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Breathing skyrmions in chiral antiferromagnets
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Breathing oscillations of skyrmions in chiral antiferromagnets can be excited by a brief modification of the
Dzyaloshinskii-Moriya interaction or magnetocrystalline anisotropy strength. We employ an adiabatic approx-
imation and derive a formula for the potential energy that directly implies breathing oscillations. We study the
nonlinear regime and the features of larger-amplitude oscillations, and we verify the validity of the adiabatic
approximation. We show that there is a maximum amplitude supported by the potential. As a consequence,
we predict theoretically and observe numerically skyrmion collapse and subsequent annihilation events due to
excitation of large-amplitude breathing oscillations. The process is efficient when the skyrmion is mildly excited
so that its radius initially grows, while the annihilation event is eventually induced by the internal breathing
dynamics. We reveal the counterintuitive property that the skyrmion possesses a nonzero kinetic energy at the
instance of its annihilation. Finally, the frequency of small-amplitude breathing oscillations is determined.
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I. INTRODUCTION

Magnetic skyrmions are topological textures with a
swirling configuration of the magnetization stabilized by
the Dzyaloshinskii-Moriya (DM) interaction [1,2]. They are
commonly observed in chiral ferromagnetic films, typically
extending a few or tens of nanometers laterally, and their
nontrivial topology makes them robust against perturbations.
Skyrmions exhibit particlelike dynamics [3] which, together
with their small size, lead to properties such as a low driving
threshold current [4]. These qualities have given rise to a range
of proposed applications such as their use as the constituent
information carriers in racetrack memory or logic devices
[5–9], as memristor elements in artificial synapses for neu-
romorphic computing architectures [10], in spintronics-based
transistor device concepts [11], and as spin-wave scatterers in
magnonic computing and logic devices [12].

Most of the existing work is focused on ferromagnetic
skyrmions. On the other hand, skyrmions are expected to exist
also in antiferromagnets for essentially the same reasons as
in ferromagnets. Antiferromagnetic (AFM) materials have ad-
vantages such as high operational frequencies in the terahertz
range and robustness against external magnetic field perturba-
tions. Furthermore, unlike in ferromagnets and despite their
topological nature, skyrmions in antiferromagnets do not gen-
erally present a Hall angle in their dynamical behavior. An
exception is the case where they are driven by a magnonic
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spin current [13]. These properties have prompted proposals
to replace ferromagnetic skyrmions by their antiferromagnetic
counterparts [11,14–19]. Recent experimental observations
of stable skyrmions in antiferromagnets [20,21] give further
motivation for the study of AFM skyrmions for future device
implementations.

The chiral DM interaction is crucial for the dynamics
of solitons, in addition to its role in their stabilization.
A skyrmion breathing mode arises in chiral ferromagnets
[22–26] due to the breaking of the conservation of the total
magnetization perpendicular to the film. A similar mode exists
also for antiferromagnetic skyrmions. In the latter case, inde-
pendent oscillations of the skyrmion radius and of its chirality
are possible [27].

We are motivated by the emerging kinetic energy in the
AFM continuum [28,29] and we propose an effective poten-
tial for the skyrmion oscillation dynamics. This leads to a
systematic approach in order to understand details of these
dynamical modes, such as the frequency of oscillations, by a
combination of analytical and numerical methods. The form
of the effective potential leads to the observation that an ex-
pansion of the skyrmion can eventually lead to its annihilation
by a subsequent collapse due to internal breathing dynamics.
This counterintuitive method shows that a large external force
is not necessary in order to annihilate the topological texture;
instead skyrmion annihilation is obtained by small controlled
changes of the DM or anisotropy parameters that can be
induced, e.g., by a voltage pulse [30], in combination with
internal dynamics.

It would be an ideal situation to have methods for skyrmion
creation and annihilation by controlled small perturbations
while at the same time the skyrmion remains robust to
all usual perturbations. If this is achieved the potential
for skyrmions as functional objects would be significantly
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enhanced. In this context, our method shows the way for
controlled skyrmion annihilation by small perturbations. In
addition, the successful analytical arguments presented may
be useful in studies for a method towards controlled individual
skyrmion generation using only mild forces.

Section II discusses the energy in an antiferromagnet in
the discrete and in the continuum model. Section III shows
how skyrmion annihilation via breathing dynamics can be
achieved. In Sec. IV, we derive the effective potential for
breathing oscillations and give a theoretical description of the
annihilation dynamics. In Sec. V, we derive the frequency of
small-amplitude breathing oscillation in the case of skyrmions
with a large and a small radius. Section VI discusses helicity
oscillations for the skyrmion. Section VII contains our con-
cluding remarks.

