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Semi-classical simulation of spin-1 magnets
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Theoretical studies of magnets have traditionally concentrated on either classical spins, or the extreme
quantum limit of spin-1/2. However, magnets built of spin-1 moments are also intrinsically interesting, not
least because they can support quadrupole, as well as dipole moments, on a single site. For this reason, spin-1
models have been extensively studied as prototypes for quadrupolar (spin-nematic) order in magnetic insulators,
and Fe-based superconductors. At the same time, because of the presence of quadrupoles, the classical limit of a
spin-1 moment is not an O(3) vector, a fact, which must be taken into account in describing their properties. In
this article we develop a method to simulate spin-1 magnets based on a u(3) algebra, which treats both dipole and
quadrupole moments on equal footing. This approach is amenable to both classical and quantum calculations,
and we develop the techniques needed to calculate thermodynamic properties through Monte Carlo simulations
and classical low-temperature expansion, and dynamical properties, through “molecular dynamics” simulations
and a multiple-boson expansion. As a case study, we present detailed analytic and numerical results for the
thermodynamic properties of ferroquadrupolar order on the triangular lattice, and its associated dynamics. At
low temperatures, we show that it is possible to “correct” for the effects of classical statistics in simulations, and
extrapolate to the zero-temperature quantum results found in flavour-wave theory.

DOI: 10.1103/PhysRevResearch.4.033106

I. INTRODUCTION

Textbook discussions of magnetism usually begin either
with classical spins, or with the spin-1/2 moment of an
individual electron. However, magnetic ions exist in many
different forms, each of which requires its own mathematical
representation [1–4]. And this can have profound conse-
quences, even for simple models. One celebrated example
is the gap found in integer-spin quantum antiferromagnets
in one dimension [5–7], while half-integer systems remain
gapless [8]. The principles, which underpin this gap are now
well known [9,10], but much remains to be understood about
higher-spin moments in general. For example, it is not widely
appreciated that an O(3) vector only provides an appropri-
ate (semi-)classical limit for a quantum spin in the case of
spin-1/2 moments, a fact, which has implications for both
ground states and excitations. In particular, the usual classical
mean-field approximations, and “large-S” treatments of spin-
wave excitations [11,12], both break down for spins larger
than 1/2, because they do not adequately describe multipole
moments [13,14].
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Spin-1 magnets provide a natural focus for such questions.
Spin-1 moments differ from both classical vectors and quan-
tum spin-1/2 moments in that they can support a quadrupole
on a single site (Fig. 1). This leads to both new types of ground
state, and new kinds of excitation [13,14]. Spin-1 systems
also support new forms of interaction, relative to a spin-1/2
moment, including single-ion anisotropies and biquadratic
interactions, which can originate in exchange [3], or be gen-
erated by coupling to the lattice [15]. As a consequence, the
range of phases predicted to occur in spin-1 magnets is very
rich, including quadrupolar (spin-nematic) phases [13,14,16–
20], and diverse forms of quantum spin liquid [21–26], as well
conventional, dipolar, magnetic order.

Further strong motivation to study spin-1 magnets
comes from experiment. A well-studied example is pro-
vided by NiGa2S4, a triangular-lattice magnet, which
evades conventional magnetic order [27–29], and may re-
alize a spin-nematic phase [18,19,30]. Spin-1 magnets on
the pyrochlore lattice have also recently come into fo-
cus [31]. Among these, NaCaNi2F7 is particularly interesting,
showing spin-liquid-like properties (above a spin-freezing
temperature) [32], which cannot be explained within a
framework based on O(3) moments [33]. Other spin-
1 materials discussed as candidate spin liquids include
NiRh2O4, whose moments inhabit a diamond lattice [34],
and YCa3(VO)3(BO3)4, which realises a Kagome lattice [35],
and the triangular-lattice system Ba3NiSb2O9 [36–38]. And
in recent years, spin-1 models have also been intensively
studied as a way of understanding nematic phases in both
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Fe-based superconductors [39–43], and systems of cold
atoms [44–48].

Given this abundance of riches, there is clearly need for
good theoretical tools to study spin-1 magnets. But the very
things, which make spin-1 moments interesting, also make
them difficult to simulate numerically. Classical Monte Carlo
(MC) simulations, based on O(3) vector spins, fail to de-
scribe grounds states or excitations built of local quadrupole
moments. Exact diagonalisation does not suffer from this
drawback, but the rapid growth of the Hilbert space typically
restricts calculations to systems of 20 sites or less [19,47].
Variational calculations, based on matrix- or tensor-product
wave functions give a good account of dynamics in 1D [49],
but cannot easily be extended beyond the calculation of
ground-state properties in higher dimension [50,51]. And
while quantum Monte Carlo (QMC) simulation has yielded
insights into both quadrupolar order [17,52], and the associ-
ated dynamics [53], its use is restricted to a relatively small
number of cases, which do not suffer from a sign problem.
Moreover, within QMC, dynamics are only accessible for
relatively small systems, through analytic continuation, which
may be problematic for systems with complicated excitations.
As a consequence, much of what we know about the exotic
properties of spin-1 models is restricted to mean-field theory
(MFT), and the linear expansion of fluctuations about it, leav-
ing many important questions out of reach.

In this article, we develop a method of simulating spin-1
magnets, which treats both dipole and quadrupole moments
on equal footing. Our approach is based on embedding the al-
gebra su(3) describing a spin-1 moment in the algebra u(3), as
discussed in earlier paper of Papanicolaou [14]. This approach
makes it possible to treat quantum aspects of the problem
exactly, at the level of a single site. We arrive at a formula-
tion in terms of the generators of U(3), which is suitable for
both analytic and numerical approaches to spin-1 magnets. In
particular, the uncluttered structure of the algebra u(3) makes
it possible to derive very compact equations of motion (EoM),
which can be integrated numerically to evaluate dynamics in
cases with both conventional and unconventional forms of
order.

We illustrate our method by applying it to a spin-1 model
with the most general form of interactions allowed by SU(2)
symmetry, the bilinear-biquadratic (BBQ) Hamiltonian

HBBQ =
∑
〈i, j〉

[J1Ŝi · Ŝ j + J2(Ŝi · Ŝ j )
2], (1)

on a triangular lattice, reproducing, and in many cases extend-
ing, known results for its low-temperature phases [19,20,54].
We pay particular attention to the simplest phase to exhibit
all the new features of a spin-1 moment, the ferroquadrupo-
lar (FQ) order found for J2 < 0 (Fig. 2). In particular, we
demonstrate that our approach reproduces known results for
the dynamics of FQ order, where both QMC simulations [53]
and analytic “flavour-wave” calculations [19] are available for
comparison.

At the heart of this analysis is the need to introduce an
extended set of operators to describe a single spin-1 moment.
Any state of spin-1/2 moment can be represented as a point
on a Bloch sphere, characterised by two polar angles [55].
By extension, any two states of a spin-1/2 moment can be

FIG. 1. Usual, “magnetic” basis for a spin-1 moment, formed
by eigenstates of Sz. States with Sz = ±1, labeled |1〉 and |1〉,
break time-reversal symmetry and have a finite spin-dipole moment
(blue arrow). Meanwhile, the state with Sz = 0, labeled |0〉, has a
quadrupolar magnetic moment, which can be represented through
a director (red bar), perpendicular to the plane of the quadrupole.
States are represented as probability surfaces in spin-space, as de-
scribed in Appendix A.

connected by an su(2) rotation, using two of the three gen-
erators of su(2). This simple geometrical picture provides a
natural classical limit of a spin-1/2 moment, as an O(3) vector
carrying a finite dipole moment

Ŝi =

⎛
⎜⎝Ŝx

i

Ŝy
i

Ŝz
i

⎞
⎟⎠. (2)

In contrast, the usual magnetic basis for a spin-1 moment,
Fig. 1, includes states with both dipole and quadrupole mo-
ments. There is no su(2) rotation, which connects dipoles with
quadrupoles, and it follows that a general state of a spin-1
moment cannot be expressed in terms of two real angles. As a
consequence, its classical limit cannot be an O(3) vector.

To properly characterise a spin-1 moment, we therefore
need to seek an algebra, which encompasses quadrupole

FIG. 2. Mean-field phase diagram of the spin-1 bilinear-
biquadratic (BBQ) model on the triangular lattice [Eq. (1)] at T = 0,
following [19,20]. The model shows four distinct ordered ground
states: ferromagnet (FM); three-sublattice antiferromagnet (AFM);
ferroquadrupolar (FQ); and three-sublattice antiferroquadrupolar
(AFQ). For J1 = J2 the model exhibits an enlarged, SU(3) symmetry.
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FIG. 3. Finite-temperature phase diagram of the spin-1 bilinear-biquadratic (BBQ) model on the triangular lattice, obtained from Monte
Carlo simulation of HBBQ [Eq. (9)] in the space of u(3) matrices (u3MC). Points show the location of peaks in heat capacity; phases are labeled
according to their dominant correlations (cf. Figs. 2 and 8). Details of simulation are provided in Sec. III A 2.

moments of spin

Qi =

⎛
⎜⎜⎜⎜⎝

Qx2−y2

Q3z2−r2

Qxy

Qyz

Qxz

⎞
⎟⎟⎟⎟⎠

i

=

⎛
⎜⎜⎜⎜⎝

(Sx )2 − (Sy)2

1√
3
(3(Sz )2 − S(S + 1))

SxSy + SySx

SySz + SzSy

SxSz + SzSx

⎞
⎟⎟⎟⎟⎠

i

. (3)

The smallest algebra, which can completely do so is su(3),
with a total of eight generators [14,20,56]. In terms of these
operators, the BBQ Hamiltonian [Eq. (1)] can be expressed as

HBBQ =
∑
〈i, j〉

(
J1 − J2

2

)
Ŝi · Ŝ j + J2

2
Q̂i · Q̂j + J2

3
s2(s + 1)2,

(4)

where it will prove convenient to write

J1 = J cos θ, J2 = J sin θ. (5)

Although the algebra su(3) provides a complete portrait
of a spin-1 moment, its structure constants are very compli-
cated [57]. This makes su(3) a challenging starting point for
descriptions of dynamics [58–60]. Happily, by adding just one

more generator, the spin-length Ŝ
2
i , and subsequently impos-

ing the constraint

Ŝ
2
i = s(s + 1) = 2, (6)

it is possible to transition to a description of spin-1 moment in
terms of the much simpler algebra u(3) [14]. This approach is
illustrated schematically in Eq. (7) :

su(3) algebra

Spin length

3 linearly
independent dipole
components

5 linearly
independent
quadrupole
components

Ŝi
2

Ŝx
i

Ŝy
i

Ŝz
i

Q̂x2−y2

i

Q̂3z2−s2

i

Q̂xy
i

Q̂xz
i

Q̂yz
i

basis change

Âx
i x

Âx
i y

Âx
i z

Ây
i x

Ây
i y

Ây
i z

Âz
i x

Âz
i y

ˆz
i z

u(3) algebra (7)

A convenient basis for u(3) is provided by the tensors Âi,
a set of real, 3 × 3 matrices with only a single nonvanishing
matrix element [14], and commutation relations[

Âα
iβ, Âγ

iη

] = δ
γ

β Âα
iη − δα

η Â
γ

iβ,
[
Âα

iβ, Âγ
jη

] = 0. (8)

Written in terms of these matrices, the BBQ Hamiltonian
[Eq. (1)] takes on the quadratic form

HBBQ =
∑
〈i, j〉

[
J1Âα

iβÂ
β
jα+ (J2 − J1)Âα

iβÂα
jβ + J2

4
s2(s + 1)2

]
,

(9)

where we adopt the Einstein convention of summing over
repeated indices. Projection into states with spin-1 can be
accomplished by enforcing the constraint

Âα
iα = 1

2 s(s + 1) = 1, (10)

on each site in the lattice.
From this starting point, we can carry out classical Monte

Carlo (MC) simulations of the BBQ model in the basis
of Âi, treating dipole and quadrupole moments of a single
site on an equal footing. We will refer to this approach as
“u3MC”. Results for the finite-temperature phase diagram,
obtained using u3MC, are shown in Fig. 3. At the level of
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thermodynamics, this approach is equivalent to the “semi-
classical SU(3)” simulations of Stoudenmire et al. [54], and
yields identical results.

However, the real advantages of working with a u(3)
representation become apparent when considering dynamics.
Considering the Heisenberg equation of motion for Âi, we
find

∂tÂγ
iη = −i

[
Âγ

iη,HBBQ
]

= −i
∑

δ

[
J1
(
Âγ

iαÂα
i+δη − Âα

iηÂ
γ

i+δα

)

+ (J2 − J1)
(
Âγ

iαÂ
η

i+δα − Âα
iηÂα

i+δγ

)]
, (11)

a simple form, which automatically preserves the length of the
spin [Eq. (10)], and is well suited to numerical integration.

By combining classical MC simulation with numerical
integration of the equation of motion, Eq. (11), we obtain
an approach to dynamics analogous to “molecular dynamics”
(MD) simulation, which can be used to calculate dynamical
structure factors. We dub this “u3MD”. At low temperatures,
we find it is possible to correct for the effect of classical
statistics by multiplying structure factors by a temperature-
dependent prefactor

SQM(q, ω, T = 0) = lim
T →0

h̄ω

kBT
SMD(q, ω, T ), (12)

obtaining results in agreement with semi-classical quantum
results at T = 0. Results for u3MD simulations of the FQ
phase are summarised in Fig. 4.

In remainder of this paper we describe these results in some
detail, developing both analytic and numerical approaches
based on the u(3) formalism. We benchmark simulations
against these analytic results, and published numerical results
from other approaches. We also also explore some of the
further ramifications of the u(3) approach, particularly with
respect to anisotropic exchange interactions, and the extent
to which quantum results for dynamics can be inferred from
(semi-)classical simulations.

In order to keep the paper self-contained, we provide a
detailed account of derivations, and review all of the nec-
essary mathematical formalism. However the paper is also
constructed in such a way that readers uninterested in techni-
cal development of the method can skip directly to the results
provided in Secs. VI–VIII. Additional technical details are
provided in a series of Appendices.

The paper is structured as follows:
Section II reviews the mathematical formalism needed to

analyze spin-1 magnets in terms of a u(3) algebra. A single
spin-1 moment is analysed within a basis of time-reversal
invariant states, where the most general possible spin con-
figuration can be expressed in terms of a complex vector
d. The group U(3) is shown to provide a convenient basis
for all possible operations on spin-1 moments. Expressions
are given for both the dipole and quadrupole associated with
a spin-1 moment, in terms of the vector d, and the 3 × 3
matrices Âα

β , which provide a suitable representation of u(3).
The BBQ model (Sec. II C), and corresponding Heisenberg

FIG. 4. Dynamical structure factor SS(q, ω) for the ferro-
quadrupolar (FQ) phase of the BBQ model on the triangular lattice.
(a) Results of “molecular dynamics” (u3MD) simulation at finite T ,
showing a dispersing band of excitations, which are the Goldstone
modes of the FQ order. The spectral weight in these excitations is
controlled by the classical statistics of the associated Monte Carlo
(u3MC) simulations. (b) MD results corrected for the effects of
classical statistics, for comparison with quantum results at T = 0.
(c) Predictions of quantum flavour-wave theory at T = 0, showing
agreement with the corrected results of MD simulation, as detailed
in Fig. 19. Results are shown for Eq. (9) with J1 = 0.0; J2 = −1.0.
Details of these calculations are provided in Sec. VII A.

EoM (Sec. II D), are also developed in terms of Âα
β , in a forms

suitable for numerical simulation.
Section III introduces numerical simulation methods for

spin-1 magnets. In Sec. III A, the u(3) algebra described
in Sec. II is shown to provide a convenient basis for
(semi-)classical Monte Carlo simulations of spin-1 moments.
A suitable MC update is developed in the basis of u(3) ma-
trices Âα

β , and shown to be equivalent to earlier “sSU(3)”
simulations of the spin-1 BBQ model in the basis of the com-
plex vector d. These calculations are extended to general J1,
J2, providing a finite-temperature phase diagram for the spin-1
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BBQ model on a triangular lattice (Fig. 3). In Sec. III B, a MD
simulation scheme is developed for spin-1 moments, based on
the EoM for the matrices Âα

β . The technical implementation
of this MD update is described.

In Sec. IV, we develop an analytic theory of classical
fluctuations about a ferroquadrupolar (FQ) ground state of
the spin-1 BBQ model on a triangular lattice, starting from
the u(3) representation introduced in Sec. II. In Sec. IV A,
small fluctuations about FQ order are recast in terms of the
matrices Âα

β . In Sec. IV B these are shown to provide a natural
basis for a classical, low-temperature expansion, within which
it is possible to calculate thermodynamic properties. Finally,
in Sec. IV C we use this theory to make explicit predictions
for thermodynamic properties, including structure factors, for
later comparison with MC simulation.

In Sec. V, we develop an equivalent, zero-temperature,
quantum theory of fluctuations about a FQ ground state.
First, in Sec. V A we quantize the fluctuations introduced in
Sec. IV A, and show that the resulting multiple-boson expan-
sion is equivalent to earlier “flavor-wave” theory. Then, in
Sec. V B, we use this quantum theory to make explicit pre-
dictions for dynamical structure factors, for later comparison
with MD simulation.

In Sec. VI, the numerical methods developed in Sec. III
are used to obtain a detailed portrait of FQ order in the spin-1
BBQ model on a triangular lattice. Monte Carlo simulation
results for heat capacity (Sec. VI A), FQ order parameter
(Sec. VI B), and equal-time structure factors (Sec. VI C), are
compared explicitly with the analytic theory developed in
Sec. IV C. The implications of the Mermin-Wagner Theorem
are discussed, and the results of simulations at low tempera-
tures are shown to conform exactly to the predictions of theory
for a finite-size cluster. In Sec. VI D, numerical results are
presented for the dynamics of the FQ state, based on MD
simulations. The dynamical structure factors found in simula-
tion are compared explicitly with the predictions of Sec. V B.
Excitations are found to display the expected dispersion, but
with intensities, which, for T → 0 differ from the analytic
theory.

Section VII resolves this paradox. By combining the
low-temperature and multiple-boson expansions developed in
Sec. IV, we show that MD results can be understood in terms
of a semi-classical dynamics, with spectral weight determined
by a factor coming from classical statistics. Low-temperature
MD results are corrected for this classical bias, and shown to
agree exactly with the analytic theory of Sec. V, and equiva-
lent “flavour-wave” calculations, in the limit T → 0.

In Sec. VIII, we address the generalisation of simulation
to which are anisotropic in spin-space. The EoM approach
developed in Secs. II D and III B is shown to be robust against
spin-anisotropy. Concrete results analytic and numerical re-
sults are provided for FQ order in the presence of single-ion
anisotropy.

