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Rheology of growing axons
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The growth of axons is a key process in neural system development, which relies upon a subtle balance
between external mechanical forces and remodeling of cellular constituents. A key problem in the biophysics
of axons is therefore to understand the overall response of the axon under stretch, which is often modeled
phenomenologically using morphoelastic or viscoelastic models. Here, we develop a microscopic mixture model
of growth and remodeling based on protein turnover and damage to obtain the macroscopic rheology of axonal
shafts. First, we provide an estimate for the instantaneous elastic response of axons. Second, we predict that under
moderate traction velocities, the axonal core behaves like a viscoelastic Maxwell material whose rheological
parameters can be expressed in terms of the microscopic properties. Third, for larger velocities, we show that
failure takes place due to extensive damage.
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I. INTRODUCTION

Neurological functions rely on the exchange of elec-
trochemical signals between neurons via slender cellular
processes called axons [1,2]. During early neurodevelopment,
neuronal cell bodies project axons that extend through the ex-
tracellular environment to connect with other target cells [3,4].
Then, once connected via synapses, axons passively elongate
to accommodate the growth of the embedding medium [5,6].
During this so-called stretch growth phase, growth kinematics
is fully dictated by the animal’s body expansion. In normal
growth conditions, axonal elongation is supported by the ad-
dition of cell material, allowing the axon to sustain stretch
and maintain structural homeostasis [7–10]. However, upon
faster stretch, this mechanism may fail, triggering a cascade
of pathophysiological responses that, ultimately, converge to
irreversible axonal damage [11–16]. A question is then: How
does the axon respond mechanically and structurally to vari-
ous stretch rates?

Typically, macroscopic—viscoelastic or morphoelastic—
models are used to capture the mechanical response of
growing axons [7,12,17–25]. These simple models can be
easily treated mathematically and compared with experi-
ments [26]; however, they are phenomenological and are
not explicitly linked to the microstructural changes occur-
ring in the axoplasm during growth. Alternatively, detailed
computational models have been proposed to study the
role of individual proteins within the cytoplasm [13,27–39];
typically, a core of parallel microtubules cross linked by
microtubule-associated tau proteins [Fig. 1(a)]. This approach
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captures the subtle mechanical interactions between key
molecular actors and the emergent rheology; however, it is rel-
atively complex and does not produce macroscopic models.

FIG. 1. (a) Electron microscopy image of porcine brain micro-
tubules cross linked with tau proteins shown by arrows. Scale bar =
100 nm. Adapted from [41] with permission from Rockefeller
University Press. (b) Neuronal axon subject to an imposed strain
x(t ). The cytoskeleton is modeled as a well-mixed phase com-
posed of microtubules and tau proteins that may attach, and then
detach depending on their individual tension F (t ). The individ-
ual protein tension results at a global scale in a macroscopic
tension T (t ).
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Here, we start with the key structural constituents of an
axon, i.e., microtubules and tau proteins, to derive a macro-
scopic, homogenized rheological model of axonal stretch
growth. We show that under moderate pulling velocities, the
axon behaves like a viscoelastic Maxwell material [24,40],
and the model captures the stress-strain response predicted
by a previous computational approach [32]. Conversely, for
higher stretch rates, remodeling is not fast enough and cross
linking becomes deficient.

II. MODEL

Our model contains two main structural elements: the mi-
crotubules and the cross-linking tau proteins. We consider a
homogeneous cylindrical axon of initial length �0 containing
M0 parallel microtubules of length a cross linked by N0 tau
proteins [Fig. 1(b)]. We consider a steady traction scenario in
which the axon is towed at a constant stretch rate ξ , so that its
current length is given by �(t ) = �0(1 + ξ t ), where t denotes
the time elapsed since the beginning of traction. Assuming
that the cytoplasmic constituents form a well-mixed phase,
and neglecting inertial effects, the strain x = ξ t is uniform
along the axon (as seen in the kymograph shown in [31]).
As the axon elongates, microtubules slide with respect to one
another, which stretches the cross links and promotes their
detachment. Following [13,32,36,42], we assume that the tau
dissociation kinetics follows a Bell-type model [43] in which a
population of N (t ) cross links subject to a force F (t ) detaches
according to

dN

dt
= −koffe

F/F0 N, (1)

where koff is the load-free dissociation rate, and F0 is a charac-
teristic bond force. We model each protein as a linear spring
with constant κ and deformation d , which provides the force
F = κd . Since microtubules are orders of magnitude stiffer
than tau proteins [44–47], we further postulate that they re-
main rigid.