II. SKYRMION ENERGY

We consider a square lattice of spins in a material
with the usual exchange, perpendicular anisotropy, and
Dzyaloshinskii-Moriya interaction. The magnetic energy of
the lattice is

Ed =
∑
i, j

Jn Si, j · (Si+1, j + Si, j+1) + k

2

[
1 − (Si, j )

2
3

]

+ D [ê2 · (Si, j × Si+1, j ) − ê1 · (Si, j × Si, j+1)], (1)

where the spin variables are assumed normalized |Si, j | = 1.
We will typically use, in numerical simulations, the parameter
values

Jn = 2 × 10-21 J, D = 0.047Jn, k = 0.01Jn. (2)

The equation of motion for the spins is

∂Si, j

∂t
= −γ Si, j × F i, j + αSi, j × ∂Si, j

∂t
,

F i, j = − 1

μ0μs

∂Ed

∂Si, j
, (3)

where F is the effective field, γ = geμBμ0/h̄ = 2.211 × 105

m A−1 s−1 is the gyromagnetic ratio, and α is the damping
parameter. We choose the saturation magnetization μs = 4μB,
where μB is the Bohr magneton. The material parameters
have been chosen to resemble what is expected for a range
of antiferromagnetic oxides [31,32].

A continuum model is obtained if we consider a lattice
of spin tetramers where the normalized Néel vector nα,β is
defined at tetramer sites (α, β ) [29]. The distance between
tetramer sites is defined to be 2ε where ε ≡ √

k/J is a small
parameter. In the limit ε → 0, a continuous Néel vector field
n = n(x, y, τ ) is obtained, with n2 = 1, where x, y and τ are
scaled space and time variables [28,29,33,34]. The energy in
the continuum is (see also Refs. [35,36])

E = T + Vλ, (4)

where the kinetic energy is

T = 1

2

∫
ṅ2 d2x (5)

and the dot denotes differentiation with respect to the scaled
time τ , and the potential energy

Vλ = Eex + EDM + Ean (6)

includes exchange, DM, and anisotropy contributions,

Eex = 1

2

∫
(∂μn) · (∂μn) d2x,

EDM = λ

∫
εμν êμ · (∂νn × n) d2x,

Ean = 1

2

∫
(1 − n2

3) d2x,

(7)

with λ = D/
√

kJn being a scaled DM parameter, and all en-
ergy components being in units of Jn. Symbols ∂μ, ∂ν , with
μ, ν = 1, 2, denote differentiation with respect to (x, y), re-
spectively; εμν is the antisymmetric tensor; and the summation
convention for repeated indices is adopted. Note that x is a
scaled coordinate and actual distances (in physical units) are
given by

ax/ε, ay/ε, (8)

where a is the distance between neighboring spins. The unit
of time is

τ0 = μs

geμB

h̄

2
√

2kJn
= 0.373 ps, (9)

where the numerical value corresponds to the parameter val-
ues in Eq. (2) and μs = 4μB.

The potential energy Vλ is identical in form to the energy
for a ferromagnet with corresponding interactions. It is thus
known that the ground state is uniform (Néel) for λ < 2/π

while it is the spiral for λ > 2/π [2]. Isolated skyrmions
are localized excitations on a uniform background. On the
other hand, the presence of the kinetic term in Eq. (4) opens
possibilities that are not there in ferromagnets. We will study
oscillations of the skyrmion.

We consider an axially symmetric skyrmion configuration
for the Néel vector, written conveniently in terms of the spher-
ical variables

� = �(r, t ), � = φ + χ (t ), (10)

where (r, φ) are polar coordinates and χ is an angle that may
be called the helicity. We will assume that χ may depend on
time only or it is a constant. The kinetic energy of Eq. (5) takes
the form

T = 1

2

∫
(�̇2 + sin2 � χ̇2) 2πr dr. (11)

The exchange and anisotropy energies depend on � only,

Eex = 1

2

∫ [
(�′)2 + sin2 �

r2

]
2πr dr,

Ean = 1

2

∫
sin2 � 2πr dr,

(12)
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FIG. 1. The blue dotted line shows the potential energy Vλ

for the static skyrmion versus its radius R = R(λ). The red solid
lines show the potential energy Vλ0 (�λ) given in Eq. (23) with
λ0 = 0.40, 0.47, 0.57 and corresponding equilibrium radii R0 =
0.71, 1.14, 2.39. The radius R is in scaled units and the actual length
is given, as in Eq. (8), by aR/ε [it is ε = 0.1 for parameter values in
Eq. (2)].

where the prime denotes differentiation with respect to the
space variable r. The DM term is written as

EDM = λ cos χ ẼDM,

ẼDM =
∫ (

�′ + cos � sin �

r

)
2πr dr. (13)

The static skyrmion profile that minimizes the potential
energy Vλ will be denoted by �λ(r) and it is obtained for
χ = 0. The skyrmion radius depends on the parameter λ. For
small λ the skyrmion radius R is small and for λ → 0 the
radius R → 0 and the energy takes the value E = 4π [37–39].
The radius R increases with λ and it diverges, R → ∞, for
λ → 2/π [40,41]. Figure 1 shows the numerically calculated
energy from Eq. (6) of a static skyrmion as a function of its
radius R, defined to be at the point where the magnetization
points in plane, i.e., � = π/2.

