
PHYSICAL REVIEW RESEARCH 4, 033110 (2022)

Quantum hardware calculations of periodic systems with partition-measurement symmetry
verification: Simplified models of hydrogen chain and iron crystals
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Running quantum algorithms on real hardware is essential for understanding their strengths and limitations,
especially in the noisy intermediate scale quantum (NISQ) era. Herein we focus on the practical aspect
of quantum computational calculations of solid-state crystalline materials based on theory developed in our
group by using real quantum hardware with a noise mitigation technique referred to as partition-measurement
symmetry verification, which performs postselection of shot counts based on Z2 and U1 symmetry verification.
We select two periodic systems with different levels of complexity for these calculations. One of them is the
distorted hydrogen chain as an example of very simple systems, and the other one is iron crystal in the bcc
and fcc phases as it is considered to be inaccessible by using classical computational wave-function methods.
The ground-state energies are evaluated based on the translational quantum subspace expansion method for the
hydrogen chain, and periodic boundary condition adapted variational quantum eigensolver for our iron models.
By applying these techniques for the simplest two-qubit iron model systems, the correlation energies obtained
by the hardware calculations agree with those of the state-vector simulations within ∼5 kJ/mol. Although the
quantum computational resources used for those experiments are still limited, the techniques applied to obtain
our simplified models will be applicable in essentially the same manner to more complicated cases as quantum
hardware matures.
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I. INTRODUCTION

“Quantum computational chemistry” is expected to be a
promising alternative to its conventional (classical) counter-
part due to the efficient way in which quantum computers
handle large Hilbert spaces [1,2]. Development in this field
has been significantly accelerated by the implementation of
cloud-accessible quantum computers from several providers.
Quantum hardware is still in its early stages, with devices
displaying modest numbers of noisy qubits (typically 50–100)
that prevent the application of error correction schemes. These
near-term devices are frequently referred to as noisy interme-
diate scale quantum (NISQ) [3] devices.

Variational algorithms are believed to be the most suit-
able techniques for NISQ devices by constructing a hybrid
quantum-classical setup, in which a relatively shallow pa-
rameterized quantum circuit performs heavy tasks such as
encoding correlated molecular wave functions to calculate the
expectation value of the energy, while the classical computer
collects the data from the quantum computer to optimize
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the parameters within the variational loop. The variational
quantum eigensolver (VQE) algorithm [4] is one of the most
frequently used variational algorithms to run quantum chem-
istry simulations on NISQ devices.

In the VQE algorithm, we consider a type of cost function
E (θ) depending on a set of parameters θ describing an associ-
ated trial wave function |�(θ)〉, which is expressed as

E (θ) = 〈�(θ)|Ĥ |�(θ)〉 , (1)

where Ĥ is a Hamiltonian describing the system. The trial
wave function |�(θ)〉 is actually implemented into the quan-
tum computer in the following form:

|�(θ)〉 = Û (θ) |�0〉 , (2)

where |�0〉 corresponds to an initial state that should be eas-
ily prepared. The unitary operator Û (θ) is implemented as a
parameterized quantum circuit, or Ansatz.

While molecular ground-state calculations have been fo-
cused on as the target of early-stage quantum simulations
[2,5], a number of solid-state quantum calculations have
been performed by employing periodic boundary conditions
(PBCs) [6–14]. These simulations, however, have been per-
formed either on emulators run on classical machines or on
simplified tight-binding models on quantum hardware. Here,
we consider the electronic structure Hamiltonian explicitly.
Solid-state calculations are, in general, more expensive than
molecular cases because the Hamiltonian describing the sys-
tem depends not only on the spin orbitals, but also on the
reciprocal space points (k points) [15]. Most of the efforts

2643-1564/2022/4(3)/033110(15) 033110-1 Published by the American Physical Society

https://orcid.org/0000-0002-9994-1200
https://orcid.org/0000-0001-6072-9221
https://orcid.org/0000-0002-7220-9466
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.033110&domain=pdf&date_stamp=2022-08-09
https://doi.org/10.1103/PhysRevResearch.4.033110
https://creativecommons.org/licenses/by/4.0/


KENTARO YAMAMOTO et al. PHYSICAL REVIEW RESEARCH 4, 033110 (2022)

devoted to classical computational PBC calculations have
been made based on density functional theory (DFT) [16,17].
For example, first-principles evaluation of the properties of
solid-state iron materials has been addressed with DFT meth-
ods in many works [18–23]. Such metallic solid-state calcula-
tions are known to be sensitive to the choice of DFT exchange-
correlation functional without any way to systematically
improve the results, in contrast with wave-function methods
where a clear methodology may be followed to obtain increas-
ingly accurate simulations. Using again the iron example, lo-
cal density approximation (LDA) cannot identify the most sta-
ble phase of this metal and more complex functionals (gener-
alized gradient approximation (GGA) in this case) are needed
to address this problem [24]. Despite the computational dif-
ficulty in scaling, wave-function methods have also been
reported [25–28] to characterize the effect of electronic corre-
lation, which is known to be important in, for example, the in-
terpretation of the behavior of Mott insulators [29]. Quantum
chemistry calculations on quantum hardware can potentially
extend the applicability of wave-function methods because of
the capability of addressing an exponentially growing compu-
tational basis with a relatively small number of qubits.

Even at this early stage, it is essential to perform real
hardware experiments for quantum computational methods
to understand the limitations to be overcome because ac-
tual quantum and/or classical computational costs involved
in variational algorithms are not only bound by theoretical
computational complexity results [30], but they may also
be influenced by the characteristics of the hardware that is
used. Such information should be continuously updated to
be utilized for helping hardware development, so that we can
achieve a quantum advantage as soon as possible. Our motiva-
tion to write this paper is framed in this context, where we aim
to perform benchmark calculations for representative models
in order to have a glimpse of the current state of quantum
computing techniques for the study of periodic systems. In
particular, we set two targets of PBC calculations as follows:
(i) distorted hydrogen chain as one of the simplest periodic
systems, and (ii) iron crystals as a representative complex
system that will not be easily accessible by classical compu-
tational wave-function methods.

Quantum hardware development is in its early stages and
is probably not mature enough to find a quantum advantage
in the field of quantum chemistry at this moment. Here,
instead, we demonstrate techniques to reduce the quantum
computational resource requirement by providing a series
of (approximate) techniques to allow us the execution of
quantum hardware calculations with currently available NISQ
devices and the study of their performance and challenges in
the simulation of periodic systems. The reduced capabilities
of current devices force us to use a series of drastic approx-
imations on our models. In order to reduce qubit number
requirements and circuit depth, we are restricted to small
basis sets, which capture only a fraction of the correlation
energy for our systems, and small k-point meshes, which are
insufficient to reach the thermodynamic limit. However, these
approximations can be rolled back as the hardware improves
in the future to scale up the complexity of the target system.

We demonstrate that noise mitigation techniques are es-
sential for obtaining accurate energies from NISQ devices. In

particular, we show that state preparation and measurement
(SPAM) [31] noise mitigation improves the accuracy of the
energy obtained from quantum hardware, compared to the
exact value obtained by state-vector simulations on a clas-
sical computer. In addition, we introduce a noise mitigation
technique called partition-measurement symmetry verifica-
tion (PMSV), which significantly improves our results. As we
will demonstrate later, the combination of these noise mitiga-
tion techniques gives us energy values within ∼5 kJ/mol of
agreement with theoretical values in the PBC-adapted VQE
calculations for our iron models.

We focus on the challenges of calculating total energies in
this particular paper, which are important for a wide range
of problems including phase stability or defect formation
energies. Quantum algorithms for many-body band structure
calculations and derived properties will be studied in future
work.

