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Leveraging randomized compiling for the quantum imaginary-time-evolution algorithm
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Recent progress in noisy intermediate-scale quantum (NISQ) hardware shows that quantum devices may be
able to tackle complex problems even without error correction. However, coherent errors due to the increased
complexity of these devices is an outstanding issue. They can accumulate through a circuit, making their
impact on algorithms hard to predict and mitigate. Iterative algorithms like quantum imaginary time evolution
are susceptible to these errors. This article presents the combination of both noise tailoring using randomized
compiling and error mitigation with purification. We also show that cycle benchmarking gives an estimate of the
reliability of the purification. We apply this method to the quantum imaginary time evolution of a transverse field
Ising model and report an energy estimation error and a ground-state infidelity both below 1%. Our methodology
is general and can be used for other algorithms and platforms. We show how combining noise tailoring and error
mitigation will push forward the performance of NISQ devices.
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I. INTRODUCTION

To realize impactful application of noisy intermediate-
scale quantum (NISQ) devices [1], error mitigation strategies
have emerged as a principle focus of quantum information sci-
ence. Unlike quantum error correction, which corrects errors
as they occur, error mitigation uses postprocessing techniques
to reduce the impact of errors on the results of an algorithm.
These mitigation schemes are needed to tackle the noise and
errors present in current quantum hardware. Many recently
implemented algorithms have required some form of error
mitigation with state-of-the-art hardware [2–6]. Several types
of error mitigation can be distinguished: error extrapolation
scales the rate of a specific known error in order to ex-
trapolate the results to zero noise [3,5,7,8] at the expense
of additional measurements and assumptions on the noise.
Inverting error protocols characterize errors to then correct
them with quasiprobabilities [8,9], requiring a precise and ex-
tensive characterization of the system using quantum process
tomography [10] or gate set tomography [11]. Postselection
protocols eliminate wrong output solutions by checking, for
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example, an expected symmetry [12,13]. However additional
measurement overhead, such as ancillary qubits, may be re-
quired for such postselection techniques. These additional
quantum resources may limit scalability.

For quantum algorithms on NISQ hardware, one of the
biggest challenges comes from coherent errors. Contrary to
decoherence, the accumulation of coherent errors strongly
depends on the circuit used. These errors arise due to the
increasing complexity of quantum devices and originate from
multiple mechanisms like crosstalk, frequency collision, drift,
etc., making it difficult to track and compensate for their
impact. On the contrary, decoherence processes are easier to
predict and correct because these errors do not get amplified
like coherent ones. To address the problem of coherent errors
without significantly increasing the number of experimental
repetitions per expectation value it is possible to tailor them
into stochastic noise using Twirling properties, where two-
qubit gates are sandwiched between twirling gates, and the
circuit outcomes are statistically averaged over several twirled
circuits. This technique usually keeps the number of repeti-
tions constant but increases the number of circuits to be run.
Twirling is a technique now widely known in the quantum
information literature and is, for example, at the heart of
randomized benchmarking [14–17]. Randomized compiling
(RC) [18], which uses Pauli twirling, has been shown to im-
prove the performance of quantum devices [19,20].

Common benchmarks of error mitigation techniques on
NISQ devices are usually fixed-depth algorithms such as
VQE [21–23] or QAOA [24–26]. Here we use the quan-
tum imaginary-time-evolution (QITE) [27–30] algorithm to
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benchmark the different error mitigation techniques. It is an
iterative algorithm that approximates imaginary-time evolu-
tion with a unitary operation. In the limit of long imaginary
time, the algorithm reaches the ground state of a given Hamil-
tonian. One advantage of QITE is that it generalizes easily
to calculate finite temperature quantities [31,32]. Additionally
it does not require a priori knowledge of an Ansatz, which
can be difficult for variational algorithms [33–35]. Compared
with VQE [36,37], each step of the QITE algorithm is more
sensitive to noise, making it a good candidate to benchmark
error mitigation protocols.