The paper concludes in Sec. IX with a brief summary of
results, and discussion of potential future applications of the
u(3) approach.

A number of technical results are developed in Appendices.
Appendix A provides a framework for visualising the

quantum states individual spin-1 moments starting from a
coherent-state representation.

Appendix B details mathematical properties of the tensors
Âα

β , which act as generators of the group U(3).
Appendix C sets out the conventions used in describing the

triangular lattice.
Appendix D provides technical details of the calculation of

equal-time structure factors within a classical low-T expan-
sion.

Appendix E provides technical details of the Bogoliubov
transformation used in the multiple-boson expansion.

Appendix F provides technical details of calculations of
dynamical structure factors within a multiple-boson expan-
sion.

Appendix G provides details of analytic calculations of the
ordered moment for finite-size clusters.

Appendix H lists integrals used in developing the analytic
theory of FQ order.

Appendix I develops an analytic theory of the excitations
of a spin-1 easy-plane ferromagnet, based on generators of
U(3).

II. DESCRIPTION OF A SPIN-1 MOMENT
USING A u(3) ALGEBRA

In this section, we develop the mathematical tools needed
to describe a spin-1 moment, and explain how one naturally
arrives at a general description in terms of operators satisfying
a u(3) algebra. These will form the basis for both the analytic
calculations and the simulations described in the remaining
parts of the article. Our analysis builds on the earlier paper
by Papanicolou [14], and will also make connection with the
notation of “d-vectors”, used in [19,20,56,61].

We start in Sec. II A by reviewing the familiar description
of a spin-1/2 moment in terms of eigenstates of Sz, and
describe how its classical limit, an O(3) vector, can be used
as a basis for numerical simulations. In Sec. II B, we show
how the usual magnetic basis for a single spin-1 moment
(eigenstates of Sz), can be used to construct a nonmagnetic,
basis of states invariant under time reversal. This motivates a
general description of a spin-1 moment in terms of a complex
vector d, and of the introduction of the a set of 3 × 3 matrices
Aα

β , which generate a representation of the algebra u(3). Then,
in Sec. II C, we show how the BBQ model, Eq. (9), can be
expressed in terms of the matrices Aα

β , providing a starting
point for numerical simulation of thermodynamic properties.
Finally, in Sec. II D, we use this representation of the BBQ
model to derive equations of motion for a spin-1 moment in
terms of Aα

β , providing a starting point for numerical simula-
tions of dynamics.

For compactness of notation, we set h̄ = 1.

A. Mathematical description of spin-1/2 moments

Before reviewing the mathematical description of a spin-1
moment, it is helpful to have in mind the usual picture of a
spin-1/2 moment, and its (semi-)classical “large-S” limit. Any
quantum spin can be completely described by the eigenstates
of Ŝz

Ŝz|m〉 = m|m〉, (13)
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where the 2s + 1 states |m〉 form a closed orthogonal basis for
m = − j,− j + 1, . . . , j − 1, j [62]. In the case of spin-1/2,
Ŝz there are only two such eigenstates

Ŝz
∣∣± 1

2

〉 = ± 1
2

∣∣± 1
2

〉
. (14)

These states form a Kramers pair, related by time-reversal
symmetry

T
∣∣± 1

2

〉 = ±∣∣∓ 1
2

〉
. (15)

As a consequence, individual spin-1/2 moments always break
time-reversal symmetry, and always exhibit a finite spin-
dipole moment.

From this starting point, it is possible to express any pos-
sible quantum state of a spin-1/2 moment in terms of two
complex numbers

|ψ1/2〉 = c1

∣∣+ 1
2

〉 + c2

∣∣− 1
2

〉
(16)

subject to the constraint

|c1|2 + |c2|2 = 1. (17)

Resolving this constraint reduces the number of real parame-
ters to three. And since the overall phase of |ψ1/2〉 does not
affect its physical properties, any state of a spin-1/2 moment
can be specified using only two real numbers. Geometrically,
this is equivalent to specifying the two angles needed to define
a point on a Bloch sphere [55]. Formally, it is equivalent to
working in the complex projective line CP 1.

Any two states within this space can be connected by an
SU(2) rotation, for which the Pauli Matrices

σ x =
(

0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
.

(18)

provide a convenient basis, with commutation relations

[σα, σβ] = 2iεαβγ σγ . (19)

The classical, “large-S” limit of a spin-1/2 can be taken
through a coherent state representation [63], and is a O(3)
vector

S = (Sx, Sy, Sz ). (20)

Since, for a single spin-1/2, all higher-order spin moments
vanish, this vector describes all possible magnetic degrees of
freedom, and can form the starting point for Monte Carlo
(MC) simulation of thermodynamic properties [64].

The representation of spin-1/2 moments in terms of O(3)
vectors also provides the starting point for (semi-)classical de-
scriptions of their dynamics, as determined by the Heisenberg
equation of motion (EoM)

dSi

dt
= −i

[
Si,H

] = dH
dSi

× Si. (21)

Numerical integration of these EoM, using spin configura-
tions drawn from MC simulation, provides a (semi-)classical
approach to spin dynamics, which has been dubbed “molec-
ular dynamics” (MD) simulation [33,65,66], and is closely
analogous to simulations based on the (phenomenological)
Landau-Lifshitz-Gilbert equations [67].

B. Description of a single quantum spin-1

1. Magnetic basis

Several new features arise in the case of a spin-1. Here, the
eigenstates of Ŝz comprise the 3 states

B1 = {|1〉, |0〉, |1〉}. (22)

forming the “magnetic” basis illustrated in Fig. 1. While the
states |1〉 and |1〉 are truly magnetic, in the sense of possessing
a finite spin-dipole moment, the same is not true of |0〉, for
which

〈0|Ŝx|0〉 = 〈0|Ŝy|0〉 = 〈0|Ŝz|0〉 = 0. (23)

This result follows straightforwardly from the fact that

|z〉 = −i|0〉, (24)

is invariant under time-reversal symmetry [56]

T |z〉 = |z〉. (25)

It follows that |0〉 ∝ |z〉 is incapable of supporting a dipole
moment since, such a moment would, by definition, break
time-reversal symmetry.

Instead, the state |0〉 posses a finite spin-quadrupole mo-
ment. Spin quadrupoles are defined through the symmetric,
traceless rank-2 tensor

Q̂αβ = ŜαŜβ + Ŝβ Ŝα − 2
3δαβs(s + 1), (26)

and so are invariant under time-reversal symmetry. The state
|0〉, exhibits two nonzero matrix elements

〈0|ŜxŜx|0〉 = 〈0|ŜyŜy|0〉 = 1, (27)

implying that both Qxx and Qyy take on a finite value. More-
over the fact that

〈0|ŜzŜz|0〉 = 0 (28)

implies that |0〉 breaks spin-rotation invariance, even though
it does not posses a finite dipole moment.

The possibility of finding a finite quadrupole moment on
a single site sharply distinguishes spin-1 moments from spin-
1/2 moments. And spin-1 are special in the sense that they
are the smallest spin able to support a quadrupole moment on
a single site, making them a good candidate to illustrate both
magnetism based on higher-order moments, and quantum ef-
fects.

More generally, any state of a spin-1 moment can be de-
scribed through a linear superposition of the states B1

|ψ1〉 = c1|1〉 + c2|0〉 + c3|1〉, (29)

where the complex numbers c1, c2, c3, are subject to the
constraint

|c1|2 + |c2|2 + |c3|2 = 1. (30)

Resolving this constraint immediately reduces the number of
real parameters needed to specify |ψ1〉 to five. Furthermore, no
physical properties of the state depend on the overall phase of
|ψ1〉. It follows that any state of a spin-1 moment can be fully
characterised using a total of four real numbers. Formally, this
is equivalent to working in the complex projective plane CP 2.

The algebra, which connects states within this Hilbert
space is su(3), with eight generators, for which the
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Gell-Mann matrices

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, λ2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠,

λ3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, λ4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

λ5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, λ6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

λ7 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, λ8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠, (31)

provide a convenient representation, albeit one with complex
commutation relations [57].

It is immediately apparent that algebra describing a spin-
1 moment is much richer than that describing a spin-1/2. In
fact the three SU(2) rotations needed to describe a spin-1/2
moment, Eq. (18), correspond to the generators of rotations

Ŝ = (Ŝx, Ŝy, Ŝz )t, (32)

and form a closed subalgebra of su(3). Meanwhile the five
additional generators found in su(3) can be identified with the
quadrupole moments

Q̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Q̂x2−y2

Q̂3z2−s2

Q̂xy

Q̂xz

Q̂yz

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 (Q̂xx − Q̂yy)

1√
3

(
Q̂zz − 1

2 (Q̂xx + Q̂yy)
)

Q̂xy

Q̂xz

Q̂yz

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

(Ŝx )2 − (Ŝy)2

1√
3

(
2
(
Ŝz

i

)2 − (Ŝx )2 − (Ŝy)2
)

ŜxŜy + ŜyŜx

ŜxŜz + ŜzŜx

ŜyŜz + ŜzŜy

⎞
⎟⎟⎟⎟⎟⎟⎠

, (33)

as previously listed in Eq. (3). We note that the vector notation
[Eq. (3)], and tensor notation [Eq. (26)], are linked by

Q̂ · Q̂ =
∑

α

Q̂αQ̂α = 1

2

∑
αβ

Q̂αβQ̂αβ, (34)

and in what follows we shall follow the Einstein convention
of assuming sums on repeated indices of tensors.

It is worth noting that, while the algebra su(3) has eight
generators, a general SU(3) rotation can be constructed using
a subset of four of these [68]. It follows that (as argued above),
only four real parameters are needed to parameterise any spin-
1 state.

2. Time-reversal invariant basis

The “magnetic” basis, Eq. (22), is the most commonly used
description of a spin-1 moment. However this choice of basis
is not unique, and any linear combination of Eq. (22), which

FIG. 5. Time-reversal invariant basis for a spin-1 moment. The
three states |α〉, with α = x, y, z, are invariant under time-reversal,
and satisfy 〈α|Sμ|α〉 = 0, for μ = x, y, z referring to the usual spacial
spin components. These states can be expressed in terms of the usual
magnetic basis (Fig. 1) through Eq. (37), and exhibit a characteristic
“doughnut-shaped” profile of spin fluctuations (Appendix A).

forms three orthogonal states can serve equally well. For many
purposes it is more convenient to describe spin-1 moments in
a basis of time-reversal invariant states, satisfying

T |φ〉 = |φ〉. (35)

A suitable time-reversal invariant basis is given by

B2 = {|x〉, |y〉, |z〉}, (36)

where

|x〉 = i√
2

(|1〉 − |1〉), |y〉 = 1√
2

(|1〉 + |1〉), |z〉 = −i|0〉.
(37)

This basis is illustrated in Fig. 5. Within this basis, any state of
a spin-1 can be decomposed in terms of complex coefficients
d∗

α

|d〉 =
∑

α=x,y,z

d∗
α |α〉, d∗

α ∈ C, (38)

which we collect in a complex vector (director) d, of unit
length

d∗ · d = 1. (39)

We can further separate this into a real and imaginary parts

d∗ = u + iv, (40)

providing a represent of a spin-1 in terms of two real, three-
dimensional vectors, subject to the constraint

u · u + v · v = 1. (41)

All of the operators needed to characterise a spin-1 moment
can also be written in terms of matrix elements of the time-
reversal invariant basis [Eq. (37)], with spin operators given
by the antisymmetric contraction

Ŝα = −iεαβγ |β〉〈γ |, (42)

while quadrupoles by the symmetric contraction

Q̂αβ = −|α〉〈β| − |β〉〈α| + 2
3δαβ |γ 〉〈γ |. (43)

We can use these results to express the expected dipole-
moment

〈d|Ŝα|d〉 = 2εαβγ uβvγ , (44)
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and quadrupole-moment

〈d|Q̂αβ |d〉 = −2(uαuβ + vαvβ ) + 2
3δαβ (uγ uγ + vγ vγ ),

(45)
moments of a general state |d〉 [Eq. (38)], in terms of u and v
[Eq. (40)]. In vector form, the equation for the dipole moment
[Eq. (44)] then becomes

〈S〉 = 2u × v, (46)

and we see that if the director d is either purely real, or purely
imaginary, the associated dipole moments will be zero.

3. Description in terms of u(3)

The form of the expressions for spin- [Eq. (42)] and
quadrupole-moments [Eq. (43)], motivates us to introduce an
object with matrix elements

Âα
γ = |α〉〈γ |, (47)

i.e.,

Â =
⎛
⎝|x〉〈x| |x〉〈y| |x〉〈z|

|y〉〈x| |y〉〈y| |y〉〈z|
|z〉〈x| |z〉〈y| |z〉〈z|

⎞
⎠, (48)

colloquially referred to as the “A matrix” [14]. (More pre-
cisely formulated, Â is a tensor, as described in Sec. III B 5).
The matrix Â acts on the basis of time-reversal invariant states,
and is subject to the constraint

Tr Â = 1, (49)

following from the normalisation of the spin state, Eq. (30). It
is now straightforward to transcribe both spin-

Ŝα = −iεα γ

β Âβ
γ , (50)

and quadrupole-moments

Q̂αβ = −Âα
β − Âβ

α + 2
3δαβÂγ

γ , (51)

in terms of matrix elements of Â [Eq. (47)].
A convenient basis for Â is provided by a set of matrices

with a single nonzero element [14],

Â1
1 =

(
1 0 0
0 0 0
0 0 0

)
, Â1

2 =
(

0 1 0
0 0 0
0 0 0

)
,

Â1
3 =

(
0 0 1
0 0 0
0 0 0

)
, Â2

1 =
(

0 0 0
1 0 0
0 0 0

)
,

Â2
2 =

(
0 0 0
0 1 0
0 0 0

)
, Â2

3 =
(

0 0 0
0 0 1
0 0 0

)
,

Â3
1 =

(
0 0 0
0 0 0
1 0 0

)
, Â3

2 =
(

0 0 0
0 0 0
0 1 0

)
,

Â3
3 =

(
0 0 0
0 0 0
0 0 1

)
. (52)

These matrices satisfy the closed algebra u(3), with commu-
tation relations[

Âα
iβ, Âγ

iη

] = δ
γ

β Âα
iη − δα

ηÂγ

iβ,
[
Âα

iβ, Âγ
jη

] = 0, (53)

previously introduced in Eq. (8).
Alternative representations of U(3) are possible, and have

their own merits [69]. The specific advantage of the basis
given in Eq. (52) is its simplicity. And, in conjunction with
complex coefficients, this basis can be used to describe all
possible states of a spin-1 moment. Once again, after con-
straints coming from the Hermitian nature of Âα

β [Eq. (48)],
its trace [Eq. (49)], and the fact that it is proportional to a
projection operator have been taken into account, this requires
a total of four real coefficients [70].

4. Relationship between U(3) and SU(3) representations

The representation of a spin-1 moment in terms of the nine
matrices Âα

β [Eq. (52)], contains one additional operator, rela-
tive to the eight generators of SU(3) [Eq. (31)]. The resolution
of this seeming paradox rests in enforcing the constraint that
each site is occupied by a single spin-1 moment.

Relative to U(3), the operator “missing” from SU(3) is the

spin-length Ŝ
2
. Once this is included, there exists a specific

transformation relating the representation of SU(3) in terms
of dipole [Eq. (32)] and quadrupole [Eq. (33)] moments, and
the representation of U(3) in terms of the nine generators Â

α

β

[Eq. (52)] ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ŝ
2

Ŝx

Ŝy

Ŝz

Q̂x2−y2

Q̂3r2−s2

Q̂xy

Q̂xz

Q̂yz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Â1
1

Â1
2

Â1
3

Â2
1

Â2
2

Â2
3

Â3
1

Â3
2

Â3
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (54)

where C is the 9 × 9 matrix,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 2 0 0 0 2
0 0 0 0 0 −i 0 i 0
0 0 i 0 0 0 −i 0 0
0 −i 0 i 0 0 0 0 0

−1 0 0 0 1 0 0 0 0
1√
3

0 0 0 1√
3

0 0 0 − 2√
3

0 −1 0 −1 0 0 0 0 0
0 0 −1 0 0 0 −1 0 0
0 0 0 0 0 −1 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (55)

previously shown schematically as Eq. (7).
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We can fix the spin sector, and thereby restrict fluctuations
to the smaller group SU(3), by imposing the constraint

TrA =
∑

α

Âα
iα =

∑
α

1

2
Ŝα

i Ŝα
i = 1

2
s(s + 1) = 1, (56)

where we have used the property∑
α

Q̂αα
i = 0. (57)

It follows that, for purposes of simulation of spin-1 moments,
we can work directly with the matrices Â, as long as these
satisfy the constraint Eq. (49). This constraint was previously
introduced as Eq. (10).

5. Mathematical properties of A matrices

While it is convenient to refer to the operators Âα
β as matri-

ces, they are in fact tensors. The tensor nature of these objects
is explored in Appendix B. Here we single out a property,
which will prove useful in subsequent derivations, namely the
way in which Âα

β transforms under a linear map.

The operator Âα
β is defined through matrix elements of

the time-reversal invariant basis [Eq. (36)]. In defining Âα
γ

[Eq. (47)], we introduced both a contravariant index α, and
a covariant index γ . This distinction follows from the fact that
the index α relates to a bra vector, while the index γ related to
a ket vector. Bra vectors and ket vectors (such as the states in
the basis B2 [Eq. (36)]), inhabit mutually-dual vector spaces.
And for this reason, contravariant and covariant indexes will
transform differently under a linear transformation of basis
vectors.

Let us consider a general linear transformation

� : V → V, (58)

with

det � 
= 0, (59)

such that � is invertible, and define

�̃ = (�−1)T . (60)

Under this transformation, the components of Âα
β will trans-

form as (
Âα

β

)μ
ν

= �μ
γ �̃κ

ν

(
Âα

β

)γ
κ

= �μ
γ (�−1)κν

(
Âα

β

)γ
κ
, (61)

where we once again assume the Einstein convention of sum-
ming on repeated indices.

This result can be interpreted as follows: Âα
β is properly

considered to be a (1,1) tensor, implying that the linear map
takes one element in the vector space V , and a second one in
the dual vector space V ∗, and assigns then a number in the
field F , for which the multiplication of the vector space is
defined. And, crucially, the only nonzero component of (Âα

β )γκ
in the time-reversal invariant basis is(

Âα
β

)α
β
. (62)

This fact, and the mapping Eq. (61) will prove important
where we use the generators Âα

β to derive a theory of small
fluctuations about an ordered state, in Sec. IV A.

