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Slow relaxation and aging in the model of randomly connected cycles network

S. Reich, S. Maoz, Y. Kaplan, H. Rappeport, N. Q. Balaban , and O. Agam
The Racah Institute of Physics, The Hebrew University of Jerusalem, 9190401, Israel

(Received 24 March 2022; accepted 20 July 2022; published 15 August 2022)

We propose a statistical model of a large random network with high connectivity in order to describe the
behavior of E. coli cells after exposure to acute stress. The building blocks of this network are feedback cycles
typical of the genetic and metabolic networks of a cell. Each node on the cycles is a spin degree of freedom
representing a component in the cell’s network that can be in one of two states: active or inactive. The cycles are
interconnected by regulation or by the exchange of metabolites. Stress is realized by an external magnetic field
that drives the nodes into an inactive state, and the time the magnetization passes zero value for the first time
represents the first division event of the cell after the stress period. The numerical and analytical solutions for
this first passage problem reproduce the aging dynamics observed in the experimental data.
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I. INTRODUCTION

The behavior of the cellular network of molecular com-
ponents in living cells, from a physicist’s viewpoint, is an
intriguing problem [1]. On one hand, a cell can be viewed
as a large computer, evolved by evolution over billions of
years, and programed to deal with various environmental
changes. In particular, the cell’s network typically has built-in
adaptation mechanisms that allows it to withstand moder-
ate starvation conditions by taking the cell into a new state
that preserves its vitality. On the other hand, the cell is
also a complex physical system with intricate interactions
and collective behavior amenable to some sort of statistical
description.

Most experimental and theoretical studies of cells exposed
to stress conditions are focused on the regulatory regime.
These aim to decipher the various layers of the cellular net-
work (metabolism, gene regulation, etc.) by disentangling its
various pathways, either by focusing on specific small mod-
ules [2] or in similarity to the deciphering of a computer’s
blueprint [3]. However, this reductionist approach is limited
because the cell’s cellular network is incredibly complicated
and strongly intertwined.

Nevertheless, several approaches have been proposed to
model the cell’s network using statistical models [4–6], and
using similar approaches as the ones used in neural network
theory [7]. The observation that exposing cells to unfore-
seen challenges (by genetic engineering) [8,9] accentuates the
statistical nature of their behavior as complex systems [10]
suggests an alternative approach to advance our understanding
of these complicated systems. In a recent work [11], our goal
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was to study the cell in a regime beyond its ability to respond
to environmental conditions, under perturbations that drive
the cell to the edge of death but do not kill, and where it
behaves as a random complex system. In this regime, the cell’s
dynamics are dictated by the global network architecture,
which is essentially random. Hence, it can be described by a
relatively simple statistical model. Such a model can be used
as a starting point for developing an increasingly improved
description of the cellular dynamics. The premise of this ap-
proach is that the statistical behavior of the cell holds valuable
information about the functionality and the architecture of the
cellular network.

In particular, recent experimental data [11] show that the
recovery time of E. coli cells, after their growth was arrested
by acute stress, exhibits distinctive statistical features typical
of complex physical systems. Acute stress can be achieved, for
instance, by adding serine hydroxamate (SHX) to exponen-
tially growing cultures. SHX induces an artificial starvation
for the amino acid serine and results in growth arrest [12].
In the experiment, cells are exposed to SHX for a duration
tw (waiting time), after which it is washed out, and the stress
period ends. Next, the single-cell lag time, i.e., the time be-
tween the end of the stress and the first post-stress division, is
recorded, and the recovery time distribution is measured from
a large ensemble of cells.

The experimental data is conveniently presented by plot-
ting 1 − cdf (cdf stands for cumulative distribution function),
i.e., the fraction of bacteria still in the lag phase. A log-log
plot of 1 − cdf as a function of time, for various values of the
waiting time, tw, is presented in Fig. 1 [11]. This figure high-
lights three distinctive features of the system dynamics: First,
the lag-time distribution depends on the waiting time; namely,
it features a memory effect. Second, the tail of the distribution
function exhibits a slow (approximately) power-law decay.
Third, the distribution function saturates at long waiting times.
The same features are common to finite physical systems
that exhibit aging [13], such as amorphous polymers [14,15],
stretched DNA [16], paper crumpling [17,18], colloidal
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FIG. 1. The experimental result of 1 − cdf associated with the
distribution of first division time of cells after various starvation
periods tw . (Adapted from Ref. [11].)

solutions [19,20], spin glasses [21–24], supercooled liquids
[25], and coulomb glasses [26], as well as ecological systems
[27].

We reiterate that aging behavior only appears when the
cell experiences acute stress. It is not manifested when the
stress is weak or gradual (e.g., when starvation is by natural
depletion of nutrients or by gradual application of SHX). In
this case, the cells adapt by upregulating intracellular produc-
tion, increasing import, or switching to a different metabolism
that prepares cells for survival and regrowth when nutrients
become available. With gradual stress, 1 − cdf is practically
independent of tw and decays exponentially in time [11].

In this work we construct and solve a minimal toy model
that reproduces, qualitatively, the results shown in Fig. 1. The
general approach is similar to that of Random Matrix The-
ory for chaotic quantum systems [28], where a system with
complex interactions and chaotic dynamics, such as atomic
nuclei, is regarded as a “black box” with a Hamiltonian matrix
drawn from a Gaussian random distribution. This approach
reproduces correctly the universal statistical features of the
energy spectra and eigenfunctions of quantum chaotic systems
in the proper energy regime.

In the same spirit, we consider the cell to be a ‘black
box’ with unknown and complicated interactions among its
components (proteins, metabolites, enzymes, RNA, etc.). To
simplify the problem, we assume the following. (a) Each cell
component is described by a boolean variable, i.e., a spin,
accounting for only two possible states of the component:
active or inactive. (b) The time evolution is discrete, and the
state of the spins at a given time is determined, deterministi-
cally, by the state of the system at its previous time step (we
use zero-temperature Glauber dynamics [29]). (c) The web of
interconnections among the spins (i.e., the cell components)
is entirely random.

The most natural candidate for a description of this type is
the Sherrington Kirkpatrick model [30] with zero-temperature
Glauber dynamics. This remarkably simple archetype model
of glasses exhibits aging, and slow relaxation [31–41] as we
require. However, being Hamiltonian, the SK model features
a reciprocity property not shared by the cellular network—the
coupling constants between the ith spin and the jth spin are
symmetric, Ji j = Jji. However, living cells lack this symme-

FIG. 2. An illustration of the Randomly Connected Cycles Net-
work (RCCN) model. Each site in the network represents a cellular
component, and any red arrow may assume two positions (up and
down), denoting the corresponding component state: active or in-
active. The black arrows stand for a strong coupling that forms the
cycles, while gray arrows represent weak coupling between different
cycles. The coupling is via a single site in each cycle.

try because, for example, enzymes catalyze the synthesis of
products but not vice versa.