In this article, we use three out of eight transmon qubits
on a fixed-frequency device with linear topology, as described
in Refs. [20,38]. The single qubit gates are performed using
the ZXZXZ decomposition with virtual Z gates [39]. Our
entanglement is based on the differential AC Stark shifts and
realizes a CZ gate [40]. We combine noise tailoring with RC
and mitigation with purification and show that using both im-
proves the quality of the result beyond what one would expect
from using each one separately. We attribute this performance
improvement to the noise tailoring by RC that effectively
maps the coherent errors into Pauli errors, which are simpler
to handle and can be further approximated as a fully depolar-
izing error model. In Sec. II we discuss the implementation of
RC with purification and give an estimation of how close the
noise is to fully depolarizing using Cycle Benchmarking [41]
and compare it to our hardware. In Sec. III, we then use this
scheme to perform QITE on the transverse Ising field model
with three qubits to benchmark the efficacy of this method. We
conclude with a description of how to extend and complement
our techniques with further mitigation schemes.

Recently, we became aware of comparable methods used
in Ref. [42].

II. NOISE TAILORING WITH RANDOMIZED COMPILING

Twirling is a powerful technique that tailors the noise a
circuit experiences when run on hardware. Its most notable
use is the characterization of quantum processors with ran-
domized benchmarking (RB) for qubits [14–17] and qudits
[43,44]. Defining a twirl requires a twirling group G that is
usually the Pauli group or the Clifford group. For every cycle
of the circuit—determined by the native gate-set—a gate from
the twirl group is inserted. Twirling in the mathematical sense
is achieved by averaging the circuit outcomes for all combi-
nations of twirling gates. In practice, averaging over a few
randomly sampled twirls is enough. When the twirling group
is a single qubit group like the Pauli group P , this step is done
efficiently by compiling the twirling gate into the circuit’s sin-
gle qubit gates, keeping the circuit’s depth unchanged in terms
of multiqubit gates. For twirling to be useful for a specific
circuit, one has to track all the twirl operations and invert it
at the end of the circuit. Even for a simple twirling group like
the Pauli group, this can be challenging if the circuit is made
of non-Clifford gates. To circumvent this issue, protocols like
randomized compiling (RC) have been proposed [18,45] and
demonstrated [19,20]. In this protocol, the steps are separated
between “easy” and “hard” cycles depending on their error
rate. The hard cycles usually correspond to the cycles with
multiqubit gates. The twirling gate is inverted through each

hard cycle instead of only at the final step. This approach
avoids tracking all the twirling gates and the complex inver-
sion gate at the end of the circuit, making it scalable to any
number of qubits. However, it requires that any Pauli can be
inverted through the entangling gates by another Pauli. It is the
case for all the two-qubit gates which are locally equivalent
to Cliffords, like the CNOT and the CZ, but not for entangling
gates like the FSIM [46].

Pauli twirling and cycle benchmarking. Pauli twirling ef-
fectively changes the Pauli-transfer matrix (PTM) [47] of
the error �. It can be shown that the error matrix �P un-
der Pauli twirling is simply the diagonal of the full PTM
� (i.e., the off-diagonal terms of the error are suppressed).
This emphasizes the advantage of RC over simply running
a circuit: eliminating the off-diagonal terms of � makes any
coherent interference of error impossible and thus increases
the algorithms’ predictability. Several protocols are specifi-
cally designed to measure these Pauli errors [41,48–50]. In
this article we use cycle benchmarking (CB) [41] as our main
method for measuring the Pauli errors in our system. For each
Pauli, CB measures the Pauli decay λP that corresponds to
the diagonal of the �P PTM. It can be used to exhaustively
measure all Pauli channels—for small sized system—or to
statistically sample from a large set of channels.

Even though the number of nonzero entries of �P is
reduced compared with that of �, there are still 4N ele-
ments, making a complete characterization of all the terms
not scalable as the number of qubits increases. However, CB
demonstrates that sampling from these coefficients can give
a good estimate of the behavior under randomized compiling.
Introducing λ̄ as their mean, the Pauli decays are also bounded
by (see supplement of Ref. [41]):

2λ̄ − 1 � λP � 1 ∀ P ∈ P . (1)

In this article, we argue that the noise under RC with Pauli
twirling can be approximated by a fully depolarizing noise
model, where all the Pauli decays except the identity are equal,
within a controlled approximation. In all experiments we have
treated readout errors using standard readout mitigation by
measuring the response matrix and using a least-square in-
version to compensate for it in the processing of the data.

