problems for H̃ ′(k, Q) and −H̃ ′(k,−Q) in Eq. (6),
respectively:

H̃ ′(k, Q)ψ j (k, Q) = ε
j
p,V ψ j (k, Q), (11)

H̃ ′(k,−Q)ψ j (k,−Q) = ε
j
h,V ψ j (k,−Q), (12)

where j labels the band and the subscripts p and h in the
eigenvalue represent the “particle” and “hole,” respectively.
This procedure corresponds to solving the HF equations for a
periodic potential and ψ j (k,±Q) corresponds to the HF basis.

Next, we consider the particle-hole mixing by the pairing
gap � and solve the following BdG equations:(

ε
j
p,V , �

� −ε
j
h,V

)(
u j

v j

)
= ε

j
V �

(
u j

v j

)
. (13)

We calculate the energy density (10) with the solutions of
Eq. (13). The superfluid density obtained with this method is
denoted by ns

V �. As we shall discuss in Sec. V A, method (ii)
can be identified as the HF-BCS approximation employed in
[17]. This approximation preferentially incorporates the band
gap over the pairing gap.

B. Method (iii)

In method (iii), we first incorporate only the particle-hole
mixing due to � by solving the following BdG equations:(

ξk+ jK,Q, �

� −ξk+ jK,−Q

)(
ũa

k+ jK
ṽa

k+ jK

)
= εa

k+ jK

(
ũa

k+ jK
ṽa

k+ jK

)
, (14)

with ξk+ jK,Q = ξ (k + jK, Q), band index j = {0,±1}, and
a = + or −, which labels positive and negative eigenvalues,
respectively. Next, we incorporate the band mixing due to V
by solving the following one-particle Schrödinger equation:

H

⎛
⎝ψ̃ l

k+K
ψ̃ l

k
ψ̃ l

k−K

⎞
⎠ = εl

�V

⎛
⎝ψ̃ l

k+K
ψ̃ l

k
ψ̃ l

k−K

⎞
⎠, (15)

with

H =
⎛
⎝μ − ε−

k+K V 0
V μ − ε+

k V
0 V μ − ε−

k−K

⎞
⎠, (16)

where the index l of the eigenvalue takes 0, 1, and 2 for each
j band and l = 0 labels the lowest eigenvalue.

We have determined the diagonal elements of H given
by Eq. (16) based on the following argument. The diagonal
elements of H are the energies of the modes of k + jK ( j =
{0,±1}) without the band mixing. From the expression for the
energy density of the system (10), (μ − εi )|vi|2 + �∗uiv

∗
i /2

can be regarded as the energy of each mode i. In the region

of � � μ, we can approximate that |vi|2 ∼ 1 and uiv
∗
i ∼ 0

for the positive (negative) eigenvalue modes of the j = 0
( j = ±1) band (see Appendix B for details). Therefore, we
have set μ − ε−

k+K , μ − ε+
k , and μ − ε−

k−K for the diagonal
elements of H in Eq. (16).

From the energy eigenvalues εl
�V obtained from Eq. (15),

we calculate the energy density of the system as follows. We
suppose that the N-particle wave function 	 is given by the
Slater determinant of one-particle Bloch waves ψk with the
quasimomentum k as

	(x1, x2, . . . , xN ) = 1√
N!

det[ψk1 (x1)ψk2 (x2) · · · ψkN (xN )].

(17)

The energy of the lowest state is calculated as

E�V = 〈	0|H |	0〉

=
N∑

n=1

∫
dx ψ̃0

kn
(x)∗Hψ̃0

kn
(x). (18)

Since the Hamiltonian (16) does not have a two-body interac-
tion, the total energy of the system is written as a sum of the
single-particle energy. We approximate the summation about
n in Eq. (18) by an integration of the momentum k over the
Fermi sea VFS with the Fermi momentum kF as follows:

E�V = 2
∑
k∈VFS

∫
dx ψ̃0

k (x)∗Hψ̃0
k (x)

= L

π

∫ kF

−kF

dk
∫

dx ψ̃0
k (x)∗Hψ̃0

k (x)

= L

π

∫ kF

−kF

dk ε0
�V , (19)

with ε0
�V (k) ≡ ∫

dx ψ̃0
k (x)∗Hψ̃0

k (x). Dividing by the system
size L, we get the energy density

e�V = 1

π

∫ kF

−kF

dkε0
�V . (20)

The superfluid density ns
�V from this method is given by

ns
�V = ∂2e�V

∂Q2

∣∣∣∣
Q=0

. (21)

In contrast to method (ii), method (iii) preferentially incorpo-
rates the pairing gap over the band gap.