The asymmetric Sherrington Kirkpatrick model, in which
all coupling constants, Ji j , are statistically independent, is
also ruled out because it exhibits, essentially, an instantaneous
decay of correlations [42,43]. Thus some elements of the
cell’s network architecture should be retained to obtain slow
relaxation and aging from an asymmetric spin network.

Here we propose a model that highlights the metabolic cy-
cles structure of the cell by choosing its primary constituents
to be closed cycles of spins rather than single spins. The sizes
of these loops span over a large range of timescales, from very
short timescales to long ones such as those required for protein
degradation (2 min to 50 hours in growth-arrested cells [44]).
There are indications that these time delays are power-law
distributed.

Thus the toy model proposed here consists of a collection
of closed spin chains (representing, for example, different
metabolic cycles, or closed regulatory feedbacks) randomly
interconnected via a single spin on each cycle. The dynamics
within each spin chain is a simple shift, and the cycle’s length,
L is a random variable chosen from a power-law distribution
with power −α, i.e.,

P(L) = ν/Lα; Lmin � L � Lmax. (1)

Here Lmin and Lmax are the minimal and maximal endpoints
of the interval on which the distribution is defined, while ν

is the normalization constant. This model, which we call the
Randomly Connected Cycles Network (RCCN), is illustrated
in Fig. 2. The cycles in this model can also be interpreted
as delay lines with feedback. Thus another model variant is
of delay lines with an open feedback loop. However, our
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numerical simulations indicate a somewhat better agreement
of the experimental data with the closed-loop version of the
model.

In RCCN model, the application of external stress is real-
ized by a magnetic field that polarizes the spins and sets them
into an “OFF” position that represents an inactive state of the
corresponding cell’s component. Soon after the magnetic field
is turned off, the magnetization of the system decays back to
its normal state. The first time it crosses zero is assumed to
reflect the time point when the cell returns to its normal state.
It is associated with the first division time of the cell after
starvation, which is the quantity that is measured experimen-
tally. Thus the primary task of this work is to calculate the first
passage distribution of the magnetization and compare it to the
first division time distribution of the cells after the starvation
period.

The intention of this paper is as follows: First, we write
the equations that describe the dynamics of the RCCN model.
Then we present the results of its numerical simulations
that reproduced, qualitatively, the experimental data shown
in Fig. 1. Next, we analyze the system within a mean-field
framework and use the results of this analysis to develop a
simple phenomenological description of the problem. The lat-
ter will allow us to characterize the distribution function of the
total magnetization of the system and obtain an approximate
analytical solution for the first passage problem.

II. DEFINITIONS AND BASIC EQUATIONS

Consider a collection of N closed spin chains that form
cycles denoted by the index i. Each cycle contains a random
number of spins, Li, which we call the cycle length, and each
spin may assume one of two values, ±1. We denote by s(k)

i the
kth spin on the ith cycle and choose s(0)

i to be the spins that
form couplings among all cycles (one spin in each cycle).

Within each cycle the time evolution is a simple shift dy-
namics,

s(k)
i (t + 1) = s(k−1)

i (t ), k = 1, 2, . . . , Li − 1, (2a)

while the connecting spins satisfy the equation

s(0)
i (t + 1) =sign

[
s(Li−1)

i (t )+
∑
j �=i

Ji js
(0)
j (t )+h(t )

]
. (2b)

Here h(t ) is the external magnetic field, and Ji j are random
coupling constants with zero mean and a constant variance
inversely proportional to the number of cycles, thus

〈Ji j〉 = 0, and
〈
J2

i j

〉 = γ 2

N
, (3)

where γ is a constant that characterizes the coupling strength.
The magnetization of a cycle is defined to be

Mi(t ) = 1

Li

Li−1∑
k=0

s(k)
i (t ), (4)

and the total magnetization of the system is

M(t ) = 1

N

N∑
i=1

Mi(t ). (5)

In a large system with sufficiently strong coupling among the
cycles (γ � 1.3), for a typical realization of Ji j , and random
initial conditions of the spins, the magnetization M(t ), be-
haves like a random process. The magnetic field application
increases its average value, which decays back to zero after
the magnetic field is turned off.

The main quantity of interest is the distribution of times,
t , of first crossing, M(t ) = 0, after magnetic field application.
This distribution, denoted by ρ(t ), is assumed to reflect the
distribution of the first cell division time after the starvation
period. In order to avoid data binning, it is convenient to
present the results using the survival probability,

S(t ) =
∫ ∞

t
dt ′ρ(t ′), (6)

also denoted by 1 − cdf.

III. NUMERICAL SIMULATIONS

The simulation procedure employed for the study of the
RCCN runs along with the following steps: First, we choose
the lengths of the cycles from the distribution (1). Then we set
the coupling constants Ji j to be independent random variables
from a normal distribution with mean and variance given by
Eq. (3). Next, Eqs. (2) are iterated for several (2000) time
steps in order to relax the system to some typical state. A
constant magnetic field is applied for a period tw, after which
we continue to iterate Eqs. (2) and record the first time M(t )
crosses zero. The statistics are gathered from different simu-
lations in a similar amount to the number of cells monitored
in the experiment, and the first crossing time data is used to
construct the survival probability.

The choice of different Ji j at each run implies that the
survival probability results from ensemble averaging rather
than averaging over initial conditions. Because the system is
finite (about 400 cycles), by this way, we avoid the problem
of choosing some nontypical realization of the coupling con-
stants.

FIG. 3. The magnetization survival probability obtained from
simulations of the RCCN model. The black dashed lines are the ap-
proximate solution given by formula (46). The dependence of these
graphs on the starvation period tw reflects aging behavior, which
saturates for large values of tw .
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FIG. 4. A single cycle of the system. In the mean-field approach,
the input from all other cycles is assumed to be noise whose autocor-
relation function is determined self-consistently.

In Fig. 3, we present the results of numerical simulations
for the survival probability for various stress periods, tw.
These are obtained for a system with 214 spins, γ = 3/2, α =
3/2, Lmax = 2500, Lmin = 1, and h = 0.8 during the stress
period. These results are in qualitative agreement with the
experimental data shown in Fig. 1 as they exhibit the fol-
lowing three features: (a) An approximate power-law decay
within a wide time interval. (b) The delay in the relaxation
increases with the stress period tw. (c) The behavior of the
system exhibits saturation at long stress periods.

IV. MEAN-FIELD APPROACH

The mean-field approach to the RCCN model is based
on the assumption that in a large enough system where all
cycles are interconnected, the input signal to a given cycle is
a noise term whose statistical properties can be determined
self-consistently.