A difficulty is that cross links attach to different micro-
tubules, which may slide with respect to one another with
different velocities (Appendix A). In addition, in a remodel-
ing axon, different cross links are formed at different times.
These specificities require modeling the axoplasm as a mix-
ture of cross links with different mechanical states. Assuming
a protein is attached at strain x′, its deformation at x � x′ is
modeled as

d (x, x′) = d0
x − x′

1 + x′ , (2)

where d0 = a/
√

6 is obtained by a strain-energy-based ho-
mogenization argument (Appendix A). The total population
of cross links at strain x is then given by the mixture [42]

N (x) = N0G(x, 0) +
∫ x

0
S(x′)G(x, x′) dx′, (3)

where S is the binding rate (per unit strain x), detailed later;
and where the kernel

G(x, x′) = exp

{
q

ν
(1 + x′)

[
1 − exp

(
1

q

x − x′

1 + x′

)]}
(4)

is obtained by solving Eq. (1) in terms of x for some ini-
tial strain x′ (Appendix B). The dimensionless parameters
q := F0/κd0 and ν := ξ/koff characterize the bond dissocia-
tion force and the pulling speed, respectively. The first term
in Eq. (3) represents the decaying population of initial cross
links. The second term accounts for the cross links formed at
all strains x′ ∈ [0, x] during traction, and disconnecting pro-
gressively as x increases. To simplify notations, we introduce
a mixture operator M that can be applied to any extensive
property P (x, x′) of the cross links as

M[P](x) = N0P (x, 0)G(x, 0)+
∫ x

0
S(x′)P (x, x′)G(x, x′) dx′,

(5)

so that, e.g., Eq. (3) becomes N = M[1].
The mechanical response of the axon under applied stretch

can be deduced from the individual cross-link strain energies,

W (x, x′) = 1
2κd (x, x′)2

, (6)

from which we obtain the total energy of the system, W =
M[W]. By the principle of virtual work for an axon under
tension T (x), we have T δ� = T �0δx = δW, where the virtual
work δW is the sum of all virtual works due to the cross links,

δW = M[δW] = M

[
∂W
∂x

]
δx. (7)

Thus,

T = M

[
∂W
∂x

]
,

∂W
∂x

(x, x′) = κd2
0

�0

x − x′

(1 + x′)2 . (8)

The state of the mixture depends on the attachment of new
cross links with rate S(x) from either new free tau proteins
supplied by the cell or detached proteins that can form new
connections [32,37]. Assuming a pool of Ñ available proteins
with uniform concentration Ñ/� along the axon (nonlimiting
transport), a simple model for S is Sdx = konÑdt , where kon is
an effective on-rate constant [48]. The number of free proteins
then follows

dÑ

dt
= I + βkoffR − konÑ, (9)

where I is a source term, koffR is the number of cross links
disconnected per unit time [Eqs. (1) and (2)],

R = M[R], R(x, x′) := exp

(
1

q

x − x′

1 + x′

)
, (10)

and β is the probability of a protein being available for reat-
tachment after disconnection. We hypothesize that the cell
aims to maintain a target lineal density Ñ0/�0 (i.e., number
of free proteins per unit longitudinal length), and therefore we
posit I = I0[Ñ0(1 + x) − Ñ], with I0 � 0 a constant.

The case β > 0 is solved numerically (Appendix D).
Figure 2(a) shows the effect of reattachment on the primary
cross-link population—the population initially present in the
axon—in the absence of synthesis (I0 = 0). As expected, for
β < 1, the cross links are eliminated faster than exponentially;
larger β promotes slower elimination, as cross links can oper-
ate longer. For β = 1, however, the cross links disconnect and
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FIG. 2. (a) Effect of protein reattachment β for a initial population of cross links [Eqs. (9) and (10)] simulated numerically for different
values of β, and with I0 = 0 (no synthesis), koff = 0.1, K = 1, q = 1, and ν = 0.1. Blue and yellow lines show, respectively, the two extreme
cases β = 1 (full reintroduction) and β = 0 (no reintroduction). Blue dashed lines show intermediate cases with 0 < β < 1. (b) Log-log plot
of the normalized tension T/E0 vs strain x (q = 0.1, ν = 0.01). Yellow and blue solid lines, respectively, show the Maxwell model Eq. (12)
and the mixture model. Blue dashed lines show the contributions of the initial and new cross links. (c) Density N (x)/�(x) (normalized by
N0/�0) vs strain x and parameter ν (logarithmic scale, q = 0.1). Solid lines show the characteristic strain scales of the initial (xI, top) and newly
formed (xII, bottom) populations of cross links.