Experimental investigation of RC on random circuits.
To demonstrate the properties of Pauli twirling under RC,
we sample uniformly random two-qubit circuits [random in
SU(4)] and compute the expectation values Em of all the
possible Pauli strings composed of Z and I . By compiling
the rotations of the eigenbasis of an observable O into the
last cycle of the circuit and by removing the identity part of
this observable [i.e., requiring that Tr(O) = 0], we can always
map the measurement of O to such a Pauli string. In Fig. 1
we plot the distribution of the mean errors on the expectation
value measured Em compared with its ideal value E as we
increase the number of randomizations, thus coming closer
to an ideal twirl. We have measured the expectation values
of 75 different unitaries for each number of randomizations.
To make the comparison fair, we have varied the number
of randomly compiled circuits, keeping the total number of
shots at 5000. The detailed experimental protocol is described
in the Appendix. First, the spreading of the errors |Em − E |
is reduced as can be seen in Fig. 1(a) as one would expect
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(a) (b) (c)

FIG. 1. Effect of randomized compiling on measured expectation values for random circuits using 6 CZs. Panel (a) shows the distribution
of errors on the measured expectation values |Em − E | for the different numbers of randomizations. Panel (b) shows the same data but sorted
by measured expectation values to show the increasing agreement with a depolarization model Em = λ̄E , with λ̄ the mean of the Pauli decays
measured by CB (λ̄CB = 0.980)—performed prior to the experiment. The standard deviation of the errors is similar for all points of same
number of randomizations and is plotted in the inset. The data in panel (c) show the reduction of errors for all expectation values when using
the purification formula (2). The standard deviation of the Pauli decays is std(λP ) = 0.003, as shown at the top of Fig. 3.

from reducing the possibility of error accumulation. Second,
in Fig. 1(b), the mean error without RC is flat as a function
of the ideal value, while as we increase the number of ran-
domizations, a linear dependency on the ideal value appears,
corresponding to a fully depolarizing noise model.

Estimators for the average depolarization. Under a fully
depolarizing noise model, the measured expectation value
can be written as Em = λE . The scaling factor λ can also
be understood as the length of the generalized Bloch vector.
An estimator of λ can be constructed measuring the purity
of the state at the end of a circuit. This, however, requires
full tomography of the final state. An alternative estimator
is the mean of the Pauli decays λP measured using CB. As
it is a scalable protocol, it is possible to use it to estimate
λ. In Fig. 1(b) we have plotted in dashed lines the average
depolarization estimated from the mean of the Pauli decays
measured with CB of the CZ gate, λ̄CB = 0.980, which shows
good agreement. We can extract more information from the
CB data: the distance between the two noise matrices �d

(depolarizing error) and �P (twirled errors or Pauli errors) is
exactly the standard deviation of the measured Pauli decays
under CB. This provides very valuable a priori information
on how well error mitigation protocols will work, based on
the assumption that the error can be approximated by a depo-
larizing model.

Depolarizing errors can be mitigated by a simple purifica-
tion. A fully depolarizing noise model is simple to mitigate.
Knowing λ, the ideal expectation value can be recovered by
rescaling all expectation values by this same coefficient λ.
This technique has been used in nuclear magnetic resonance
experiments and more recently in Ref. [51]. In Fig. 1(c), we
have used a full tomography of the two-qubit state to extract
the length of the generalized Bloch vector and then purified
the expectations values measured with this information. In this
case, the purification is given by

Ẽp = λEp with
1

λ2
= 1

2N − 1

∑
P∈P⊗n\{I⊗n}

E2
P. (2)

Increasing the depth. In Fig. 2, we have increased the depth
of two-qubit circuits. For two qubits there is only one hard

cycle, so the depth is the number of times this hard cycle is
applied. The sampling is done by picking random unitaries
from SU(4) and using a KAK decomposition. For a depth-six
circuit for example, we have randomly chosen two unitaries,
decomposed them into our native gate set and then measured
the concatenated circuits. We use this method to preserve the
uniform sampling for all the different depths. The fidelity of a
measured state ρ to a pure state σ can be expressed in terms
of their Pauli expectation values:

F (ρ, σ ) = tr(ρσ ) (3)

= 1

2N

⎛
⎝1 +

∑
P �=I⊗N

ρPσP

⎞
⎠ (4)

= 1

2N
+

(
1 − 1

2N

)
λ cos ε, (5)