Consider the ith cycle of the system as illustrated in Fig. 4.
Here the input signal from all the other cycles is

ζi(t ) =
∑
j �=i

Ji js
(0)
j (t ). (7)

When the system is large enough, correlations between cycles
are small (see Appendix A) and the input signal is approx-
imately a Gaussian noise with zero mean. Correlations can
be determined self-consistently from the spins autocorrelation
function:

〈ζi(t )ζi(t
′)〉 = γ 2

〈
s(0)

k (t )s(0)
k (t ′)

〉
, (8)

where averaging is over the ensemble Ji j . In a large enough
system, ensemble averaging is the same as averaging over
the system’s initial conditions. This ergodicity property is
discussed in Appendix A.

From here on, to shorten the notations we shall suppress
the cycle index, and denote time using a subscript. With these
notations Eqs. (2) for the connecting spin in a cycle of length
L reduce to

st+1 = sign(st−L+1 + ζt + ht ). (9)

It is instructive to first consider the case where all cycles
are of the same length, L = 1, and zero magnetic field. Let
p(t ) be the probability that st = 1, and assume that the initial
condition, p(0), is known. The random noise drives the system
into the fixed point p(t ) → 1/2. Yet, there will be no change
in the spin state until time t if the noise is within the range
−1 < ζν < 1 for all time steps ν = 1, 2, . . . , t − 1. Therefore
the probability p(t ) evolves according to the following equa-
tion:

p(t ) − 1

2
= Vt

[
p(0) − 1

2

]
, (10)

where for t � 1,

Vt =
∫

· · ·
∫

−1<ζν<1

t−1∏
ν=0

dζν ft (ζ0, ζ1 · · · ζt−1) (11)

is the probability for no spin flip for any initial state of the
spin within the time interval (0, t ). Here ft (ζ0, ζ1 · · · ζt−1) is
the joint probability distribution function of the noise at t
consecutive time steps. A formal derivation of this result can
be found in Appendix B.

Let us assume that the input noise features an exponential
decay of correlation:

〈ζtζt ′ 〉 = γ 2ε|t−t ′|, (12)

where |ε| < 1 is, at the moment, an unknown parameter that
determines the time scale of the decay of correlations.

Inverting the covariance matrix of the noise (12) results in
a tridiagonal matrix that allows one to write the joint distribu-
tion function of the noise in the form

ft (ζ0, ζ1 · · · ζt−1) = Zt exp

(
−1

2
�t

)
, (13a)

where Zt is the normalization factor, and

�t = 1

γ 2(1 − ε2)

t−2∑
ν=0

(ζν − εζν+1)2 + ζ 2
t−1

γ 2
. (13b)

The integral (11) can be evaluated in the limit γ � 1,
|ε| 	 1 and 1 � t 	 γ 2/ε2 giving

Vt 
 erf

(
1√
2γ

)
erft−1

(
1√

2γ
√

1 − ε2

)
, (14)

where erf (x) is the error function.
To identify the self-consistent equation for ε, notice that

p(t ) can be interpreted as the conditional probability of st

given s0. Thus, from 〈st 〉 = 2p(t ) − 1, it follows that 〈st s0〉 =
Vt . Substituting this correlation in Eq. (8) and using Eq. (12),
we obtain the self-consistent equation for ε:

ε 
 −1

t
ln Vt = − ln

[
erf

(
1√

2γ
√

1 − ε2

)]
, (15)

which for large γ gives ε 
 (2/π )1/2/γ . Thus the decay time
of correlations is

τ1 = −1/ ln ε. (16)

In the case where all cycles are of length L > 1, the dy-
namics are obtained by rescaling of time, and the relaxation
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FIG. 5. The long time asymptotic behavior of the spin correlation
function cL (t ) for several cycles lengths, showing a power law decay.
The numerical results are obtained from 11 000 realization of a
system with 214 spins, Lmax = 2500, Lmin = 1, and α = γ = 3/2.

time in this case is

τL = Lτ1. (17)

However, the situation becomes more complicated when
the lengths of the cycles are distributed according to the power
law given by Eq. (1). To reveal the behavior of the noise, in
this case, one can try to solve the problem by iteration, start-
ing from an initial approximation where the autocorrelation
function of a spin in a cycle of length L is exp(−t/τL ). Substi-
tuting this approximation in the right-hand side of Eq. (8) and
taking the average over the cycles length distribution yields
a power-law decay of the noise correlations 〈ζ0ζt 〉 ∼ t1−α

within the range Lmin 	 t/τ1 	 Lmax. This correlation can be
used to construct the first approximation to the noise distri-
bution function, ft (ζ0, ζ1, . . . , ζt−1). With this approximation,
the integral (11) can be calculated in order to obtain the next
approximation for the spins correlations, 〈st s0〉 = Vt . Then by
iterating this procedure, one can improve these approxima-
tions. Notice, however, that once the noise correlation features
a slow power-law decay, the spin correlations exhibit a similar
behavior because the spin dynamics are dictated by the noise.
Thus the spin correlations in a cycle of length L,

cL(t ) = 〈s(0)(0)s(0)(t )
〉
L (18)

(where averaging is only over cycles of length L) decays as a
power law t1−α within the range L 	 t/τ1 	 Lmax. In Fig. 5,
we demonstrate that this is indeed the behavior of cL(t ) for
α = 3/2 where correlations decay as 1/

√
t . A full analysis of

the behavior of cL(t ) in the limits t � L and |t | < L can be
found in Appendices B and C.

Consider now the case where the system is subjected to a
constant magnetic field, h. From Eq. (9), it follows that this
amounts to a shift of the noise average 〈ζt 〉 from zero to a
finite value h, and repeating the calculation that led to (10)
now gives

p(t ) − 1 + m

2
= Vt (h)

[
p(0) − 1 + m

2

]
. (19)

Here Vt (h) is given by an integral of the form (11) but with
integration range shifts such that, −1 < ζν + h < 1, and m is

the magnetization given by

m = erfcμ− − erfcμ+
erfcμ− + erfcμ+

, (20)

where erfc(x) is the complementary error function, and

μ± = 1 ± h

γ
√

2
√

1 − ε2
. (21)

In the strong coupling limit γ � 1 and a weak magnetic field
h < γ , one obtains that the magnetization saturates to

M(t ) −−−→
t→∞ m 


√
2

π

h

γ
. (22)

Notice that the shift dynamics within each cycle imply that
the time scale for polarizing the spins within a cycle of length
L is τL = τ1L, because the magnetic field affects only the
connecting spins to other cycles.