reattach endlessly and N → N0K/(1 + K ), with K := kon/koff

the binding constant.
We henceforth consider the ideal case where detached

cross links do not reattach, β ≈ 0. Assuming I0 � kon, a so-
lution to Eq. (9) is Ñ (x) ≈ Ñ0(1 + x) (constant lineal density
Ñ0/�0), giving

S(x) ≈ KÑ0

ν
(1 + x). (11)

Assuming chemical equilibrium initially, we have N0 = KÑ0,
and the dynamics is fully governed by q and ν.

Initially, for small strain x, the response under tension due
to the primary cross links is Hookean, namely, T (x) ≈ E0x
with stiffness modulus E0 := N0κd2

0 /�0 [Fig. 2(b)]. Tension
then peaks when x = qW0(ν/q) (where W0 is the Lambert
function). This peak strain provides a typical strain-scale xI

for the primary cross-links persistence [Fig. 2(c)]. Past the
peak, primary cross-links tension quickly vanishes as the cross
links disconnect faster than exponentially [Eqs. (3) and (4)].

The secondary newly formed cross links initially contribute
only to ∼E0x2/2ν to the tension; they do not participate in
the linear elastic response, as they are not yet connected and
under tension. For large strains, however, the total tension is
only due to the new cross links and, as the local strain rate
decreases [Eq. (2)], the tension vanishes slowly as T (x) ∼
E0ν/x [Fig. 2(b), Appendix C 1]. Simultaneously, the cross-
link density reaches a homeostatic level N0I0/�0(I0 + kon) ≈
N0/�0 with strain scale xII = ν [Fig. 2(c)].

Depending on whether stretch is applied in a physiological,
experimental, or traumatic context, the parameter ν may be
either very small or very large. For rapid stretch, ν � 1, we
see that xI 	 xII: The primary cross links disconnect before
the secondary cross-link density reaches a sufficient level
to maintain integrity, and the core ruptures [Figs. 2(a) and
2(b)]. Note that, in this regime where density decreases, the
well-mixedness assumption fails as random heterogeneities
and inertial effects dominate, and the number of load paths
along the axon also decreases [13,31]. Conversely, for slow

towing, ν 	 1, we have xI ≈ xII: New cross links replace
the disconnected ones and rescue the axon core. The crit-
ical tau deficit, at which the axon is most vulnerable, is
given by D = maxx{1 − N (x)/N0(1 + x)} and, for ν small,
we have D ≈ (1 + q−1)ν. Remarkably, in this regime, the
model reduces to a viscoelastic Maxwell-like material, with
extensional stiffness E0 and effective viscosity η0 := E0/koff

(Appendix C 2), namely,
1

E0

dT

dt
+ T (t )

η0
= 1

�(t )

d�

dt
. (12)

Note that this is not the standard form for a Maxwell ma-
terial, which has nonzero tension at infinity [24,40]. Here,
our Maxwell-like material has the property that tension goes
to zero at infinity. This is due to the fact that growth takes
place along the entire axon shaft, with a local stretch rate that
decreases as ∼1/�.

For an axon of diameter ≈0.5 μm [32], with N0/�0 ≈
100 μm−1 [32], κ = 0.01–0.1 pN nm−1 [37], and a = 10 μm
[32], we estimate a Young’s modulus (E0 normalized by
cross section) of the order of ∼10–100 kPa, which compares
with the value reported by [19]. Combining this estimate
with the measured axon viscosity η0 = 106–107 Pa s [21],
we estimate koff ∼ 10−3–10−1 s−1; however, considering reat-
tachment should, in principle, yield larger estimates for koff.
The force F0 can be expressed as F0 = kBT/χ , with χ the
typical bond separation distance, and kBT ≈ 4 pN nm. Then,
estimating χ ≈ 1 nm, we obtain F0 ∼ 1–10 pN [31] and q ∼
10−3–10−1.