We will briefly comment on two other mathematical prop-
erties of the operators Â, which will prove useful in later
calculations. Firstly, it is possible to construct any state
|α = x, y, z〉 in the basis B2 [Eq. (36)] as

|α〉 = d†α|vac〉, (63)

where d̂α satisfies the bosonic commutation relation

[d̂α, d†α] = δαβ, (64)

and |vac〉 is the vacuum. It follows that we can build the matrix
Â as the exterior product of the operators d̂α ,

Âα
β = d†α d̂β. (65)

This particular representation will prove useful when is comes
to construction a quantum theory of excitations in Sec. V. And
an interesting corollary of Eq. (65) is that the overall phase of
the operator d̂α plays no part in determining Âα

β .
Secondly, it is helpful to note that∑

α,β

Âα
iβÂ

β
jα =

∑
α,β

1

4
Q̂αβ

i Q̂βα
j +

∑
α

1

2
Ŝα

i Ŝα
j + 1

12
s2(s + 1)2.

(66)
This result will prove useful when considering the sum rules
on structure factors in Secs. IV C 2 and V B.

C. Representation of the BBQ model within a u(3) formalism

The most general form of nearest-neighbour Hamiltonian
permitted by SU(2) symmetry for a spin-1 magnet is the
bilinear-biquadratic (BBQ) model

HBBQ =
∑
〈i, j〉

[J1Ŝi · Ŝ j + J2(Ŝi · Ŝ j )
2], (67)

previously introduced in Eq. (1). This model has been stud-
ied extensively, in the context of spin-1 magnets [13,14,16–
20,52,53,56], systems of cold atoms [44–46,71–75], and as
a toy model for nematic order in Fe-based superconduc-
tors [39–43] and spin-1/2 magnets [76].

The physical nature of the interactions in the BBQ model is
most obvious once it is recast in terms of generators of SU(3),
via Eq. (33),

HBBQ =
∑
〈i, j〉

(
J1 − J2

2

)
Ŝi · Ŝ j + J2

2
Q̂i · Q̂j + 4J2

3
, (68)

a form previously introduced in Eq. (4). Here biquadratic
interactions are revealed as an interaction between on-site
quadrupoles, which are explicitly forbidden for spin-1/2 mo-
ments.

Biquadratic interactions can have a number of different
microscopic origins. In insulating magnets, high-spin mo-
ments involve electrons with more than one orbital, and
biquadratic interactions follow from the exchange of elec-
trons in different orbitals, on different sites [3]. Similarly, in
systems of cold atoms, biquadratic interactions follow from
the structure of the underlying Mott physics, which may be
bosonic [44–48,71,73,74,77] or fermionic [72,75,78,79] in
character. More generally, biquadratic interactions can also
arise as an effective interaction coming from spin-lattice cou-
pling [80], or as a consequence of integrating out quantum or
thermal fluctuations [81].
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The SU(2)-invariance of HBBQ can be read directly from
Eqs. (67) or (68). The scalar contractions Ŝi · Ŝ j and Q̂i · Q̂j
are both unchanged by rotations belong to the group O(3),
which provides twofold cover for the group SU(2). However
SU(2) is not the highest symmetry, which can be achieved,
and for the specific choice of parameters J1 = J2 = J , the
symmetry of the model is enlarged to SU(3) [14,20,56]. In
this case, the BBQ model can be rewritten

HBBQ = J

2

∑
〈i, j〉

Ti · T j + 4J

3
, (69)

where Ti is the eight-dimensional vector

Ti = (
Ŝx

i , Ŝy
i , Ŝz

i , Q̂x2−y2

i , Q̂3r2−s2

i , Q̂xy
i , Q̂xz

i , Q̂yz
i

)
, (70)

and it is possible to rotate dipole moments into quadrupoles
(or vice versa) without any cost in energy [20]. Consis-
tent with this, the high-symmetry SU(3) points define the
zero-temperature boundaries between phases with dipolar and
quadrupolar character, as illustrated in Fig. 2.

It is also possible to transcribe HBBQ in terms of genera-
tors of U(3). Starting from Eq. (68), and using Eq. (50) and
Eq. (51)—or, equivalently, Eq. (54)—we find

HBBQ =
∑
〈i, j〉

[
J1Âα

iβÂ
β
jα + (J2 − J1)Âα

iβÂα
jβ + J2Âα

iαÂ
β

jβ

]
.

(71)

Imposing the constraint on the trace of the A matrix [Eq. (56)],
this simplifies to

HBBQ =
∑
〈i, j〉

[
J1Âα

iβÂ
β
jα + (J2 − J1)Âα

iβÂα
jβ + J2

]
, (72)

where sums on repeated indices are assumed. This result was
previously introduced in Eq. (9).

The U(3) formulation of the BBQ model, Eq. (72), con-
tains terms, which transform in two different ways under spin
rotations. Using results of Sec. II B 5, we can show that the
second term,

Âα
iβÂα

jβ

is invariant under O(3) � SU(2) rotations. Meanwhile the first
term

Âα
iβÂ

β
jα

has indices α and β, which transform contravariantly on one
site, and covariantly on the other, and therefore possesses
U(3) symmetry. This is in turn broken down to SU(3) by the
constraint, Eq. (56). Thus, for general parameters, Eq. (72)
possesses SU(2) symmetry, but for J1 = J2, the second term
vanishes, and the symmetry is enlarged to SU(3). Further
details of this analysis can be found in Appendix B 1.

Crucially, once written in terms of generators of U(3),
Eq. (72), the BBQ model takes on a form quadratic in Âα

iβ ,
which treats dipole and quadrupole moments on an equal foot-
ing. This quadratic form is well suited to the development of
analytic, mean-field approaches, since it facilitates a straight-
forward decoupling of interactions [14]. And in Sec. III A
we show how it can also be used to develop classical Monte
Carlo simulations of the thermodynamic properties of spin-1

magnets, which respect the fact that the (semi-)classical limit
of a spin-1 moment is not an O(3) vector.

D. Heisenberg equations of motion within a u(3) formalism

The quadratic form of Eq. (72) also makes it well suited for
the derivation of a Heisenberg EoM for a spin-1 magnets, in
analogy with the well-known result for O(3) vectors, Eq. (21).
By explicit calculation of commutators, using Eq. (53), and
setting h̄ = 1, we find

∂tÂγ
iη = −i

[
Âγ

iη,HBBQ
]

= −i
∑

δ

[
J1
(
Âγ

iαÂα
i+δη − Âα

iηÂ
γ

i+δα

)
+ (J2 − J1)

(
Âγ

iαÂ
η

i+δα − Âα
iηÂα

i+δγ

)]
, (73)

a result previously introduced in Eq. (11).
Like the Hamiltonian it descends from, the EoM, Eq. (73),

treats dipole and quadrupole moments on a equal footing,
and is ideally suited to numerical integration, a subject we
return to in Sec. III B. But since this EoM is written in terms
of a representation of the algebra u(3), it also describes the

dynamics of the operator for the total spin Ŝ
2
. And to correctly

describe the dynamics of a spin-1 magnet, we require that

s = 1 ⇒ Tr Â = 1 (74)

throughout [cf. Eq. (56)]. Happily, the EoM for A matrices
conserves the trace of A, a fact, which follows straightfor-
wardly from Eq. (73)

∂t (Tr Âi ) = −i Tr
∑

δ

[
J1
(
Âγ

iαÂα
i+δη − Âα

iηÂ
γ

i+δα

)
+ (J2 − J1)

(
Âγ

iαÂ
η

i+δα − Âα
iηÂα

i+δγ

)]
≡ 0. (75)

The implication is that, as long as the EoM Eq. (73) is
applied to a valid A-matrix configuration, with Tr Ai ≡ 1, the
time evolution of the operators Âα

iβ will respect the constraint
on spin length. As we shall see in Sec. VIII, this remains true
for systems with interactions, which are anisotropic in spin-
space, making these EoM a powerful tool for the exploration
of the dynamics of spin-1 magnets.

III. NUMERICAL SIMULATION OF SPIN-1 MAGNETS

In Sec. II, we introduced the technical framework needed to
describe a spin-1 magnet in terms of a suitable representation
of u(3), Aα

β [Eq. (48)]. This allowed us to write both the BBQ
model, HBBQ [Eq. (72)], and its associated equation of motion
[Eq. (73)], in a simple form, bilinear in Aα

β , without making
any approximation as to its physical content.

In what follows we develop these results into a practical
scheme for the numerical simulation of spin-1 magnets, pro-
viding technical details the updates needed for both classical
Monte Carlo (MC) and (semi-)classical molecular dynamics
(MD) simulations, carried out in the space of the “A matri-
ces” Aα

β . We will refer to these approaches as “u3MC” and
“u3MD”, respectively.

We demonstrate the validity of this approach by reproduc-
ing known results for the thermodynamics of the spin-1 BBQ
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model on the triangular lattice, at the border of ferroquadrupo-
lar (FQ) and antiferromagnetic (AFM) order [54]. We also
obtain a complete finite-temperature phase diagram for this
model, previously exhibited in Fig. 3.

The detailed application of the method to the thermody-
namics and dynamics of the ferroquadrupolar (FQ) phase will
be described in Sec. VI.

A. Monte Carlo simulations within u(3) framework

1. Implementation of u3MC update

The starting point for both MC and MD simulations of
spin-1 magnets, is a product wave function written in the
space of A matrices,

|�A〉 =
N∏

i=1

|Ai〉 =
N∏

i=1

∑
αβ

Âα
i,β |β〉 ≡

N∏
i=1

|di〉, (76)

where Ai denotes the nine parameters Aα
i,β , |β〉 is the basis

of time-reversal invariant states [Eq. (36)], and |di〉 is defined
through Eq. (38). From Eq. (72), this state has an associated
(classical) energy

E [Ai] = 〈�A|HBBQ|�A〉
=

∑
〈i, j〉

∑
αβ

[
J1Aα

i,βA
β
j,α+ (J2 − J1)Aα

i,βAα
j,β + J2

]
.

(77)

By its nature, such a product wave function is unentangled,
and cannot describe quantum effects extending beyond a sin-
gle site. However it remains a semi-classical approximation in
the sense that the quantum mechanics of each spin-1 moment
is treated exactly at the level of a single site.

As can be seen from Eq. (76), the product wave function
written in terms of A matrices is exactly equivalent to one be
expressed in terms of d vectors. It follows that MC simula-
tions can equally well be carried out in the space of d vectors,
with energy [20,56]

E [di] = 〈�d|HBBQ|�d〉
=

∑
〈i, j〉

[J1|di · d j |2 + (J2 − J1)|di · d j |2 + J2].

(78)

This approach has been pursued elsewhere, under the name of
“semi-classical SU(3)” or “sSU(3)” simulation [54]. However
for MD simulations, and many analytic calculations, A matri-
ces offer a more convenient representation. It is this line we
pursue here.

The ingredient needed to convert Eqs. (76) and (77) into
a practical MC scheme, is an update capable of generating a
sequence of spin configurations {Ai} corresponding to states
drawn from a thermal ensemble. We approach this by con-
structing a Metropolis-style [82] update for a single spin-1
moment, as represented by a matrix Ai. More general cluster-
[64] or worm- [83] updates could be built along similar lines,
but will not be considered here.

We start by revisiting the expression for an individual A
matrix in terms of the director d [Eq. (65)]

Aα
β = (dα )∗ dβ, (79)

FIG. 6. Statistical independence of points generated at random
on a 5-dimensional sphere, using Eq. (81). The second moment 〈x2

m〉,
of variables xm, m = 1, ..., 6 is plotted as function of the number
of points, Ndot. In all cases 〈x2

m〉 → 1/6 (black line) as Ndot → ∞.
Statistical errors respect the central-limit theorem, and decrease as
1/

√
Ndot (dashed lines).

where

d =
⎛
⎝x1 + ix2

x3 + ix4

x5 + ix6

⎞
⎠; d∗d = |d|2 = 1. (80)

Written in this way, any matrix Aα
β can be specified in terms

of five linearly-independent variables, coming from the six
coefficients of d, x1, x2, . . . x6, and the constraint on its length.

Constructing a general update for a single spin-1 moment
therefore translates into sampling of statistically-independent,
equally-distributed points on a 5-dimensional sphere, within
a 6-dimensional space. By direct analogy with the Marsaglia
construction [84], we write

x1 = θ
1/4
2 θ

1/2
1 sin φ1, (81a)

x2 = θ
1/4
2 θ

1/2
1 cos φ1, (81b)

x3 = θ
1/4
2

√
1 − θ1 sin φ2, (81c)

x4 = θ
1/4
2

√
1 − θ1 cos φ2, (81d)

x5 =
√

1 − θ
1/2
2 sin φ3, (81e)

x6 =
√

1 − θ
1/2
2 cos φ3, (81f)

where 0 � θ1, θ2 � 1 and 0 � φ1, φ2, φ3 < 2π are param-
eters chosen at random from a uniform distribution. By
construction, |d|2 = 1, and it follows from Eq. (79) that
Tr A = 1. This ensures that all states generated remain within
the Hilbert space for a spin-1 moment [cf. Eq. (49)].

Evidence for the statistical validity of this generalised
Marsaglia approach is shown in Fig. 6. The second moment
〈x2

m〉 of each variable x1, . . . , x6 [Eq. (81)] converges to 1/6
(black line) as the number of points Ndot → ∞, implying that
xm are uncorrelated. Statistical errors respect the central-limit
theorem and decrease as 1/

√
Ndot, indicated with a dashed

line.
Equation (81) provides a valid generalization of Marsaglia

construction from an O(3) vector to a U(3) matrix, and will
form the basis for the majority of simulation results shown
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in this article. None the less, it is worth noting that this
approach is redundant, in that the matrix Aα

β can be fully
characterised using only four parameters. This fact is linked
to the structure of representations of SU(3) [68], and can be
understood directly from Eq. (79): By construction, Aα

β is
independent of the overall phase of dα , leading to a gauge-like
redundancy in the 5-dimensional parametrization, Eq. (81). It
must therefore be possible to define a Monte Carlo update,
which acts within a 4-dimensional subspace of the parameters
in Eq. (81), corresponding to the CP 2 space of the spin-1
moment.

There is no unique prescription for obtaining a 4-
dimensional update in the space of U(3) matrices. But one
very simple approach [85] is to set φ3 = π/2 in Eq. (81), so
that the z component of d is purely real, viz,

x1 = θ
1/4
2 θ

1/2
1 sin φ1, (82a)

x2 = θ
1/4
2 θ

1/2
1 cos φ1, (82b)

x3 = θ
1/4
2

√
1 − θ1 sin φ2, (82c)

x4 = θ
1/4
2

√
1 − θ1 cos φ2, (82d)

x5 =
√

1 − θ
1/2
2 , (82e)

x6 = 0, (82f)

We have confirmed that this alternative parametrization
of Aα

β produces identical results in simulations of the BBQ
model, a point which we return to below.

Irrespective of whether the update is 4- or 5-dimensional,
our Monte Carlo scheme is defined by selecting a site within
the lattice at random, and using Eq. (81) to generate a new
configuration of the A matrix at that site. Following the stan-
dard Metropolis argument [82], the new state μ is accepted if

r0 � e−β(Eμ−Eν ), (83)

where r0 is number chosen at random on the interval r0 ∈
(0, 1), β = 1

kBT (we set kB = 1), and Eν is the energy of the
initial configuration. A single MC step consists of N such
local updates, where N is the total number of sites in the
system. In addition, we use the replica-exchange method (par-
allel tempering) to reduce autocorrelation within the resulting
Markov chain [86,87]. An exchange of replicas is carried out
every 100 MC steps.

Simulations are initialized from a state with randomly
chosen A matrices, mimicking a high-temperature paramag-
net. Thermalisation is accomplished by cooling the system
adiabatically to the target temperature over 106 MC steps
(simulated annealing), followed by a further 106 MC steps
of thermalisation at that target temperature. Thermody-
namic quantities were calculated using averages over 5 × 105

statistically-independent samples.
Further insight into correlations can be gained by calculat-

ing the equal-time structure factors

Sλ(q) =
〈∑

αβ

∣∣mλ
α
β (q)

∣∣2 〉 (84)

where 〈. . .〉 represents an average over statistically-
independent states, and we consider structure factors

associated with dipole moments λ = S; quadrupole moments
λ = Q; and A matrices λ = A. Numerically, it is convenient
to work with the lattice Fourier transform of Aα

iβ ,

mA
α
β (q) = 1√

N

N∑
i

eiriqAα
iβ, (85)

which can be found by fast Fourier transform (FFT). From
this we can obtain structure factors for both dipole moments
[Eq. (50)],

mS
α
α (q) = −i

∑
β,γ

ε
α γ

β mA
β
γ (q), (86)

and quadrupole moments [Eq. (51)],

mQ
α
β

(q) = −mA
α
β (q) − mA

β
α (q) + 2

3
δαβ

∑
γ

mA
γ
γ (q), (87)

by direct substitution in Eq. (84).

2. Phase diagram and comparison with published results

As a first check on the method, we have carried out u3MC
simulations of the thermodynamic properties of spin-1 BBQ
model Eq. (67) on a triangular lattice for comparison with
published results [19,20,54]. Typical results for the heat ca-
pacity are shown in Fig. 7, for parameters J1 = 1, J2 = −1.5,
chosen to facilitate comparison with earlier paper [54]. For
these parameters, mean-field calculations find a ground state
with 3-sublattice antiferromagnetic (AFM) order, close to a
phase boundary with ferroquadrupolar (FQ) order [19,20].

Simulating in the space of A matrices [cf. Sec. III A 1], we
find two peaks in heat capacity, one at T ≈ 0.5 J1, correspond-
ing to the onset of FQ fluctuations, and one at T ≈ 0.3 J1

corresponding to the onset of AFM fluctuations. In Fig. 7
we show results obtained using both 5-dimensional [Eq. (81)]
and 4-dimensional [Eq. (82)] u3MC updates. For comparison,
we have also carried out equivalent simulations in the space
of d vectors, following the sSU(3) approach of Stoudenmire
et al. [54]. Within statistical errors, we find quantitative agree-
ment between the three different methods.

We have extended this analysis to obtain a complete finite-
temperature phase diagram for the BBQ model, previously
shown in Fig. 3. Results are shown for a cluster of linear
dimension L = 48 [N = 2304 spins]. Phase boundaries were
obtained by tracking the evolution of peaks in heat capacity as
a function of

J1 = J cos θ, J2 = J cos θ (88)

and using the equal-time structure factors SS (q) and SQ(q)
[Eq. (84)] to determine the nature of each phase. Typical re-
sults for structure factors evaluated at known ordering vectors,
for a temperature T/J = 0.01, are shown in Fig. 8.