We conclude this section by introducing the local magne-
tization vector m defined as the normalized mean value of
the spins on tetramers [29,42]. It is an auxiliary field in the
continuum theory, given by

m = ε

2
√

2
n × ṅ. (14)

A nonzero magnetization is obviously connected with dy-
namics. The kinetic energy in Eq. (5) is given in terms of the
magnetization of Eq. (14) as

T = 4

ε2

∫
m2 d2x. (15)

In the following, we will make use of its discretized form,

T = 16
∑
α,β

m2
α,β, (16)

that gives the kinetic energy as a sum over the lattice of
tetramers.

III. SKYRMION ANNIHILATION VIA BREATHING

The fact that the energy of an infinitesimally small
skyrmion is finite, E = 4π , as shown in Fig. 1, suggests the
possibility to annihilate the skyrmion by a finite force. This
idea will be combined with the dynamics of the breathing
mode that is known to exist in chiral magnets [22], as will
be explained in the following.

We assume a material with parameter value λ0 that gives
a static skyrmion with radius R0 and energy V0. We further
assume a method to expand this skyrmion and produce one
with a larger radius R > R0 and, naturally, a larger energy
V > V0. We expect that the skyrmion energy, when this is out
of equilibrium, can be chosen V > 4π if R is large enough.
Using such a large-radius skyrmion as an initial state, we an-
ticipate that the breathing dynamics can reduce the skyrmion
radius down to R → 0 since the energy of the oscillator is
larger than the potential energy of a R → 0 skyrmion.

We implement the above ideas in a numerical simulation
of a spin lattice with 500 × 500 sites. We consider a static
skyrmion for the parameter values in Eq. (2). We propagate
in time the dynamical equations (3) including damping with
α = 0.0025. The system is subjected to a voltage pulse that
initially modifies the DM parameter to the value D = 0.057Jn

(λ = 0.57) as shown in Fig. 2(a).
The evolution of the skyrmion radius and discrete energy

(1) are shown in Fig. 2(b). Four snapshots of the skyrmion
profile (n3 component) during the simulation are shown in
Fig. 2(c). At time t0, the initial skyrmion is shown. The
skyrmion expands during the voltage pulse, and it is shown
at the end of the pulse at time t1. Subsequently, breathing dy-
namics induces shrinking of the skyrmion, as shown at time t2.
The skyrmion is eventually annihilated at time approximately
12 ps. After annihilation, low-amplitude waves in the form of
radiation are found to spread radially, away from the original
skyrmion center, as shown at time t3. In Fig. 2(b), we see that
the skyrmion radius is increasing during the voltage pulse. The
pulse is switched off at the time that the skyrmion has maxi-
mum radius. There is a steplike increase of the energy when
the voltage pulse is switched off, due to the drop of the DM
parameter. This brings the energy to a value greater than 4π .
Subsequently, the radius decreases due to breathing dynamics
until the skyrmion shrinks to a point and is annihilated. After
the annihilation, the energy dissipation continues faster. We
stop the simulation when radiation reaches the boundaries of
the numerical mesh.

The prediction based on the continuum model is not ex-
pected to be quantitatively precise when the skyrmion is
concentrated in a few lattice sites, just before annihilation (for
times t � t2 in Fig. 2). In particular, when annihilation of the
skyrmion happens, the discrete energy is somewhat lower than
4π . Nevertheless, the prediction of the continuum theory is
largely verified by the numerical simulations.

We proceed to a detailed study of the skyrmion annihilation
dynamics. At the time that the skyrmion is concentrated in a
point, the kinetic energy should be equal to T = V − 4π > 0.
This seems incompatible with the intuitive expectation that
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FIG. 2. Skyrmion annihilation via breathing. (a) The parameter
D is shown vs time. A square pulse with a duration of 7 ps is
modulating the DM parameter to the value D = 0.057Jn (λ = 0.57).
After the pulse is switched off, it is D = 0.047Jn (λ = 0.47). (b) The
total energy from Eq. (1) vs time is shown by a blue solid line.
The skyrmion radius is shown by a red dashed line. It is given in
units of lattice spacing a. (c) Spatial distribution of n3 at time points
ti (indicated on the energy graph). Snapshot t0 shows the initial
skyrmion [static profile for parameter values of Eq. (2)], snapshot
t1 shows the skyrmion when the pulse is switched off, snapshot t2

shows the skyrmion before annihilation, and snapshot t3 shows the
generated waves after the skyrmion has been annihilated. Only part
of the simulation space is shown.