III. DISCRETE SIMULATIONS

Last, we compare our homogenized model against the
discrete finite-element model detailed in [32]. We consider
a bundle of M0 ≈ 50 randomly placed parallel microtubules,
connected via N0 ≈ 5000 dynamically breaking cross links,
and we test three different pulling velocities, ν = 0.01, 0.04,
and 0.1. For simplicity, here we ignore remodeling (β = 0,
S = 0) (see [32] and Appendix E for details). We see in
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FIG. 3. Comparison of our homogenized model with the discrete
finite-element model of [32]. Tension-strain curves T/N0 vs x, for
ν = 0.01, 0.04, 0.07, and 0.1. Solid lines correspond to the homoge-
nized model. Colored streaks show the mean and standard deviation
for 14 simulations of the discrete model for each value of ν.

Fig. 3 that for moderate velocities, the homogenized model
faithfully reproduces the stress-strain curves from the discrete
simulations; in particular, note the excellent approximation in
the initial Hookean regime (x 	 1), obtained with no fitting
parameter. For higher stretch rates, however, as expected,
localized heterogeneities in the discrete model dominate the
yielding process, which results in the homogenized model
overestimating the tension.

IV. DISCUSSION

Healthy growth relies on a subtle balance between mechan-
ics, transport, and synthesis of proteins, and cell remodeling
[24]. Using mixture theory combined with a Bell-type model
for tau disconnection [13,32,36,42,43], we propose a mech-
anistic macroscopic model for the mechanical response of
stretched axons. In contrast to more realistic, but mathe-
matically intractable, computational models [13,27–37], this
coarse-grained approach establishes a direct mathematical
link between cellular parameters and the emergent rheology
of axons. First, we derived an expression of the axon’s exten-
sional stiffness: E0 ≈ N0κa2/6�0. Denoting ρ and ρ̃ the lineal
densities of cross linking and microtubules, respectively, we
obtain the scaling law E0 ∝ ρρ̃2a4, which explicitly relates
the microstructural geometry to the overall elastic response
[39]. Second, we showed that rate-dependent effects emerge
from the energy-dissipating disconnection of linearly elastic
cross links embedded in a dynamically evolving mixture,
as also shown in [31]. For small strain rates, we proved
that the system behaves like a Maxwell viscoelastic mate-
rial, with extensional stiffness E0 and viscosity η0 = E0/koff.
This prediction recovers the observed fluidlike behavior of
axons [12,18,19,21,22] and corroborates previous computa-

tional study [31]. For higher strain rates, however, a critical
regime appears where the axon fails to maintain a sufficient
level of cross linking due to insufficient remodeling, with a
critical tau deficit attained around the characteristic strain xI =
qW0(ν/q) ≈ ν. Note, however, that subtler rate-dependent
effects could potentially emerge from more sophisticated vis-
coelastic models of individual tau and microtubules [36,37],
or by taking into account the actomyosin sheath of the axon
that generates active forces [22,33,49]. Neuronal injury in-
volves many other mechanisms such as microtubule breakage
and collapse [15,16,36,37,50]. Here, we have ignored these
effects of extreme axonal mechanics to focus our attention on
the evolution of microtubule cross linking during slow growth.
By definition, growth is limited by mass uptake [24], and,
in singularly large and fast growing cells such as neurons,
an important question is what mechanisms regulate mate-
rial availability [5,9]. Here, we found that a linear coupling
between axonal length � and protein synthesis rate I was
adequate to maintain sufficient material supply. Biologically,
this modeling assumption implies a hypothetical level of regu-
lation to control the production of new proteins, e.g., a length
detection [10,51], or a direct sensing of the free cross-links
concentration.

Axonal growth is the central component of neurodevelop-
ment. It obeys intricate rules with multiple interplays between
mechanics, kinematics, biological feedback, remodeling, and
protein supply. The detailed response of axons to stimuli
and loads remains elusive, yet, based on universal micro-
scopic principles related to attachment and detachment of
cross links, their macroscopic response can be obtained and
systematically compared with experiments by targeting spe-
cific microscopic properties. This type of approach opens the
door to more refined multiscale theories of axonal growth.
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APPENDIX A: DETAILS OF THE MODEL

Here, we provide details on the assumptions underlying
the mixture model previously developed. We consider the two
main structural elements of the axon, i.e., rigid microtubules
cross linked by stretchable tau proteins. Microtubules are long
filamentlike polymers that, in the axon, are mostly aligned
longitudinally and parallel to one another. We assume that
they are fully aligned to the longitudinal axis of the axon and
that they can only move by translation along that axis. Hence,
our model is one dimensional and we are interested in the
longitudinal mechanical response of the axon as a result of
the interaction between microtubules and tau proteins [13,27–
33,39].