FIG. 2. Fidelity F of random states versus the number of CZ gates
presented in blue points, together with the independent estimation
from CB, using Eq. (7) as the dashed blue line. When these data
were taken, the CB of this CZ gate was λ̄CB = 0.976. The length of
the generalized Bloch vector λ, is shown in green, together with its
CB estimation in dashed green. The remaining error separating the
two contributions corresponds to an angle error as shown by Eq. (5).
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where λ is the length of the Bloch vector given by Eq. (2)
and ε is the angle between the two generalized Bloch vec-
tors. Equation (5) indicates that two mechanisms can decrease
the fidelity: a reduction of the Bloch vector length λ and a
misalignment of the vectors axes giving a contribution cos ε.
Purification or rescaling is intended to correct the first type of
error but leaves untouched the second kind of error, or angle
error. Assuming that the first kind of error is the limiting one,
the fidelity can be approximated as

F (ρ, σ ) � 1

2N
+

(
1 − 1

2N

)
λ. (6)

For a circuit with the same hard cycle repeated ncycles time and
with an average Pauli decays λ̄ we can simply write that

F (ρ, σ, ncycles ) � 1

2N
+

(
1 − 1

2N

)
λ̄ncycles . (7)

The measured fidelities obtained from full tomography for
10 different depths and 10 random circuits at each depth, ran-
domly compiled 20 times are shown in Fig. 2. The estimation
of Eq. (7) using λ̄ from CB in dashed blue shows a very
good agreement indicating that the length errors are indeed
dominating. We also extract the length λ for each random
circuit, and compare it to λ̄ncycles . We also extract the residual
error using the following equation:

cos ε = 1

2N − 1

∑
P �=I⊗N

ρP

λ
σP. (8)

This part of the error cannot be corrected with a simple pu-
rification. We note that the degradation of the fidelity due to
the angle error is much slower than the part due to reduction
of the Bloch vector length and that with purification, circuits
with larger depth can be explored. This result emphasizes
that randomized compilation makes circuit performance much
more predictable, and that CB is a good tool for predicting
circuit performance under RC.

Increasing the number of qubits. When increasing the num-
ber of qubits, several hard cycles need to be considered. In our
case, for a linear topology of three qubits, we need to consider
the three-qubit Pauli decays obtained by CB for the entangling
gates between each qubit. Under randomized compiling the
effective rescaling factor λ will be given by the product of the
λi obtained for each hard cycle: λeff = λ

n1
1 λ

n2
2 with ni being

the number of occurrences of the hard cycle. We note that
universal circuits can be constructed using few different hard
cycles and single qubit gates, reducing the number of hard
cycles it is necessary to characterize. In Fig. 3, the spread of
the Pauli decays λP are shown for the CZ gate used in Figs. 1
and 2, and for the CZ cycles of the three-qubits. We also em-
phasize that the number of Pauli decays needed to benchmark
isolated two-qubit gates [15 for CZ(6, 5)] is much less than
the number required to benchmark larger cycles containing
idling spectator qubits [64 for CZ(5, 4) in parallel with I(6)].
We emphasize that exhaustive sampling of the Pauli decays is
unnecessary because the mean and standard deviation can be
estimated efficiently by randomly sampling the Pauli decays
[41]. We notice that the bound from Eq. (1) is indeed valid for
these data.

FIG. 3. Histograms of the Pauli decays λP for the different cy-
cles. The first histogram shows the 15 different λP for the CZ gate
of Fig. 1. The dashed line indicates the mean and the dotted line
the lower bound of Eq. (1). The two other histograms show for
comparison the corresponding parameters when characterizing the
different three-qubit CZ hard cycles, including a remaining idling
qubit. The spread of the 63 corresponding λP is shown for the two
cycles used in the following QITE experiments.

III. APPLICATION TO THE QITE ALGORITHM

Imaginary time evolution is a classical iterative algorithm
to find the ground state of a Hamiltonian. The key ingredi-
ent of this algorithm is that the imaginary time propagator
U (β ) = exp(−βH)—which is nonunitary—will converge to
the ground state for large imaginary time, given that the initial
state overlaps with the ground state [52,53]. In Ref. [27],
the authors describe how to use a quantum computer to per-
form the imaginary-time evolution on NISQ hardware without
ancilla qubits. The main idea is to normalize the evolution
operator at every time step to make it a unitary evolution
that can then be decomposed into gates. This can be done
efficiently by simply solving a linear system, which is an easy
task for classical computers, and thus QITE is free of the
complex optimizations that arise in the VQE scheme [54]. The
price to pay is that this algorithm is not a fixed depth circuit,
but rather will increase the number of gates for every iteration.
Recent experimental and theoretical works try to minimize
this issue by aggressively reducing the number of steps needed
to reach the ground state [28] or by compressing all the steps
into a shorter circuit [55,56].