This paper is organized as follows. In Sec. II, we provide
the computational method of the simulations. In Sec. III,
we provide our algorithm benchmarking on simple hydrogen
lattices, followed by that of iron crystals starting with clas-
sical calculations to determine the best way to simplify the
system for calculations using quantum algorithms. Section IV
concludes this paper with a summary of our findings and an
outlook for the future.

II. METHODS

In this section, we describe the methodology used to per-
form our experiments on quantum hardware. In order to
run these experiments, we follow a pragmatic line and, for
each system considered, we choose a quantum algorithm that
allows us to create the simplest quantum circuit that is com-
patible with the particular features of the system considered
and thus ensures that it will be reliably executed on the quan-
tum computer. Following this criterion, translational quantum
subspace expansion (TransQSE) is applied for the hydrogen
chain, whereas the VQE with unitary coupled cluster singles
and doubles with PBC (UCCSD-PBC) Ansatz is used for iron
crystals. The main gain is in using conservation of crystal
momentum to simplify the Ansatz, by discarding redundant
excitations. This reduction suppresses the scaling of the num-
ber of parameters in the Ansatz from O(N4L4) to O(N4L3),
where N and L are the number of orbitals in a primitive cell
and the number of k points, respectively. For further details
about these quantum computational theories, see Ref. [13].

This section is structured as follows: first, we describe
the computational details used in common for the distorted
hydrogen chain and iron crystals, including Hamiltonian con-
struction, details of the quantum hardware that is employed,
and classical optimization schemes that are chosen. Then, we
give details of the noise mitigation techniques that are applied
in this work. Afterwards, we explain the system-dependent
setups and simplifications that guide our choice of quantum
algorithm for each model considered.

A. General technical details

Similarly to the molecular methodology, the PBC-adapted
second-quantized Hamiltonian requires a set of electronic
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integrals. We employ a localized atomic Gaussian basis set
adapted to translational symmetry [25]. In contrast to the more
popular use of plane-wave basis sets in condensed-matter
simulations, it requires a significantly smaller number of ba-
sis functions with the expensive integral evaluation costs as
a drawback. Gaussian basis sets are favorable for quantum
computations in the NISQ era because a smaller number of
basis functions leads to a smaller number of qubit and circuit
depth requirements. We use the Jordan-Wigner scheme [32]
to encode a chemistry Hamiltonian and an Ansatz expressed
with fermionic operators to the corresponding qubit operators
to be used in Eq. (1) and Eq. (2), respectively [2,5].

The present calculations are dependent on a number of
software packages. The periodic molecular integral evalua-
tions associated with the Hartree-Fock (HF) calculations are
performed by using the classical computational chemistry
package PYSCF, version 1.7.2 [33]. Gaussian density fitting is
used for efficiently handling electron integrals. To facilitate
convergence, primitive Gaussian functions with exponents
less than 0.1 are discarded to avoid severe linear dependency.
Divergence in exchange energy at the center of the Bril-
louin zone of PBC-adapted HF or hybrid DFT is addressed
by the Ewald correlation scheme. The same tool is used to
perform reference (classical) post-HF calculations [34,35],
such as k-point-dependent Møller-Plesset perturbation the-
ory (MP2) and coupled cluster singles and doubles (CCSD).
PBC-adapted quantum computational methods (TransQSE
and PBC-adapted VQE) are implemented into our quantum
computational chemistry software INQUANTO [36], combined
with the OPENFERMION package, version 0.11.0 [37], to fa-
cilitate fermionic operations. Quantum circuits are optimized
and compiled for each quantum backend with the retar-
getable quantum compiler TKET [38] via its PYTHON interface,
PYTKET, version 0.6.0. Quantum simulations running on the
classical computer are performed with QULACS [39] for state-
vector simulations and QASMSIMULATOR of QISKIT [40] for
shot-based sampling simulations, both via the PYTKET inter-
face.

To execute variational optimization, we employ two clas-
sical optimization algorithms: Rotosolve [41] and Stochastic
Gradient Descent (SGD) [42,43]. Rotosolve is a gradient-free
optimization algorithm based on machine-learning techniques
originally designed for hardware-efficient Ansätze, whereas
the SGD algorithm requires gradient evaluated also by the
quantum computer [44]. Variational optimization of Tran-
sQSE is performed by using Rotosolve, whereas VQE with
the UCCSD-PBC Ansatz is performed by using both Roto-
solve and SGD.

Quantum hardware experiments are performed using
ibmq_casablanca via cloud service, which is one of the IBM
Quantum Falcon processors. The number of shots is chosen to
be 24 000 for each quantum circuit measurement process.

The approximate correlation energy Ecorr defined as the
difference between post-HF and HF energies is the primary
target in our quantum hardware experiments. For conve-
nience, hereafter, we use �E (θ) defined as

�E (θ) = Etotal(θ) − E◦
HF, (3)

where E◦
HF denotes the HF energy calculated with the classical

computer and Etotal(θ) refers to the total energy calculated

by using Eq. (1) with the chemistry Hamiltonian on a quan-
tum hardware or simulator, which may be influenced by the
noise and/or stochastic error. If these errors are negligible,
the value of �E (θ) with optimal parameters θ is equivalent
to Ecorr, which must be a negative value. However, noise in
the NISQ device can make it even a positive value because
noise-induced high-energy excited states may contaminate the
calculated ground-state wave function.

B. Noise mitigation methods

By the nature of the chemistry-motivated Ansätze [45] used
in this study, the effect of hardware noise may be under-
stood in terms of the involvement of states that should not
participate in the ground-state wave function, like those not
guaranteeing particle number conservation (ionized config-
urations) or involving a different spin sector (“spin-flipped”
states) than the one corresponding to the ground state. Noise
mitigation techniques with these Ansätze work to partially
suppress these types of symmetry violations.

In the present paper, we employ two types of noise mitiga-
tion techniques to postprocess the resulting shot counts. The
first technique is SPAM mitigation implemented in PYTKET,
whereas the second technique is PMSV implemented in IN-
QUANTO.

SPAM mitigation [31] assumes that noise-induced errors
are independent of the circuit to be executed, but only occur
during the state preparation and measurement steps. There-
fore, the density matrix is preliminarily sampled to get the
noise profile of the device. Then, application of the inverse
of the density matrix to the quantum state would suppress the
error caused by these noise channels.

PMSV is a technique that we have developed to symmetry
verify quantum calculations in an efficient way. Molecular
symmetries can be represented as a linear combination of
Pauli strings. Symmetries such as mirror planes (Z2) and
electron-number conservation (U1) can be represented by a
single Pauli string that tracks the parity of the wave function
[46]. One can exploit these symmetries to apply qubit tapering
techniques if the system is described by an Abelian point
group [47,48]. Alternatively, point-group symmetry may be
applied to mitigate noise. In PMSV, we perform symmetry
verification by taking advantage of the commutation of the
Pauli symmetries with terms in the Hamiltonian. We can
partition these Hamiltonian terms and Pauli symmetries into
groups of commuting Pauli strings [49,50]. If each Pauli string
in the partitioned set commutes with the symmetry operator,
then each measurement circuit that measures that commuting
set can be symmetry verified without extra quantum resources,
discarding the measurements that violate the point-group
symmetries of the system. Periodic systems are described by
space groups, but by transforming into the reciprocal space,
they can be described by point groups so that we can apply
PMSV for solid-state systems, as in molecular systems [13].
A more detailed explanation of this method can be found in
Appendix A.