A finite average magnetization changes noise properties.
In particular, it reduces the phase space for spin fluctuations.
Therefore a transient noise contribution, proportional to the
square of the magnetization, is generated at the turn “ON” or
turn “OFF” of the external magnetic field. This contribution
can be neglected when the external magnetic field is small or
when the considered time interval is sufficiently far after the
point where the magnetic field has been turned off.

In principle, the above description applies only in the limit
of large systems N � 1, and strong coupling γ � 1, where
relaxation is rapid. To obtain slow relaxation, i.e., large τ1, we
will consider situations where γ is of order one. However, γ

should be large enough to avoid a situation where the cycles
become, effectively, decoupled from each other so that their
magnetization freezes out. This limit is where the system
behavior is analogous to the glass phase of spin glasses. To
avoid this phase, γ should be above 1.3. This value is obtained
from numerical simulations of the system. For cycles of equal
length, L = 1, a similar value is obtained by requiring that the
self-consistent equation (15) has a solution.

V. A PHENOMENOLOGICAL MODEL

The mean-field approach presented above suggests that
the magnetization ML(t ) of each cycle (4) is an independent
quantity which behaves similarly to a noisy capacitor. Namely,
the magnetization of a cycle of length L satisfies a Langevin
equation (i.e., the Ornstein Uhlenbeck process):

dML(t )

dt
= −ML(t ) − h̃(t )

τL
+ ξL(t ), (23)

where h̃ and ξL(t ) are the effective magnetic field and the
applied noise, respectively. In the strong coupling limit, γ �
1, and weak magnetic field, |h| 	 1, the relation between h̃
and the magnetic field h is given by equation (22): h̃(t ) =√

2/πh(t )/γ . The noise, ξL(t ), is approximated by a random
Gaussian noise with zero mean and short range correlations

〈ξL(t )ξL(t ′)〉 = 2σ 2
L

τL
δ(t − t ′), (24)

where the constant σ 2
L is determined such that the variance

of the magnetization obtained from the mean-field approach
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equals that obtained from the solution of the Langevin equa-
tion (23). The calculation of σL can be found in Appendix D,
see Eq. (D3).

Taking the cycles to be independent, the distribution,
P(M, t ) = 〈δ[M − M(t )]〉, of the total magnetization (5), is
normal by the central limit theorem:

P(M, t ) = 1√
2πσ (t )

exp

[
− [M − M(t )]2

2σ 2(t )

]
. (25)

The mean magnetization at time t , M(t ), and the variance,
σ 2(t ), can be calculated using Eq. (23).

Assuming the external magnetic field to be constant h̃,
within the time range (−tw, 0) and zero otherwise, the solution
of Eq. (23) for the magnetization of a cycle of length L is

ML(t ) = ML(t ) + δML(t ), (26)

where for t > 0,

ML(t ) = h̃
[
1 − exp

(
− tw

τL

)]
exp
(
− t

τL

)
(27)

is the average magnetization, while the fluctuating component
is

δML(t ) =
∫ t

−t∗
dt ′ξL(t ′) exp

(
− t − t ′

τL

)
. (28)

Here −t∗ is the initial time where the dynamics started.
The total average magnetization of the system is now ob-

tained by averaging Eq. (27) over the distribution of cycles
length (1):

M(t ) = 〈ML
〉
L. (29)

This average can be expressed in terms of the exponential
integral function En(x),

M(t )=νh̃

{
1

Lα−1
max

[
E2−α

(
t

τmax

)
−E2−α

(
t +tw
τmax

)]
,

− 1

Lα−1
min

[
E2−α

(
t

τmin

)
−E2−α

(
t +tw
τmin

)]}
, (30)

where ν is the normalization of the cycles length distribution
function (1), τmax = τ1Lmax, and τmin = τ1Lmin.

The curves that describe the average magnetization, M(t ),
in a system with 214 spins, α = γ = 3/2, Lmin = 1, Lmax =
2500, and h = 0.8, are depicted in Fig. 6 for various values of
waiting times tw. The colored lines show the results of numer-
ical simulations, while the dashed lines are the analytic results
of Eq. (30) obtained when substituting h̃ = 0.57 and τ1 = 1.9.
These values are slightly different from those obtained from
the large γ asymptotic expressions which are τ1 
 1.68 and
h̃ 
 0.43, because γ is not large and the external magnetic
field h is not weak.

The variance of the fluctuations of the magnetization is
obtained by squaring Eq. (28) and averaging both over the
noise ζL(t ) and over the cycles length distribution, while tak-
ing into account that we average over N cycles. By neglecting
the effect of magnetic field on the noise variance and setting
t∗ = 0, we obtain

σ 2(t ) = 1

N

〈
σ 2

L

[
1 − exp

(−2t

τL

)]〉
L

. (31)

FIG. 6. A Log-log plot of the average magnetization of the
RCCN model for various waiting times. The colored lines are the
results of simulation with parameters as in Fig. 3, while the dashed
lines are the curves obtained from formula (30). (Only five values
of waiting times, tw = 20, 40, 160, 640, and 3000, are presented for
clarity).

For our purpose in the next section, we shall need only the
saturated value of this variance (at long time):

σ 2 =
〈
σ 2

L

〉
N

. (32)

[see Eq. (D4) in the Appendix D].

VI. THE SURVIVAL PROBABILITY

The typical behavior of a single realization of the magne-
tization after turning the magnetic field off is illustrated in
Fig. 7. It exhibits strong fluctuations on top of slow decay. Due
to these fluctuations, the magnetization will cross the zero line
base downwards and upwards in an alternating manner. Our
goal is to calculate the survival probability S(t ) (or 1 − cdf),
i.e., the probability that the magnetization did not cross the
zero base line up to time t . Its relation to the distribution of
times that the magnetization first passes the zero line value,
ρ(t ), (i.e., the distribution of T1 in Fig. 7) is described in
Eq. (6) and can be also written as

ρ(t ) = −∂S(t )

∂t
. (33)

This problem is different from the crossing problem
in the Ornstein-Uhlenbeck process[45] because it involves

FIG. 7. An illustration of the typical fluctuating behavior of the
magnetization (near the zero baseline) as it decays from a positive
initial value.
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strong temporal correlation of the magnetization. Following
Ref. [46], we define P<(t ) to be the probability that M(t ) < 0
at time t . From Eq. (25), it follows that

P<(t ) =
∫ 0

−∞
dMP(M, t ) = 1

2
erfc

[
M(t )√
2σ (t )

]
. (34)

To calculate the survival probability, we also need the
distribution functions ψ±(�t ) of the time �t that the magne-
tization returns to zero after it crossed from above and stayed
negative (“−”) or crossed from below and stayed positive
(“+”). In terms of Fig. 7, ψ−(�t ) is the distribution of the
even time intervals T2, T4, T6, etc., while,ψ+(�t ) is the dis-
tribution of the odd time intervals T3, T5, T7, etc. (Notice that
the distribution function for the first crossing at T1, is special).
The main assumption that we need here is that all these time
intervals are independent random variables described by a dis-
tribution that changes adiabatically in time. This assumption
is based on our numerical simulations, which show that the
average magnetization changes very slowly compared to the
typical time intervals, Tk .