TFIM model. In this work, we concentrate on the transverse
field Ising model (TFIM). This is a very well known model
which has been investigated several times with the QITE and
other algorithms [27,29,31,57] and is thus a proper benchmark
for our error mitigation scheme. The TFIM Hamiltonian for a
chain of N qubits is

H = J
∑
〈i j〉

XiXj + h
∑

i

Zi, (9)

where J is the interaction exchange between the nearest neigh-
bors, h is the transverse field applied to the chain and 〈i j〉
indicates that the sum is over nearest neighbors. The state and
the evolution operator at a given step can be written in the
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Pauli Basis:

ρ =
∑

P∈P⊗N

ρPP and U = exp

(
−i

∑
P∈P⊗N

aPP

)
, (10)

where ρP are the expectation values of the Paulis of the state ρ

and aP are the generators of the unitary U . We call support of
the state the Paulis that have nonzero expectation values. The
TFIM Hamiltonian presents several symmetries that allow us
to reduce the problem from two perspectives: the construction
of the unitary and the support of the ground state (described in
the Appendix). In Motta et al. [27], a domain size D is intro-
duced, which can be smaller than the full domain considered
by the Hamiltonian, and the Trotterization happens over the
different small domains D. This will be mandatory for bigger
systems, but for the small systems considered here we will use
D of the same size as the number of sites of the Hamiltonian.

Unitary and circuit construction. This section describes the
protocol to synthesize each imaginary time step. The gen-
erators aP are calculated via linear regression as discussed
in Ref. [27]. The number of Pauli expectations values to
measure and the number of generators depend on the size D
of the domain considered in the QITE experiment. As our
current processor has a limited number of qubits, we have
chosen to consider a domain size equal to the total size of
the system. This choice allows us to compress the circuit at
every step and avoid stacking the gates. It enforces, however,
a measurement of the state on its full support and makes the
synthesis harder as it uses multiqubit gates with more than two
qubits. Using the state-of-the-art circuit synthesis algorithm
QSEARCH [58], we were able to run all of the three-qubit
TFIM QITE steps with circuits containing always fewer than
12 CZs (see the Appendix for a comparison of the different
synthesizers). We note that enforcing the symmetries on the
unitary allowed us to drastically reduce the number of entan-
gling gates. For larger qubit numbers the current approach will
have to be improved, but we also expect that in the future,
the synthesizers will continue to become more efficient. We
also expect that the synthesis could be further tailored for the
QITE algorithm. This type of synthesis has recently allowed
us to find fixed depth Ansätze for some iterative algorithms
and specific Hamiltonians [59].

Results. To showcase the error mitigation developed in the
first section of this article, we have run the QITE algorithm on
the three-qubit TFIM for several sets of parameters. In Fig. 4,
we plot the QITE trajectory for the parameters J = h = 1
and calculate both the relative energy error and the infidelity
of the measured ground state. For each QITE trajectory we
varied the number of RC but fixed the total number of shots to
show the effect of the different methods independently (three
first symbols, in green, brown, and red). This shows that our
method mitigates the jumps previously seen with this algo-
rithm. We indicate on the plots the average of the last points
as well as the standard deviations of the measurement after
the ground state is reached. This is done in order to capture
the stability of the algorithm when the ground state is found.
On this plot we see that without randomized compiling—
or error tailoring—nor error mitigation, the results are far
away from the ground state. Using a purification technique
improves the result significantly as it diminishes the impact

(a)

(b)

FIG. 4. QITE trajectories of relative energy error and infidelity
to the ground state for the three-qubit Ising model, with J = h = 1.
The number of shots and of randomized compilations per point is
varied. The mean and standard deviation of the 10 last points are
shown by a dashed line and a colored region. The different colors
correspond to with or without RC, with the total number of shots
kept constant at 20 000 to allow for a fair comparison, and with or
without purification.

of incoherent errors introduced by noise tailoring via RC. We
note here that iterative algorithms like QITE are particularly
sensitive to errors on the expectation value as these values are
necessary to determine the next circuit. We then have used
both randomized compiling and the purification technique
described in the previous section (purple squares). As we can
see, the combination of both the noise tailoring and the er-
ror mitigation greatly improves the results. We further use
McWeeny purification [60], also used for example in Ref. [4],
corresponding to an iterative procedure projecting the mea-
sured state to the closest state of purity one (orange dots). As
we increase the number of randomizations and the number of
shots per randomization, we are able to push the precision to
0.2% for both the energy and the ground-state infidelity. It is
also possible to compute the first-excited state, as described in
the supplements.