Ṙ → 0 at R = 0. The apparent contradiction can be resolved if
we estimate the kinetic energy for a skyrmion of small radius
where the profile is approximated by a Belavin-Polyakov (BP)
configuration [37,38]. A BP skyrmion with a time-dependent
radius is given by

tan

(
�

2

)
= R(t )

r
. (17)

This choice is appropriate here as the skyrmion radius is very
small during an annihilation event. Formula (17) is valid from
r = 0 up to a distance r ∼ O(1/

√− ln R) when R � 1 (this
is based on Eq. (26) of Ref. [41]). The kinetic energy is

T = 1

2

∫
�̇2 2πr dr ≈ −4π ln R Ṙ2, (18)

where we have taken the limits in integral (18) from r = 0
to r ∼ 1/

√− ln R and we have only kept the dominant term
for R → 0. The skyrmion profile decays exponentially for
larger distances r and we thus neglect this contribution to T .
The quantity m = −8π ln R can be considered as the mass of
the breathing skyrmion and it is diverging for R → 0. This

FIG. 3. Kinetic energy (T ) shown by a solid line for the annihila-
tion event of Fig. 2. The skyrmion radius (R) is also shown by a grey
dashed line for comparison. The results are plotted up to the time
point where V ≈ 4π , after which the continuum theory ceases to be
valid. At this point, the skyrmion collapses while it can be clearly
seen that T > 0, in agreement with the theoretical prediction.

behavior is connected with the well-known divergence of the
integrated magnetization for the BP skyrmion. A nonzero
kinetic energy implies

Ṙ ∼ 1√− ln R
, R → 0. (19)

Based on Eq. (19), we anticipate that Ṙ → 0 as R → 0 while
at the same time the kinetic energy remains strictly positive
due to the mass term. We finally mention that the time it takes
to achieve the annihilation via breathing is finite as can be
found by integrating in time Ṙ in Eq. (19).

Figure 3 shows the kinetic energy (16) for the numerical
simulation in Fig. 2 until the skyrmion is annihilated. The
skyrmion radius is shown in the same figure for comparison.
The kinetic energy starts from zero, reaches a maximum,
and returns to a very small value as the skyrmion radius
approaches a maximum. At that time, the pulse is switch off
and the skyrmion radius starts decreasing rapidly until the
skyrmion annihilates. The kinetic energy has a nonzero value
at the time of annihilation. The numerical results confirm the
predictions of the previous paragraphs that are based on the
continuum model.

Methods usually employed for the creation or annihila-
tion of complex topological textures involve driving them at
material boundaries or forcing them to shrink down to the
atomic size due to large fields. By contrast, the annihilation
of the skyrmion described in this section is obtained due to a
mild perturbation. Shrinking follows by the natural breathing
dynamics and a singularity formation happens in a finite time
interval. It should also be noted that the nontrivial topology
of the skyrmion is not an obstacle in the singularity formation
and eventually in the annihilation process.

The proposed dynamics can be induced in various ways:
(i) One could temporarily increase the scaled parameter λ

(by modifying the DM or anisotropy parameters), as presented
in Fig. 2.
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(ii) One might also decrease the parameter, thus initiating
breathing, but, in this case, a sufficiently low value should be
maintained until the skyrmion annihilates.

(iii) Alternatively, an external magnetic field would act as
easy-plane anisotropy in an antiferromagnet effectively reduc-
ing the easy-axis anisotropy parameter and thus increasing the
dimensionless parameter λ. This case would require a separate
study due to the more involved dynamics introduced by the
external field [28,29].

(iv) Modification of the kinetic energy of the skyrmion
could also give further alternatives in order to initiate an-
nihilation dynamics. This could be achieved by inducing
magnetization in the antiferromagnetic lattice.