For a system with discrete-time evolution, the precise value
of the crossing time may be defined by interpolation, and the
distribution functions ψ±(�t ) should be averaged over the
distribution of the trajectory overshoot near the crossing point.
Here we avoid this complexity by setting our time resolution
to be larger than a single time step (the typical return time is
of order 50-time steps); hence the magnetization of a single
realization is regarded as a continuous function.

Now, let us define p2k−1(t ) to be the probability that a
trajectory of M(t ) starting at M(0) > 0 ends below the zero
baseline at time t after 2k − 1 crossing events (where k � 1).
Then

P<(t ) =
∞∑

k=1

p2k−1(t ). (35)

It would be instructive to examine p2k−1(t ). If the first
crossing event took place at time t1 < t and there were no
other crossing events until time t , then

p1(t ) =
∫ t

0
dt1ρ(t1)Q(t − t1), (36)

where Q(t ) is the probability that M(t ′) remains negative for
time t . This is the probability of no crossing until time t ,
therefore it can be written in terms of the return probability,
i.e.,

Q(t ) = 1 −
∫ t

0
dt ′ψ−(t ′). (37)

Consider now the next function p3(t ). Assuming the down-
ward crossing took place at t1, the upward crossing at t2 and
the next downward crossing at t3 so that 0 � t1 � t2 � t3 � t
we have

p3(t ) =
∫ t

0
dt1ρ(t1)

∫ t

t1

dt2ψ−(t2 − t1) (38)

×
∫ t

t2

dt3ψ+(t3 − t2)Q(t − t3).

Similar convolution integrals describe p2k−1(t ) with k > 2.
Taking the Laplace transform of these formulas we have

p̂2k−1(s) = ρ̂(s)[ψ̂−(s)ψ̂+(s)]k−1Q̂(s), (39)

were f̂ (s) denotes the Laplace transform of f (t ).
From the above definitions it follows that

P<(t ) =
∞∑

k=1

p2k−1(t ), (40)

and taking the Laplace transform of equation (35), using (39),
and solving for ρ̂(s), we obtain

ρ̂(s) = sP̂<(s)
1 − ψ̂−(s)ψ̂+(s)

1 − ψ̂−(s)
. (41)

Finally, from the above equation and the Laplace transform of
Eq. (33), with S(0) = 1, we obtain

Ŝ(s) = 1

s
− P̂<(s)

1 − ψ̂−(s)ψ̂+(s)

1 − ψ̂−(s)
. (42)

In order to proceed, one needs the functional form of ψ±(t ).
These functions are not known and difficult to compute. Here
we assume that each of these functions is characterized by a
single time-scale and has an exponential form:

ψ±(t ) = 1

τ±
exp

(
− t

τ±

)
, (43)

where τ± are the decay time scales. Taking the Laplace trans-
form of these function and substituting them in Eq. (42), we
obtain

Ŝ(s) = 1

s
− P̂<(s) − τ+

τ−

1

1 + τ+s
P̂<(s). (44)

In order to identify the ratio τ+/τ−, we multiply the
above equation by s and take the limit s → 0. Then using
the following property of Laplace transform: lims→0 s f̂ (s) =
limt→∞ f (t ), and the assumption of adiabatic evolution,
namely that the magnetization M(t ) and the standard deviation
σ (t ) can be assumed to be constants over large time intervals
(compared to τ±), we obtain

τ+
τ−

= 1

P<(t )
− 1. (45)

Thus the inverse Laplace transform of Eq. (44), leads to

S(t ) = 1 − P<(t ) −
(

1

P<(t )
− 1

)∫ t

0

dt ′

τ+
e−t ′/τ+P<(t − t ′).

(46)
The decay time τ+ is unknown. From the adiabatic assump-

tion, it is clear that it should reduce slowly in time because
as the average magnetization becomes smaller the probability
for M(t ) to stay positive reduces. Moreover, ageing suggests
that τ+ also has a weak dependence on the waiting time,
tw which sets the value of the average magnetization, see
Appendix E. The dashed lines in Fig. 3 (corresponding to
tw = 20, 40, 160, 640, and 3000) are obtained from for-
mula (46) with logarithmic dependence on the waiting time:
τ+ = 11 ln(tw/2) (see Appendix E). The other parameters are
τ1 = 1.9, h̃ = 0.57 (the same as for the average magnetization
shown in Fig. 6), and σ (t ) 
 σ = 0.047 (see Appendix D).
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VII. CONCLUSION

To conclude, we constructed a minimal toy model that
reproduces the statistical behavior of the division time of a
E. coli cell that undergoes a period of acute stress in which
its growth is arrested. This construction rests on the follow-
ing central assumptions. First, the cellular network may be
considered random when taking the cell far from its adaptive
regime. Second, one can describe this network using Boolean
variables that account for each cell component’s active or
inactive states. Third, the statistical properties of the dynamics
of the system are captured by discrete-time evolution. Fourth,
the interactions among components can be approximated by
two-body interactions. Namely, the state of a spin depends
(nonlinearly) only on sums of the form

∑
j Ji js j and not,

e.g., terms of the form
∑

j,k Ji jks jsk that represent three-body
interactions. With these assumptions, the simplest model we
could construct that reproduces the experimental results is the
RCCN model illustrated in Fig. 2.

Clearly, none of these assumptions hold on a microscopic
level description: The cellular network is not random, as it
evolved during billions of years of evolution; the concentra-
tion of cell components and the time evolution are continuous;
and reactions within the cell usually involve few-body interac-
tions. Nevertheless, the agreement between the experimental
data and the numerical and analytical solution of the model
suggests that the RCCN model provides an effective statistical
description of the cell. In other words, one expects that a
realistic microscopic model of the cellular network can be
reduced to the RCCN model in the proper regime of param-
eters. As such, this model forms a starting point on which a
more refined description can be built by taking into account
particular features of the cellular network.

Moreover, our study shows that the random statistical
behavior of the cells holds valuable information about the cel-
lular network structure. For instance, comparing the solution
of the RCCN model with the experimental data allows one to
extract information about the cycles length distribution, e.g.,
the power α in Eq. (1), as well as the scale of the longest
cellular cycle, Lmax of the cell.