Compared to the other error mitigation methods, PMSV
would be characterized as a method exploiting the symmetry
with no extra quantum resources, which is scalable and in-
dependent of the type of noise. One can perform symmetry
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FIG. 1. Schematic representation of the unit cell (indicated by
dashed lines) of the distorted hydrogen chain with alternating bond
lengths, d and 1.5d . The bond parameter is set to be d = 0.75 Å.

verification using midcircuit measurements, ancilla readouts,
or the quantum subspace expansion algorithm [51], at the ex-
pense of extra quantum resources. Some studies using actual
quantum computers [52,53] employ McWeeny purification
for two-qubit systems. The one-body reduced density matrix
(1-RDM) can be easily purified, but the two-body reduced
density matrix (2-RDM) cannot be extended to larger systems
without further theoretical investigation. PMSV works with
both 1-RDM and 2-RDM in a scalable manner. Other studies
use a method relying on the extrapolation technique. For ex-
ample, this study [54] assumes that noise in a basis of states
is the same as that in the actual simulation, then applies an
inversion matrix to clean the results. PMSV does not have any
assumptions on the type of noise.

C. Setup for hydrogen molecular lattices

Let us proceed to the first system to be investigated,
a distorted hydrogen chain. It is usually taken as the first
target of the PBC-adapted variational calculations, as in
Refs. [7,8,13,14,55]. More extensive calculations using a
quantum simulator running on the classical computer for
systems including H2, He, and LiH lattices up to three-
dimensional lattices are available in previous work [13].

We consider a one-dimensional hydrogen chain with al-
ternating bond length with d and 1.5d , with d equal to 0.75
Å (comparable to the molecular equilibrium H–H distance).
With this distortion, we ensure the insulating character of
the model. See Fig. 1 for the schematic representation of the
geometry in the unit cell.

To generate the integrals in the crystalline orbitals, k-point-
dependent restricted HF (RHF) with the Slater-type orbital by
three Gaussian-type orbitals (STO-3G) basis set is used. The
spin multiplicity and the total charge per H2 molecule are set
to be 1 (spin singlet) and 0 (charge neutral), respectively. Here
we consider a 2-k-point model.

One could naively consider performing VQE hardware
calculations with the UCCSD-PBC Ansatz for the 2-k-point
model, requiring four qubits with six variational parameters to
be optimized after applying the qubit tapering technique based
on the symmetry of the system [47,48]. However, this setup
has been found to be not feasible on the currently available
hardware because of the large circuit depth of the correspond-
ing Ansatz, which includes many excitations with amplitudes
of similar absolute value [13].

For this reason, instead of VQE with the UCCSD-PBC
Ansatz, we demonstrate the TransQSE algorithm [13] with

further approximations for this system. To perform the Tran-
sQSE experiment for the 2-k-point hydrogen chain, the
Hamiltonian and the Ansatz are transformed to a local-
ized space representation spanned by Wannier orbitals [56].
In this localized representation, it has been found that a
UCCSD-VQE wave function for the chosen distorted hy-
drogen chain geometry has two double excitations with
significantly larger amplitudes than the others. This is in
contrast to the momentum-space solution, where no predom-
inant excitations have been found. The dominance of these
excitations can also be observed in the MP2 approximated
amplitudes and, furthermore, the amplitudes of the dominat-
ing excitations are the same due to translational symmetry. By
neglecting all other excitation operators apart from these two
major ones, the cluster operator in the UCC Ansatz in the real
space ÛR = eT̂ −T̂ †

is simplified as

T̂ ≈ θ

2
(â†

1,1,↑â0,0,↑â†
1,1,↓â0,0,↓ + â†

0,1,↑â1,0,↑â†
0,1,↓â1,0,↓),

(4)

where â†
R,p,σ and âR,p,σ are the creation and the annihilation

operators for the localized orbital p with spin σ on the Rth
H2 molecule in the chain. Both excitations are intermolecular
and, due to the periodic boundary, the second term is obtained
from the first term by applying a translation operator �̂, which
shifts this term to the next unit cell on the right. By taking ad-
vantage of the translational operator, instead of the Trotterized
UCC Ansatz, we write the TransQSE Ansatz as

|�TQSE(θ )〉 = c1 |�W(θ )〉 + c2�̂ |�W(θ )〉 , (5)

where |�W(θ )〉 = e
θ
2 â†

1,1,↑â0,0,↑â†
1,1,↓â0,0,↓−h.c. |�0〉 and the ground-

state energy is found by minimizing the energy function,

ETQSE(θ ) = h0(θ ) + h1(θ )

1 + s1(θ )
, (6)

where

h0(θ ) = 〈�W(θ )| Ĥ |�W(θ )〉 , (7)

h1(θ ) = 〈�W(θ )| Ĥ�̂ |�W(θ )〉 , (8)

s1(θ ) = 〈�W(θ )| �̂ |�W(θ )〉 , (9)

as discussed in Ref. [13]. Since the excitation only involves
a limited range of four qubits in |�W(θ )〉, the operators in
Eq. (6) are reduced to only four qubits from eight by contrac-
tion. Further resource reduction can be made by exploiting the
symmetry [48]. This system has a set of symmetry operators
Ŝ as

Ŝ = {−1 · Ẑ0Ẑ2,−1 · Ẑ1Ẑ3,+1 · Ẑ1Ẑ2}. (10)

The first and second operators are associated with particle
conservation for ↑ and ↓ spins, respectively, and the third
one represents the mirror plane spatial symmetry [46]. We
use the first two operators to obtain the two-qubit system by
tapering off the third and fourth qubits, and apply the third op-
erator to PMSV noise mitigation. After these simplifications
are considered, one needs to measure the expectation value
of five two-qubit Pauli strings to determine ETQSE(θ ) with
the two-qubit Ansatz, U (θ )|�0〉 = e−iθŶ0X̂1 |0001〉. To further
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FIG. 2. Schematic representation of the unit cell of (a) body-
centered-cubic (bcc) and (b) face-centered-cubic (fcc) crystal struc-
tures [57].

reduce the number of measurements, the commuting Pauli
strings were measured together using a graph coloring algo-
rithm implemented into PYTKET, totaling to two circuits to be
measured.

To facilitate the variational optimization with hardware, the
term 1/[1 + s1(θ )] in Eq. (6) is expanded into a Taylor series
as

ETQSE = [h0(θ ) + h1(θ )]
[
1 − s1(θ ) + O

(
s2

0

)]
. (11)

As the overlap term S(θ ) is expected to be small in magnitude
due to the relatively low correlation, taking the first order of
S(θ ) should be a good approximation. It gives us a steeper
function in the large |θ | region to accelerate the convergence.
Hereafter, we use Eq. (11) to the first order of S(θ ) as the cost
function of TransQSE.

D. Setup for iron crystals

To set a practical starting point of the quantum com-
putational iron calculations, here we compute the energy
difference between the body-centered-cubic [bcc, Fig. 2(a)]
and face-centered-cubic [fcc, Fig. 2(b)] crystal structures. We
focus on the ferromagnetic (FM) phase of iron in both bcc
and fcc lattices, although it is known that the ground state
of the fcc cell is antiferromagnetic (AFM) [18,20,23]. This
is a fair approximation because the energy difference between
AFM-fcc and FM-fcc is fairly small [23]. Thus, we consider
only the FM-bcc structure with only one possible spin con-
figuration, which is technically simpler as it allows us to
consider a small simulation cell. Hereafter, we refer to this
bcc-fcc energy difference without mentioning their magnetic
features. We shall leave the consideration of AFM-fcc struc-
tures with a variety of spin configurations for future studies.
This is due to the increased resources required, as the model
must be constructed with prohibitively large supercells, and
single-determinant HF solutions are bad starting points for the
calculations.