The correlations found at low temperature exactly corre-
spond to the four known mean-field ground states [19,20],
having ferromagnetic (FM), antiferromagnetic (AFM), fer-
roquadrupolar (FQ), and antiferroquadrupolar (AFQ) order,
as illustrated in Fig. 2. As previously noted by Stoudenmire
et al. [54], FQ order occurs as a secondary-order parameter
within the coplanar AFM ground state. Consistent with this,
for θ � −π/4 the onset of FQ fluctuations occurs at a higher
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FIG. 7. Benchmark of the U(3) Monte Carlo (u3MC) method against published results for the spin-1 bilinear—biquadratic (BBQ) model
on the triangular lattice. (a) Specific heat C/N, for parameters J1 = 1, J2 = −1.5, showing double-peak structure. Results are shown for u3MC
simulations using both 5-dimensional updates [Eq. (81)]—squares, and 4-dimensional updates with φ3 = π/2 [Eq. (82)]—triangles, and for
“sSU(3)” simulations in the space of the complex vector d, following Stoudenmire et al. [54]—circles. Simulations were carried out for clusters
of size N = 1764 spins (black symbols), 3969 spins (red symbols), and 7056 spins (blue symbols). The results of the three different approaches
agree perfectly, within statistical errors. (b) Detail of peak in C/N for T ≈ 0.285.

temperature than the onset of AFM fluctuations (cf. results for
θ ≈ −0.313 π in Fig. 7).

We also find that there is a range of parameters θ ∼ π/2,
near the border between FM and AFQ phases for which the
onset of FM fluctuations occurs at a higher temperature than
the onset of AFQ fluctuations. Here no interpretation in terms
of a secondary-order parameter is possible, but once again
it is the single-sublattice phase, which dominates at higher
temperatures. We infer that the entropy of fluctuations about
the FM ground state is higher than the entropy of fluctuations
about the AFQ ground state, presumably because of the k2

dispersion of its excitations.

Perhaps the most striking feature of the phase diagram in
Fig. 3 are the “vertical” phase boundaries between dipolar and
quadrupolar phases at the two SU(3) points, shown as solid
red lines. These are consistent with the SU(3) symmetry of
the ground-state manifolds being preserved up to temperature
associated with the onset of correlations T ∗. And this in turn
raises the possibility of finding exotic topological phase tran-
sitions at T ∗, mediated by topological defects specific to the
SU(3) points [61,88]. We leave this interesting topic for future
studies.

In conclusion, our survey of correlations at finite tempera-
ture, summarised in Figs. 3 and 8, provides strong prima facie

FIG. 8. Phases occurring in the spin-1 BBQ model on a triangular lattice at finite temperature, as found in classical Monte Carlo simulation
in the space of u(3) matrices (u3MC). (a) Dipolar structure factor SS(q) [Eq. (84)], showing ferromagnetic (FM) correlations for q = �

(red circles) and 3-sublattice antiferromagnetic (AFM) correlations for q = K (blue triangles). (b) Corresponding results for the quadrupolar
structure factor SQ(q) [Eq. (84)], showing ferroquadrupolar (FQ) correlations for q = � (red circles) and 3-sublattice antiferroquadrupolar
(AFQ) correlations for q = K (blue triangles). Simulations of Eq. (1) were carried out using the u3MC method described in Sec. III A 1, at a
temperature T = 0.01 J , for cluster of linear dimension L = 48 (N = 2304 spins), with parameters given by Eq. (88). The phases found are
in direct correspondence with known results for the mean-field ground state [19,20,56], summarised in Fig. 2. In each case the temperature
associated with the onset of fluctuations corresponds to the peak found in specific heat, cf. Fig. 3.
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evidence that the u3MC approach introduced in Sec. III A 1
can describe the thermodynamic properties of spin-1 magnets.
In Sec. VI we present a more rigorous test, in the form of a de-
tailed study of the thermodynamic properties of the FQ phase
at low temperatures, where we are able to make quantitative
comparison with analytic predictions.

B. Molecular dynamics simulations within u(3) framework

Numerical integration of equations of motion provides a
powerful approach to describing the (semi-)classical dynam-
ics of quantum magnets, which can readily be combined
with classical Monte Carlo simulation, an approach, which
has been referred to as “molecular dynamics” (MD) simu-
lation [33,65,89–91]. Microscopic approaches typically start
from the Heisenberg equation of motion for an O(3) spin,
Eq. (21), and have proved surprisingly effective in describing
the dynamics of quantum magnets [33,66,92,93].

The success of the MD approach in these cases rests on
the fact that an O(3) vector provides an appropriate (semi-
)classical description of a spin-1/2 moment. However, in the
case of spin-1 magnets, O(3) vectors fail to provide an ad-
equate description, since they do not properly account for
quadrupole degrees of freedom [cf. Sec. II]. This problem
has long been understood in the context of the analytic the-
ory of nematic phases [13,14]. And in general the band-like
excitations of spin-1 magnets include both spin waves and
quadrupole waves [94]. These can be addressed analytically
through a multiple-boson expansion, also known as “flavour-
wave” theory [56].

Equation of motion approaches to the dynamics of spin-
1 magnets have also been developed in terms of spin- and
quadrupole-operators [58–60]. However these approaches are
complicated by the convoluted nature of the structure con-
stants of the algebra su(3). In contrast, the u(3) framework
established in Sec. II leads to a very compact EoM for A
matrices, Eq. (73), ideally suited to numerical integration.
And the power of these EoM are greatly enhanced by the fact
that they can be combined with the MC methods developed in
Sec. III A, providing an “u3MD” approach to spin-1 magnets,
on the same footing as the O(3) methods applied to spin-1/2
magnets.

1. Implementation of u3MD update

Our MD simulations, like the MC simulations described in
Sec. III A 1, are carried out in the basis of states defined by
products of A matrices [Eq. (76)]. We implement simulations
by using a 4th order Runge-Kutta (RK-4) algorithm [95,96]
to numerically integrate Eq. (73) for each component of
Aα

i,β , using a fixed timestep δtRK. Iterative application of RK-
integration{

Aα
i,β (t )

} �→ {
Aα

i,β (t + δtRK )
} + O

(
δt5

RK

)
(89)

generates a time series for {Aα
i,β (t )} with errors, which are

controlled by the size of δtRK. A single RK update is defined
through numerical integration of Eq. (73) for every spin in
the lattice. In order to work with a manageable set of data,
while retaining sufficient precision in numerical integration,
we store only the result of every 20th global update.

The stored data defines a time series{
Aα

β (i, tn)
}
, tn = n δt, n = 1 . . . Nt, (90)

where the size of the effective time step δt determines the
highest frequency we are able to resolve

δt = 2π

ωmax
. (91)

Meanwhile the duration of the simulation

�t = Nt δt, (92)

determines the energy resolution of results

δω = 2π

�t
, (93)

where we work in units such that h̄ = 1.
In practice, we typically work with a time series of length

Nt = 1600, (94)

with effective time step

δt ≈ 0.4 J−1. (95)

It follows that the time interval used in RK integration for an
individual spin is

δtRK ≡ δt/20 ≈ 0.02 J−1. (96)

This choice of parameters is adequate to resolve excitations
with energy up to

ωmax ≈ 16 J, (97)

twice what is needed for individual excitations of the FQ state
with parameters(

J = 1, θ = −π

2

)
⇒ (J1 = 0.0, J2 = −1.0), (98)

cf. Fig. 4. The corresponding energy resolution

δω ≈ 10−2 J, (99)

is sufficient to resolve fine structure in dynamical structure
factors, described below.

The validity of this MD approach depends on the satis-
faction of both the constraint on spin length [Eq. (56)], and
on the conservation of the total energy of the system E [Ai]
[Eq. (77)]. In Fig. 9 we show evidence that both are satisfied,
within controlled errors, for simulations of a triangular-lattice
cluster of linear dimension L = 24 (N = 2304 spins), with
model parameters Eq. (98), and time step Eq. (95), at a tem-
perature T = 0.1 J .

We consider first the constraint on spin length. As dis-
cussed in Sec. II D, as long as the initial configuration
{Âα

iβ (t = 0)} satisfies the spin-length constraint

Tr Âi ≡ 1 ∀ i ∈ (1 . . . N), (100)

[Equation (56)], its continued satisfaction is guaranteed by the
structure of the EoM, Eq. (73). From Fig. 9(a), we see that the
trace of Ai is conserved, up to numerical precision, for simu-
lations of duration Nt = 5000. This confirms that simulations
of any feasible duration, continue to describe spin-1 moments.

We now turn to the conservation of energy. RK integration
is not a symplectic (energy-conserving) method. However the
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FIG. 9. Evidence of stability of numerical integration of equations of motion. (a) Time dependence of Tr A [Eq. (56)], showing conserva-
tion of spin to numerical precision. (b) Time dependence of energy E = 〈HBBQ〉, showing conservation to the level expected for a fourth-order
Runge-Kutta (RK-4) algorithm. Simulations were carried out for the spin-1 bilinear-biquadratic model [Eq. (72)], on a triangular-lattice cluster
with linear dimension L = 24 (N = 2304 spins), for parameters J1 = 0, J2 = −1, at a temperature T = 0.1 J , using the equation of motion
Eq. (73), with a time step δt = 0.4 J−1.

rate at which error accumulates depends on the size of the
RK time step δtRK. And, by making δtRK sufficiently small,
errors in energy can be kept bounded. From Fig. 9(b), we see
that the error in energy, which accumulates over simulations
of duration Nt = 5000 is ≈0.03 J . This implies that one “MD
step”, i.e., a single sweep of the entire lattice using an RK-4 al-
gorithm, introduces an error in total energy of order ∼10−6 J .
This is sufficiently small to ensure adequate conservation of
energy for simulations of practical duration, i.e., Nt = 1600,
�t ≈ 1600 × δt = 640 J−1.

2. Calculation of dynamical structure factors

We can analyze the time series {Aα
β (i, tn)} by directly

animating the evolution of spin configurations [97], or by
calculating dynamical structure factors of the form

Sλ(q, tn) =
〈∑

αβ

(
mλ

α
β (q, tn)

)∗
mλ

α
β (q, 0)

〉
, (101)

with λ = S,Q,A [cf. Eq. (84)]. The dynamical structure fac-
tor for A matrices is defined through

mA
α
β (q, tn) = 1√

N

N∑
i=1

eiriqAα
iβ (tn), (102)

[cf. Eq. (85)], and equivalent structure factors for dipole–
mS

α
α (q, t ) and quadrupole moments mQ

α
β

(q, t ), can be defined
by extension of Eqs. (86) and (87).

For purposes of comparison with experiment, it is usually
more convenient to work with the Fourier transform

Sλ(q, ωm) = 1√
Nt

Nt∑
n=1

eiωntn Sλ(q, tn), (103)

where ωm, like q, takes on discrete values

ωm = m δω, m = 0 . . . Nt − 1. (104)

To avoid numerical artifacts (Gibbs phenomenon) coming
from discontinuities at t = 0 and t = �t [98], we multiply
the time series entering Eq. (103) by a Gaussian envelope
centered on tn = �t/2. In practice, we evaluate the dynamical

structure factor as

Sλ(q, ωm) =
〈∑

αβ

∣∣mλ
α
β (q, ωm)

∣∣2〉, (105)

where

mλ
α
β (q, ωm) = 1√

Nt

Nt∑
n=1

eiωmtn
√

g(tn) mλ
α
β (q, tn), (106)

is found by fast Fourier transform (FFT) [95]. The Gaussian
envelope is implemented through the function

g(tn) = δt

δωn

σ√
2π

e− σ2

2 (tn−�t/2)2
, (107)

and absorbs a dimensional factor δt/δω associated with in-
tegrals. The value of σ is chosen such that the full-width half
maximum (FWHM) of g(tn) is ≈�t . Introducing this envelope
in time is equivalent to convoluting Sλ(q, ω) with a Gaussian
in frequency space, with

FWHM = 2
√

2 ln 2 × σ, (108)

approximately equal to δω. This determines the ultimate en-
ergy resolution of results. Structure factors calculated in this
way are averaged over 500 independent time series, each
determined by a separate initial state drawn from classical MC
simulation.

An example of a dynamical structure factor calculated us-
ing the u3MD approach has been presented in Fig. 4, where
results are shown for the FQ phase of the BBQ model on the
triangular lattice.

It is important to note that the EoM, Eq. (73), are in-
variant under time-reversal symmetry. Solutions to these
equations therefore occur in pairs, with positive and negative
eigenvalues

ω = ±εk. (109)

Both positive and negative energy solutions play a role in
experimental response functions, reflecting the absorption and
emission of energy by the system. And numerical integra-
tion of EoM will generally recover both solutions with equal
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weight, leading to structure factors, which are even functions
of frequency

SMD
λ (q, ω) = SMD

λ (q,−ω). (110)

Nonetheless, in Fig. 4, and elsewhere in this Article, we con-
centrate on solutions at positive energy, ω > 0, since these
are the most relevant for the low-temperature properties of
quantum magnets.

In Secs. VI and VII we delve deeper into u3MD results,
and their connection with the analytic theory of the excitations
about a FQ ground state. But before doing so, we first develop
the analytic theory necessary to understand simulation.

IV. CLASSICAL THEORY OF FLUCTUATIONS ABOUT A
FERROQUADRUPOLAR GROUND STATE

In this section we use the u(3) formalism introduced in
Sec. II to develop a classical theory of fluctuations about
a ferroquadrupolar (FQ) ground state. This will serve as a
benchmark for the classical MC simulations presented in
Sec. VI, and as the starting point for an analysis of quantum-
classical correspondence in Sec. VII.

We chose to work with FQ order, since this is simplest of
the nontrivial phases found in the BBQ model. Mean-field
(MF) calculations for the spin-1 BBQ model on a triangular
lattice [19,20] predict a FQ ground state for a broad range
of parameters (Fig. 2), and its existence has since been con-
firmed using exact diagonalisation [19], QMC [52,53] and
tensor-network approaches [99]. The dynamics of this state
have also been explored through both “flavour wave” the-
ory [13,19,56,100] and QMC simulation [53]. This makes FQ
order a convenient point of reference, with many published
results available for comparison. A classical theory of its low-
temperature properties, however, is lacking.

We first show how small fluctuations about FQ order
can be described using four of the nine generators of U(3)
(Sec. IV A). This leads naturally to a low-temperature expan-
sion scheme for the classical thermodynamic properties of FQ
order (Sec. IV B). This theory is used to make explicit predic-
tions for the classical thermodynamic properties (Sec. IV B)
of FQ order, for later comparison with simulation.

A. Expansion of small fluctuations

Our starting point is the FQ ground state found in
mean-field calculations; a product wave function of on-site
quadrupolar moments with a common orientation

|�0〉MF
FQ =

N∏
i=1

∣∣dFQ
i

〉
, (111)

where |di〉 is defined through Eq. (38). For concreteness, we
assume the director to be along the y axis for all lattice sites,
i.e.,

∣∣dFQ
i

〉 = |y〉 or equivalently dFQ =
⎛
⎝0

1
0

⎞
⎠. (112)

This state is illustrated in Fig. 10. Once corrections to mean-
field theory are taken into account, this product state will be
dressed with thermal and/or quantum fluctuations, reducing

FIG. 10. Ferroquadrupolar (FQ) ground state of a spin-1 magnet
on a triangular lattice. Each magnetic moment has been plotted in the
state |y〉, or equivalently in director representation dx = 0, dy = 1,
dz = 0, in Eq. (38). The corresponding spin probability distribution
[Eq. (A3)] is shown in grayish blue, and the associated director in
red.

the expectation value of the quadrupolar order parameter. We
now derive a framework for describing these fluctuations in
terms of generators belonging to the Lie algebra u(3).

The first step of our analysis is to transcribe the MF ground
state, Eq. (111), in terms of A matrices. Using Eq. (47), we
represent the ground state as

〈
dFQ

i

∣∣A∣∣dFQ
i

〉 = A0 =
⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠. (113)

This in turn forms the basis for a product state

|�0〉MF
FQ =

N∏
i=1

|A0〉, (114)

in the space of A matrices.
Within a Lie algebra, local fluctuations about any state |ψ0〉

can be written

|ψ〉 = R̂( �φ)|ψ0〉, (115)

where the operator R̂( �φ) has the form

R̂( �φ) = e−i
∑

p φpĜp, (116)

and Gp are elements of the algebra, with φp ∈ R. In the case
of u(3), a suitable set of generators Ĝp (p = 1, 2, . . . , 9) are
the matrices Âα

β [Eq. (52)], and we can write

R̂( �φ) = e−i
∑

αβ φα,βÂα
β , (117)
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FIG. 11. Effect of the four operators generating fluctuations
about the ferroquadrupolar (FQ) ground state |y〉. The generators Â1

2

(acting on the right) and Â2
1 (acting on the left) introduce a complex

component of the director d, parallel to the x axis. This has the
effect of rotating the quadrupole moment about the z axis, while
simultaneously inducing a dipole moment along the z axis [Eq. (46)].
Meanwhile the generators Â2

3 and Â3
2 rotate the quadrupole about the

x axis, and induce a dipole moment along the same axis. The effect
of each generator is computed according to Eq. (115), for a rotation
through an angle of φ = π

8 . The red bar represents the real part u
of the coefficients dα [Eq. (40)] in Eq. (38), while the orange bar
represents the imaginary part v.

where α, β = 1, 2, 3. Under this operation, A matrices trans-
form as

A( �φ) = R̂( �φ)AR̂( �φ)†. (118)

as determined by Eq. (61) [cf. Appendix B].

If we assume fluctuations to be small, i.e., φα,β � 1, we
can expand the exponential in Eq. (117)

R̂( �φ) � I + i
∑
αβ

φα,βÂα
β + · · · . (119)

Considering the action of this operator on the FQ ground state,
as characterised by the matrix A0 [Eq. (114)], the only Âα

β that

will give a nonzero result are Â1
2, Â3

2 on the left, Â2
1, Â2

3 on the
right, and Â2

2, which preserves the ground state. Consequently,
if we wish to describe fluctuations about the ground state,
we need only keep four generators Â1

2, Â3
2, Â2

1, Â2
3. We can

think of these operators as performing rotations in the space
of A matrices or, equivalently, of d vectors [20]. Their effect
is illustrated in Fig. 11.

Restricting Eq. (119) to the four relevant generators, and
retaining all terms to order φ2, we arrive at a general ex-
pression for infinitesimal fluctuations about the FQ ground
state

R̂( �φ) =

⎛
⎜⎝

1 iφ1,2 0

0 1 − 1
2φ1,2φ2,1 − 1

2φ2,3φ3,2 0

0 iφ3,2 1

⎞
⎟⎠, (120)

where R̂( �φ)† is the transpose of Eq. (120), with the small
subtlety that φ1,2† = φ2,1.