IV. NONLINEAR BREATHING MODE

We proceed to a systematic study of the breathing dynam-
ics in the linear and the nonlinear regimes that will lead to
quantitative predictions for the breathing and for the anni-
hilation dynamics. We consider, in this section, modes with
helicity χ = 0 and a dynamic skyrmion profile

� = �(r, t ), � = φ. (20)

The kinetic energy in Eq. (11) reduces to

T = 1

2

∫
�̇2 2πr dr (21)

and the potential energy is

Vλ(�) = Eex + λ ẼDM + Ean (22)

with Eex, ẼDM, and Ean defined in Eqs. (12) and (13).
We aim to study breathing oscillations, that is, a periodic

change of the skyrmion profile �(r, t ). We assume a material
with parameter λ0. In order to invoke breathing dynamics,
we change the parameter to a value λ 
= λ0 (for example,
by applying a voltage) and assume that the skyrmion profile
eventually relaxes to �λ. When the parameter is restored to
the value λ0, breathing dynamics is initiated.

In order to make progress analytically, we make a simpli-
fying assumption. As the skyrmion radius changes (oscillates)
during breathing, we assume that the profile adiabatically
adjusts to the static skyrmion profile �λ for the corresponding
radius R = R(λ). Under this assumption, the potential energy
that the skyrmion experiences during the breathing motion is
given by Eq. (22) applied for λ = λ0,

Vλ0 (�λ) = Eex + λ0ẼDM + Ean

= Vλ + (λ0 − λ)ẼDM, (23)

where all terms are evaluated for � = �λ. A further conve-
nient form for the energy Vλ0 is obtained if we use the virial
relation [43]

2Ean + EDM = 0 ⇒ Ean = −λ

2
ẼDM (24)

in Eq. (23) to get

Vλ0 (�λ) = Eex +
(

λ0 − λ

2

)
ẼDM. (25)

The energy components for each value of the parameter λ

and the corresponding value of radius R can be calculated
numerically.

The adiabatic approximation employed here results in a
significant simplification of the formulation and it will al-
low for the derivation of analytical expressions related to the
breathing oscillations. The approximation will be justified by
the comparison of the analytical predictions with numerical
results and also by analytical arguments based on the fre-
quency of breathing given in Sec. V.

In Fig. 1, we plot (by solid lines) the potential energy (23)
for the equilibrium profiles �λ as a function of their radius R.
Three lines are plotted for the cases λ0 = 0.4, 0.47, and 0.57,
which correspond to static skyrmion solutions with radius
R0 = 0.71, 1.14, and 2.39, respectively. As expected, every
solid line has a minimum at the corresponding value of the
radius.

The main features of the potential wells in Fig. 1 can be
anticipated. We first consider the case of small radius, that is,
R → 0, or, equivalently, λ → 0 [37,38]. We have Eex → 4π ,
ẼDM ∼ −8πR, and thus Eq. (25) gives

Vλ0 → 4π, as R → 0. (26)

In the case of large radius, we have Vλ ∼ O(R−1) and EDM =
−4πR as R → ∞, or, equivalently, λ → 2/π [41]. Thus,
Eq. (23) gives

Vλ0 ∼ 4π

(
1 − πλ0

2

)
R, as R → ∞, (27)

where we have used λ = 2/π + O(R−2). Equations (26) and
(27) confirm the features of the potentials shown in Fig. 1 that
are crucial for describing breathing dynamics.

The potential wells shown in Fig. 1 give rise to oscillating
motion around the minimum V0 = Vλ0 (�λ0 ). We demonstrate
this by performing a simulation similar to that in Sec. III,
but we now retain the voltage pulse for a longer time, 13
ps. We use a smaller damping parameter α = 0.001 in order
to demonstrate more clearly the oscillating motion. Figure 4

FIG. 4. We apply a square pulse that modifies the DM parameter,
as in Fig. 2, but now with a duration of 13 ps. We start the simulation
with D = 0.057 (λ = 0.57) and we restore to D = 0.047 (λ = 0.47)
at the time marked by the dotted red line. The damping parameter
is α = 0.001. (a) Skyrmion radius vs time shows damped breathing
oscillations. (b) Kinetic energy (16). The kinetic energy is close to
zero at both turning points of the oscillation.
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FIG. 5. The Néel field n and the magnetization field m of the skyrmion during breathing. (a) The Néel field for the initial skyrmion. (b) The
magnetization field during skyrmion expansion, at time t1 indicated in Fig. 4. (c) The magnetization field during skyrmion shrinking, at time
t2. The magnetization points azimuthally in both cases as anticipated by Eq. (28).

shows the skyrmion radius and the kinetic energy during the
motion. An oscillating motion starts in the potential well
Vλ0=0.57. The skyrmion radius has passed the maximum when
the pulse is switched off. Then, a new oscillating motion sets
in in the potential well Vλ0=0.47. The oscillations eventually die
out due to damping. The kinetic energy T is close to zero at
both turning points of the oscillation, i.e., at the minimum and
maximum radii.