We exploit the simplified model system in the following
two steps. (i) Classical CCSD calculations are performed for
the system with a relatively large number of k points (which
may be too many for VQE with currently available hardware)
obtained to characterize the effect of electron correlation on
the energy difference. (ii) Simplified model systems with the
smaller number of k points and/or active orbitals are designed
via a careful analysis of the larger system investigated in step
(i). In contrast to the hydrogen chain case, we identify a few

leading excitations in the cluster operator in momentum space.
This allows us to construct a simplified UCCSD-PBC Ansatz
for our VQE calculations.

The resulting simplified model system is subjected to the
hardware experiment of VQE with the UCCSD-PBC Ansatz
[13]. The momentum-space second-quantized Hamiltonian
ĤK is expressed as [13]

ĤK =
′∑

PQ

hP
Qĉ†

PĉQ + 1

2

′∑

PQRS

hPR
QSĉ†

PĉQĉ†
RĉS, (12)

where hP
Q and hPR

QS are the transformed one- and two-electron
integrals of the periodic system, with P, Q, R, S denoting the
composite indices of the k point in the Brillouin zone k,
spatial orbitals p, and spin σ . Here, k = k(1)

L1
b1 + k(2)

L2
b2 +

k(3)

L3
b3, with b1, b2, and b3 denoting the reciprocal lattice

vectors, and k(1), k(2), and k(3) denoting integers such that
− Lα

2 < k(α) � Lα

2 for α = 1, 2, 3, for the [L1 L2 L3] k-point
mesh. Index p labels orbitals in energy-ascending order of
each k point. The index is actually determined via a map-
ping function as P = qK(k, p, σ ) [13]. ĉ†

P (ĉP) is the creation
(annihilation) operator at the orbital P. The prime symbol
in Eq. (12) on the sum indicates that it runs only with in-
dices satisfying crystal momentum conservation [25]. The
cluster operator of the UCCSD-PBC Ansatz ÛK = eT̂ −T̂ †

is
expressed as

T̂ = T̂1 + T̂2, (13)

T̂1 =
′∑

AI

tA
I ĉ†

AĉI , (14)

T̂2 = 1

4

′∑

ABIJ

tAB
IJ ĉ†

AĉI ĉ
†
BĉJ , (15)

where tA
I and tAB

IJ are complex-valued coupled cluster am-
plitudes in general, with I, J and A, B being the composite
indices for occupied and virtual orbitals, respectively.

DFT calculations are performed to support the CCSD cal-
culations by checking that the properties are not significantly
changed as the number of k points increases. See Appendix B
for the details.

We employ the basis set family of Los Alamos National
Laboratory (LANL) effective core potentials (ECPs) [58]. The
LANL-ECPs plus the double-ζ basis set (LANL2DZ [59]) is
used for all the iron calculations. Single-reference calcula-
tions are performed with the k-point-dependent unrestricted
HF (UHF) method implemented in PYSCF. The number of
unpaired electrons is set to be two per atom to represent the
iron FM phases. The total charge is set to be neutral.

Technically, UHF calculations are not numerically stable.
From our experience, this feature tends to be prominent in
the larger lattice constant. If the initial guess of UHF is
generated at each lattice constant, the potential energy curve
may become discontinuous due to the different reference
configuration. To obtain a smooth curve for the consis-
tent analysis, we start our calculation with a small lattice
constant with a locally generated initial guess, and then use
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FIG. 3. Progress of energy estimate �E (θ ) and along the
variational optimization on hardware (ibmq_casablanca) by using
the Rotosolve algorithm (solid lines with markers). (Etotal, E ◦

HF ) =
(−2.7226 × 103 kJ/mol, −2.6766 × 103 kJ/mol) according to the
state-vector simulations. The dashed line denotes the correlation
energy Ecorr for the given model Hamiltonian. The optimization is
performed for the expectation values calculated with SPAM- and
PMSV-corrected shot counts (lower triangles). Those calculated with
raw (circles) and SPAM-corrected (upper triangles) shot counts are
also shown for comparison.

the converged crystal orbitals to calculate the next point in the
lattice-constant-ascending order.

III. RESULTS AND DISCUSSION

A. TransQSE for distorted hydrogen molecular chain
with two k points

Variational optimization with quantum hardware

Here we demonstrate the variational optimization of Tran-
sQSE with the approximate cost function given by Eq. (11) to
the first order by using Rotosolve with quantum hardware. The
initial guess of the amplitude is set to be θ = 10−5 (virtually
HF state but with nonzero amplitude to avoid oversimplifica-
tion of the quantum circuit by TKET).

The progress of the energy estimate is shown as lower
triangles (connected by lines as visual guides) in Fig. 3. At
the initial point, �E (10−5) = 15 ± 5 kJ mol−1, although it
should be virtually 0 kJ/mol by definition. Hereafter, each
uncertainty in the reported expectation values is calculated as
the standard deviation evaluated from the samples for each
θ taken from the noisy simulator emulating the hardware.
PMSV can influence this uncertainty as some of the mea-
surement outcomes may be discarded, but such an effect was
found to be negligible in the present work, as the percentage of
discarded shots is ∼1% for the H chain. The variational exper-
iments converge in three iterations and find the optimal point
�E (−0.0823) = −31 ± 4 kJ/mol, whose parameter θ is in
good agreement with the state-vector result �E (−0.0928) =
−46.03 kJ/mol (the gradient is small d (�E )

dθ
|θ=−0.0928 = 13

kJ/mol), but the energy is again shifted upwards due to the
device noise. The error is larger than those of the iron model

systems discussed in Sec. III B, probably because the en-
ergy is evaluated as a product of two expectation values, as
shown in Eq. (11), to enhance the relative error due to the
noise.

Due to the SPAM correction, the resulting energy is driven
to lower values than the classically evaluated HF energy, that
is, �E < 0. The SPAM correction improves the total energy
in all the points in Fig. 3 by about 50 kJ/mol on average.
PMSV is found to display no significant effect on energy in
this particular case. This is due to the relatively small value of
θ , and SPAM already mitigating the effect of the symmetry-
violating measurement results to be excluded by PMSV. See
Appendix A if one is interested in the details.

As shown above, even in this simple case, it was found
to be difficult to obtain a quantitative agreement between
the energies obtained from state-vector simulations and the
quantum device results used in these calculations. However,
the optimal θ is reproduced accurately within 12% of relative
error. Improvements in the agreement between theoretical and
experimental �E (θ ) mainly depend on quantum hardware de-
velopment, although advances in noise mitigation techniques
will also have an impact on these results. In contrast to the
PBC-adapted VQE, TransQSE can still be compact even with
more k points by truncating spatial long-range correlations.
The state-vector simulation of TransQSE demonstrates that
good approximations of the ground-state energy value are
obtained (�E = −46.03 kJ/mol) with a smaller number of
parameters than the analogous PBC-adapted VQE calculation
(�E = −57.73 kJ/mol [13]). However, exactly predicting in
which cases TransQSE is a more feasible choice is generally
not trivial. In this sense, cheap preprocessing techniques to
screen important angles in the Ansatz may help to solve this
question.

B. Simulations of iron systems

1. Classical CCSD calculation with a [4 4 4] k-point mesh

First we investigate the effect of electronic correlation on
the bcc-fcc energy difference by performing classical UHF-
CCSD calculations. We will consider a model for these iron
phases simplified in such a way that the most important fea-
tures in these relatively complex systems are captured with as
much fidelity as possible.