IV. RESULTS

The left panel of Fig. 1 shows the superfluid density cal-
culated using the three methods as a function of V/�. Since
the pairing gap of superfluid neutrons is typically on the
order of 1% of the neutron Fermi energy in the inner crust
of neutron stars, we set �/EF = 0.01 here. In addition, since
we examine the three methods for the situation in which the
band gap effect is nonnegligible, we set K/kF = 2, where
the Fermi surface is perfectly nested [26]. Consequently, in
our setup, the lowest band is almost filled, and part of the
next lowest band within � from the Fermi energy is slightly
filled. For one-dimensional systems, the particle density n
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FIG. 1. Superfluid density ns from the three methods. The left panel shows the superfluid density as a function of V/� at �/EF = 10−2 and
K/kF = 2. The right panel shows the superfluid density as a function of �/EF at V/EF = 10−2 and K/kF = 2. Since the numerical accuracy is
low for very small �/EF , we plot down to �/EF = 0.1 in the right panel. The blue, orange, and green lines show ns

BdG/n, ns
V �/n, and ns

�V /n,
respectively.

is given by n = 2kF /π . The blue, orange, and green lines
show the superfluid densities from methods (i), (ii), and (iii),
respectively. The results show that the superfluid densities
from the three methods considerably differ in the region of
V ∼ � even though the pairing is negligibly small compared
to the Fermi energy, � � EF . For example, at V/� = 1, we
obtain

ns
BdG/n = 0.27, (22)

ns
V �/n = 0.089, (23)

ns
�V /n = 0.50. (24)

The superfluid density ns
BdG from method (i) has an interme-

diate value between ns
V � [method (ii)] and ns

�V [method (iii)].
It is close to ns

�V in the small V/� region and ns
V � in the large

V/� region.
Furthermore, in the region of small V/�, the behavior of

the superfluid density ns
V � from method (ii) is qualitatively

different from the others. ns
BdG and ns

�V behave quadratically
in V/�, whereas ns

V � behaves linearly. The reason for this
difference can be understood as follows. Let us first consider
a calculation with only the band mixing, which corresponds
to the first step in method (ii). Our setup is the nested case,
K = 2kF , and the Fermi surface (i.e., two points at k = ±kF )
lies inside the band gap when V is nonzero. As a consequence,
the system without pairing is an insulator, and the flow density
is ns/n = 0 for any nonzero V . On the other hand, for V = 0,
there is no band gap, and thus, all the particles contribute to
the flow, so that ns/n = 1 even without pairing. Therefore,
ns shows stepwise behavior such that ns/n = 1 at V = 0 and
ns/n = 0 otherwise, and this behavior can be regarded as the
reason for the qualitative difference in the superfluid density
between method (ii) and the others. In method (ii), while
this stepwise behavior is smoothened by the pairing effect
incorporated in the second step in method (ii), the resulting
superfluid density ns

V � is still influenced by the stepwise be-
havior before including the pairing.

The right panel of Fig. 1 shows the superfluid density as
a function of �/EF for V/EF = 0.01. The blue, orange, and
green lines again show the superfluid densities from methods
(i), (ii), and (iii), respectively. The superfluid densities ns/n

from both methods (i) and (iii) rapidly increase and saturate
to unity as �/EF increases. Consequently, the difference be-
tween them is negligibly small for larger �/EF � 0.1. On
the other hand, ns/n from method (ii) slowly increases and
does not saturate yet even at �/EF = 0.1. In the limit of
�/EF → 0, the superfluid densities from all three methods
should converge to zero, although we cannot calculate for
very small �/EF below ∼0.01 due to the limitation of the
numerical accuracy.

In Fig. 2, we plot the ratios ns
V �/ns

BdG (left panel) and
ns

�V /ns
BdG (right panel) as a function of V/� for several values

of �. The green, orange, and blue lines show these ratios for
�/EF = 0.01, 0.05, and 0.1, respectively. For, e.g., �/EF =
0.01 (green lines), ns

V �/ns
BdG takes a minimum value of 0.29

at V/� = 1.6 (left panel), and ns
�V /nBdG

s takes a maximum
value of 8.6 at V/� = 4.0 (right panel). This result clearly
demonstrates that the resulting superfluid density can consid-
erably differ by the approximation when the pairing gap and
the band gap are comparable. Interestingly, this difference is
more prominent when the pairing gap is negligibly smaller
than EF (e.g., the green lines for �/EF = 0.01). As �/EF

increases, the minimum and maximum values of these ratios
approach unity due to the saturation of ns/n, as seen in the
right panel of Fig. 1. In the region of V/� � 1, the three lines
converge to a single line and thus �/EF -dependence of these
ratios becomes negligible.