Substituting Eq. (120) into Eq. (118), we find

Â( �φ) = R̂( �φ)A0R̂( �φ)†

=

⎛
⎜⎝

φ1,2φ2,1 iφ1,2 φ1,2φ2,3

−iφ2,1 1 − φ1,2φ2,1 − φ2,3φ3,2 −iφ2,3

φ2,1φ3,2 iφ3,2 φ2,3φ3,2

⎞
⎟⎠.

(121)

Crucially, Eq. (121) satisfies the constraint Tr A = 1
[Eq. (49)], implying that the spin length is conserved.

The effect of the four generators Â1
2, Â3

2, Â2
1, Â2

3 on the
state |y〉 can now be quantified directly. Substituting Eq. (121)
in Eq. (51), and keeping terms to O(φ2), we find

Q̂( �φ) =
⎛
⎝ 2

3 − 2φ1,2φ2,1 i(φ2,1 − φ1,2) −φ1,2φ2,3 − φ2,1φ3,2

i(φ2,1 − φ1,2) − 4
3 + 2φ1,2φ2,1 + 2φ2,3φ3,2 i(φ2,3 − φ3,2)

−φ1,2φ2,3 − φ2,1φ3,2 i(φ2,3 − φ3,2) 2
3 − 2φ2,3φ3,2

⎞
⎠. (122)

Similarly, from Eq. (50), to O(φ2) we find

Ŝ( �φ) =
⎛
⎝ −φ2,3 − φ3,2

i(φ1,2φ2,3 − φ2,1φ3,2)
φ1,2 + φ2,1

⎞
⎠. (123)

From these results we understand that fluctuations intro-
duce a small imaginary part to the director d, parallel to either
the x or the z axis. This leads to a rotation of the quadrupole
moment about either the z or the x axis, and simultaneously
introduces a dipole moment along that axis of rotation. These
changes are clearly visible in Fig. 11, where the orientation of
the quadrupole moment is shown as a red bar. Meanwhile, the
dipole moment induced by each fluctuation is indicated with

a blue arrow, and is also visible as a (small) distortion of the
spin-probability distribution.

We are now in a position to derive a Hamiltonian describ-
ing fluctuations about FQ order. Substituting Eq. (121) in
Eq. (72), we find

H′
BBQ = E0 + 1

2

∑
k

[ �φT
k Mk �φ−k

] + O(φ4), (124)

where the energy of the MF ground state is

E0 = NzJ2, (125)
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and fluctuations are described by

�φk =

⎛
⎜⎜⎜⎜⎝

φ2,1
k

φ1,2
k

φ3,2
k

φ2,3
k

⎞
⎟⎟⎟⎟⎠ = 1√

N

∑
i

⎛
⎜⎜⎜⎝

eik·riφ2,1
ri

eik·riφ1,2
ri

eik·riφ3,2
ri

eik·riφ2,3
ri

⎞
⎟⎟⎟⎠, (126)

with energy determined by a matrix

Mk =

⎛
⎜⎝

Ak −Bk 0 0
−Bk Ak 0 0

0 0 Ak −Bk
0 0 −Bk Ak

⎞
⎟⎠, (127)

for which

Ak = z(J1γ (k) − J2), (128a)

Bk = zγ (k)(J2 − J1), (128b)

with lattice structure factor

γ (k) = 1

z

∑
δ

e−ik·δ. (129)

For the triangular lattice, the lattice coordination number z =
6, and the vectors, which connect neighboring lattice sites
{δ}, are listed in Appendix C. We note also that the transpose
vector for the fluctuations has the property

φ
T μ,ν

k = φ
ν,μ

k . (130)

This implies

�φT
k = (

φ1,2
k , φ2,1

k , φ2,3
k , φ3,2

k

)
. (131)

The Hamiltonian H′
BBQ [Eq. (124)] describes all possible

fluctuations about FQ order at a Gaussian (i.e., noninteracting)
level, and can be used as a starting point for both classical
and quantum theories of its excitations. The absence of terms
linear in φ in Eq. (124) confirms that the MF ground state,
Eq. (114), minimises energy, and is therefore a valid starting
point for describing FQ order.

B. Classical low-temperature expansion

We now use the results of Sec. IV A to develop a classical
theory of thermal fluctuations about FQ order at low temper-
ature. From this we can calculate thermodynamic quantities
in a form suitable for comparison with classical Monte Carlo
simulation. Results will be quoted to linear order in T (i.e.,
quadratic in fluctuations).

1. Expression for free energy

Within the framework of Sec. IV A, fluctuations about FQ
order can be described by the partition function

Z0 =
∫

d �φk e−βH′
BBQ[ �φk], (132)

where the measure of integration is

d �φk = dφ1,2
k dφ2,1

k dφ2,3
k dφ3,2

k , (133)

the inverse temperature

β = 1

kBT
, (134)

and H′
BBQ[ �φk] is defined through Eq. (124). Neglecting O(φ4)

terms, we find

Z0 =
N∏
k

∫
e−β 1

2
�φT

k Mk �φ−k e−β
E0
N d �φk (135a)

= e−βE0

N∏
k

[√
(2π )n

βn det Mk

]
, (135b)

where E0 is defined through Eq. (125), the 4 × 4 matrix Mk
through Eq. (127), N is the number of lattice sites, and n is the
dimension of Mk (in this case, n = 4). It follows that the free
energy per site is

f0 = − ln(Z0)

βN

= E0

N
+ kBT

2N

∑
k

Nλ∑
λ=1

ln

(
ωk,λ

2πkBT

)
+ O(T 2), (136)

where ωk,λ are the eigenvalues of Mk, and we have used the
fact that

ln[det Mk] = Tr ln Mk =
4∑

λ=1

ln ωk,λ. (137)

The free energy, Eq. (136), represents the first term in a
classical low-temperature expansion of the thermodynamic
properties of the BBQ model. To O(T ), these are completely
conditioned by the solutions of the eigensystem

Mkvk,λ = ωk,λvk,λ. (138)

Working in the basis{
φ2,1

k , φ1,2
k , φ3,2

k , φ2,3
k

}
, (139)

we find the eigenvalues

ω+
k = ωk,1 = ωk,3 = Ak + Bk, (140a)

ω−
k = ωk,2 = ωk,4 = Ak − Bk, (140b)

with associated eigenvectors

v1 = 1√
2

⎛
⎜⎝

−1
1
0
0

⎞
⎟⎠, v2 = 1√

2

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠,

v3 = 1√
2

⎛
⎜⎝

0
0

−1
1

⎞
⎟⎠, v4 = 1√

2

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠. (141)

For quadrupolar order ∼|y〉, v1 and v2 are associated with
rotations of quadrupole moments about the z axis, while v3
and v4 are associated with rotations about the x axis [cf.
Fig. 11].

By construction, to O(φ2), the Hamiltonian H′
BBQ is diag-

onal in the basis

�vT
k = (vk,1, vk,2, vk,3, vk,4), (142)
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and can be written

H′
BBQ = E0 + 1

2

∑
k

�vT
k M̃k�v−k + O(�v4)

= E0 + 1

2

∑
k

4∑
λ=1

ωk,λv
T
k,λv−k,λ + O(�v4), (143)

where

M̃k = OT MkO =

⎛
⎜⎝

ωk,1 0 0 0
0 ωk,2 0 0
0 0 ωk,3 0
0 0 0 ωk,4

⎞
⎟⎠. (144)

and the orthogonal transformation O is defined by⎛
⎜⎜⎝

φ2,1

φ1,2

φ3,2

φ2,3

⎞
⎟⎟⎠ = O

⎛
⎜⎝

v1

v2

v3

v4

⎞
⎟⎠ where O = 1√

2

⎛
⎜⎝

−1 1 0 0
1 1 0 0
0 0 −1 1
0 0 1 1

⎞
⎟⎠.

(145)

Of necessity, eigenmodes form an orthonormal set

vT
k,λv−k,λ′ = δλλ′ . (146)

This coordinate system will prove useful in the subsequent
calculation of correlation functions and ordered moments,
described below.

C. Calculation of thermodynamic quantities

Starting from the free energy f0 [Eq. (136)], it is possible
to calculate all thermodynamic properties of the FQ state as
the leading term in a perturbative expansion about T = 0.
This can be accomplished by taking appropriate (functional)
derivatives of the free energy.

1. Heat capacity

The simplest thermodynamic property we can consider is
the specific heat

cv = Cv

N
= −T

(
∂2 f0

∂T 2

)
V

. (147)

In the limit T → 0, this is controlled by the classical limit of
the equipartition theorem, which implies that each quadratic
mode contributes kB/2 to cv (T → 0) [89,101,102]. In the
present case

cv = −T
−kBNλ

2T
= kB

Nλ

2
, (148)

where

Nλ = 4, (149)

counts the number of normal modes accessible per spin-1
moment [cf. Fig. 11]. It follows that, in the limit T → 0,

cv → 2 [u(3) matrix], (150)

where, for simplicity, we set

kB = 1. (151)

This should be contrasted with the usual result for classical
fluctuations about an ordered state composed of O(3) vectors:
Here, at the level of a single spin, only two orthogonal fluctu-

ations are possible, and so Nλ = 2 [89,101,102]:

cv → 1 [O(3) vector]. (152)

The zero-temperature limit of specific heat will prove im-
portant in the interpretation of the results of Monte Carlo
simulation, as discussed in Sec. VI.

2. Structure factors: General considerations

We now turn to the calculation of the structure factors
associated with dipole moments, quadrupole moments, and A
matrices. To facilitate this, it will prove useful to introduce
source terms

H = HBBQ + �H
[
hα

i,β

]
, (153)

where

�H
[
hα

i,β

] = −
∑
i,α

hα
i,βÔα

i,β , (154)

describes the coupling of a fictitious field hα
i,β to the observ-

able

Ôα
i,β → Ŝα

i δαβ, Q̂αβ
i , Âα

iβ. (155)

Calculations proceed by expanding the observable Ôα
i,β

in terms of the orthogonal eigenmodes vk,λ [Eq. (145)],
and calculating thermodynamic averages through functional
derivatives of the free energy [Eq. (136)] with respect to hα

i,β .
Details of these calculations, which involve contributions

from both the ground state and thermal excitations, are given
in Appendix D. Where we come to compare with a quantum
theory in Sec. V, it will also prove useful to introduce a
spectral decomposition of the structure factors, which resolves
contributions from eigenmodes at different energies. These
are defined in Eq. (D20).

In what follows, we list the results needed for subsequent
comparison with numerics in Sec. VI.

3. Structure factor for dipole moments

We first consider the structure factor for dipole moments of
spin

SCL
S (q) =

∑
α

〈
Ŝα

q Ŝα
−q

〉
. (156)

Within the classical low-temperature expansion, we find

SCL
S (q) = 4

β

1

ω−
q

+ O(T 2), (157)

where ω±
q are defined through Eq. (140). Because the FQ

phase does not break time-reversal symmetry, all ground-state
averages of dipole moments vanish. None the less, fluctua-
tions restore a finite value of SCL

S (q) at finite temperature. The
absence of terms in ω+

q reflects the fact that only the “odd”
modes λ = 2, 4 contribute to dipolar fluctuations.

The spectral decomposition of the structure factor,
Eq. (157), is given by

SCL
S (q, ω) = 4

β

1

ω−
q

δ(ω − ω−
q ) + O(T 2). (158)

This is plotted in Fig. 12(a), for parameters

J1 = 0.0, J2 = −1.0, (159)
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FIG. 12. Comparison of band-like excitations found in classical and quantum theories of fluctuations about a ferroquadrupolar (FQ) ground
state. (a) Spectral representation of structure factor associated with dipole moments SCL

S (q, ω) [Eq. (158)], within classical low-temperature
expansion of Sec. IV, at a notional temperature T = J . (b) Equivalent results for quadrupole moments SCL

Q (q, ω) [Eq. (163)]. (c) Equivalent
results for A matrices SCL

A (q, ω) [Eq. (166)]. (d) Dynamical structure factor associated with dipole moments SQM
S (q, ω) [Eq. (193)], within

T = 0 quantum theory. (e) Equivalent results for quadrupole moments SQM
Q (q, ω) [Eq. (201)]. (f) Equivalent results for A matrices SQM

A (q, ω)
[Eq. (208)]. Comparing classical and quantum results, we see that the dispersion found in the quantum case is the geometric mean of the two
different dispersions found for dipolar and quadrupolar excitations in the classical case. All results are shown for parameters Eq. (159), and
have been convoluted with Gaussian of FWHM 0.35 J. Bragg peaks have been omitted for simplicity. Details of the quantum theory are given
in Sec. V.

consistent with a FQ ground state, at a notional temperature
T/J = 1. Within the classical theory, excitations with a dipo-
lar character form a gapped, dispersing band, with spectral
weight concentrated at q = K.

Further details of these calculations can be found in
Appendix D 2 [q 
= 0] and Appendix D 3 [q = 0].

4. Structure factor for quadrupole moments

Next we consider the structure factor for quadrupole mo-
ments

SCL
Q (q) =

∑
αβ

〈
Q̂αβ

q Q̂βα
−q

〉
, (160)

where the scalar contraction accomplished by the sum on α,
β respects SU(2) symmetry. We obtain

SCL
Q (q) = 8

β

1

ω+
q

(1 − δq,0) + 8

3

[
N − �

β

]
δq,0 + O(T 2),

(161)
where

� = 3
∑
k 
=0

[
1

ω+
k

+ 1

ω−
k

]
+ 1

ω−
q

. (162)

The structure factor for quadrupole moments is sensitive to
the FQ ground state, and the term �/β describes corrections
to ground-state averages for T > 0. The absence of terms in
ω−

q for q 
= 0 reflects the fact that only the “even” modes
λ = 1, 3 contribute to quadrupolar fluctuations. However all
four modes, λ = 1, 2, 3, 4, contribute to the reduction of the
ordered moment, through Eq. (162).

The spectral decomposition of the structure factor,
Eq. (161), is given by

SCL
Q (q, ω) = 8

β

1

ω+
q

(1 − δq,0)δ(ω − ω+
q )

+ 8

3

[
N − �

β

]
δq,0δ(ω) + O(T 2). (163)

This is illustrated in Fig. 12(b), where the Bragg peak at
q = � has been suppressed for simplicity. Within a classi-
cal theory, excitations with a quadrupolar character form a
gapless dispersing band, with spectral weight concentrated at
q = 0.

Further details of these calculations are given in Ap-
pendix D 4 [q 
= 0] and Appendix D 5 [q = 0].

5. Structure factor for A matrix

We now turn to the structure factor for the most fundamen-
tal object describing the spins, the matrix Âα

β . This is defined
by

SCL
A (q) =

∑
αβ

〈
Âα

qβÂ
β
−qα

〉
, (164)

where the scalar contraction accomplished through the sum on
α, β preserves the full U(3) symmetry of the representation.
To leading order in T , we find

SCL
A (q) = 2

β

1

ω−
q

+ 2

β

1

ω+
q

(1 − δq,0)

+
[

N − 2

3

�

β

]
δq,0 + O(T 2). (165)
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This structure factor encompasses both dipoles and
quadrupoles, and so is sensitive to FQ ground-state order. All
four modes ω±

q contribute to fluctuation terms for q 
= 0.
The spectral decomposition of the structure factor,

Eq. (165), is given by

SCL
A (q, ω) = 2

β

1

ω−
q

δ(ω − ω−
q ) + 2

β

1

ω+
q

(1 − δq,0)δ(ω − ω+
q )

+
[

1 − 2

3

�

β

]
δq,0 δ(ω) + O(T 2). (166)

This is illustrated in Fig. 12(c), where the Bragg peak at
q = � has been suppressed for simplicity. Both dipolar and
quadrupolar fluctuations are visible as independent, dispers-
ing, bands in SCL

A (q, ω).
Further details of these calculations can be found in Ap-

pendix D 6 and [q 
= 0] Appendix D 7 [q = 0].

6. Sum rule for structure factors

The sum rule associated with A matrices, Eq. (66), implies
that the structure factors SCL

S (q), SCL
Q (q), and SCL

A (q), must
also satisfy a sum rule. By Fourier transform of Eq. (66), we
find

Âα
kβÂ

β

−kα
= 1

4
Q̂αβ

k Q̂βα

−k+
∑

α

1

2
Ŝα

k Ŝα
−k + 1

12
s2(s + 1)2Nδk,0.

(167)

It follows that

SCL
A (q) = 1

4 SCL
Q (q) + 1

2 SCL
S (q) + 1

3 Nδq,0. (168)

By direct substitution of Eqs. (165), (157), and (161), it is easy
to see that the results of the low-temperature expansion satisfy
the sum rule Eq. (168).

7. Ordered moments

Finally, we consider the quadrupole moment, which char-
acterises the FQ state, 〈Q〉. This is most easily calculated
through the associated equal-time structure factor

〈Q〉2 = SCL
Q (q = �)

N
, (169)

where N denotes the number of lattice sites. From Eq. (161),
we find

〈Q〉2 � 8

3
− 8

Nβ

∑
k 
=0

[
1

ω+
k

+ 1

ω−
k

]
+ O(T 2). (170)

This is the result used for comparison with MC simulation in
Sec. VI B.

V. QUANTUM THEORY OF FLUCTUATIONS ABOUT A
FERROQUADRUPOLAR GROUND STATE

We now construct a quantum theory of fluctuations about
FQ order, starting from the u(3) formalism introduced in
Sec. II. First we show how quantization of the fluctuations
introduced in Sec. IV A leads to a multiple-boson expansion
exactly equivalent to published “flavour-wave” theory [19].
As with the classical theory of Sec. IV B, we treat fluctuations
at a Gaussian level (i.e., one quadratic in bosons). In Sec. V B

we go on to provide explicit results for the dynamical structure
factors associated with spin-dipole and quadrupole moments,
and with the A matrix describing fluctuations.

A. Quantization of fluctuations

In Sec. IV A we have shown that fluctuations about FQ
order can be fully described using four generators Â1

2, Â3
2,

Â2
1, Â2

3, which naturally form conjugate pairs (Fig. 11). It
follows that fluctuations can be parameterized through two
pairs of real fields (φ1,2, φ2,1), and (φ2,3, φ3,2). Once quantum
dynamics are taken into account, low-energy fluctuations must
take the form of “quadrupole waves”, which are the Goldstone
modes of FQ order. These carry integer spin, and will be
bosons. And since each boson must be described by a complex
field, we anticipate that the pairs of fields (φ1,2, φ2,1), and
(φ2,3, φ3,2) will combine to give a total of two bosonic degrees
of freedom per site.