Figure 5 shows snapshots of the Néel vector and the
magnetization for the skyrmion. The Néel vector n of the
initial skyrmion is shown in Fig. 5(a). The magnetization
m is shown during shrinking in Fig. 5(b) and expansion in
Fig. 5(c). It points azimuthally in the plane and gives opposite
vectors during shrinking and expansion. This is expected as
the magnetization in Eq. (14) for a time-dependent profile as
in Eq. (20) is

m = ε

2
√

2
�̇ êφ. (28)

We proceed to systematic simulations of large-amplitude
breathing oscillations. We set D = 0.047 (λ0 = 0.47) and we
simulate the conservative equations, i.e., set α = 0 in Eq. (3),
for a range of initial profiles �λ. If the energy E is V0 < E <

4π , we expect oscillating motion between the two values of
the radius Rmin and Rmax for which the potential takes the value
Vλ0 = E . It is Rmin < R0 < Rmax where R0 is the skyrmion
radius at the minimum of the potential. We observe almost
perfectly periodic motion that was verified for many periods.

Figure 6 shows numerical results for the amplitude of os-
cillations, at λ0 = 0.47, for simulations initiated with profiles
�λ for a range of values of the parameter λ. The radii of the
initial profiles are plotted by blue circles and they represent
the one extremum of the oscillating motion. Red circles give
the radius of the skyrmion at the other extremum of the oscil-
lation. The blue line shows the skyrmion radius corresponding
to the static profile �λ and the red line the radius for the
partner configuration with the same potential energy V . If we
choose an initial profile �λ with λ > 0.6, we have V > 4π

and the skyrmion annihilates during the shrinking phase, as
discussed in Sec. III. Thus, the numerical results are in very
good agreement with the assumption that the oscillating mo-
tion is described by the potentials in Fig. 1. Furthermore, the
sustained and almost exactly periodic motion and the precise
prediction of the extrema of the oscillations, in Fig. 6, support

the validity of the adiabatic approximation used in our formu-
lation.

The period of oscillation for a small amplitude is found to
be approximately T = 20 in dimensionless units [or T = 7.5
ps when we use the time unit in Eq. (9)] that corresponds to an
angular frequency ωb = 0.3. This is in agreement with the an-
alytical result (37) given in the next section. The frequency is
decreasing for large-amplitude oscillations. This is anticipated
since the potential in Fig. 1 is slower than parabolic.

We return to the issue of skyrmion annihilation and we
can now expand upon the results of Sec. III. Based on the
potential wells shown in Fig. 1, one can start breathing dy-
namics either pushing towards a radius smaller than that at
the potential minimum or to a larger radius (as we have
shown in Fig. 2). Furthermore, one can imagine a combina-
tion of the two possibilities. That is, one may modulate λ

FIG. 6. For λ0 = 0.47 (D = 0.047), we show the maximum and
minimum radii of skyrmion breathing oscillations, when the initial
skyrmion profile is �λ. Lines show theoretical results based on
Eq. (22) and Fig. 1. Circles show results of numerical simulations.
The simulations are initiated with skyrmion profiles at the blue
circles (they give the one extremum of the oscillation). The other
extremum of the oscillation is shown by red circles. [The radius R is
in scaled units and the actual length is given, as in Eq. (8), by aR/ε,
with ε = 0.1 for parameter values (2)].
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periodically around the value λ0, thus pushing the skyrmion
radius to values smaller and larger than R0 periodically. Using
the appropriate frequency for the λ modulation, this is ex-
pected to lead to resonance, i.e., large-amplitude oscillations
for the skyrmion radius, and to its eventual annihilation. A
small-amplitude modulation of λ will be sufficient for the
resonance phenomenon.

V. SMALL BREATHING OSCILLATIONS

The breathing motion with a small amplitude will be stud-
ied analytically, based on the potential (25) plotted in Fig. 1.
We will study separately the cases of a skyrmion of large
radius and a skyrmion of small radius.

A. Skyrmions of large radius

Let us consider a large value of λ0 so that the corresponding
static skyrmion has a large radius. In this case, the skyrmion
profile is approximated as a domain wall centered at the posi-
tion of the radius,

� = 2 arctan (e−z ), z ≡ r − R(t ), (29)

where we anticipate that the skyrmion radius R(t ) varies with
time during the breathing motion. We assume that the chirality
remains at χ = 0 during the motion. The kinetic energy (11)
gives

T = Ṙ2

2

∫ ∞

0
sech2(r − R) (2πr dr).