In order to see how α is reflected in the survival probability,
consider the intermediate asymptotic behavior of S(t ) within
the range τmin 	 t 	 τmax which can be evaluated assuming
τ+ 	 t . Within this range the upper limit in the integral (46)
can be extended to infinity, while the function P<(t − t ′) can
be expanded in powers of t ′. The zeroth-order term of this
expansion cancels the first term on the right-hand side of
Eq. (46), while the first-order term yields

S(t ) ≈
{

b+
(

τmax
t

)α+1
τmin 	 tw 	 t 	 τmax

b−
(

τmax
t

)α
τmin 	 t 	 τmax < tw

, (47)

with

b± = (α − 1)�(α)
h̃√

2πσ

(
Lmin

Lmax

)α−1
τ+
τmax

(
αtw
τmax

)μ±
, (48)

where μ+ = 1, and μ− = 0.
Equation (47) shows that the distribution of the cycles

length (1) determines the intermediate asymptotic behavior of
the survival probability: The power-law decay changes from

t−α−1 for short waiting time to t−α at saturation, i.e., when
tw � τmax. Notice that this result is independent of any other
parameter of the system. Thus the behavior of the survival
probability at saturation reflects the distribution of the lengths
of the cycles [11].

From a theoretical viewpoint, the RCCN model is a com-
plicated model, and the phenomenological description that we
have presented here provides only a basic description. For
example, we did not take the effect of magnetization on the
noise level, the precise dependence of τ+ on time, and we
also did not account for possible cross-correlations between
different cycles whose cumulative effect, despite being very
small, may become significant.

The theoretical framework provided by the RCCN model
opens the possibility to study many other universal features of
the system such as correlations between cycles; the effect of
stress focused on a single node or a limited number of them;
and the sensitivity of the dynamics to a small change in the
initial conditions. These questions are left for future study.
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APPENDIX A: ERGODICITY

Equation (8) is straightforwardly obtained by ensemble
averaging. In the first part of this Appendix, we show that the
same equation can also be derived by averaging over initial
conditions of the spin configurations. However, this derivation
relies on the assumption that different cycles are uncorrelated.
In the second part of Appendix, we show that the correlation
between cycles decay as 1/

√
N , where N is the number of

cycles.
In what follows, we use overbar to denote averaging over

initial conditions and over the cycles. Using definition (7), we
have

ζi(t )ζi(t ′) = 1

N

∑
i

∑
k �=i

∑
k′ �=i

JikJik′sk (t )sk′ (t ′). (A1)

Hereinafter we suppress the upper index that denote the
connecting spins in each cycles. Assuming the cycles to be
uncorrelated implies that only terms with k = k′ contribute to
the above sum. This diagonal approximation yields

ζi(t )ζi(t ′) = 1

N

∑
i

∑
k �=i

J2
iksk (t )sk (t ′) (A2)

and by the law of large numbers, in the limit N → ∞, we
obtain

ζi(t )ζi(t ′) = γ 2sk (t )sk (t ′). (A3)

Comparing this formula with Eq. (8) shows that averaging
over initial conditions is equivalent to ensemble averaging

provided s(0)
k (t )s(0)

k′ (t ′) → 0 when N → ∞ and k �= k′. To
validate this property consider the following quantity:

�i j = 〈Ji jsi(t )s j (t )
〉
, i �= j. (A4)
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Expressing si(t ) in terms of its previous time step, using
Eqs. (2), we have

�i j = 〈Ji jsign[si(t − Li ) + ζi(t − 1)]s j (t )
〉
, (A5)

where ζi(t − 1) is the input signal to the ith cycle . Let us
separate from this signal the contribution that comes from the
jth spin, ζi(t ) = Ji js j (t ) + ζ̃i(t ), and expand sign function to
linear order in Ji j (this expansion is justified because Ji j is of
order 1/

√
N and we consider the limit N → ∞). Thus

�i j =
〈
Ji jsign[si(t − Li ) + Ji js j (t − 1) + ζ̃i(t − 1)]s j (t )

〉
=
〈
Ji jsign[si(t − Li ) + ζ̃i(t − 1)]s j (t )

〉
+
〈
J2

i j s j (t − 1)s j (t )2δ[si(t − Li ) + ζ̃i(t − 1)]
〉
. (A6)

Now let us assume, self-consistently, that the spins are
uncorrelated. Then ζ̃i(t ) is a Gaussian noise, independent
of si and s j , with zero mean and with variance γ 2; hence,

taking first the mean over the noise only, sign[si(t ) + ζ̃i] =
si(t )sign[1 + ζ̃i] and the term in the middle line of Eq. (A6)

vanishes upon averaging. Similarly δ[si(t ) + ζ̃i] = P[−si(t )],
where P(ζ̃i ) is the noise distribution function. Taking into
account that the maximal value of this distribution function is
1/(

√
2πγ ) and that the maximal value of s j (t ) is 1, we obtain

�i j �
〈
J2

i j max[P(ζ̃ )]
〉 = γ√

2πN
(A7)

Noting that the spatial correlations is fully determined by Ji j ,
This result together with the definition of (A4) implies that

si(t )s j (t ) ∼ Ji j + Jji

γ
∼ 1√

N
. (A8)

APPENDIX B: DERIVATION OF Eq. (10)

Consider the mean-field approximation for the RCCN
model where all cycles are of length L = 1. The spin dynam-

ical equations are

st+1 = sign(st + ζt ), (B1)

where ζt is the input noise. Let us look first on the case where
the noise is uncorrelated. Then the probability, p(t ) that st = 1
satisfies the equation

p(t + 1) = p(t )P(ζt > −1) + [1 − p(t )]P(ζt > 1). (B2)

Here the first term describes the probability that st = 1 mul-
tiplied by the probability that the noise cannot flip it, i.e.,
the probability that ζt > −1. The second term describes the
case where st = −1 but the noise is sufficiently large to flip
it. Next, we use the following general properties of the noise
probabilities:

P(ζt > −1) = q + P(ζt > 1), (B3a)

where

q = P(−1 < ζt < 1) (B3b)

and

P(ζt > 1) + P(ζt < −1) + q = 2P(ζt > 1) + q = 1, (B3c)

where here we use the property that the noise distribution is
an even function, i.e. P(ζt > 1) = P(ζt < −1). Substituting
these equations in (B2) gives

p(t + 1) − 1

2
= q

[
p(t ) − 1

2

]
. (B4)

From here Eq. (10) directly follows with Vt = qt .
Consider now the noise be correlated and let us calculate

the probability that after two steps s2 = 1. This probability is
given by the following sum:

p(2) = P(ζ1 > 1) + P(−1 < ζ1 < 1, ζ0 > 1) + P(−1 < ζ1 < 1,−1 < ζ0 < 1)p(0). (B5)

The first term on the right-hand side of this equation is associated with the situation that the noise at the last step is sufficiently
large to ensure that the spin will be one independent of its state. The second term describes the case where the noise in the last
step is within the range where no spin flip occur (irrespective of the initial spin state), but the noise in the previous step is large
enough to ensure that the spin is in “one” state. Finally, the last term is the probability that the spin was initially at one state, and
the noise in both time steps does not flip the spin. These probabilities refer to disjoint sets of events and therefore add up.