1. Kinematics of tau protein deformation

Here, we study how a given cross link deforms when the
whole axon undergoes a strain x. In a deformation of the
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FIG. 4. Deformation of cross links connecting two microtubules
i and j. The rate of deformation depends on the distance between the
two microtubules, whose respective centers of mass undergo affine
displacement.

axon, microtubules slide with respect to one another, which
in turn stretches the connecting cross links. For simplicity,
we neglect the growth and shrinkage of microtubules that
might result in net migration of the microtubules along the
axon. Thus, we assume that all microtubules have identical
and constant length a. Considering that microtubule cross
links are homogeneously distributed along the axon, we also
assume that each microtubule’s center of mass (midpoint)
moves according to an affine transformation, i.e., its center
of mass is passively advected with the embedding medium,
so that the longitudinal motions of microtubules are imposed
geometrically. Namely, if p is the longitudinal position of a
microtubule’s midpoint, then, for any strains x and x′ of the
axon, we have

p(x)

1 + x
= p(x′)

1 + x′ . (A1)

Now, consider a cross link created at strain x′ and con-
nected to two different microtubules i and j with respective
positions pi and p j . Neglecting the nonlinear effects due to
the small lateral distance between the two microtubules, the
gradient of tau displacement with respect to the global strain
x is given by

∂di j

∂x
=

∣∣∣∣∂ p j

∂x
− ∂ pi

∂x

∣∣∣∣ = |p j (x′) − pi(x′)|
1 + x′ , (A2)

which can be integrated to obtain

di j (x, x′) = |p j (x
′) − pi(x

′)| × x − x′

1 + x′ . (A3)

Hence, different cross links attached at the same strain x′
will undergo different deformations, depending on the relative
positions of their microtubules (Fig. 4).

2. Elastic response

Here we focus on the initial Hookean elastic response, with
x′ = 0 and x 	 1, and we assume that the cross links do not
attach or dissociate. The total strain energy of the system
can be obtained from Eq. (A3) by integrating the individual
protein energies with spring constant κ ,

Wi j (x) = 1
2κdi j (x, 0)2 = 1

2κ (Xj − Xi )
2x2, (A4)

over all possible initial longitudinal positions Xi = pi(0) ∈
[a/2, �0 − a/2] of the M0 microtubules, taken to be uniformly
distributed along the axon:

W (x) =
( M0

�0 − a

)2 ∫ �0−a/2

a/2

∫ �0−a/2

a/2

× n(Xi, Xj )Wi j (x) dXi dXj . (A5)

Here, n(Xi, Xj ) is the number of cross links connecting two
overlapping microtubules located at positions Xi and Xj . We
assume that n(Xi, Xj ) is proportional to the overlapping dis-
tance, i.e., n(Xi, Xj ) = ρ(a − |Xi − Xj |)+, where (·)+ is the
ramp function and ρ is a lineal density of cross linking that is
linked to N0, the number of cross links, via

N0 =
( M0

�0 − a

)2 ∫ �0−a/2

a/2

∫ �0−a/2

a/2

× n(Xi, Xj ) dXi dXj . (A6)

From Eq. (A5), we also obtain the extensional stiffness,

E0 = κ

�0

( M0

�0 − a

)2 ∫ �0−a/2

a/2

∫ �0−a/2

a/2

× n(Xi, Xj )(Xj − Xi )
2 dXi dXj . (A7)

Assuming a 	 �0 (long initial axon), Eq. (A6) simplifies to

N0 = ρM2
0 (3a2�0 − 4a3)

3(�0 − a)2 ≈ ρM2
0 a2

�0
. (A8)

Then we integrate Eqs. (A5) and (A7) using Eq. (A8), to
obtain

W (x) ≈ 1
12 N0κa2x2 (A9)

and

E0 ≈ N0κa2

6�0
. (A10)

3. Protein dissociation and model simplification

To model the dissociation of proteins, we need to track
all pairs of microtubules as shown above. Using the kernel
provided in Eq. (4), Eqs. (A5) and (A6) become

N (x) =
( M0

�0 − a

)2 ∫ �0−a/2

a/2

∫ �0−a/2

a/2
n(Xi, Xj ) exp

{
F0

κν|Xi − Xj |
[

1 − exp

(
κx|Xi − Xj |

F0

)]}
dXi dXj (A11)

and

W (x) =
( M0

�0 − a

)2 ∫ �0−a/2

a/2

∫ �0−a/2

a/2
n(Xi, Xj )Wi j (x) exp

{
F0

κν|Xi − Xj |
[

1 − exp

(
κx|Xi − Xj |

F0

)]}
dXi dXj . (A12)
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Next, to take into account added proteins, we track all tau as-
sociations and microtubule additions occurring at strain x′ � x
[Eq. (3)], which, ultimately, will result in a triple integration
(over x, Xj , and Xi).