Phase diagram. We then proceed to measure the phase
diagram of the TFIM on three qubits as the external magnetic
field h is swept. In Fig. 5 we plot the energies and the local
magnetization as a function of the transverse field h for both
the ground state and the first-excited state. For both these
quantities, we have used the average over the last states as
depicted in Fig. 4. We consistently get errors below 1% for
both the energy and magnetization.

IV. CONCLUSIONS

In this paper, we have demonstrated that tailoring the er-
rors with randomized compiling simplifies the noise process
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(a)

(b)

FIG. 5. Phase diagram for the three-qubit Ising model varying
the h parameter. (a) Energy in units of E/J , for the ground state and
first-excited state. The experiments use 10 randomized circuits and
1024 shots for each value of h. The reported energy corresponds to
the mean of the five last points of the QITE evolution. Error bars
corresponding to the standard deviation on these points are smaller
than the markers. The error shown for each point corresponds to the
relative error. (b) Measured magnetization of the same data, with the
corresponding absolute error.

present on our quantum processor to a Pauli model. We also
have shown that this error process is approximately a fully
depolarizing noise. We have quantified the distance of our
noise process from a fully depolarizing noise channel using
the standard deviation of the Pauli decays obtained through
cycle benchmarking. With this measure, we are able to pre-
dict whether simple purification techniques that compensate
for this full depolarization can give an advantage. Since the
spread of these Pauli decays is bounded, we believe that as
the number of qubits increases, there will always be a regime
where the noise under Pauli twirling can be approximated by
a depolarizing model. In this work, we have concentrated on
randomized compiling with Pauli twirling. The spread of Pauli
decays depends on the choice of twirling group. Pauli twirling
gives the maximum spread of Pauli decays with a different
value for each, but is straightforward to implement. The Clif-
ford group would lead to no spread at all but is impractical for
more than two qubits. The Diehedral twirl [61] can be used
with our native CZ gate and will reduce the spread as Pauli
decays as those in X and Y will share the same values. This
would reduce the distance to the depolarization channel and
therefore potentially enhance the performance of purification
techniques. We also foresee that using smart synthesizers that
can exclude subspaces with large Pauli decays would help
improve the performance of purification techniques.

We have demonstrated how an iterative algorithm—
quantum imaginary time evolution—can benefit from the
application of both a noise tailoring technique such as ran-
domized compiling and an error mitigation technique such

as purification. The application of RC and purification results
in an improvement over each technique used separately. The
approximation made can be tested by measuring the spread
of the Pauli decays using CB. In this article, we have con-
centrated on a simple purification scheme. However, it can
be combined with sophisticated techniques, such as error ex-
trapolation methods [3] or symmetric postselection [12,13] to
even further enhance the accuracy of the results.
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APPENDIX A: NOISE DESCRIPTION

Generic noise. A good way to understand how twirling
works is considering the so-called Pauli transfer matrix (PTM)
representation of quantum operators. The PTM is simply a
matrix representation in the Pauli basis of the linear transfor-
mation on the density matrix. Hence, a PTM is a square matrix
of size 4N × 4N , where N is the number of qubits. When
considering a noisy implementation Ã of an ideal operation
A, we can define the noisy part as � = ÃA−1. For an ideal
implementation, Ã = A and � is the identity. In general, this
error matrix can have terms on almost every position. Methods
like process tomography [10] and gate set tomography [11]
allow one to reconstruct this matrix using experimental mea-
surements. The off-diagonal terms are specifically harmful for
algorithms and prediction of performance as most of them will
lead to accumulation of coherent errors. It can be visualized in
the single-qubit case with a simple over-rotation: if the error is
small for a single gate, repeating the same gate several times
makes the error grow quadratically with the circuit depth.
Additionally, the error is dependent on the circuit layout, mak-
ing it hard to predict how well a given circuit will perform.
This is one explanation for the gap between actual circuit
performance results and what RB would predict [62].