Within the available computational resources, we consider
a UHF-CCSD setup with a [4 4 4] Monkhorst-Pack mesh,
with the active space consisting of the crystal orbitals with or-
bital and spin indices (p, σ ) = {(8,↑), (9,↑), (6,↓), (7,↓)}
for each k value. These crystal orbitals correspond to lin-
ear combinations of iron d orbitals in the region around the
Fermi level. The total number of active electrons and crystal
orbitals is equal to 128 and 256, respectively. The reference
electronic configuration is not uniform between k points, but
each k sector contains 0 to 4 electrons. We have indirectly
confirmed that this [4 4 4] k-point mesh is sufficient by using
DFT with the same basis set because the potential energy
curves were not significantly changed as the number of k
points increased (see Appendix B). The number of k points
is still significantly smaller than the converged values in the
literature [19,23,60,61], but it is large enough for the k-point
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FIG. 4. Potential energy curves of FM-bcc and FM-fcc iron as
functions of lattice constants for [4 4 4] k-point mesh at the UHF
level. Also represented are single-point calculations at the CCSD
level at optimized lattice constant values for bcc and fcc. The energy
baseline is set so that the lowest energy is equal to zero for each UHF
and UHF-CCSD. The optimized lattice constants from the accurate
plane-wave basis DFT calculations [23] are indicated by vertical
lines (bcc: 2.83 Å; fcc: 3.64 Å), while the bcc-fcc energy difference
is represented by the horizontal red line (14.67 kJ/mol).

sampling error to be sufficiently small for the purposes of this
study.

One of the remarkable features in the comparison of UHF
vs CCSD results is that UHF significantly overestimates the
bcc-fcc energy difference, but CCSD corrects this energy dif-
ference to a value comparable to accurate plane-wave basis
DFT results [23], which are used as reference values. This
trend is illustrated in our calculations of the potential energy
curve as a function of the lattice constant with UHF for each
of fcc and bcc, as shown in Fig. 4. The UHF calculations
accurately reproduce the reference lattice constants, but the
estimated bcc-fcc difference (30 kJ/mol) is significantly over-
estimated, to almost twice the reference value as shown in
Fig. 4. Such a disagreement is corrected by taking the elec-
tronic correlation into account with CCSD. The total energy
with CCSD-UHF at the optimized lattice constant with UHF
for each of bcc and fcc is shown in Fig. 4. We find that the
energy difference is corrected to 12 kJ/mol, which is indeed
comparable to the reference value indicated by the horizontal
line in Fig. 4.

These results suggest that the fcc phase is more influenced
by the electronic correlation than the bcc phase. We will not
provide a detailed interpretation, but many competing phases
may contribute to increasing the electronic correlation in the
fcc case, in contrast to the isolated bcc phase [19]. Hereafter,
we focus on this feature to construct simplified model systems
to set a realistic starting point for experiments on currently
available quantum computers. In other words, our simplifica-
tions should take into account that the correlation energy in
our simplified fcc model will be larger than that of the bcc
model.

FIG. 5. Potential energy curves as functions of lattice constants
for [2 1 1] k-point mesh with UHF, CCSD-UHF with active space
[indicated by CCSD(a); see Fig. 6], and CCSD-UHF with all the
valence orbitals [indicated by CCSD(b)]. UHF overestimates the bcc-
fcc energy difference (168 kJ/mol), and CCSD corrects it to some
extent [118 kJ/mol for CCSD(a) and 100 kJ/mol for CCSD(b)],
which is qualitatively the same feature found in the accurate case
with [4 4 4] k points. The meanings of the vertical and horizontal
lines in each panel are the same as those in Fig. 4.

2. Simplified system with [2 1 1] k-point mesh

As a first step towards the quantum hardware experiments,
we start from a simplified model system to adjust the re-
sources needed for PBC-adapted VQE calculations to the
constraints imposed by the device we are going to target. Let
us employ the simplest possible [2 1 1] k-point mesh to test
if this simplified system can reproduce the fcc-bcc features
mentioned in Sec. III B 1.

The potential energy curves calculated with UHF in this
model (Fig. 5) indicate that UHF overestimates the bcc-fcc
energy difference, which is the same trend observed in the
[4 4 4] k-point mesh cases. Although these simplified models
are quantitatively insufficient, the UHF calculation returns a
good estimate of the equilibrium lattice constant. This implies
that this drastically simplified model is able to qualitatively
reproduce the properties of the iron phases in which we are
interested.

The potential energy curves calculated with UHF-CCSD,
including all the excitation operators in the cluster operator T̂ ,
are shown in Fig. 5. Although the bcc-fcc energy difference is
still overestimated, it is indeed corrected in the right direction.
As shown in Fig. 5, similar results are obtained using the
same active space used for the [4 4 4] k-point mesh case,
that is, (p, σ ) = {(8,↑), (9,↑), (6,↓), (7,↓)} for each k. The
reference configuration is given as {1, 1, 1, 1} for k = 0 and
{0, 0, 0, 0} for k = 1, where k ≡ k = k

2 b1. This suggests that
the correlation energy is dominated by the frontier orbitals as
in the molecular cases [62]. Therefore, this simple model is
validated and we will employ the [2 1 1] k-point mesh with the
active space for quantum hardware experiments. Hereafter,
the optimized lattice constants (2.84 Å for bcc and 3.64 Å for
fcc) obtained by UHF-CCSD with the active space are used.
The resulting approximate correlation energy Ecorr for each of
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TABLE I. Approximate correlation energy Ecorr of iron crystal
calculations with two k points obtained by using either CCSD or
VQE with the active space: {(k, 8, ↑), (k, 9, ↑), (k, 6, ↓), (k, 7, ↓)}
for k = 0, 1 (see Fig. 6).

Ecorr/kJ mol−1

Method Excitation operator(s) bcc fcc

CCSD all −235.2 −281.1
VQE all −236.0 −281.1
VQE onea −220.5 −271.5

aĉ†
1,8,↑ĉ0,9,↑ĉ†

1,6,↓ĉ0,7,↓

bcc and fcc is shown in Table I, which is used for comparing
with the quantum computational methods.

It is required to further simplify the model system because
the quantum circuits corresponding to the PBC-adapted VQE
with the UCCSD Ansatz are still too deep for the currently
available quantum hardware. To demonstrate the quantum
hardware calculations, let us perform further simplification of
the system based on the same idea applied for the TransQSE
calculations, that is, focusing on the excitation operators with
prominent amplitudes. We performed state-vector simulations
of VQE for iron with the active space mentioned above. The
resulting energies of both bcc and fcc are in good agreement
with the CCSD counterpart (see Table I). The complete active
space configuration interaction (CASCI) via exact diagonal-
ization is also performed for comparison. The nonzero cluster
amplitudes of VQE are listed in Table II and Table III for bcc
and fcc, respectively. Note that all the amplitudes in the Ansatz
are of real number as a consequence of the reduction to two k
points. In both cases, we can find one prominent cluster ampli-
tude corresponding to a inter-k-point double excitation. This
inter-k-point double excitation has more than 10 times larger

TABLE II. Nonzero cluster amplitudes tAB
IJ of the PBC-adapted

VQE calculation with the UCCSD Ansatz for the 2-k-point model of
iron bcc structure with the active space (see text).