For R � 1, we may extend the lower limit to −∞ (with an
exponentially small error) and obtain

T ≈ Ṙ2

2

∫ ∞

−∞
sech2z (2πR dz) = 2πRṘ2. (30)

For calculating the potential energy (23) we will use the
results [41]

Vλ = 4π2λ2

R
+ O(R−3), λ2 = 0.3057,

EDM = −4πR + O(R−1), (31)

where R is the radius of the static skyrmion for DM parameter
λ, approximated by [41]

λ = 2

π
− λ2

R2
+ O(R−4). (32)

Our objective is to evaluate the potential (23) around the
radius R0 that corresponds to the parameter λ0. We set

R = R0(1 + δ) (33)

and we use Eq. (32) to obtain

λ0

λ
− 1 ≈ −πλ2

R2
0

(
1 − 3

2
δ

)
δ, δ � 1. (34)

Inserting Eqs. (34) and (33) in Eq. (31), we have

Vλ ≈ 4π2λ2

R0
(1 − δ + δ2),

λ0 − λ

λ
EDM ≈ 4π2λ2

R0

(
δ − 1

2
δ2

)
.

FIG. 7. The angular frequency for small-amplitude breathing os-
cillations as a function of the skyrmion radius R (corresponding to the
parameter λ0). The angular frequency goes to zero for large R (as λ0

approaches 2/π ). The rate of convergence is consistent with Eq. (37)
within numerical accuracy. Physical units for frequency ωb/(2π ) are
restored by multiplying by 2.68 THz.

Substituting the two last equations in the potential energy (23),
we obtain the parabolic form

Vλ0 (�λ) = 4π2λ2

R0

(
1 + 1

2
δ2

)
. (35)

Equations (30) and (35) give the Lagrangian

L = 2πR3
0δ̇

2 − 2π2λ2

R0
δ2, (36)

which implies harmonic oscillations with angular frequency

ωb =
√

πλ2

R2
0

≈
√

π

λ2

(
2

π
− λ0

)
. (37)

Figure 7 shows the results of numerical simulations for
breathing oscillations of small amplitude. For λ0 close to
the value 2/π , or for large R0, the numerical results confirm
Eq. (37). The dependence of the breathing frequency on R0

has been obtained in Ref. [27], but the numerical factor in
Eq. (37) introduces a correction to that result. This modifica-
tion originates in the corrected dependence of the radius on
the DM parameter given in Eq. (32) compared to an earlier
result obtained in Ref. [40].

B. Skyrmions of small radius

The profile of a skyrmion of small radius is approximated
by a Belavin-Polyakov (BP) solution [37,38]. Therefore, in
this section, we consider a BP skyrmion profile as in Eq. (17),
with a time-dependent radius R(t ). The kinetic energy is given
in Eq. (18) or, using Eq. (33),

T ≈ −4πR2
0 ln R0 δ̇2. (38)
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For the potential energy, we will use the results of
Ref. [44],

Eex = 4π

(
1 + 1

2

λ2

(ln λ)2

)
+ O

(
λ2

(ln λ)3

)
,

ẼDM = 4π

(
2

λ

ln λ
− 1

2

λ

(ln λ)2

)
+ O

(
λ

(ln λ)3

)
,

(39)

and the relation between the parameter λ and the skyrmion
radius R for small radius [37,38],

λ = −R ln R. (40)

Inserting Eqs. (39) and (40) in the potential (25), we find

Vλ0 (R) = 4π [1 − R(R ln R − 2R0 ln R0)] + O(R2) (41)

that is valid for small R and R0. Inserting Eq. (33) in Eq. (41),
we find the quadratic approximation

Vλ0 ≈ 4π
(
1 + R2

0 ln R0 − R2
0 ln R0 δ2

)
. (42)

Equations (38) and (42) give the Lagrangian

L = −4πR2
0 ln R0 (δ̇2 − δ2). (43)

We thus find that small breathing oscillations for skyrmions of
small radius have an angular frequency

ωb = 1. (44)

Note that this is equal to the frequency (50) for helicity oscil-
lations discussed in the next section.

The numerical results shown in Fig. 7 indicate that ωb takes
a value of O(1) for skyrmions of small radius and it is thus
consistent with Eq. (44). We cannot stabilize skyrmions for
very small radii due to the choice of material parameters and
numerical limitations. Therefore, we do not present a precise
numerical result for ωb as R → 0.

We conclude this section by a comment on the adiabatic ap-
proximation. The velocity of the skyrmion domain wall during
breathing can be estimated by the oscillation frequency (44).
Assuming an oscillation close to harmonic, the maximum
velocity would be smaller than ωbR0 ∼ R0 for oscillations at
small radius and ωbR0 ∼ 1/R0 for oscillations at large radius,
assuming that the oscillation amplitude is smaller that R0. We
thus see that the velocity of the skyrmion domain wall during
the oscillations is small both for small and for large skyrmion
radius. As a result no strong oscillations are expected and one
can argue that the adiabatic approximation can be valid in all
cases studied here.