APPENDIX B: VARIANCE OF THE EXPECTATION
VALUE ERRORS

Measuring an expectation value. Most algorithms use
quantum hardware to measure some specific expectation val-
ues that are relevant for the calculus of some energy or to
determine the wave function. In this report we concentrate on
the expectation value of Pauli operators. Following Ref. [41],
we define our estimator as follows: For a given N-qubit Pauli
operator Q, let BQ be the rotation that maps the computational
basis to an eigenbasis of Q [e.g., a Ry(π/2) for the single-qubit
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(a) (b) (c)

FIG. 6. Study of the distribution of the measured expectation values for randomly compiled circuits of the same unitary. (a) Dispersion of
the single circuit estimator Em in the limit of N 	 1 so the single-shot noise is negligible. From this distribution, we extract the variance σ of
the results from random implementation to another one. Panel (b) presents the evolution of the variance of the randomized compiled estimator
ERC as the number of randomizations increases. For each curve, the number of shots per random circuit is N . Panel (c) presents the same
variance as a function of the number N of single shots per randomization. For large number of shots, the variances plateau to a value given by
σ 2/M as expected from (B4). For both panels (b) and (c), the dashed lines are models following the Eq. (B4) and the extracted value from the
distribution of panel (a).

operator X ]. The measurement protocol gives an outcome z
after the rotation in the eigenbasis with B†

Q. The expectation
value of Q can then be expressed as

Tr[Qρ] =
∑
z∈ZN

2

Tr[BQ(|z〉〈z|)Q] Pr (z|Q), (B1)

which amounts to a weighted sum over the population mea-
surement. Due to the discrete nature of the measurement (each
single-shot yields a bit string), one needs to repeat several
times the same circuit (or sequence) and average in order to
have an estimate of the expectation value.

Theoretical estimation of the variance of the errors. For a
given sequence, the variance evolves as

Var[E ] = (1 − E )(1 + E )

Nshot
, (B2)

where Nshot is the number of repetitions of the measurement
and E is the expectation value. This variance is maximal for
E = 0 and minimal for |E | = 1. Usually, we experimentally
go to large enough Nshot to eliminate this source of noise.

Even though the variance is reduced by increasing the total
number of shots, it is not clear that the measured expecta-
tion value is the right one. Actually, due to noisy gates, this
estimator is biased. This bias depends strongly on the given
implementation of the circuit. One way to construct a less bi-
ased estimator is to randomly sample from a set of circuits that
realizes the same unitary, i.e., the total operation is identical
but the circuits differ. Randomized compiling [18]—or Pauli
twirling—gives a framework to do this. The implementation
of the same operation only differs by the insertion of Pauli
gates. The estimator for a given expectation value is then given

by the average over all the implementations:

ERC = 1

M

M∑
m=1

Em, (B3)

where each Em correspond to a different circuit. The advan-
tage of using this approach is that the bias of the ERC estimator
is much more predictable, allowing one to compensate for it.
Under this assumption, the variance of the ERC estimator is
given by [63]

Var[ERC] = 1

M

(
(1 − ERC )(1 + ERC )

N
+ N − 1

N
σ 2

)
. (B4)

As pointed out in Ref. [63], the main information from this
equation is that the total variance goes to zero as the number
of circuits increases, but asymptotes to the finite value σ 2/M
if the number of randomization is fixed and we increase the
number of single-shot N . We have probed this with an ex-
perimental dataset in Fig. 6. When choosing between more
random circuits or more single shots, the best choice is to use
more random circuits, with the best situation being one shot
per random circuit (N = 1). However, from an experimental
perspective, it is not time efficient to run one shot per random
circuit as the upload time to the control hardware is time
consuming whereas repeating the same random sequence is
fast. From this experiment, we can see that using up to a
few hundred of single shots per random circuits gives a good
compromise. We can also see that getting more than 103 shots
does not improve the variance of the result for a fixed number
of randomizations. This is of practical use when designing the
RC sequence for a given circuit.
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TABLE I. Comparison of the maximum number of entangling
gates obtained with different synthesizer for N qubits. QSEARCH
[58] and QFAST [64] and the generic tool Isometry on Qiskit [65]
for a QITE simulation of a TFIM of N sites with the parameters
J = h = 1.

N QISKIT QFAST QSEARCH

2 3 3 3
3 30–35 10–12 7–12
4 160–200 70–80 30–50

APPENDIX C: DETAILED EXPERIMENTAL PROTOCOL
FOR FIG. 1

In practical settings, one is interested in measuring expec-
tation values. To study the effect of randomized compiling
when measuring expectation values we have run a series of
state tomographies performed as follows:

(1) Draw a random unitary from a uniform sampling of
SU(4).