A I B J tAB
IJ

(1, 7, ↓) (0, 7, ↓) (1, 6, ↓) (0, 6, ↓) −0.0060
(1, 8, ↑) (0, 8, ↑) (1, 6, ↓) (0, 6, ↓) 0.0160
(1, 8, ↑) (0, 8, ↑) (1, 7, ↓) (0, 6, ↓) −0.0001
(1, 9, ↑) (0, 8, ↑) (1, 6, ↓) (0, 6, ↓) 0.0001
(1, 9, ↑) (0, 8, ↑) (1, 7, ↓) (0, 6, ↓) −0.0528
(1, 8, ↑) (0, 8, ↑) (1, 6, ↓) (0, 7, ↓) 0.0004
(1, 8, ↑) (0, 8, ↑) (1, 7, ↓) (0, 7, ↓) 0.0206
(1, 9, ↑) (0, 8, ↑) (1, 6, ↓) (0, 7, ↓) −0.0709
(1, 9, ↑) (0, 8, ↑) (1, 7, ↓) (0, 7, ↓) −0.0003
(1, 8, ↑) (0, 9, ↑) (1, 6, ↓) (0, 6, ↓) 0.0008
(1, 8, ↑) (0, 9, ↑) (1, 7, ↓) (0, 6, ↓) −0.0420
(1, 9, ↑) (0, 9, ↑) (1, 6, ↓) (0, 6, ↓) 0.0311
(1, 9, ↑) (0, 9, ↑) (1, 7, ↓) (0, 6, ↓) −0.0002
(1, 8, ↑) (0, 9, ↑) (1, 6, ↓) (0, 7, ↓) −0.4892
(1, 8, ↑) (0, 9, ↑) (1, 7, ↓) (0, 7, ↓) −0.0002
(1, 9, ↑) (0, 9, ↑) (1, 6, ↓) (0, 7, ↓) −0.0003
(1, 9, ↑) (0, 9, ↑) (1, 7, ↓) (0, 7, ↓) 0.0058
(1, 9, ↑) (0, 9, ↑) (1, 8, ↑) (0, 8, ↑) −0.0630

TABLE III. Nonzero cluster amplitudes tAB
IJ of the PBC-adapted

VQE calculation with the UCCSD Ansatz for the 2-k-point model of
iron fcc structure with the active space (see text).

A I B J tAB
IJ

(1, 7, ↓) (0, 7, ↓) (1, 6, ↓) (0, 6, ↓) −0.0088
(1, 8, ↑) (0, 8, ↑) (1, 6, ↓) (0, 6, ↓) −0.0121
(1, 8, ↑) (0, 8, ↑) (1, 7, ↓) (0, 6, ↓) −0.0047
(1, 9, ↑) (0, 8, ↑) (1, 6, ↓) (0, 6, ↓) −0.0023
(1, 9, ↑) (0, 8, ↑) (1, 7, ↓) (0, 6, ↓) 0.0040
(1, 8, ↑) (0, 8, ↑) (1, 6, ↓) (0, 7, ↓) −0.0113
(1, 8, ↑) (0, 8, ↑) (1, 7, ↓) (0, 7, ↓) 0.0221
(1, 9, ↑) (0, 8, ↑) (1, 6, ↓) (0, 7, ↓) −0.0445
(1, 9, ↑) (0, 8, ↑) (1, 7, ↓) (0, 7, ↓) −0.0217
(1, 8, ↑) (0, 9, ↑) (1, 6, ↓) (0, 6, ↓) 0.0069
(1, 8, ↑) (0, 9, ↑) (1, 7, ↓) (0, 6, ↓) 0.0050
(1, 9, ↑) (0, 9, ↑) (1, 6, ↓) (0, 6, ↓) −0.0320
(1, 9, ↑) (0, 9, ↑) (1, 7, ↓) (0, 6, ↓) −0.0083
(1, 8, ↑) (0, 9, ↑) (1, 6, ↓) (0, 7, ↓) −0.5839
(1, 8, ↑) (0, 9, ↑) (1, 7, ↓) (0, 7, ↓) −0.1017
(1, 9, ↑) (0, 9, ↑) (1, 6, ↓) (0, 7, ↓) −0.0053
(1, 9, ↑) (0, 9, ↑) (1, 7, ↓) (0, 7, ↓) 0.0009
(1, 9, ↑) (0, 9, ↑) (1, 8, ↑) (0, 8, ↑) −0.0499

amplitude in magnitude compared to the others. Therefore, we
may define an even more compact active space consisting of
these four crystal orbitals with an Ansatz including one double
excitation.

As shown in Table I, more than 90% of the reference cor-
relation energy is reproduced with this one double excitation
operator in both the bcc and fcc cases. More excitation oper-
ators in the Ansatz can, in principle, improve the correlation
energy, but such a small difference may not be resolved with
the deepened quantum circuit on the device that is currently
available. Therefore, the cluster operator is approximately
expressed as

T̂ (θ ) ≈ θ ĉ†
1,8,↑ĉ0,9,↑ĉ†

1,6,↓ĉ0,7,↓. (16)

As a consequence, we have elaborated a simple computa-
tional setup consisting of four active crystal orbitals with one
double-excitation operator of the UCCSD-PBC Ansatz with
two electrons. See Fig. 6 for the schematic representation

FIG. 6. Schematic representation of the orbital energy levels for
the simplified 2-k-point iron model. Each horizontal bar represents
the energy level, with the number corresponding to the orbital index
p with spin σ = {↑, ↓}. Occupied orbitals are indicated by the points
“•”. The active space used in the present hardware calculations is
represented by the red rectangle.
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FIG. 7. Evolution of the �E with respect to the number of steps used by the Rotosolve optimization process. (Etotal, E ◦
HF ) = (−3.228573 ×

105 kJ/mol, −3.226368 × 105 kJ/mol) for bcc and (Etotal, E ◦
HF ) = (−3.227450 × 105 kJ/mol, −3.224735 × 105 kJ/mol) for fcc according to

the state-vector simulations. Black points show hardware results obtained with the ibmq_casablanca device. The line is included as a visual
guide to show the progress of the correlation energy estimate along the variational optimization. The dashed line is the correlation energy
Ecorr for the given model Hamiltonian. The fcc result has 51 kJ/mol more correlation energy in magnitude to correct the bcc-fcc energy
difference from 168 to 117 kJ/mol, which is qualitatively the same feature found in the accurate case with [4 4 4] k-point mesh. SPAM
and PMSV are applied at the same time. Raw and SPAM-corrected �E are given for each optimization step to show the effect of noise
mitigation.

of the orbital energy levels and the active space. The same
symmetry operators as in the model system for TransQSE
[Eq. (10)] are used to reduce the system to an equivalent two-
qubit system by applying the qubit tapering technique, and for
PMSV noise mitigation. To determine the expectation value
〈�(θ )|ĤK|�(θ )〉, one needs to measure the expectation value
of four two-qubit Pauli strings with the Ansatz U (θ )|�0〉 =
e−iθŶ0X̂1 |0001〉. Applying the same partitioning using PYTKET,
two circuits are actually measured in both bcc and fcc
models.

3. Variational quantum hardware experiments

Let us proceed to demonstrate the variational optimiza-
tion of the energy by using real quantum hardware provided
through cloud by IBM Quantum. We need at least ∼10 kJ/mol
of accuracy to reliably discuss the bcc-fcc energy difference,
but reaching this threshold has been found to be unfeasible
without noise mitigation in our preliminary calculations, even
for this simplified two-qubit model system. To realize this ac-
curacy on the NISQ device, we apply SPAM and PMSV noise
mitigation. By using these techniques for ibmq_casablanca,
a sufficiently accurate expectation value is estimated within
∼5 kJ/mol of error compared to the state-vector simulation
results.

First we show the results of variational optimization with
Rotosolve. The progress of correlation energy along the vari-
ational optimization by using Rotosolve is shown in Figs. 7(a)
and 7(b) for bcc and fcc, respectively. In both cases, op-
timization rapidly converges to the point that it is in very
good agreement with the energy obtained by the state-vector
simulation. The resulting parameter and the energy are rep-
resented as �E (−0.5561) = −215 ± 3 kJ/mol for bcc and
�E (−0.6522) = −265 ± 2 kJ/mol for fcc. The small num-
ber of optimization steps is due to the properties of Rotosolve,

which is designed for systems described by quantum circuits
with parameterized rotation gates. The results reliably tell the
difference in correlation energy (not the total energy) between
FM-bcc and FM-fcc (51 kJ/mol), in which FM-fcc has more
correlation energy to correct the UHF value indeed to the right
direction.