VI. HELICITY OSCILLATIONS

For completeness, we consider an oscillation mode where
the radial skyrmion profile remains unchanged while the he-
licity depends on time,

� = �(r), � = φ + χ (t ). (45)

However, this assumption is not consistent with the equa-
tions of motion derived from the energy functional. Indeed,
simulations show that Eq. (45) does not give a good approxi-
mation for the dynamical profile. When we start from a static
skyrmion profile �λ and choose uniform helicity χ 
= 0, we
obtain a complicated motion that seems to combine breathing

and helicity oscillations. Nevertheless, Eq. (45) will prove its
usefulness as it will lead to an approximation for the equa-
tion of motion for χ and to the frequency of the observed
oscillations. We therefore argue that this assumption is useful
and we proceed to use it in the following calculations.

The kinetic energy (11) reduces to the expression

T = 1

2
χ̇2

∫
sin2 � (2πr dr) = χ̇2Ean (46)

and the potential energy is

Vλ = Eex + λ cos χ ẼDM + Ean, (47)

where Eex, ẼDM, and Ean depend on � but not on χ , as seen
in Eqs. (12) and (13). Omitting terms independent of χ , the
Lagrangian is

L = T − V = χ̇2Ean − λ cos χ ẼDM. (48)

Virial relation (24) is used in Eq. (48) to give

L = 2Ean
(

1
2 χ̇2 + cos χ

)
. (49)

Lagrangian (49) describes a pendulum. For small χ � 1, it
gives harmonic oscillations with angular frequency

ωh = 1 (50)

that is a period T = 2π [or T = 2.3 ps when we use the
time unit in Eq. (9)]. Large-amplitude oscillations will have
a smaller frequency as in the case of a pendulum. The value
in Eq. (50) agrees with the results of numerical simulations.

Note that oscillations of helicity, for a small amplitude,
are found to have the same frequency (50) as small breathing
oscillations for skyrmions of small radius (44).

VII. CONCLUDING REMARKS

We have studied breathing oscillations of skyrmions in
chiral antiferromagnets using analytical arguments and cal-
culations, within a continuum model, that are valid in the
nonlinear regime. The predictions are confirmed and the re-
sults are extended by systematic numerical simulations within
the original discrete spin model. A significant result is the
prediction, confirmed by simulations, that the forced expan-
sion of the skyrmion radius invokes breathing oscillations
that can lead to the skyrmion annihilation. This counterintu-
itive process offers an alternative to the typically employed
methods of forced skyrmion suppression. It can prove to be
a more convenient method as it only requires mild forcing.
This is sufficient because the annihilation is actually brought
about not by the forcing itself, but by the invoked internal
dynamics. Furthermore, the phenomenon is interesting also
from a theoretical perspective because it involves the creation
of a singularity in finite time.

In order to obtain analytical results, we invoke an adia-
batic approximation to describe the motion. We assume that
the skyrmion profile during breathing adiabatically adjusts to
the static skyrmion profile for the corresponding radius. This
allows to obtain the main features of nonlinear oscillations,
and they are quantitatively confirmed by simulations. Ana-
lytical calculations for the breathing frequency are possible
in the two different cases of small and large skyrmion radii
where formulas from asymptotic analysis are available. The
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quantitative agreement between the analytical and numerical
results indicates that the adiabatic approximation is valid, for
the purposes used in the present paper, to a large degree. On
the other hand, in situations where the dynamics is driven, the
breathing mode could hybridize with other modes [45] and
then the adiabatic approximation would not be valid.

In the development of the theoretical arguments, we have
given details about the kinetic energy of the continuum model
for an antiferromagnet. This is actually an emergent kinetic
energy that originates in the exchange energy of the discrete
model. We derive the surprising result that the kinetic energy
can be tuned to a nonzero value at the point of the singularity
formation and skyrmion annihilation.

The methods use here could in principle be applied also to
a skyrmion lattice. Nonlinear oscillations due to the breathing
mode could possibly lead to annihilation events or a de-

struction of the lattice. Given the counterintuitive dynamical
behavior of the breathing skyrmion, it will be interesting to
consider further dynamical phenomena of this system. For
example, it is interesting to investigate the skyrmion domain
wall velocity during breathing. If this could reach the max-
imum velocity allowed for a traveling wall, that is, vmax =√

1 − (πλ/2)2 [46], then an instability of the Néel state
will occur that may lead to the spontaneous formation of a
spiral.
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