To make progress, we instead adopt a coarse-grained ap-
proach and we next posit a characteristic length scale d0 and
substitute all protein deformations in Eq. (A3) with a unique
deformation,

d (x) ≈ d0x, (A13)

where d0 is chosen so as to obtain the same strain energy given
by Eq. (A9). The new energy can be easily computed [Eq. (6)]
and we see that

d0 = a√
6
. (A14)

Note that d0 is much larger than the typical size of the in-
dividual tau proteins (i.e., ∼50 nm, while a ≈ 10 μm; see
[32]), which implies that tau proteins stretch individually
much faster than the entire axon does.

We extend this approach to growing axons by assuming
that the density of microtubules does not vary much during the
growth process, i.e., M(x) ≈ M0(1 + x), and we postulate that
we can use Eqs. (A13) and (A14) to represent every internal
state of the mixture during the elongation process:

d (x, x′) = d0
x − x′

1 + x′ . (A15)

Note that this approach is justified by the fact that d0 is
independent of �0, and thus Eq. (A14) applies, in principle,
to axons of arbitrary size �.

Figure 5 shows a comparison of the tension T (x) and
number of cross links N (x) obtained from Eqs. (A11) and
(A12), and from the model simplification [Eqs. (A13) and
(A14)], respectively. We see that for relatively slow pulling
speeds, the approximation is in good agreement with the more
detailed integral model. Indeed, we note that the tension in the
homogenized model (in the absence of cross-link addition, for
simplicity) peaks when x = xI = qW (ν/q) and is given by

Tmax ≈ N0d2
0 κν

�0e
(A16)

when ν 	 1. Conversely, for ν 	 1 and for a 	 �0, the
tension derived from Eq. (A12), evaluated at x = xI, can be
simplified as

T (xI ) ≈ N0a2κν

6�0e
. (A17)

From Eq. (A14), we see immediately that T (xI ) ≈ Tmax. Thus,
in the limit of short microtubules and slow towing, the two
models are equivalent to leading order, which characterizes
the convergence of our homogenization method.

APPENDIX B: DERIVATION OF THE KERNEL

Here we derive the kernel G given in Eq. (4). Combining
Eqs. (A14) and (A15) with the approximate force F (x, x′) ≈
κd (x, x′) applied at strain x to a cross link attached at strain

(a)

(b)

FIG. 5. (a) Axonal tension T (x)/N0 and (b) number of cross
links, N (x)/N0, obtained by the integral model [Eqs. (A11)
and (A12)] (dashed line), and by the single-length-scale model
[Eqs. (A13) and (A14)] (solid line). Parameters given in Appendix E.
We use ν = 0.005, 0.01, and 0.02; and S = 0 (T expressed in pN).

x′, we rewrite Eq. (1) as

dN

dt
= −koff exp

(
κd0

F0

x(t ) − x′

1 + x′

)
N. (B1)

033125-6



RHEOLOGY OF GROWING AXONS PHYSICAL REVIEW RESEARCH 4, 033125 (2022)

Using the change of variable x = ξ t , and introducing ν =
ξ/koff and q = F0/κd0, we obtain

dN

dx
= −1

ν
exp

(
1

q

x − x′

1 + x′

)
N. (B2)

The fundamental solution for this equation, obtained by direct
integration between x′ and x, is

G(x, x′) = exp

[
−1

ν

∫ x

x′
exp

(
1

q

z − x′

1 + x′

)
dz

]

= exp

{
q

ν
(1 + x′)

[
1 − exp

(
1

q

x − x′

1 + x′

)]}
. (B3)

APPENDIX C: ASYMPTOTICS

We provide details of the asymptotic results given in the
main text. We first study the case of small and large strains
x 	 1 and x � 1 (Appendix C 1), then we show that for slow
stretch ν 	 1, the tension obtained with our mixture model
is given asymptotically by the tension of a Maxwell material
(Appendix C 2).

1. Cases x → 0 and x → ∞
The case x → 0 is straightforward and can be obtained via

a Taylor expansion of the various quantities of interest around
x = 0. The case x → ∞ can be studied using integration by
part. By way of illustration, we derive the asymptotic behavior
of the population N (x) of attached cross links as x → ∞. For
clarity of notations, we can set N0 = 1 and E0 = 1, without
loss of generality.