Similarly, the SGD optimizer can also accurately locate the
ground state obtained in the reference state-vector simulation.
The results of the progress of �E (θ ) along the variational
optimization are shown in Fig. 8(a) for bcc and Fig. 8(b) for
fcc. The resulting energies are also in good agreement with
the exact results from state-vector simulations. In contrast to
Rotosolve, the SGD method uses energy derivatives with re-
spect to the circuit parameter, which is also evaluated by using
the quantum computer. The resulting parameter and energy
are represented as �E (−0.5196) = −214 ± 3 kJ/mol for bcc
and �E (−0.6060) = −264 ± 2 kJ/mol for fcc. The resulting
energy of SGD agrees with that of Rotosolve for each of
bcc and fcc. The parameters look different, but it is likely
due to the small gradient around the optimal point, which is
implied by the slow improvement of the energy in Fig. 8. The
SGD optimizer takes more steps in this one-parameter case,
but it may become more efficient if we take more excitation
operators (circuit parameters) into account in the Ansatz. As
in the case of the hydrogen chain, the percentage of discarded
shots due to the PMSV correction is low, of the order of ∼5%
for this system.

In this particular case, additional excitation operators to
the Ansatz would not have a significant effect on the en-
ergy (∼5% of correlation improvement compared to the first
one). Larger hardware experiments with more qubits and
more excitation operators (i.e., wider and deeper quantum
circuits) with further noise mitigation techniques including
PMSV are the subject of future work, and will be reported
elsewhere.
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FIG. 8. Evolution of �E with respect to the number of steps used by the SGD optimization process. (Etotal, E ◦
HF ) = (−3.228573 ×

105 kJ/mol, −3.226368 × 105 kJ/mol) for bcc and (Etotal, E ◦
HF ) = (−3.227450 × 105 kJ/mol, −3.224735 × 105 kJ/mol) according to the

state-vector simulations. Black points show hardware results obtained with the ibmq_casablanca device. The black line is included as a visual
guide to show the progress of the correlation energy estimate along the variational optimization. The dashed line is the correlation energy Ecorr

for the given model Hamiltonian. Error mitigation based on SPAM and PMSV are applied at the same time. Raw and SPAM-corrected �E are
given for each optimization step to show the effect of noise mitigation.

IV. CONCLUSIONS AND OUTLOOK

We have performed quantum hardware calculations for the
solid-state model systems with periodic boundary conditions
(PBCs). We employed a distorted hydrogen chain and iron
crystals as the targets, which are both systematically simpli-
fied to set a starting point for simulations on current quantum
hardware with two-qubit one-parameter Ansätze. We have
applied the TransQSE method for the hydrogen chain and the
PBC-adapted VQE method for the iron crystals.

To make the most of NISQ devices, we have applied noise
mitigation techniques to improve the agreement between the
experimental energy estimate and reference state-vector sim-
ulation values. We have applied the state preparation and
measurement (SPAM) correction for all the variational opti-
mizations on hardware. In all the cases, the energy estimates
were improved. In addition to SPAM correction, we applied
the PMSV noise mitigation technique, in which shot counts
are postselected so that the intrinsic symmetries of the system
(Z2 and U1) are not violated. SPAM and PMSV are simul-
taneously used to realize ∼5 kJ/mol of agreement in the
calculations of simplified iron crystal models. Although these
results are for very simple model systems, we believe that they
set an important starting point for the systematic improvement
of quantum chemical calculations on quantum computers by
rolling back the simplification procedure presented in this
paper. Once quantum computers improve, larger basis sets
and k-point grids can be considered, and much more accurate
estimates of the total energy for these systems can be obtained.

In addition to the hardware improvement itself, several
techniques would be useful to extend the range of periodic
systems that we may simulate with quantum computers in
the near term. One of the promising approaches to handle a
large system is using quantum embedding techniques such as
density matrix embedding theory (DMET) [63] or dynamical
mean-field theory [64,65]. For example, the complete unit cell
energy in DMET is calculated as the sum of fragment ener-

gies. The interaction between each fragment and the rest of
the unit cell (referred to as bath) is calculated self-consistently.
The flexibility of the choice of the size of the fragment allows
us to reduce the quantum resource requirements to address
bigger unit cells step by step. Similar gains can be obtained
by using other embedding techniques.

We highlight that consideration of the translational nature
of periodic systems, both in direct and reciprocal space, has
allowed us to apply simplifications that mitigate the addi-
tional resources needed to treat our extended systems on a
quantum computer. This is a significant advantage over the
consideration of molecular systems with similar sizes in terms
of basis sets and numbers of qubits required to perform a
simulation. More generally, exploitation of quantum resource
savings derived from translational symmetry should always be
taken into account when one deals with PBC systems.

Now that all the basic tools to perform PBC-adapted
VQE calculations have been tested on hardware, we expect
that larger numbers of basis functions and k points with
wider active spaces will be possible as hardware improves.
Among others, bigger hardware calculations with more com-
plex Ansätze and a variety of noise mitigation techniques
are underway in order to go one step ahead, which will be
reported elsewhere.
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Algorithm 1: Prepare Symmetry Verifiable Measurement
Circuits.

1: Result: {Measurable Quantum Circuits, Measurement Result
Map}

2: Initialize collection of Pauli strings to measure, {P̂0, . . . , P̂N−1}
3: Initialize collection of Pauli strings based on commuting sets,

{SET0, . . . , SETM−1}
4: Initialize Pauli symmetries, {Ŝ0, . . . , ŜK−1}
5: for SET in {SET0, . . . , SETM−1} do
6: for Ŝ j in {Ŝ0, . . . , ŜK−1} do
7: all_commutes ← True
8: for P̂i in {P̂0, . . . , P̂N−1} do
9: if [Ŝ j, P̂i] �= 0 then
10: all_commutes ← False
11: break
12: end if
13: end for
14: if all_commutes then
15: Insert Ŝ j in SET
16: end if
17: end for
18: Circuit, Map ← part it ion_to_measurement (SET )
19: end for

Algorithm 2: Post-Select Measurement Result.

1: Result: {Symmetry-Verified Quantum Measurement result}
2: Initialize map from measurement result to Pauli-symmetries

result, map_list
3: Initialize quantum measurement result, result_list
4: Initialize expected parity of Pauli Symmetries, targets
5: for result in result_listdo
6: pauli_parit ies ← {} (empty list)
7: for map in map_list do
8: Insert map(result ) in pauli_parit ies
9: end for
10: if pauli_parit ies �= targets then
11: discard result from result_list
12: end if
13: end for

authors and do not reflect the official policy or position of IBM
or the IBM Quantum team.

APPENDIX A: PARTITION MEASUREMENT SYMMETRY
VERIFICATION ALGORITHM DETAILS

Symmetry verification in the NISQ era aims to postselect
on quantum measurement results based on a measurable prop-
erty of a quantum circuit during runtime of the computation.
The verification procedure reads out a conserved property
during the quantum calculation with respect to the projection
P̂ expressed as

P̂ = 1
2

[
Î + (−1)xŜ

]
, (A1)

where Î is the identity operation and Ŝ is a symmetry oper-
ation with the parity represented by (−1)x, with x being an
integer. Techniques in the literature include symmetry ver-
ification via midcircuit measurements or ancilla-controlled
operations plus readouts [51]. The inherent problem with
these techniques is the introduction of additional two-qubit
gate operations. Another difficulty is identifying what sym-
metries a system possesses and how to represent them as
operations on many-qubit systems, which may be a nontrivial
process. For applications in quantum chemistry, point-group
symmetries and space-group symmetries can be used to define
the symmetries for systems of interest. These can be rep-
resented as operations on many-qubit systems by following
prescribed routines available in the literature [48].