With these expectations in mind, we quantize fluctuations
of each pair of fields through the bosonic commutation rela-
tions [

φ2,1
i , φ1,2

j

] = δi j, (171a)[
φ2,3

i , φ3,2
j

] = δi j . (171b)

We can now associate each field φα,β with a creation or anni-
hilation operator

φ1,2
i = (

φ2,1
i

)† = −iâ†
i , (172a)

φ2,3
i = (

φ3,2
i

)† = ib̂i. (172b)

In this basis, a general fluctuation about a state |yi〉 [Eq. (114)],
can be written as

Âi =

⎛
⎜⎝

â†
i âi â†

i â†
i b̂i

âi 1 − â†
i âi − b̂†

i b̂i b̂i

b̂†
i âi b̂†

i b̂†
i b̂i

⎞
⎟⎠, (173)

cf. Eq. (121). To quadratic order in bosons, the BBQ model,
Eq. (72) , then reads

H′
BBQ = E0 + 1

2

∑
k

[ŵ†
kMkŵk] + O( �w4), (174)

where

ŵ†
k = (â†

k, â−k, b̂†
k, b̂−k ), ŵk =

⎛
⎜⎜⎜⎝

âk

â†
−k

b̂k

b̂†
−k

⎞
⎟⎟⎟⎠, (175)

with ground-state energy E0 [Eq. (125)], and fluctuations con-
ditioned by the same matrix Mk [Eq. (127)] as appears in the
classical theory [Eq. (124)].

From the bosonic commutation relations [Eq. (172)], it
follows that [

ŵkα, ŵ†β
q

] = γ0
β
αδk,q, (176)
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where

γ0 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠. (177)

The excitations described by these operators form bands,
whose dispersion can be found by solving the eigensystem

γ0Mkuk,λ = εk,λuk,λλ = 1, 2, 3, 4, (178)

with eigenvectors uλ,k, and associated eigenvalues εk,λ. This
is equivalent to diagonalising the matrix

γ0Mk =

⎛
⎜⎝

Ak −Bk 0 0
Bk −Ak 0 0
0 0 Ak −Bk
0 0 Bk −Ak

⎞
⎟⎠, (179)

where Ak, Bk are defined through Eq. (128). This is a task,
which can, if necessary, be performed numerically. But in the
present case, closed-form analytic solution is possible, and
we find

εk,1 = −εk,2 = εk,3 = −εk,4 = +
√

A2
k − B2

k. (180)

Of these, only the two solutions with positive energy, εk,1 and
εk,3, correspond to physical modes of the system, and so we
have a total of two bosonic modes per site, as anticipated.
Further details of this calculation are given in Appendix E.

The solution of the quantum eigensystem, Eq. (178), is
equivalent to performing generalised Bogoliubov transforma-
tion between the original set of bosons, [Eq. (172)], and a new
set of bosonic operators

[α̂k, α̂
†
k′ ] = [β̂k, β̂

†
k′ ] = δkk′ , (181)

which diagonalize the Hamiltonian. These are defined through

ŵ†
k = 1√

�2
k − B2

k

⎛
⎜⎝

�k −Bk 0 0
−Bk �k 0 0

0 0 �k −Bk
0 0 −Bk �k

⎞
⎟⎠û†

k, (182)

where

ŵ†
k =

⎛
⎜⎜⎝

âk

â†
−k
b̂k

b̂†
−k

⎞
⎟⎟⎠; û†

k =

⎛
⎜⎜⎝

α̂k

α̂
†
−k
β̂k

β̂
†
−k

⎞
⎟⎟⎠;

�k = Ak +
√

A2
k − B2

k. (183)

In this new basis, the Hamiltonian can be written as

H′
BBQ = E0 + �E0 +

∑
k

ε(k)[α̂†
kα̂k + β̂

†
kβ̂k]

+ [higher order terms], (184)

where

ε(k) =
√

A2
k − B2

k, (185)

and

�E0 =
∑

k

Ak + ε(k), (186)

represents the contribution to the ground-state energy coming
from the zero-point fluctuations, and E0 is the ground-state
energy given in Eq. (125). Written in this form, the result is
exactly equivalent to that found in an earlier, linear “flavour
wave” treatment of FQ order [19], obtained through conden-
sation of Schwinger bosons [56].

B. Dynamical structure factors within zero-temperature
quantum theory

From this starting point, it is a straightforward, if involved,
exercise to calculate the dynamical structure factors, which
characterize the excitations of FQ order. These have the form

SQM
O (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑
α,β

〈
Ôα

q,β (t )Ôβ
−q,α (0)

〉
. (187)

where

Ôα
q,β = 1√

N
Ôα

i,βeiqri , (188)

and the operator Ôα
β can reflect fluctuations of dipole moments

Ŝμ; quadrupole moments Q̂μν ; or the underlying representa-
tion of u(3), Âμ

ν .
We evaluate dynamical structure factors at finite energy

(ω > 0) through the explicit calculation of matrix elements
within a multiple-boson expansion. The structure of these cal-
culations is described in Appendix F 1. Static structure factors
(ω = 0) can also be calculated through functional derivatives
of the ground-state energy, in analogy with Sec. IV C. Details
of this approach are given in Appendix F 5.

Below, we sketch key results at T = 0, which are needed
for subsequent comparison with numerics (Sec. VI), and the
exploration of the relationship between quantum and classical
results (Sec. VII).

1. Dynamical spin structure factor

We consider first the dynamical spin structure factor

SQM
S (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑
μ

〈
Ŝμ

q (t )Ŝμ
−q(0)

〉
. (189)

Substituting Eq. (173) in the expression for spin operators,
Eq. (50), and keeping terms to linear order, we find

Ŝx
i � i(b̂†

i − b̂i ), (190a)

Ŝy
i � 0, (190b)

Ŝz
i � −i(â†

i − âi ). (190c)

Performing a Fourier transform and using the Bogoliubov
transformation Eq. (182), we can express these as

Ŝx
q � iξS(q)(β̂†

−q − β̂q), (191a)

Ŝy
q � 0, (191b)

Ŝz
q � −iξS(q)(α̂†

−q − α̂q), (191c)

where ξS(q) is the coherence factor

ξS(q) = �q + Bq√
�2

q − B2
q

. (192)
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From this starting point we can connect SQM
S (q, ω) directly

with the multiple-boson expansion of Sec. V A.
Since FQ order does not break time-reversal symmetry,

static averages of dipole moments vanish, and all contribu-
tions to SQM

S (q, ω) come from excitations. Evaluating these,
we find

SQM
S (q, ω) = 2

√
Aq + Bq√
Aq − Bq

δ(ω − ωq), (193)

leading to an equal-time structure factor

SQM
S (q) =

∫
dω SQM

S (q, ω) = 2

√
Aq + Bq√
Aq − Bq

. (194)

Using Eqs. (185), (183), and (192) we can show that

ξ 2
S(q) =

√
Aq + Bq√
Aq − Bq

, (195)

and write Eq. (194) as

SQM
S (q) = 2ξ 2

S(q). (196)

This is a fact we will return to in Sec. VII A.

Further details of calculation of SQM
S (q, ω) are given in

Appendix F 2 for q 
= 0, and in Appendix F 6 for q = 0.

2. Dynamical quadrupole structure factor

We now consider the dynamical structure factor associated
with quadrupole moments

SQM
Q (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑
μν

〈
Q̂μν

q (t )Q̂μν
−q(0)

〉
. (197)

Following the same steps as for the spin-structure factor, start-
ing from Eq. (51), we find

Q̂i
∼=

⎛
⎜⎜⎜⎝

2
3 −â†

i − âi 0

−â†
i − âi − 4

3 −b̂†
i − b̂i

0 −b̂†
i − b̂i

2
3

⎞
⎟⎟⎟⎠. (198)

After Fourier transform, and transcription into the Bogoliubov
basis, this yields

Q̂q
∼=

⎛
⎜⎝

2
3

√
Nδ(q) ξQ(q)(α̂†

−q + α̂q) 0

ξQ(q)(α̂†
−q + α̂q) − 4

3

√
Nδ(q) ξQ(q)(β̂†

−q + β̂q)

0 ξQ(q)(β̂†
−q + β̂q) 2

3

√
Nδ(q)

⎞
⎟⎠, (199)

where N is the number of sites, and the relevant coherence
factor is given by

ξQ(q) = Bq − �q√
�2

q − B2
q

. (200)

Quadrupole moments at q = 0 take on a finite value in a
FQ state, and both the ground state and excitations contribute
to the structure factor SQM

Q (q, ω). Evaluating both, we find

SQM
Q (q, ω) = 8

3
N (1 − �QM)δ(q)δ(ω)

+ 4

√
Aq − Bq√
Aq + Bq

δ(ω − ωq), (201)

where �QM is given by as

�QM = 3

N

∑
k

Ak√
A2

k − B2
k

. (202)

The corresponding equal-time structure factor is given by

SQM
Q (q) = 8

3
N (1 − �QM)δ(q) + 4

√
Aq − Bq√
Aq + Bq

. (203)

Details of these calculations can be found in Appendix F 3
and in Appendix F 7 for q = 0.

3. Structure factor for A matrices

The most fundamental objects in our theory are not dipoles
or quadrupoles, but the A matrices, which describe the quan-
tum state of the spin-1 moment. It is therefore useful to
introduce a dynamical structure factor

SQM
A (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑
μν

〈
Âμ

ν (t )Âν
μ(0)

〉
. (204)

This structure factors captures all dynamics that can be
resolved at the level of a two-point correlation function,
regardless of how that dynamics is expressed in spin corre-
lations. Neglecting second-order and higher terms, Eq. (173)
implies

Âi
∼=

⎛
⎝0 â†

i 0
âi 1 b̂i

0 b̂†
i 0

⎞
⎠. (205)

Fourier transforming, and resolving nonzero matrix elements
in terms of the Bogoliubov basis Eq. (204), we find

Âq �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ξ−
A (q)α̂†

−q0 0−ξ+
A (q)α̂q

−ξ+
A (q)α̂†

−q −ξ+
A (q)β̂†

−q√
Nδq,0+ξ−

A (q)α̂q +ξ−
A (q)β̂q

ξ−
A (q)β̂†

−q0 0−ξ+
A (q)β̂q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (206)
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where N is the number of sites and ξ+
A (q) and ξ−

A (q) are the
coherence factors for A matrices defined as

ξ+
A (q) = ξS(q) + ξQ(q)

2
, (207a)

ξ−
A (q) = ξS(q) − ξQ(q)

2
, (207b)

where ξS(q) and ξQ(q) are defined in Eqs. (192) and (200),
respectively.

From this starting point, we can calculate all of the quan-
tum averages, which enter into SQM

A (q, ω). Like the structure
factor for quadrupole moments, this entails contributions from
both ground state and excitations. Evaluating these, we find

SQM
A (q, ω) = N

(
1 − 2

3
�QM

)
δ(q)δ(ω)

+ 2
Aq√

A2
q − B2

q

δ(ω − ωq), (208)

where �QM is defined in Eq. (202). It follows that the equiva-
lent equal-time structure factor given by

SQM
A (q) = N

(
1 − 2

3
�QM

)
δ(q) + 2

Aq√
A2

q − B2
q

. (209)

Details of these calculations can be found in and Ap-
pendix F 4 and in Appendix F 8 for q = 0.

4. Sum rule on structure factors

The sum rule on moments, Eq. (66), implies that dynamical
structure factors must satisfy a sum rule

SA(q, ω) = 1
4 SQ(q, ω) + 1

2 SS(q, ω) + 1
3 Nδ(ω), (210)

of the same form as the sum rule for equal-time structure
factors, Eq. (168).

It is easy to confirm, by direct substitution in Eq. (210),
that the quantum results at T = 0 for SQM

S (q, ω) [Eq. (194)],
SQM

Q (q, ω) [Eq. (203)], and SQM
A (q, ω) [Eq. (209)], satisfy this

sum rule. It is also informative to verify the sum rule visu-
ally, by examining how the intensities in the dipole channel
[Fig. 12(d)] and quadrupole channel [Fig. 12(e)] “add up” to
give the intensity for A matrices [Fig. 12(f)].

VI. LOW–TEMPERATURE PROPERTIES OF
FERROQUADRUPOLAR ORDER FROM NUMERICAL

SIMULATION

In this section, we use the U(3) Monte Carlo (u3MC) and
molecular dynamics (u3MD) simulation schemes developed
in Sec. III to explore thermodynamic and dynamic properties
of ferroquadrupolar (FQ) order at low temperatures. Simu-
lation results are compared directly with the analytic theory
developed in Sec. IV. We start by analyzing the heat capacity,
which is shown to satisfy the correct classical limit c(T →
0) → 2 (Sec. VI A). Next we consider the low-temperature
properties of the ordered moment 〈Q〉. This takes on a finite
value in simulation, but is shown to exhibit finite-size scaling
consistent with the Mermin-Wagner theorem (Sec. VI B).

FIG. 13. Temperature dependence of the specific heat per spin
c(T ), found in U(3) Monte Carlo (u3MC) simulations of HBBQ

[Eq. (72)], for parameters consistent with a ferroquadrupolar (FQ)
ground state. Results are shown for a series of clusters of increasing
linear dimension L. The peak at c(T ) at T ∗ ∼ 0.43 corresponds to
the onset of fluctuations of FQ order, as shown in Fig. 14(a). The
low-temperature asymptote c(T → 0) → 2 is consistent with the
existence of four independent excitations about the FQ ground state,
as discussed in Sec. IV C. All simulations were carried out with
parameters Eq. (212), using the MC scheme described in Sec. III A.

We then turn to the equal-time structure factors associated
with dipole and quadrupole moments. At low temperatures,
these conform to the predictions of Sec. IV, confirming that
simulations accurately describe correlations within the FQ
state (Sec. VI C).

Finally, we present “raw” simulation results for dynamical
structure factors (Sec. VI D). These reproduce the dispersion
predicted by the zero-temperature quantum theory (Sec. V),
but with a mismatch in intensities The way in which this mis-
match can be corrected to achieve agreement with quantum
theory in the limit T → 0 will be analysed in Sec. VII.

A. Heat capacity

In Fig. 13 we present results for the heat capacity per spin

c(T ) = C(T )/N = 1

N

1

T 2
[〈E (T )2〉 − 〈E (T )〉2], (211)

obtained in simulations of HBBQ [Eq. (72)], for the same
parameter set used in Fig. 12

J1 = 0.0, J2 = −1.0. (212)

Results were obtained using the U(3) Monte Carlo (u3MC)
formalism developed in Sec. III A, for clusters of linear di-
mension up to L = 96 (N = 9216 spins).

At low temperature, we find

c(T → 0) → 2. (213)

This is the result anticipated from the classical theory devel-
oped in Sec. IV B [cf. Eq. (150)], and reflects the fact that
the u(3) formalism correctly describes the four orthogonal
generators of fluctuations about the FQ ground state. Each of
these contribute 1/2 to c(T ) in the limit T → 0, as discussed
in Sec. IV C. This should be contrasted with classical MC
simulations in an O(3) basis, where at most two generators
per spin are accessible and c(T → 0) � 1 [Eq. (152)].

Meanwhile, the onset of fluctuations of FQ order is sig-
naled by a pronounced peak at T ∗ ∼ 0.43, which gradually
sharpens and moves to lower temperatures with increasing
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FIG. 14. Temperature dependence of the quadrupole moment Q found in U(3) Monte Carlo (u3MC) simulations of HBBQ [Eq. (72)], for
parameters consistent with a ferroquadrupolar (FQ) ground state. (a) Results for Q2 in a series of clusters of increasing linear dimension, L.
The onset of fluctuations of FQ order at Q2 at T ∗ ∼ 0.43, corresponds to the peak in heat capacity, shown in Fig. 13. At low temperatures,
Q tends to the ordered moment of the FQ ground state Q0 [Eq. (216)]. (b) Finite-size scaling of the coefficient α(L) [Eq. (217)], showing a
logarithmic divergence in temperature corrections to the ordered moment [Eq. (218)], consistent with the Mermin-Wagner theorem. Results are
shown for both u3MC simulations, and the analytic theory developed in Sec. IV B. All simulations were carried out with parameters Eq. (212),
using the u3MC scheme described in Sec. III A.

system size. The scaling of this peak is not consistent with a
conventional phase transition, and long range FQ order is not
expected to occur in the two-dimensional BBQ model at finite
temperature, because of the Mermin-Wagner theorem [103].

None the less, a BKT-like topological phase transition into
a phase with algebraic correlations of FQ order is permitted,
and would also give rise to a peak in heat capacity. Such a
phase transition can be mediated by point like,

π1(RP2) = Z2, (214)

topological defects of FQ order, and has been observed in
previous MC simulations of the O(3) BBQ model on the tri-
angular lattice [104]. A detailed analysis of topological phase
transitions in the spin-1 BBQ model lies outside the scope of
this paper, but contains many interesting features, which will
be discussed elsewhere [97].

B. Ordered moment

We now consider the behavior of the quadrupole moment
Q, which acts as an order parameter for the FQ state. In Fig. 14
we show simulation results, obtained for the same parameter
set, Eq. (212). The ordered moment was calculated through
the equal-time structure factor

Q2 = SCL
Q (q = �)

N
. (215)

and takes on a finite value in finite-size clusters, as shown in
Fig. 14(a). At low temperature, these results extrapolate to the
expected ground-state value [Eq. (170)]

Q2|T →0 = Q2
0 = 8

3 , (216)

and are well described by the function

Q2 = Q2
0 + α(L)T + β(L)T 2 + · · · , (217)

where the coefficients α(L) and β(L) are determined by fits to
simulation results. At a temperature corresponding to the peak
in heat capacity, T ≈ T ∗ ∼ 0.43 (Fig. 13), the value of Q2

collapses rapidly. Above this temperature, Q2 tends rapidly to
zero with increasing system size.

For the Mermin-Wagner theorem to hold, we must find
Q2 ≡ 0 in the thermodynamic limit, at any finite tempera-
ture [103]. It follows that the coefficient α(L) in Eq. (217)
must diverge as L → ∞. The trend in α(L) with increasing
L is immediately apparent from Fig. 14(a): The rate at which
thermal fluctuations reduce the ordered moment is a monoton-
ically increasing function of L. However, for all system sizes
accessible to simulation, the ordered moment still takes on a
substantial value at low temperatures.