Now, using relations similar to (B3) allows one to rewrite the above equation in the form:

p(2) = 1

2
[1 − P(−1 < ζ1 < 1)] + 1

2
[P(−1 < ζ1 < 1) − V2] + V2 p(0), (B6)

where

V2 = P(−1 < ζ1 < 1,−1 < ζ0 < 1). (B7)

Thus

p(2) − 1

2
= V2

[
p(0) − 1

2

]
. (B8)

This derivation can be generalized to any number of time steps
giving Eq. (10).

APPENDIX C: NOISE IN THE RCCN MODEL

In this Appendix, we study the fluctuation of the cycles
magnetization. To this end, we shall characterize the correla-
tion function (18) of the connecting spin in a cycle of length L,
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and use it to calculate the magnetization variance in order to
identify σ 2

L , and its average over the distribution of the lengths
of the cycles, σ 2.

The essential quantity needed for our analysis is the con-
ditional probability of a connecting spin and the noise acting
on the same spin at some different time, P(ζt |s0), where the
subscript denotes the time step. It is easy to calculate this
conditional probability for t = −1 because the time evolution
s0 = sign(s−1 + ζ−1) allows one to calculate the conditional
probability P(s0|ζ−1). Then using Bayes’ theorem, we have

P(ζt−1|s0) = P(s0|ζ−1)
P0(ζ−1)

P(s0)
, (C1)

where P(s0) = 1/2 is the unconditional probability of the spin
(in the absence of magnetic field), and P0(ζ ) is the probability
distribution of the noise at some arbitrary time, which is nor-
mal distribution with zero mean and variance γ 2. From here
we obtain that for s0 = 1

P(ζ−1|1) =
⎧⎨
⎩

2P0(ζ−1) ζ−1 > 1
P0(ζ−1) |ζ−1| < 1

0 ζ−1 < −1
. (C2)

The conditional probability is symmetric with respect to
a change sign of both s0 and ζ−1 hence P(ζ−1| − 1) =
P(−ζ−1|1).

Now we can calculate the conditional probability at any
other time by the integral

P(ζt |s0) =
∫

dζ−1P(ζt |ζ−1, s0)P(ζ−1|s0). (C3)

Here P(ζt |ζ−1, s0) is the conditional probability of the noise
at time t given the noise value at time t = −1, and the state of
the spin, s0. However, the effect of a single spin on the noise is
negligible because the noise results from a very large number
of spins; hence

P(ζt |ζ−1, s0) = P(ζt |ζ−1)

=
exp
(
− (ζt −μt+1ζ−1 )2

2γ 2(1−μ2
t+1 )

)
γ

√
2π (1 − μ2

t+1)
, (C4)

where μt+1 = 〈ζtζ−1〉/γ 2 is the noise correlation function
normalized by its variance. Substituting (C2) and (C4) in (C3)
yields

P(ζt |s0) = [1 + s0χ (ζt )]P0(ζt ), (C5)

where

χ (ζ ) = 1

2

∑
±

±erf

⎛
⎝ 1 ± ζμt+1

γ

√
2 − 2μ2

t+1

⎞
⎠. (C6)

We turn now to calculate the autocorrelation function of the
connecting spin in a cycle of length L at time t = L, cL(L), in
the limit of zero magnetic field. Setting t = L − 1 in Eq. (9),
multiplying it by s0, and taking the average, we obtain

cL(L) = 〈s0sL〉 = 〈s0sign(s0 + ζL−1)〉. (C7)

This average can be evaluated using (C5) giving

cL(L) = erf

(
1√
2γ

)
+ 2

∫ ∞

1
dζχ (ζ )P0(ζ ). (C8)

This is a general function of μL and γ , but for long cycles
one can assume that μL 	 1, and the above integral may be
expanded up to linear order in this parameter, giving

cL(L) 
 erf

(
1√
2γ

)
+ qμL, (C9)

where

q = 2

π
exp

(
− 1

γ 2

)
. (C10)

Consider, now the same correlation function but at time t =
2L, i.e., cL(2L). Setting t = 2L − 1 in Eq. (9), multiplying by
s0, and expressing sL in terms of s0 using Eq. (9) once again
we obtain

cL(2L) = 〈s0 sign[ sign(s0 + ζL−1) + ζ2L−1]〉. (C11)

To evaluate this quantity, we need the joint distribution of the
noise at two points in time conditioned by the state of the spin
s0:

P(ζt , ζt ′ |s0) =
∫

dζ−1 P0(ζt , ζt ′ |ζ−1)P(ζ−1|s0). (C12)

To leading order in the noise correlations, μt , This integral
gives

P0(ζt , ζt ′ |1)

P0(ζt )P0(ζt ′ )

 1 + ζtζt ′μt−t ′ +

√
q

γ
(ζtμt + ζt ′μt ′ ). (C13)

The average on the right-hand side of (C11) can be evaluated
by expressing the outer sign function in terms of its Fourier
integral,

sign(x) = 2Re
∫ ∞

0

dη

iπη
exp(iηx). (C14)

Preforming the average yields

cL(2L) 
 erf2

(
1√
2γ

)
+ q

[
μLerf

(
1√
2γ

)
+ μ2L

]
. (C15)

Notice that the contribution from the noise autocorrelation,
i.e., the quadratic term on the right-hand side of Eq. (C13),
vanishes. Thus one can interpret the above formula in the
following way. The first term is simply the probability that the
spin does not flip by the noise after two events where its state
may have been changed (at time L and time 2L), assuming
these events to be independent. The two other contributions
represent corrections to this result due to correlations of the
noise with the spin. The first is the product of the probabilities
that noise does not flip the spin at one time event multiplied
by the excess probability for the spin to remain in its state
due to correlations with the spin after time L. The second
contribution comes from correlations of the noise and the spin
after time 2L.

A similar calculation for n time steps (of length L), in the
asymptotic limit L � 1 gives

cL(nL) 
 q
n∑

j=1

erfn− j

(
1√
2γ

)
μ jL + erfn

(
1√
2γ

)
. (C16)
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FIG. 8. A log-log plot of a connecting spin correlation function,
cL (t ), for various values of cycles length. The dots are connected by
lines for clarity.

Assuming this behavior is characteristic for any discrete
time t and not only to the values t = nL one can now solve this
equation self-consistently by averaging cL(t ) over the power
law distribution of the cycles length (1). This average should
be proportional to the noise autocoronation μt .