We introduce a technique that can symmetry verify a quan-
tum circuit without imposing the extra two-qubit gate penalty.
In the NISQ era, this is a necessity for any simulation that aims
to preserve particular properties. An example would be the use
of quantum simulations to find ground states for molecular
and material science problems. Our symmetry verification
routine makes use of a measurement reduction technique
implemented in TKET. This technique finds partitions of com-
muting Pauli strings and maps them to measurement circuits
[50]. This method is referred to as partition-measurement
symmetry verification (PMSV).

In PMSV, one partition of commuting Pauli strings corre-
sponds to one measurement circuit. To make a measurement
circuit “symmetry verifiable,” we check if the partition of
commuting Pauli strings commutes with every Pauli sym-
metry that a chemical system exhibits. If this check is true,

TABLE IV. Probabilities of the measurement outcome from the noisy simulation of the simplified hydrogen chain system with the
preliminary optimized parameter θ = −0.09283. See Sec. III A for the computational details. The noise model is taken from the IBM device
identified with ibmq_casablanca. An empty cell indicates a value of exactly zero. The noiseless simulation result is given for reference.

Circuit (1) Circuit (2)

00 01 10 11 00 01 10 11 �E/kJ mol−1

Raw 0.9657 0.0105 0.0143 0.0095 0.4290 0.0009 0.5543 0.0077 24.4
PMSV 0.9892 0.0108 0.4363 0.5637 −7.3
SPAM 0.9903 0.0001 0.0001 0.0095 0.4241 0.0002 0.5755 0.0001 −26.0
SPAM+PMSV 0.9905 0.0095 0.4243 0.5757 −26.3
Noiseless 0.9910 0.0090 0.4094 0.5906 −41.7
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TABLE V. Probabilities of the measurement outcome from the noisy simulation of the simplified iron bcc system with the preliminary
optimized parameter θ = −0.53038. The noise model is taken from the IBM device identified with ibmq_casablanca. See Sec. III B 2 for the
computational details. An empty cell indicates a value of exactly zero. The noiseless simulation result is given for reference.

Circuit (1) Circuit (2)

00 01 10 11 00 01 10 11 �E/kJ mol−1

Raw 0.7203 0.0151 0.0208 0.2437 0.0967 0.0063 0.8883 0.0088 −187.5
PMSV 0.7472 0.2528 0.0981 0.9019 −196.3
SPAM 0.7336 0.0036 0.0073 0.2555 0.0713 0.0055 0.9177 0.0055 −208.8
SPAM+PMSV 0.7417 0.2583 0.0721 0.9279 −213.2
Noiseless 0.7447 0.2553 0.0621 0.9369 −221.0

these Pauli symmetries can be measured by the measurement
circuit as well as the Pauli strings of the Hamiltonian. When
we process the quantum measurement result, we measure the
parity x of our Pauli symmetry first. We use this check as a
constraint to keep or discard a particular measurement result,
before postprocessing the expectation value of the other Pauli
strings. We observe that our symmetry-verification scheme
can be performed for any quantum simulation via the appli-
cation of a small classical processing step, but without extra
quantum requirements.

The algorithm to prepare a set of quantum circuit and
resulting mapping is given in Algorithm 1, whereas that to
postselect the measurement result is shown in Algorithm 2.

We demonstrate how PMSV works by comparing the
probabilities of the measurement outcome from the noisy
simulation with different error mitigation techniques. A sin-
gle point energy calculation with the preliminary optimized
parameter (by state-vector simulation) is considered for con-
venience. The noise model is taken from the IBM device
identified with ibmq_casablanca. Two simplified systems (the
hydrogen chain and iron bcc) used in the main text are taken as
examples. In both cases, we have two circuits to be measured
for both evaluating expectation value and symmetry verifica-
tion.

As shown in Table IV, the result without error mitigation
(Raw) includes nonzero probabilities for “01” and “10” of Cir-
cuit (1), and “01” and “11” of Circuit (2). These correspond
to symmetry-violating states that must be caused by the noise.
When PMSV is applied, only the symmetry-verified states
are postselected, but the proportion of the probabilities for
each circuit is not in good agreement with the corresponding
noiseless results. SPAM correction improves the probability
both in the proportion of the probabilities and the reduction
of the symmetry-violating states. Therefore, no significant
improvement was made by PMSV followed by SPAM in this
particular case.

The situation is different in the iron simulations. Table V
shows that SPAM does not reduce the number of symmetry-
violating states as much as in the hydrogen chain case, and we
find that the SPAM+PMSV combination gives us the lowest
energy, whereas all the other tendencies are the same. We
can understand this difference by comparing the magnitude
of the parameter θ . As the parameter θ = −0.09283 of the
hydrogen chain case is smaller than that of the iron case, i.e.,
θ = −0.53038 in magnitude, noise induced by SPAM would
be the major source of error in the former case, so that SPAM

correction works well and minimizes the room for PMSV to
improve the result.

FIG. 9. Potential energy curves as functions of lattice constants
for various k-point mesh indicated by [Lm Lm Lm] obtained with
the Unrestricted PBE level of theory with (a) LANL2DZ and
(b) LANL2TZ basis sets. The optimized lattice constants from the
accurate DFT calculations from the literature [23] are indicated by
vertical lines, while the bcc-fcc energy difference is shown in the
horizontal line on each panel. The energy baseline is set so that the
energy of the optimal lattice constant of bcc is equal to zero for
each Lm.
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APPENDIX B: DFT-PBE CALCULATIONS TO ESTIMATE
THE REQUIRED k POINTS

To support that the [4 4 4] k-point mesh for UHF-CCSD-
LANL2DZ iron calculations would be sufficiently dense,
instead of performing a larger UHF-CCSD calculation (which
is found to be unfeasible), we perform an exploration with un-
restricted DFT (U-DFT) using the Perdew–Burke-Ernzerhof
(PBE) functional [66] to check if the potential curves are sta-
tionary as the k-point number and/or basis set size increases.
We compare the bcc-fcc energy difference and the lattice
constants obtained with various k-point meshes, namely,
[Lm Lm Lm] Monkhorst-Pack meshes with Lm = {1, 2, 3, 4, 5}.

The potential energy curves obtained with the double-ζ
basis (LANL2DZ) [Fig. 9(a)] and triple-ζ basis (LANL2TZ)
[Fig. 9(b)] indicate that a [4 4 4] k-point mesh with the
LANL2DZ basis set would be sufficient for stationary esti-
mation of the bcc-fcc energy difference.

The [1 1 1] k-point (
-point) with the LANL2DZ basis
gives a reasonable result in the bcc-fcc energy difference, but
it changes significantly with the LANL2TZ basis. The lattice
constants are overestimated up to 0.2 Å in both bcc and fcc
cases. The [2 2 2] k-point mesh calculations commonly return
the opposite energy difference in the DZ and TZ basis sets.
The lattice constants are similarly overestimated. The [3 3 3]
k-point mesh still returns the opposite energy difference with
the DZ basis, but with the TZ basis, it is in good agreement
with the value from the literature [23]. The lattice constants
turn to be underestimated up to 0.1 Å. The [4 4 4] and [5 5
5] k-point mesh calculations commonly return the accurate
energy differences both with the DZ and TZ bases. As a
consequence, we have focused on the [4 4 4] k-point mesh
with the LANL2DZ basis set in the iron calculations in the
main text.
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