This seeming paradox can be resolved by turning to the
analytic theory developed in Sec. IV B. In Fig. 14(b) we
plot the values of α(L) obtained in simulation, together with
analytic results for systems of size up to L = 1000 (N = 106

spins). Analytic estimates of α(L) were found by evaluating
the sum on k in Eq. (170) numerically, for the specific set of
wavevectors allowed by the geometry of the clusters. Evalu-
ating the leading contribution to this sum as an integral, we
can identify a logarithmic divergence in α(L) for large L. And
consistent with this, both analytic and numerical results are
well described by the function

−α(L) = α0 + μ ln L + ν
1

L
+ ξ

1

L2
, (218)

with fit parameters

α0 = 1.86, μ = 0.735, ν = 0, ξ = −1. (219)

It follows that −α(L → ∞) → ∞, and the Mermin-Wagner
Theorem is respected. Further details of this analysis can be
found in Appendix G

C. Equal-time structure factor

We now turn to correlations between magnetic moments,
as described by the equal-time structure factors SCL

λ (q)
[Eq. (84)], found in u3MC simulations of HBBQ [Eq. (72)]. In
Fig. 15, results are shown for the structure factors associated
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FIG. 15. Results for equal-time structure factors SCL
λ (q)

[Eq. (84)] found in U(3) Monte Carlo (u3MC) simulations of HBBQ

[Eq. (72)], for parameters consistent with a ferroquadrupolar (FQ)
ground state. (a) Structure factor associated with dipole moments
SCL

S (q), showing correlations at the 3-sublattice ordering vector K.
(b) Structure factor associated with quadrupole moments SCL

S (q),
showing divergence associated with fluctuations of FQ order for
q → �. (c) Structure factor associated with A matrices SCL

A (q),
sensitive to both dipolar and quadrupolar fluctuations. In all cases,
simulation results (points) have been divided by temperature T , and
agree perfectly with the predictions of low-temperature analytic
theory (line). All simulations were carried out with parameters
Eq. (212), for a cluster with linear dimension L = 96 (N = 9216
spins), at T ≈ 0.03, using the u3MC scheme described in Sec. III A.

with dipole moments SS(q), quadrupole moments SQ(q), and
A matrices SA(q). Simulations were carried out for parameters
consistent with a FQ ground state [Eq. (212)], at a temperature
T ≈ 0.03, in a cluster of linear dimension L = 96 (N = 9216
spins). All results are plotted on an irreducible wedge �–K–
M–� [cf. Appendix C], and have been divided by temperature
T to extract their leading temperature dependence.

Fluctuations of dipole moments vanish in the FQ ground
state, but take on a finite value at finite temperature, as shown
in Fig. 15(a). Simulation results for SS(q)/T at low tempera-
tures (points) are perfectly described by the low-temperature

analytic prediction, Eq. (157), (solid line). A broad peak in
SS(q) for q = K reflects the proximity of 3-sublattice antifer-
romagnetic order (AFM), as discussed in Sec. III A 2.

Meanwhile, the quadrupolar structure factor SQ(q) is
sensitive to fluctuations of FQ order, and exhibits a q-
dependent contribution that diverges for q → 0, as shown in
Fig. 15(b). Once again, the agreement between simulation
results for SQ(q)/T at low temperatures (points) and the low-
temperature analytic prediction, Eq. (161), (line), is perfect.

Finally, the structure factor for A matrices SA(q), shown
in Fig. 15(c), is sensitive to both quadrupolar and dipolar
fluctuations. In keeping with this, it exhibits both a diverging
contribution for q → 0, and a small peak at q = K. Perfect
agreement is found between simulation results for SA(q)/T
at low temperatures (points) and the low-temperature analytic
prediction, Eq. (165), (line).

Taken together, these results for SCL
λ (q) confirm the ability

of the u3MC scheme developed in Sec. III A, to describe
classical correlations of spin-1 magnets at low temperature.
They will also play an important role in determining the
quantum-classical correspondence discussed in Sec. VII.

D. Dynamics

We complete our survey of simulation results for the FQ
phase of the spin-1 BBQ model by exploring the dynamics
found in numerical integration of the equations of motion,
Eq. (73), following the U(3) molecular dynamics (u3MD)
scheme introduced Sec. III B.

In Fig. 16 we present “raw” results for the dynamical
structure factors SMD

λ (q, ω) [Eq. (103)] associated with dipole
moments (λ = S), quadrupole moments (λ = Q), and A ma-
trices (λ = A). Results are plotted for the same path in
reciprocal space as was used for SMC

λ (q) in Fig. 15, for pos-
itive frequency ω > 0. MD solutions at negative energy will
contribute with equal weight [Eq. (110)]. For convenience of
visualization, all results have been convoluted with a Gaussian
of FWHM = 0.35 J .

Comparing with the predictions of the zero-temperature
quantum theory, SQM

λ (q, ω) (Fig. 12), we see that u3MD
correctly reproduces a dispersing band of excitations, with
predominantly quadrupolar character for ω → 0, and pre-
dominantly dipolar character at the top of the band. Closer
examination, however, reveals small differences in the energy
of excitations, and dramatic differences in the distribution of
spectral weight across the band. In particular, while analytic
results for the dipolar fluctuations [Fig. 12(d), Eq. (193)],
exhibit a characteristic linear loss of spectral weight at low
energies [20]

SQM
S (q → 0, ω) ∝ ω δ(ω − v|q|), (220)

numerical results for SMD
S (q, ω) [Fig. 16(a)] show a roughly

constant spectral weight for ω → 0. The distribution of spec-
tral weight in the quadrupolar channel SMD

Q (q, ω) [Fig. 16(b)],
is also visibly different from analytic predictions [Fig. 12(e),
Eq. (201)].

A more precise portrait of the “raw” u3MD results
can be found by examining the temperature dependence of
dynamical structure factors at fixed wavevector q. In
Fig. 17 we present results for SMD

A (q, ω > 0) (symbols), at
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FIG. 16. “Raw” results of U(3) molecular dynamics (u3MD) simulations for parameters consistent with a ferroquadrupolar (FQ) ground
state. (a) Dynamical structure factor associated with dipole moments SMD

S (q, ω). (b) Dynamical structure factor associated with quadrupole
moments SMD

Q (q, ω). (c) Dynamical structure factor associated with A matrices SMD
A (q, ω). Comparison with the predictions of a quantum

theory, Figures 12(d)–12(f) suggest that “raw” simulation results accurately describe the dispersion of excitations, but with an incorrect
distribution of intensity. Simulations were carried out using the u3MD simulation scheme described in Sec. III B, for HBBQ [Eq. (72)] with
parameters Eq. (212), at a temperature T = 0.05 J , in a cluster of linear dimension L = 96 (N = 9216 spins). Results are shown only for
positive energy, ω > 0, and have been convoluted with a Gaussian envelope of FWHM = 0.35 J.

wavevector q = K, with temperatures ranging from T =
0.01 J to T = 0.15 J . The prediction of a zero-temperature
quantum theory, SQM

A (q = K, ω) [Eq. (208)], is shown for
comparison (dashed line). Both analytic and simulation results
(symbols) have been convoluted with a Gaussian of FWHM =
0.02 J .

“Raw” simulation results show a single peak in SMD
A (q =

K, ω > 0), centered on an energy ω0, which varies as a func-
tion of temperature. This peak is well described by Voigt
profile

V (ω, σ, �) = Re[w(z)]

σ
√

2π
, (221)

FIG. 17. Temperature dependence of “raw” results of U(3)
molecular dynamics (u3MD) simulation, showing failure to converge
to the predictions of a T = 0 quantum theory for T → 0. Results are
shown for the dynamical structure factor associated with A matri-
ces SMD

A (q, ω) [Eq. (105)], for wavevector q = K, and temperatures
ranging from T = 0.01 J to T = 0.15 J . The T = 0 prediction of a
quantum theory, SQM

A (q, ω) [Eq. (208)], is shown with a red dashed
line. Solid lines represent fits to u3MD data using a Voigt profile
[Eq. (221)]. “Raw” simulation results converge on energy predicted
by the quantum theory for T → 0, but suffer a dramatic loss of
intensity. Simulations of HBBQ [Eq. (72)] were carried out using
the MD simulation scheme described in Sec. III B, for parameters
Eq. (212), in a cluster of linear dimension L = 96 (N = 9216 spins).
Both simulation results and analytic prediction have been convoluted
with a Gaussian of FWHM = 0.02 J .

where the Faddeeva function

w(z) = e−z2
erfc(−iz) (222)

is evaluated for

z = (ω − ω0) + i�

σ
√

2
. (223)

The Voigt profile reflects a Lorentzian lineshape

f (ω) = �

2π

1

(ω − ω0)2 + �2
, (224)

appropriate to a single excitation of energy ω0 and inverse
lifetime �, convoluted with a Gaussian with full-width half-
maximum (FWHM) determined by σ [Eq. (108)].

Empirical fits of Eq. (221) to simulation data are shown
with solid lines in Fig. 17. The parameters used in MD simu-
lation completely determine σ , leaving ω0, �, and the overall
normalisation (total spectral weight) as a fit parameters. The
fits found in the way are excellent, confirming that simula-
tions recover a single excited mode for ω > 0, with finite,
temperature-dependent energy and lifetime.

As temperature is reduced, the peak in SMD
A (q = K, ω)

migrates to higher energies, and becomes sharper, while re-
taining its underlying Lorentzian structure. In both of these
respects, for T → 0, simulation results approach the T = 0
quantum result, where spectral weight is concentrated in a
delta function, the � → 0 limit of Eq. (224). However at low
temperatures, the u3MD results also exhibit a dramatic loss
of intensity, with integrated spectral weight tending to zero as
T → 0. And even at T ∼ 0.1, the difference in intensity is at
least a factor of ×100, reflected in different scales on the axes
for with SMD

A (q = K, ω) and SQM
A (q = K, ω). The reason for

this discrepancy, and the way in which it can be corrected, will
be discussed Sec. VII.

VII. QUANTUM-CLASSICAL CORRESPONDENCE

The reason why “raw” results of molecular dynamics sim-
ulations, presented in Sec. VI D, capture the dispersion of
quantum excitations, while failing to describe their spectral
weight, is rooted in the classical statistics of the underlying
classical Monte Carlo simulations.
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The equation of motions (EoM) on which the u3MD is
based, Eq. (73), correctly describe the dynamics of a spin-1
moment, at a semi-classical level. And, solved analytically,
with appropriate quantization, these EoM yield identical re-
sults to the linear multiple-boson expansion developed in
Sec. V [105]. However, the spectral weight found in u3MD
simulation is not subject to any quantization condition. In-
stead this is determined by thermal fluctuations, subject to the
classical statistics of Monte Carlo simulation. And for this
reason, all spectral weight vanishes for T → 0, as thermal
fluctuations are eliminated, cf. Fig. 17.

Nonetheless, the fact that spectral weight is concentrated
in a single peak, with Lorentzian lineshape, that becomes
arbitrarily sharp for T → 0, suggests that low-temperature
simulation results can be understood within a single-mode
approximation. And this encourages us to believe that it may
be possible to “undo” the effect of classical statistics, in limit
T → 0. This line of reasoning, developed below, leads to a
simple prescription for correcting MD simulation results

SQM(q, ω, T = 0) = lim
T →0

h̄ω

kBT
SMD(q, ω, T ), (225)

previously introduced in Eq. (12). This prescription is shown
to restore to perfect agreement with zero-temperature quan-
tum results, at a semi-classical level.

In what follows, we set out this analysis in more detail. In
Sec. VII A, we “deconstruct” the dynamical structure factors
found in u3MD simulations, analyzing their intensities in
terms of excitations with classical statistics, while retaining
the quantum (more precisely, semi-classical) nature of their
dynamics. Using what we have learned, in Sec. VII B, we
show explicitly that u3MD simulation results can be corrected
to yield dynamical structure factors in agreement with the
predictions of Sec. V. We conclude, in Sec. VII C, with a
comparison of u3MC and u3MD simulations with published
results from quantum Monte Carlo (QMC).

A. Molecular dynamics, deconstructed

We start by exploring the relationship between classical
and quantum theories for fluctuations about FQ order, and
their implication for the understanding of simulation. We
concentrate on the experimentally-relevant structure factor for
dipole moments SS(q), rederiving the classical result quoted
in Sec. IV in a framework, which permits direct comparison
with the quantum result given in Sec. V.

We take as starting point the quantum theory of excitations
about the FQ state, Eq. (184), and include a term �H[h]
describing coupling of dipole moments to a transverse field

H = H′
BBQ + �H[h]

= E0 + �E0 +
∑

k

h̄ε(k)[α̂†
kα̂k + β̂

†
kβ̂k]

−
∑

k

ξS(k)
[
ihx

k(β̂k − β̂
†
−k ) + ihz

k(α̂†
−k − α̂k )

]
, (226)

where the excitation energy ε(k) is defined through Eq. (185),
ξS(k) is the coherence factor defined in Eq. (192), and all
terms at cubic and higher order in bosons have been neglected.

Here and in what follows we restore dimensional constants h̄
and kB, which have been set to unity elsewhere.

Recognising Eq. (226) as the Hamiltonian for a set of
independent simple harmonic oscillators (SHO), we introduce
a new set of coordinates

α̂k =
√

mε(k)

2h̄
x̂1,k + i√

2h̄mε(k)
p̂1,k, (227a)

β̂k =
√

mε(k)

2h̄
x̂2,k + i√

2h̄mε(k)
p̂2,k, (227b)

satisfying the canonical commutation relation

[x̂ν,k, p̂ν ′,k′ ] = ih̄δkk′δνν ′ . (228)

with ν = 1, 2. Written in terms of these coordinates, the
Hamiltonian [Eq. (226)] becomes

H = E0 + �E0 +
∑
ν,k

⎡
⎣mε(k)2

2
x̂2
ν,k + 1

2m
p̂2

ν,k

−
√

2ξ 2
S(k)

mh̄ε(k)

(
hz

kδ1,ν + hx
kδ2,ν

)
p̂ν,k

⎤
⎦, (229)

As long as the commutation relation, Eq. (228), is re-
spected, the excitations of Eq. (229) continue to have
well-defined, bosons statistics. Meanwhile, the neglect of
higher-order terms means that the dynamics of these excita-
tions are treated at the level of a semi-classical approximation.
MD simulation, on the other hand, imposes quantum (semi-
classical) dynamics on spin configurations drawn from
classical MC simulation, and so not subject to any quanti-
zation condition. And, crucially, the thermal distribution of
the states generated by MC simulation at low temperatures is
conditioned by a classical, and not a quantum band dispersion
[cf. Fig. 12].

We can model the classical statistics found in MD sim-
ulation by “turning off” the quantization of excitations in
Eq. (229), and treating xν,k and pν,k as independent, classical,
variables. This will inevitably lead us back to the classical
theory developed in Sec. IV, but expressed in a form that
makes it easier to draw conclusions about the relationship
between classical and quantum results. Doing so, the partition
function associated with Eq. (229) is given by

ZCL′ = e−β(E0+�E0 )
∏
ν,k

[(∫
dxν,k e− 1

2 βmε(k)2x2
ν,k

)

×
(∫

d pν,k e− β

2m p2
ν,k e

β

√
2ξ2

S (k)

mh̄ε(k) (hz
kδ1,ν+hx

kδ2,ν )pν,k

)]
,

(230)

where β = 1/kBT . The integrals in Eq. (230) can be evaluated
exactly [Eqs. (H1a) and (H1b)], to give

ZCL′ = e−β(E0+�E0 )
N∏
k

[
2π

βε(k)
e

βξ2
S (k)(hz

k )2

h̄ε(k)
2π

βε(k)
e

βξ2
S (k)(hx

k )2

h̄ε(k)

]
.

(231)

By construction, this theory now describes excitations sub-
ject to the classical (i.e., Boltzmann) statistics used in MC

033106-28



SEMI-CLASSICAL SIMULATION OF SPIN-1 MAGNETS PHYSICAL REVIEW RESEARCH 4, 033106 (2022)

simulation. We are now in a position to calculate equal-time
spin correlations using the same method as in Sec. IV C 2,
i.e., by constructing a free energy and differentiating this with
respect to hα

k . Doing so, we find

SCL′
S (q, T ) =

∑
α

〈
Ŝα

q Ŝα
q

〉 = 4ξ 2
S(q)

β h̄ε(q)
, (232)

where we have used the fact that 〈Ŝα
q 〉 ≡ 0 in the FQ state.

The presence of the quantum dispersion ε(q) and coher-
ence factor ξS(q) in Eq. (232), is suggestive of the quantum
theory developed in Sec. V. And, by direct comparison with
Eq. (194), we find

SCL′
S (q, T ) = 2

SQM
S (q, T = 0)

β h̄ε(q)
, (233)

a result, which holds in the limit of low temperature. At
the same time, SCL′

S (q) must ultimately be equivalent to the
earlier classical result SCL

S (q) [Eq. (158)]. To this end, we can
simplify Eq. (232) using Eq. (195), to recover

SQM
S (q) = 2ξ 2

S(q), (234)

previously introduced as Eq. (196). It follows that

SCL′
S (q, T ) = 4

β(Aq − Bq)
= SCL

S (q, T ), (235)

where this result also holds in the limit of low temperature.
Combining this with Eq. (233), we arrive at a result, which
relates classical correlations at finite temperature, to those of
a quantum system at T = 0:

SQM
S (q, T = 0) = lim

T →0

h̄ε(q)

2kBT
SCL

S (q, T ). (236)

The approach developed above can be generalised from
dipole moments λ = S, to quadrupole moments, λ = Q and
A matrices, λ = A. This leads to the general result

SQM
λ (q, T = 0) = lim

T →0

h̄ε(q)

2kBT
SCL

λ (q, T ), (237)

where we make explicit the role of temperature, and restore
dimensional constants kB and h̄. We emphasize that the factor
of ε(q) in Eq. (237) reflects the dispersion for a quantized
excitation [Eq. (185)], and not the eigenvalue of a classical
theory. It is also important to note that quantum mechanics
have been treated at a semi-classical level, i.e., taking account
of quantization, but considering only one path in the path
integral. This approximation is, of course, exact for a SHO.

The principle problem encountered in “raw” MD results
for dynamical structure factors, relative to quantum results
at low temperatures, was the loss of spectral weight at low
temperatures [cf. Fig. 17]. At low temperatures, we can equate
SCL

λ (q, T ) with the structure factor found in MC simulation

lim
T →0

SMC
λ (q, T ) = lim

T →0
SCL

λ (q, T ), (238)

permitting us to write

SQM
λ (q, T = 0) = lim

T →0

h̄ε(q)

2kBT
SMC

λ (q, T ). (239)

We can therefore use MC simulation to estimate the total spec-
tral weight in a zero-temperature quantum theory, at given q,

as long as we had prior knowledge of the characteristic energy
scale ε(q). What remains is to understand the relationship
between classical and quantum results in the absence of prior
knowledge of the dispersion.

The effect of MD simulation is to redistribute the spectral
weight at a given q over a range of different ω, subject to the
sum rule,

SMC
λ (q, T ) =

∫ ∞

−∞
dω SMD

λ (q, ω, T ). (240)

To estimate the zero-temperature quantum result
SQM

λ (q, ω, T = 0), we therefore need to construct a model for
this redistribution of spectral weight, subject to the condition
that dynamics are treated at a semi-classical level.