Consider, first, the average of the last term in the above
formula (which decays exponentially). In the asymptotic limit
τmin 	 t 	 τmax it yields〈

erf
t
L

(
1√
2γ

)〉
L

= ν�(α − 1)
(τ1

t

)α−1
(C17)

where in the approximation where correlations are taken only
to first order to τ−1

1 
 − ln [erf(1/
√

2γ )]. This term yield an
algebraic decay, and substituting the same form of decay,
μ jL 
 b( jL)1−α , in Eq. (C16), the sum can be expressed
in terms of Lerch transcendent which yields the following
asymptotic formula:

cL(t ) 
 b̃

(
1

t + L

)α−1

+ exp
(
− t

τ1L

)
, (C18)

where

b̃ = bq

1 − erf
(

1√
2γ

) . (C19)

This result shows that in the large time asymptotic limit, all
cycles correlation functions decay as a power law with the
same power and amplitude as illustrated in Figs. 5 and 8.

APPENDIX D: THE MAGNETIZATION NOISE

In this Appendix, we calculate the magnetization noise
variance σ 2 at zero magnetic field. It is obtained by averaging
the variance of the magnetization noise σ 2

L of cycles of length
L over the cycles length distribution (1).

Consider the magnetization of a cycle of length L. Taking
into account that the dynamics within the cycle is shift dynam-
ics, we have

ML(t ) = 1

L

L−1∑
k=0

s(k)(t ) = 1

L

L−1∑
t ′=0

s(0)(t − t ′). (D1)

Thus when the system reaches a stationary state, the variance
of the magnetization of a cycle of length L is given by

〈
M2

L

〉 = 1

L2

L−1∑
t ′′=0

L−1∑
t ′=0

〈s(0)(t − t ′′)s(0)(t − t ′)〉

= 1

L2

L−1∑
t ′′=0

L−1∑
t ′=0

cL(t ′′ − t ′)

= 1

L
+ 2

L2

L−1∑
t=1

(L − t )cL(t ), (D2)

where we took into account that cL(0) = 1.
The above sum depends on the behavior of cL(t ) within

the short-time regime 0 < t < L. The results obtained in Ap-
pendix C [see Eqs. (C18) and (C9)] indicate that within this
range, the correlation length is essentially constant. This con-
clusion is also supported by the numerical results shown in
Fig. 8, where we depict cL(t ) at three values of cycle length for
α = 3/2. This figure shows modulations of the correlations on
the scale of L with an approximate constant behavior within
the range 1 � t � L − 1.

If we set cL(t ) to be constant k, then

σ 2
L 
 〈M2

L

〉 
 1

L
+ k

L − 1

L
. (D3)

To calculate the σ 2 in Eq. (32), one should take the average
of σ 2

L over the cycles length distribution. For simplicity, we as-
sume Lmin = 1 and extend the sum to infinity (as it converges
for α > 1). With these approximations, we obtain

σ 2 = 1

N

〈
σ 2

L

〉 = 1

N

[
k + (1 − k)ζ (1 + α)

ζ (α)

]
, (D4)

where N is the average number of cycles, while ζ (x) is the
Riemann zeta function.

Finally, it remains to obtain an estimate for the constant k.
For this purpose, let us calculate the correlation function at
one time step,

cL(1) = 〈s0s1〉 = 〈s0sign(s1−L + ζ1)〉. (D5)

In order to calculate this average, one needs the conditional
probability P(ζ1|s0, s1−L ), namely, the distribution of the
noise at time t = 1 for a given state of the spin at previous
times t = 0 and t = 1 − L. For sufficiently large cycles, one
expects that the correlations of the noise with the state of the
spin at the latter time can be neglected and to use the approxi-
mation P(ζ1|s0, s1−L ) 
 P(ζ1|s0). Then using (C5) to perform
the average, and linearizing with respect to μ1 (although this
is not strictly justified because μ1 is of order one, but here we
are only interested in the approximate value), we obtain

cL(1) =
〈
s0erf

(
s1−L√

2γ

)〉
+ qμ1. (D6)

Next, to perform the average over s1−L we use the conditional
probability:

P(s1−L|s0) =
{

1+u
2 for s1−L = s0

1−u
2 for s1−L = −s0

, (D7)
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where u = 〈s0s1−L〉 = cL(L − 1). From the last two equations,
we obtain

cL(1) 
 cL(L − 1)erf

(
1√
2γ

)
+ qμ1. (D8)

This formula connects the correlation function at one time step
with that at the time step just before the completion of a full
cycle of L steps. Setting k = cL(1) 
 cL(L − 1) and solving
for k, we obtain

k 
 qμ1

1 − erf
(

1√
2γ

) . (D9)

In our numerical study α = γ = 3/2, which implies that
k 
 0.81μ1. Taking also that average number of cycles is N =
408, and approximating μ1 
 1 we obtain from (D4) that σ =
0.047 which is the same as the numerical result.

APPENDIX E: THE WAITING TIME DEPENDENCE OF τ+

This Appendix explains the logarithmic dependence of the
return time, τ+, on the waiting time, tw. For this purpose, we
take note that formula (46) is obtained by taking into account
correlations in the relaxation of the magnetization and the
effect of the second term is manifested only at a sufficiently
long time, when the survival probability becomes small. Thus
in what follows, we estimate τ+ by focusing our attention on
the regime:

t ∼ τmax, and τmin 	 tw < τmax. (E1)

The magnetization is a sum of two contributions: the
mean value of the magnetization and a fluctuating part. From

Eq. (30), it follows that average magnetization in the regime
of interest (E1) is given by

M ≈ ctw, (E2)

where

c 
 (α − 1)�(α, 1)
h̃

τmax

(
Lmin

Lmax

)α−1

(E3)

and �(a, z) is the incomplete gamma function. This positive
contribution comes mainly from the long cycles which decay
slowly and keep memory of the time that the system was
subjected to the magnetic field. It is therefore clear that it
increases with the waiting time tw (as long as it is shorter than
the longest cycle).

On the other hand, the main contribution to the fluctuating
part of the magnetization comes from short cycles that quickly
lose memory of the magnetic field and because there are
many of them. The relaxation of these very short orbits is
approximately exponential as follows from (27).

Now consider a trajectory of the magnetization that crosses
zero value upwards. Since the average magnetization is pos-
itive, the fluctuation must be negative with amplitude given
by (E2). Thus one expects it to have the form δM(t ) ≈
−M̄ exp(−t/τmin), where time is measured from the crossing
point. Now, the typical time that the magnetization remains
positive is several times (say n) of the time that takes this
fluctuation to relax. Namely, it is obtained from the condition
δM(τ+/q) = −δ, where δ is some small (positive) value of the
magnetization. Solution of this equation yields a logarithmic
dependence on the return time, τ+ = nτmin ln(ctw/δ).
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