Furthermore, the ratios ns
V �/ns

BdG and ns
�V /ns

BdG approach
unity in the limits of V/� → 0 and V/� → ∞ in Fig. 2.
In the limit of V/� → 0, the reduction in the superfluid
density by the band gap effect vanishes. Thus, all the result-
ing superfluid densities from the three methods agree with
the particle density, so that ns

V �/ns
BdG = ns

�V /ns
BdG = 1. In

the limit of V/� → ∞, on the other hand, the band mix-
ing by V is dominant, and thus, it is considered that the
interplay between the effects of the band gap and the pair-
ing gap is lost. As a consequence, provided the effect of
V is included, the resulting superfluid density is unchanged
irrespective of the order in which V and � are included.
In conclusion, the equal-footing treatment of V and � in
method (i) is crucial for a reliable value of ns when V and �
are comparable. It is noted that they are indeed comparable
in the inner crust of neutron stars, as we will discuss in
Sec. VI.
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FIG. 2. Superfluid density ns
V � from method (ii) and ns

�V from method (iii) in comparison with ns
BdG from method (i). The left (right) panel

shows the ratio ns
V �/ns

BdG (ns
�V /ns

BdG) as a function of V/� at K/kF = 2 for several values of �/EF . The green, orange, and blue lines are for
�/EF = 0.01, 0.05, and 0.1, respectively.

V. DISCUSSION

A. Correspondence to the HF-BCS approximation

We show that method (ii) is essentially the same as the
HF-BCS approximation employed in Refs. [17,27]. We first
diagonalize the diagonal blocks of H̃ ′(k, Q) and −H̃ ′(k,−Q)
in Eq. (6). Here, we obtain the two HF basis functions ψ(k, Q)
and ψ(k,−Q) defined in Eqs. (11) and (12) for the particle
Hamiltonian and the hole Hamiltonian, respectively. We also
obtain the two orthogonal matrices Õ(k, Q) and Õ(k,−Q)
which diagonalize each of them and introduce the following
matrix:

O =
(
Õ(k, Q) O

O Õ(k,−Q)

)
, (25)

where O is a 3 × 3 zero matrix. We rotate the BdG equa-
tions (6) by O and obtain(

H̃ ′
V (k, Q) �̃V (k, Q)

�̃∗
V (k, Q) −H̃ ′

V (k,−Q)

)(
Ũ
Ṽ

)
= ε

(
Ũ
Ṽ

)
. (26)

Here, H̃ ′
V (k, Q) and H̃ ′

V (k,−Q) are the diagonalized particle
and hole Hamiltonians given by

[H̃ ′
V (k, Q)]i j = εi

p,V δi j, (27)

[H̃ ′
V (k,−Q)]i j = εi

h,V δi j, (28)

where εi
p,V and εi

h,V are the eigenvalues of Eqs. (11) and (12),
respectively.

The rotated pairing block is given by �̃V (k, Q) =
Õ−1(k, Q)�̃Õ(k,−Q). We note that Õ−1(k, Q) is not the
inverse of Õ(k,−Q) for nonzero Q, and the rotated pairing
block �̃V (k, Q) has off-diagonal elements and depends on
Q and k. In the HF-BCS approximation, we discard these
off-diagonal elements:

[�̃V (k, Q)]i j −→ δi j[�̃V (k, Q)]ii, (29)

which could be a reasonable approximation when the system
is almost uniform. Furthermore, in [17,28], the diagonal ele-
ments [�̃V (K, Q)]ii for all i are replaced by a single value of
�, so their dependence on k and Q is neglected. This treatment
is essentially the same as Eq. (13) in method (ii).

B. Implications for three-dimensional systems

We discuss the implications of our results for the superfluid
density in the inner crust of neutron stars. Our model is in
one dimension, while the real system is in three dimensions.
The reduction in the superfluid density by the band gap is
most prominent in the one-dimensional, perfectly nested case
of K = 2kF considered in the present work, for which we
provide two reasons below. Therefore, our result of ns/n can
be regarded as the most conservative value in which the sup-
pression by the band gap is strongest: in neutron star crusts,
such suppression of the superfluid density should be weaker.