(2) Decompose the unitary into a circuit using the KAK
decomposition (3 CZ gates). Repeat until reaching the wanted
depth (6 CZ gates for Fig. 1 of the main text).

(3) Create nine circuits by appending the measurement
rotation at the end of the circuit.

(4) For each circuit generate M randomly compiled cir-
cuits.

(5) Run each of the 9 × M circuits N time to gather statis-
tics.

(6) Calculate the expectation value for each Pauli for each
circuit (15 per unitary).

APPENDIX D: DIFFERENT SYNTHESIZERS
FOR CIRCUIT CONSTRUCTION

As explained in the Unitary and circuit construction sec-
tion of the main text, the gates which should have been added
from the QITE algorithm are concatenated into the circuit to
avoid increasing its depth. This is done by using a circuit
generator from the computed unitary. We report in Table I
the number of entangling gates for different synthesizers.
QSEARCH allows us to set the numerical accuracy of the
synthesis of the unitary, and it is possible to improve the
computational time by reducing the accuracy while still not
limiting the ground-state fidelity measured on the hardware.

APPENDIX E: SYMMETRIES OF THE HAMILTONIANS

We describe here how several symmetries of the TFIM
Hamiltonian have been used to reduce the number measure-
ments needed and of generators. This can apply to many
Hamiltonians.

Z2 symmetry. Let us first consider the so-called Z2 sym-
metry: The Hamiltonian from Eq. (9) commutes with the
operator Z⊗n. This symmetry divides the full Hilbert space
into two eigenspaces with, for any state |S〉, Z⊗n|S〉 = +|S〉 or
Z⊗n|S〉 = −|S〉. All the eigenstates of H have to be in either of
these subspaces. This property will both restrain the support
of the possible ground states and force the QITE evolution
operators to preserve the parity with respect to this symmetry.
To reduce the support of the ground state, we recall that two
Pauli operators can either commute or anticommute. For the
Pauli operators that anticommute with the symmetry S, the
expectation value of this Pauli on an eigenstate of the Hamil-
tonian is necessarily zero: 〈GS|P|GS〉 = Tr(ρP) = ρP = 0. If
we require all the steps to fall within the symmetric subspace,
this will also enforce that U commutes with the symmetry
S. Developing the evolution to the first order, we find that
U commutes with S if and only if aP = 0 ∀ P ∈ P such
that {P, S} = 0. This simplifies the synthesis as the number
of generators to consider is reduced by a factor two. For
the support of the ground state, if we know the sign of the
parity s, usually found using a classical algorithm, we can
further constraint the support by noting that 〈SP〉 = s〈P〉. The
number of free parameters for the ground state is thus reduced
by a factor four compared with the full Hilbert space size.

Time-reversal symmetry. As the TFIM Hamiltonian H is
real, it is invariant by time-reversal symmetry. This adds
another symmetry to consider. The corresponding symmetry
operator is T = K , with K the complex conjugation. The
unitary evolution at each step has to commute with K , which
implies that the generator has to anticommute. This means
that the support of the generators is included in the Pauli
matrices that anticommute with K : aP = 0 ∀ P ∈ P such
that [P, K] = 0. This implies that the set of allowed generators
are the Pauli strings with an odd number of Y . It also means
that the ground state should be an eigenvector of K meaning
that the support of the eigenstate has to commute with K . In
other words, the eigenstate support set is intersected by the
Pauli strings that have a even number of Y . We note that for
this specific symmetry, the set of generators and the set of
support for the ground state are disjoint.

APPENDIX F: FIRST EXCITED STATE
AND HIGHER-ENERGY LEVELS
WITH THE QITE ALGORITHM

The QITE algorithm offers an efficient way to calculate
the higher-energy states. When the ground state |GS〉 is de-
termined without considering the symmetries, one idea is to
add to the Hamiltonian H a term proportional to the ground
state in order to make the first-excited state into a ground state:
H → H + α|GS〉〈GS| with a coefficient α large enough. It is
also possible for the first-excited state to make use of the sym-
metry: the ground and first-excited states should have opposite
parities. Then using the same QITE algorithm, but changing
the initial state parity allows us to find the first excited state.
This is what was done for Fig. 5 of the main text.
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