We first perform a change of variable u = x′/x to fix the
integration domain,

N (x) ∼
∫ x

0
S(x′)G(x, x′) dx′

= x
∫ 1

0
S(ux)G(x, ux) du

= x
∫ 1

0
S(ux)eg(u) du, (C1)

with

g(u) = q

ν
(1 + ux)

[
1 − exp

(
x

q

1 − u

1 + xu

)]
. (C2)

We then extract the leading order through integration by part,

N (x) ∼ x
∫ 1

0
S(ux)eg(u) du

= x
∫ 1

0

S(ux)

g′(u)
d (eg(u) )

= νS(x) − x
∫ 1

0
eg(u) d

(
S(ux)

g′(u)

)
︸ ︷︷ ︸

h.o.t.

∼ x. (C3)

Similarly, for the tension T , we integrate by parts twice to
obtain

T (x) ∼ ν

x
. (C4)

2. Case ν � 1: Maxwell model

We show that for slow growth ν 	 1 and fixed x, the model
reduces asymptotically to the Maxwell model. For clarity of
notation, here we note ε = ν, the small parameter for the
asymptotic analysis. In the case of a constant-speed traction
that is considered, the Maxwell model, with extensional stiff-
ness E0 and viscosity E0/koff, is defined via the tension T̃ that
obeys Eq. (12),

T̃ ′(x) + 1

ε
T̃ (x) = 1

1 + x
, T̃ (0) = 0, (C5)

where (·)′ denotes the derivative with respect to x. The solu-
tion to Eq. (C5) is

T̃ (x) = exp

(
−1 + x

ε

)[
Ei

(
1 + x

ε

)
− Ei

(
1

ε

)]
, (C6)

where Ei is the exponential integral function. For small ε, the
solution can be expanded to obtain

T̃ (x) = ε

1 + x
− εe−x/ε + O(ε2). (C7)

Next, we address the asymptotic behavior of the mixture
model for ε 	 1. In this case, the tension is given in terms of
the integral,

I (x) =
∫ x

0

x − x′

1 + x′G(x, x′) dx′, (C8)

such that

T (x) = xG(x, 0) + 1

ε
I (x). (C9)

This integral is of the form

I (x) =
∫ x

0
f (x′)eλg(x′ ) dx′, (C10)

with λ = ε−1 � 1; and with f (x′) = (x − x′)/(1 + x′) and
g(x′) = q(1 + x′)(1 − e f (x′ )/q). The argument in the exponen-
tial is maximal for x′ = x, thus we adapt Laplace’s method of
integration by expanding g(x′) and f (x′) to first order around
x′ = x, noting that f (x) = g(x) = 0:

I (x) ≈ − f ′(x)
∫ x

0
(x − x′) exp [−λg′(x)(x − x′)] dx′

= 1

1 + x

∫ x

0
(x − x′)e−λ(x−x′ ) dx′

= 1 − (1 + λx)e−λx

λ2(1 + x)

= ε2 − ε(ε + x)e−x/ε

1 + x
. (C11)

From Eqs. (C9) and (C11), we obtain

T (x) = ε

1 + x
− x + ε

1 + x
e−x/ε

+ x exp
[q

ε
(1 − ex/q)

]
+ O(ε2), (C12)

which can be put under the form T (x) = T̃ (x)(1 + δ(x) +
O(ε)), with

δ(x) = −x
(
(x + 1) exp

( q+x
ε

− q
ε
ex/q

) + ε − 1
)

ε(ex/ε − x − 1)
. (C13)
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(a)

(b)

FIG. 6. (a) Tension-strain curve for the Maxwell model (dashed
line) and the mixture models (solid line), for ε = 0.01, 0.02, 0.03,
and 0.04 and q = 2. (b) Logarithmic plot of the remainder r(X ),
defined in Eq. (C15) vs X = εx for various values of ε and q = 2.
We verify that r(X ) = O(1) as ε → 0.

Clearly, δ(x) is biggest for x = O(ε), and therefore, using
X := x/ε = O(1), we have

δ(X ) ≈ −εX (X 2/2q − X − 1)

eX − 1
= O(ε), (C14)

namely, T (x) = T̃ (x)(1 + O(ε)), which proves that to first
order, the tension is given by the Maxwell model; see

Fig. 6(a). We can also verify numerically that

r(x) = 1

ε

(
1 − T (x)

T̃ (x)

)
(C15)

is indeed O(1); see Fig. 6(b).