The first point is that the superfluid flow Q and the re-
ciprocal lattice vector K can take various directions in three
dimensions. The effect of the band gap suppressing ns should
be weaker for a flow whose Q is not along K. The actual
periodic lattice potential in the inner crust of neutron stars
has many Fourier components with various directions and
magnitudes of K. On the other hand, in one dimension, there
is no orthogonal component of K to Q, and thus, the reduction
of the superfluid density is expected to be the most prominent.

Next, the reduction in the superfluid density is caused by
the increase in the effective mass of the dripped neutrons
around avoided-crossing points (ACPs) in the band structure.
The curvature of the energy dispersion is the inverse of the
effective mass, and the slope of the dispersion is zero at
the ACP, as shown at k/kF = ±1 in Fig. 3. To get a large
reduction in the superfluid density, almost all of the particles

FIG. 3. Energy band structure of εp,V obtained from Eq. (11) for
K/kF = 2 and V/EF = 0.1. The slope of εp,V is zero at ACPs on the
Fermi surface at k = ±kF .
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FIG. 4. Superfluid density ns as a function of K/kF at �/EF =
V/EF = 10−2. The blue and orange lines are for methods (i) and (ii),
respectively.

near the Fermi surface have to feel the effect of the ACPs. The
Fermi surface in the one-dimensional momentum space is just
two points at k = ±kF and lie on the ACP when K = 2kF ,
as shown in Fig. 3. It is noted that the Fermi surface in three
dimensions is a two-dimensional surface, while the ACPs are
points. Although three-dimensional systems have many recip-
rocal lattice vectors, they are just a finite number of points and
cannot completely cover the two-dimensional Fermi surface.
On the other hand, the Fermi surface in a one-dimensional
system consists of two points, and the reciprocal lattice vec-
tors completely overlap with these two points in the nested
case. Therefore, the effect of the ACPs is the most prominent
in our one-dimensional setting. Figure 4 shows the superfluid
density of our model as a function of K/kF . The superfluid
density rapidly recovers as the Fermi surface moves away
from the ACP. This result suggests that, in three-dimensional
systems, the suppression of the superfluid density by the band
structure is reduced compared to that of one-dimensional sys-
tems due to the large part of the Fermi surface uncovered by
the ACPs.

VI. SUMMARY AND CONCLUDING REMARKS

There is serious disagreement among previous works
[14,16,17] regarding the superfluid density in neutron star
crusts, and this problem is still controversial. To get a better
understanding of this issue, we have studied the dependence
on the approximation of the superfluid density in a periodic
potential using a minimal model including the key compet-
ing effects of the band gap V and the pairing gap �. We
have demonstrated three calculation methods: (i) We directly
solved the BdG equations with V and � on equal footing.
(ii) We first incorporated only the band mixing by V and
then included the particle-hole mixing by �. (iii) We first
incorporated only the particle-hole mixing by � and then
included the band mixing by V . Methods (ii) and (iii) are not
equivalent to method (i), but they are different approximations
of the latter such that method (ii) preferentially incorporates
V over � and method (iii) preferentially incorporates � over
V . Method (i) is called the HF-Bogoliubov theory and was
employed in [16], and method (ii) corresponds to the HF-
BCS approximation employed in [17]. We have found that
the resulting superfluid densities are considerably different
among the three methods when V is comparable to � even if

� is negligibly smaller than EF . For example, in the perfectly
nested case of K/kF = 2 in our one-dimensional minimal
model, the superfluid density from method (ii) is about one
third of that from method (i) for � = V = 0.01EF [Eqs. (22)
and (23)].

Our results imply the possibility that the HF-BCS approx-
imation considerably underestimates the superfluid density in
the inner crust of neutron stars. In the inner crust, the pairing
gap is estimated to be comparable to the magnitude of the
lattice potential [16]. Namely, the lattice potential has many
Fourier components VK with wave vectors K corresponding
to the reciprocal lattice vectors, and the magnitude |VK | for
the primitive reciprocal lattice vector is the largest, with a
value around 1–2 MeV [16,28,29]. On the other hand, the
1S0 pairing gap in the density region of the inner crust is
typically ∼1 MeV [30]. Therefore, we conclude that the
equal-footing treatment of the pairing and the band mixing
by the HF-Bogoliubov theory is essential for calculating the
superfluid density of the inner crust in neutron stars. The
HF-BCS approximation tends to underestimate the superfluid
density, especially under the condition of neutron stars’ inner
crust.

In the density region of the inner crust, where the superfluid
density was drastically reduced in the calculation by Chamel
[14], typical values of the Fermi energy of dripped neutrons
and the distance between the neighboring nuclei are 15 MeV
and 40–50 fm, respectively. Therefore, the typical magnitude
of the ratio between K and kF is K/kF ∼ 10−1. This value is
very different from the value K/kF = 2 taken in our calcu-
lations. The real system allows an infinite number of bands,
and many ACPs exist around the Fermi surface, so that the
band gap effect is nonnegligible even at K/kF ∼ 10−1 as in
Refs. [14,16]. On the other hand, since our minimal model
has only three bands and the band gap is much smaller than
the Fermi energy in the current problem, the effect of the band
gap is negligible in our model unless K/kF = 2. To discuss
the band gap effect as well as the pairing gap effect using this
minimal model, we thus set K/kF = 2.

In our results, the superfluid density is always smaller than
the particle density, whereas some previous studies on the
slab phase reported that the effective mass of the neutrons
is reduced from their bare mass [18,20]. In our work, we
considered permeating neutrons under the external periodic
potential, while those works studied a system consisting of
free neutrons, lattice neutrons (i.e., neutrons bound in nuclei),
and protons with Bloch boundary conditions. In the latter case,
there is an ambiguity in the definition of the free neutrons [18].
The reduction of the effective mass suggests that some of the
lattice neutrons turn into conducting neutrons due to the flow.
Our setup does not have such ambiguity, and the superfluid
density is necessarily smaller than the particle density.

To understand the discrepancies in the superfluid density in
previous calculations, we have employed a simple toy model.
Now that the difference among the approximations has been
clarified within the minimal model in the present work, it will
be interesting to study the approximation dependence using
a model taking into account a more realistic setup of the
inner crust such as a lattice structure in three dimensions [31],
defects and disorder of the lattice [32,33], realistic nuclear
forces [34], and so on. We leave these issues for future works.
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APPENDIX A: THE EXPLICIT FORM OF THE BdG
EQUATION (6)

The explicit matrix expression of Eq. (6) is as follows:

⎛
⎜⎜⎜⎜⎜⎝

ξ (k + K, Q) V 0 � 0 0
V ξ (k, Q) V 0 � 0
0 V ξ (k − K, Q) 0 0 �

� 0 0 −ξ (k + K,−Q) V 0
0 � 0 V −ξ (k,−Q) V
0 0 � 0 V −ξ (k − K,−Q)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ũk+K

ũk

ũk−K

ṽk+K

ṽk

ṽk−K

⎞
⎟⎟⎟⎟⎟⎠ = εk

⎛
⎜⎜⎜⎜⎜⎝

ũk+K

ũk

ũk−K

ṽk+K

ṽk

ṽk−K

⎞
⎟⎟⎟⎟⎟⎠. (A1)

APPENDIX B: BEHAVIORS OF |v|2 IN THE LIMIT
OF � → 0

As a simple example, we consider the following BdG
equations:

(
ε �

� −ε

)(
u
v

)
= λ

(
u
v

)
, (B1)

with |ε|  |�|. The eigenvalues and eigenvectors are

λ± = ±
√

ε2 + �2, (B2)(
u+
v+

)
= N+

( 1

�

(
ε + √

ε2 + �2
)

1

)
, (B3)

(
u−
v−

)
= N−

( 1

�

(
ε − √

ε2 + �2
)

1

)
, (B4)

where N± are the normalization constants. We can
approximate

1

�

(
ε ±

√
ε2 + �2

)
∼ 1

�
(ε ± |ε|). (B5)

Thus, for ε � 0, we obtain(
u+
v+

)
∼

(
1
0

)
,

(
u−
v−

)
∼

(
0
1

)
. (B6)

For ε < 0, on the other hand, because |ε| = −ε, we obtain(
u+
v+

)
∼

(
0
1

)
,

(
u−
v−

)
∼

(
1
0

)
. (B7)

In summary, in the limit of |�|/|ε| � 1, for positive (neg-
ative) diagonal elements ε of the particle sector in the BdG
equations, the negative (positive) eigenvalue mode has |v|2 ∼
1 (|u|2 ∼ 1). Regarding the diagonal elements in Eq. (14),
since ξ (k, 0) � 0 and ξ (k ± K, 0) � 0, the positive (negative)
eigenvalue mode for the j = 0 ( j = ±1) band has |v|2 ∼ 1.
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