APPENDIX D: REINTRODUCTION OF CROSS LINKS

Next, we develop a numerical method to solve the integro-
differential problem given by Eq. (9). From Sdx = konÑdt
and x = ξ t , we obtain Ñ = Sξ/kon = Sν/K . Thus the govern-
ing equation for Ñ can be recast so that it only involves S, as

dS

dx
+ S(x)

ν

(
K + I0

koff

)
= I0N0

ν2koff
(1 + x) + βK

ν2
R(x), (D1)

where R(x) is defined in Eq. (10). In the case where no new
proteins are introduced (I0 = 0), by virtue of the balance of
mass, S is bounded and converges to S∞ � 0, which can be
determined by setting dS/dx to zero in Eq. (D1):

S∞ = lim
x→∞

β

ν

∫ x

0
S(x′) exp

(
1

q

x − x′

1 + x′

)
G(x, x′) dx′. (D2)

Using integration by part as in Appendix C 1, we also have

lim
x→∞

∫ x

0
S(x′) exp

(
1

q

x − x′

1 + x′

)
G(x, x′) dx′ = νS∞. (D3)

Thus, unsurprisingly, S∞ = 0 if β < 1, as the probability of
a protein being recycled n times is βn → 0. Conversely, if
β = 1, proteins are endlessly disconnected and reintroduced,
and the number of cross links stabilizes at N∞ = S∞ν =
N0K/(K + 1).

The general time-dependent problem in Eq. (D1) is solved
numerically by discretizing the domain as a sequence xi =
(i − 1)h, ∀i ∈ [1, n], with h a constant step size and n the
desired number of evaluation points. We discretize Eq. (D1)
using the backward Euler scheme,

Si − Si−1

h
+ α1Si = α2(1 + (i − 1)h) + α3Ri, (D4)

with Si and Ri the estimated values of S(xi ) and R(xi ), respec-
tively; and where

α1 = 1

ν

(
K + I0

koff

)
, α2 = I0N0

ν2koff
, α3 = Kβ

ν2
(D5)

are dimensionless parameters. The integral part Ri is com-
puted using the trapezoidal method with step size h:

Ri = Ci,1 + h

2

i−1∑
j=1

(Ci, j+1S j+1 + Ci, jS j )

= Ci,1 + h

2
(Ci,1S1 + Ci,iSi ) + h

i−1∑
j=2

Ci, jS j, (D6)

where

Ci, j = G(xi, x j ) exp

(
1

q

xi − x j

1 + x j

)
(D7)

are precomputed coefficients defined for 0 � j � i � n.
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FIG. 7. Reintroduction of disconnected cross links. Binding rate
S(x) vs x for various values of β. Here we consider the case where
no new proteins are introduced (I0 = 0).

Finally, combining Eqs. (D6) and (D4), we obtain the iter-
ative integration algorithm,

Si = Ai +
i−1∑
k=1

Bi,kSk, (D8)

where, for all i ∈ [1, n],

Ai = hα3Ci,1 + hα2(1 + (i − 1)h)

1 + hα1 − h2α3Ci,i/2
, (D9)

and, for all k ∈ [1, i − 1],

Bi,k =

⎧⎪⎪⎨
⎪⎪⎩

h2α3Ci,1/2
1+hα1−h2α3Ci,i/2 if k = 1,

1+h2α3Ci,i−1

1+hα1−h2α3Ci,i/2 if k = i − 1,
h2α3Ci,k

1+hα1−h2α3Ci,i/2 otherwise.

(D10)

Figure 7 shows computed profiles for S(x), for various values
of β ∈ [0, 1], and in the case where no new proteins are
introduced (I0 = 0).

APPENDIX E: COMPARISON WITH DISCRETE MODEL

In this section, we adapt our parameters to the particular
setting developed in [32]. In the cited work, the cross links
are modeled as Hookean rods with Young’s modulus 10 MPa
and cross-sectional area 1 nm2. The cross-link lengths can
vary depending on the relative positions of the two anchoring
points in the simulation; here, we select the average value
150 nm as the reference cross-link length. We deduce the
spring constant 0.03 pN nm−1. Note, however, that in the
computational model, cross links are attached with an average
angle β ≈ 45◦ with respect to the microtubule axis. Thus
the equivalent longitudinal spring constant is actually κ =
κ∗ cos2 β = κ∗/2. All other relevant parameters are identical
to those used in [32].
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