Here it is instructive to return to the simulation results for
fluctuations about FQ order, described in Sec. VI D. From the
“raw” results, Figs. 16 and 17, we learn that

(i) for T → 0, the characteristic energy scale of excita-
tions converges on the exact quantum (semi-classical) result
ε(q) [Eq. (185)], and

(ii) excitations become sharp (resolution limited) for
T → 0.

FQ order, studied here, show a single, twofold degenerate
band of excitations. More generally, there may be many differ-
ent excitations at a given q. None the less, at a semi-classical
level, (i.e., treated as a set of independent oscillators), in
a finite-size system, each of these will have a well-defined
energy. It is also important to remember that, while only
results for positive frequency have been plotted in Fig. 16, MD
simulation will return solutions at both positive and negative
energy, with equal weight [Eq. (110)].

With these assumptions in mind, we model MD simulation
results in the limit T → 0 in terms of delta-function peaks
at energy ω = ±εν (k), with spectral weight shared equally
between these two peaks, viz,

lim
T →0

SMD
λ (q, ω, T )

=
∑

ν

[Aλ,ν (q, T )δ(ω − εν (k))+ Aλ,ν (q, T )δ(ω + εν (k))]

+ O(T 2). (241)

Here the sum on ν runs over all eigenmodes of the cluster with
wavevector q, and the corresponding spectral weight

Aλ,ν (q, T ) = kBT

h̄εν (q)
ξ 2
λ,ν (q) (242)

is defined through a generalized coherence factor

ξ 2
λ,ν (q) � 0, (243)

specific to the structure factor in question. The total spectral
weight in these modes is constrained through Eq. (240), and
satisfies

SQM
λ (q, T = 0) =

∫ ∞

−∞
dω SQM

λ (q, ω, T = 0) =
∑

ν

ξ 2
λ,ν (q),

(244)

where the sum on ν runs over the two degenerate branches
of FQ excitations. For the dipolar structure factor, λ = S, this
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FIG. 18. Comparison between dynamical structure factors found in molecular dynamics (u3MD) simulations of a ferroquadrupolar (FQ)
state, and those found in a T = 0 quantum theory. (a) Simulation results for dynamical structure factor associated with dipole moments
SMD

S (q, ω), corrected for classical statistics, following Eq. (246). (b) Equivalent results for quadrupole moments SMD
Q (q, ω). (c) Equivalent

results for A matrices SMD
Q (q, ω). (d) Prediction for SQM

S (q, ω) from T = 0 quantum theory [Eq. (193)]. (e) Equivalent prediction for SQM
Q (q, ω)

[Eq. (201)]. (f) Equivalent prediction for SQM
A (q, ω) [Eq. (208)]. Simulations were carried out using the u3MD simulation scheme described

in Sec. III B, for HBBQ [Eq. (72)] with parameters Eq. (212), at a temperature T = 0.05 J , in a cluster of linear dimension L = 96 (N = 9216
spins). All result have been convoluted with a Gaussian in frequency of FWHM = 0.35 J.

sum contributes a factor ×2, and Eq. (244) can be compared
directly with Eq. (196).

Where the model Eq. (241) holds, no prior knowledge of
excitation energies εν (q) is needed to correct for the effect of
classical statistics in MD simulation. And since only positive
frequencies, corresponding to transfer of energy to the system,
are relevant at T = 0, we can write

SQM
λ (q, ω, T = 0) = lim

T →0

h̄ω

kBT
SMD

λ (q, ω, T ) [ω > 0]. (245)

Here we understand that “QM” should be taken to imply
“semi-classical”, i.e., pertaining to excitations with quantum
statistics, treated a Gaussian level of approximation. Empir-
ical evidence for the validity of Eq. (245) is provided in
Sec. VII B, below. Equivalent results for a system with many
bands can be found in [66].

We conclude by noting that the approach of correcting
for classical statistics by multiplying dynamical structure fac-
tors by a prefactor ω/T has been anticipated several times
in the literature of MD simulation, including in studies of
the spin-1/2 magnet Ca10Cr7O28 [66,106], the spin-1 magnet
NaCaNi7O7 [33], and dynamical scaling in Yb2Ti2O7 [107].
The factor ω/2T used in [66] reflects a different normalisation
of MD results.

B. Quantum results, reconstructed

Armed with Eq. (245), we are now in a position to revisit
MD simulation results for excitations about a FQ ground state,
previously discussed in Sec. VI D. In Fig. 18, we show a com-
parison between MD simulation results, and the predictions
of the zero-temperature quantum theory developed in Sec. V.
Following Eq. (245), simulation results have been corrected

by multiplying them by prefactor ω/T , viz,

S̃MD
λ (q, ω, T ) = ω

T
SMD

λ (q, ω, T ), (246)

where the constants kB and h̄ have again been set to unity.
Results obtained at T = 0.05 J , corrected in this way, are
shown in Figs. 18(a)–18(c). In this case, u3MD simulations
were carried out at a resolution of 0.02 J , corrected according
to Eq. (246), and then further convoluted with a Gaussian
envelope of FWHM = 0.33 J , so as to achieve a net en-
ergy resolution of 0.35 J , directly comparable to results in
Sec. VI D.

The results in Figs. 18(a)–18(c), should be contrasted with
the “raw” results of MD simulation, shown in Figs. 16(a)–
16(c). Relative to these, corrected results show a far less
spectral weight at low energies, an effect, which is particu-
larly evident for SMD(q, ω, T ). Meanwhile, for comparison,
in Figs. 18(d)–18(f), we reproduce equivalent results from the
T = 0 analytic theory, previously shown in Fig. 12. Compared
at the level of density plots, the agreement between cor-
rected simulation results and the zero-temperature quantum
prediction is essentially perfect, with no visible mismatches
in dispersion or intensity.

A more precise comparison between simulation and zero-
temperature quantum theory can be achieved by plotting
S̃MD

λ (q, ω, T ) at fixed wavevector q, for a sequence of tem-
peratures converging on T = 0. This is accomplished in
Fig. 19(a), where we plot results for S̃MD

A (q = K, ω, T ), for
temperatures ranging from T = 0.15 J to T = 0.01 J . For
comparison, we also show the result of the T = 0 analytic
theory, Eq. (208). Both simulation and analytic prediction
have been convoluted with a Gaussian of FWHM 0.02 J .
Plotted in this way, the role of the limit in Eq. (245) becomes
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(a)

(b) (c) (d)

FIG. 19. Temperature dependence of results of U(3) molecular dynamics (u3MD) simulation after correction for classical statistics,
showing convergence on the predictions of a T = 0 quantum theory for T → 0. (a) u3MD results for dynamical structure factor associated
with A matrices SMD

A (q, ω), at wavevector q = K, for temperatures ranging from T = 0.01 J to T = 0.15 J . Simulation results (points), have
energy resolution 0.02 J , and have been corrected for classical statistics through Eq. (246). Lines show fits to a Voigt profile, Eq. (221). The
prediction of the T = 0 quantum theory, Eq. (208), convoluted with a Gaussian of FWHM = 0.02 J, is shown with a solid red line. (b) Shift
in peak energy �ω(T ), found from fits to a Voigt profile, showing convergence of peak position on the prediction of T = 0 quantum theory.
(c) Equivalent results for the inverse lifetime �(T ). (d) Equivalent results for the peak height I (T ). Parameters for simulations are identical to
those used in Fig. 18.

clear: MD simulation results corrected using Eq. (246) form
a sequence, which converge on the T = 0 analytic prediction
for T → 0.

Having established the validity of Eq. (245), it is interesting
to examine more precisely the way in which corrected simula-
tion results converge on the zero-temperature quantum result.
The dispersing peak in S̃MD

λ (q, ω, T ) is still well described by
the Voigt lineshape, Eq. (221), with fits shown as solid lines
in Figs. 18(a)–18(c). Within limits set by the energy resolution
of simulations, these fits allow us to extract quantitative esti-
mates for the shift in excitation energy �ω(T ) [Fig. 19(b)],
the inverse lifetime of the excitation, �(T ) [Fig. 19(c)], and
the intensity maximum I (T ) [Fig. 19(d)], as a function of
temperature.

We find that the peak position converges linearly on the
zero-temperature quantum result from below, with

�ω(T ) = bT + O(T 3), [b = 2.71], (247)

Meanwhile, the inverse lifetime of the excitation vanishes
(approximately) quadratically as T → 0

�(T ) = bT + cT 2 + O(T 3), [b = 0.07, c = 3.26], (248)

while the maximum intensity of the peak also converges lin-
early on the expected value

I (T ) = a + bT + O(T 3), [a = 111, b = –1230], (249)

where the coefficient a matches the prediction of the T = 0
quantum theory.

It is possible to construct a diagrammatic expansion for the
self energy of excitations within the mixed ensemble of MD
simulation [108]. Such calculations lie beyond the scope of
this paper but, on general grounds, it is possible to offer an
interpretation of some of the trends observed in simulation.

At low temperatures, the shift in peak position �ω(T )
will depend on the density of excitations (one-loop diagram).
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Because of the classical statistics of the MC simulation, this
density is linear in T . Meanwhile, the inverse lifetime, �(T ),
will be determined by interactions, which are present in finite-
temperature simulations, but absent from the Gaussian-level
quantum theory developed in Sec. V. These processes corre-
spond to Feynman diagrams with a finite imaginary part, and
will generically have the form of “bubbles”. Empirically the
dominant low-temperature contribution occurs at O(T 2), i.e.,
at second order in the density of fluctuations.

We leave a more quantitative analysis of these effects for
future work.

C. Comparison with the results of QMC simulation

In Sec. VII B, we have explored the correspondence be-
tween u3MC simulation results at finite temperature, and
analytic quantum (semi-classical) results at T = 0. It is also
interesting to consider how they compare with published
quantum Monte Carlo (QMC) simulation data.

1. Ground state

The spin-1 BBQ model on a triangular lattice [Eq. (1)] is
accessible to QMC simulation for J1 � 0, J2 � 0. [Equiva-
lently, from Eq. (5), the quadrant −π � θ � π/2.] Stochastic
series expansion (SSE) methods have been used to obtain
results for both thermodynamics and dynamics, at finite tem-
perature, across this parameter range [53]. A more specialized
loop-expansion method has also been used to study properties
at the special point J1 = 0, J2 = −1 (θ = −π/2) [52].

Both QMC results [53], and u3MC simulations
(Sec. III A 2), are consistent with a FQ ground state extending
from the special point θ = −π/2, to the SU(3) point,
θ = −3π/4. Meanwhile, for −3π/4 < θ − π , both methods
find a FM ground state. This distribution of FQ and FM
ground states is consistent with mean-field predictions
(Fig. 2), results from exact diagonalisation [19], and more
recent calculations using tensor-network methods [99].

2. Dynamics

Comparison between semi-classical simulations based on
u(3), and QMC, is most straightforward for dynamics at low
temperatures. Here, as shown above, the u3MD approach
exactly reproduces published results from a (Gaussian-level)
multiple-boson expansion [19]. The comparison between
QMC and the predictions of this multiple-boson expansion
is discussed in [53]. At a qualitative level, good agreement
is found between the multiple-boson expansion at T = 0,
and QMC results for T � J . It follows that agreement be-
tween QMC and u3MD simulations is equally good, once
the effect of classical statistics have been taken into account
(Sec. VII B).

At a quantitative level, QMC results show some dif-
ferences in values of hydrodynamic parameters governing
long-wavelength excitations, such as the quadrupole-wave
velocity [53]. At low temperatures, the renormalization of
these parameters is a consequence of quantum effects present
in QMC, but not accessible within the semi-classical de-
scription provided by Gaussian-level flavor-wave theory, or
u3MD. None the less, these quantum corrections are small,

and become too small to measure approaching the SU(3) point
θ = −3π/4.

Dynamics at temperatures T � J have also been explored
using QMC simulation [53]. As temperature is increased, ex-
citations near the top of the band, which have predominantly
spin-wave character, become heavily damped, and suffer a
dramatic loss of intensity (cf. results for SQ(q, ω) in [53],
Fig. 8). Meanwhile quadrupolar fluctuations near the ordering
vector show considerable spectral weight at low energy. The
analysis of dynamics across the topological phase transition
occurring for T ∗ ≈ 0.4 J lies outside the scope of this paper.
However we note that similar trends in spectral weight are ob-
served in u3MD results for SQ(q, ω), at temperatures T ∼ J .
These will be discussed elsewhere [97].

For completeness, we note that a phenomenological the-
ory of the relaxational dynamics of spin-1 magnets has been
introduced in [109]. This makes the prediction that long-
wavelength quadrupolar waves have damping ∝k2. To the best
of our knowledge, this phenomenological approach has yet to
be used to make quantitative predictions for FQ order in the
BBQ model, or compared with QMC simulation results. We
have made a preliminary analysis of damping as a function of
k, within u3MD simulation. Precise evaluations of the damp-
ing of long-lived excitations at low energy and temperature is
challenging, but initial results are consistent with a damping

�(k) ∝ k2 + O(k4), (250)

at fixed temperature T/J � 1. We leave the further investiga-
tion of this point for future work.

3. Thermodynamics

Probably the most interesting thermodynamic quantity to
compare between QMC and classical U(3) simulations is the
heat capacity. In Fig. 20(b) we show results of simulations
of the spin-1 BBQ model [Eq. (1)] carried out using QMC,
classical MC in the space of A matrices (u3MC), and classical
MC carried out in the space of O(3) vectors. QMC simu-
lation results are taken from [53], while u3MC results have
already been introduced in Sec. VI A. O(3) MC simulations
parallel earlier paper [104]. Heat capacity per spin c(T ) is
shown plotted on both log-linear [Fig. 20(a)] and log-log
scales [Fig. 20(b)], with temperature measured in units of J .
We discuss the particulars of different temperature regimes
below.

At low temperatures, T/J � 1, analytic theory for FQ
order predicts

c(T → 0) = 2 × 3ζ (3)

πv2
T 2 + · · · (251)

where ζ (3) ≈ 1.2, v is the velocity of the linearly-dispersing
Goldstone modes, and the factor ×2 comes from the fact
these are twofold degenerate [19]. This result follows from
the bosonic nature of low-lying excitations. Fits to QMC
simulation, confirm the expected T 2 scaling [110], and return
a value of v consistent with that found in simulations of
dynamics [53].

In contrast, classical MC simulations carried out in the ba-
sis of u(3) matrices find c(T → 0) = 2 (Secs. IV C and VI A).
The profound difference between classical and quantum re-
sults for c(T → 0) is a consequence of the fact that, in the
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FIG. 20. Temperature dependence of heat capacity found in Monte Carlo simulations of the spin-1 bilinear-biquadratic model HBBQ

[Eq. (1)]. (a) Heat capacity per spin, c(T ), plotted as a function of ln T . Results are shown for simulations using quantum Monte Carlo
(QMC), classical Monte Carlo in space of u(3) matrices (u3MC), and classical Monte Carlo in space of O(3) vectors (o3MC). The peak in
c(T ) at intermediate temperatures reflects the onset of fluctuations of ferroquadrupolar (FQ) order. (b) Equivalent results, plotted on a log-log
scale. At low temperatures, classical results tend to a constant reflecting the number of generators of excitations about the ground state, while
quantum results show a power-law onset c(T ) ∝ T 2. At high temperatures, all results scale as c(T ) = α/T 2. Simulations were carried out for
parameters J1 = 0.0 and J2 = −1.0, with QMC data taken from [53].

absence of quantum statistics, entropy is not well posed for
T → 0. And in this case, the effect of classical statistics can-
not be corrected as easily as for the semi-classical dynamics
discussed above.

At intermediate temperatures, T/J ∼ 1 both classical and
quantum simulation results for c(T ) are dominated by a large
peak. In all three cases, this peak is associated with the on-
set of fluctuations of FQ order. The peak found in classical
simulations, which are carried out for much larger systems,
is sharp, and can be linked to the unbinding of Z2 vor-
tices [97,104]. Meanwhile, the peak found in QMC is much
broader, and occurs at a slightly higher temperature. These
differences reflect both different statistics, and the large length
scales needed to accurately describe a topological phase tran-
sition.

Finally, we turn to the limit of high temperature, T/J � 1.
Here results must scale as

c(T → ∞) = lim
T →∞

〈E2〉 − 〈E〉2

T 2
= α

T 2
, (252)

where α is coefficient depending on model parameters and
the ensemble of states sampled. In Fig. 20(b) this behavior is
reflected in parallel lines with gradient

d ln c(T )

d ln T
= −2, (253)

for T/J � 10. In this high-temperature limit, u3MC results
(αu3MC = 0.16) are intermediate between conventional O(3)
MC simulations (αo3MC = 0.11), and QMC (αQMC = 3).

It has been argued elsewhere that simulation in the space
of d vectors (vis A matrices) should yield results equivalent
to QMC at high temperature [54]. Empirically this is not the
case. And since, at high temperatures, finite-size effects are
small, we infer that the different values of α found in different
simulations reflect different asymptotic values of the variance
in energy, Eq. (252). This asymptote, and leading corrections
to it, can be calculated within a high-temperature series ex-
pansion [111]. We find this expansion takes on a different
form for quantum spin-1 moments and A matrices, and so

will generally lead to different results [112]. We leave further
analysis of the high-temperature limit for future work.

VIII. GENERALIZATION TO
SPIN-ANISOTROPIC INTERACTIONS

In the preceding sections of this paper, we have shown
it is possible to calculate the thermodynamic and dynamical
properties of spin-1 magnets through simulations carried out
in the basis of u(3). So far, this analysis has been confined
to the bilinear-biquadratic (BBQ) model, Eq. (1), which is
invariant under SU(2) spin rotations. Here we show that the
same approach can be applied to models with interactions
anisotropic in spin space.

At first sight, this is not a trivial generalization, since the
group U(3) encompasses spins with length 
=1. We therefore
need to show that spin-anisotropic interactions do not mix dif-
ferent spin sectors, at the level of individual spin-1 moments.
As we shall see, this condition is satisfied by both u3MC
and u3MD simulations, as long as dynamical simulations are
initiated from a valid spin-1 state.

A. Validity of u3MD approach

For simulations carried out in a u(3) basis to be valid,
it must remain true that each site in the lattice is host to a
single spin-1 moment. Once spins are transcribed in terms of
generators of U(3), this imposes the condition that

Tr Â ≡ 1, (254)

[Equation (10)]. This condition is true by construction in
u3MC simulation (Sec. III A). And, in Sec. II D, we showed
that

∂t Tr Âi ≡ 0, (255)

for u3MD simulations carried out for the spin-rotationally
invariant BBQ model [Eq. (1)], implying that spin-length is
conserved. We now extend this result to models, which break
spin-rotation invariance.
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FIG. 21. Dynamics of ferroquadrupolar (FQ) state in the spin-1 bilinear-biquadratic (BBQ) model with easy-plane anisotropy. (a) Dynam-
ical structure factor for dipole moments SQM

S (q, ω) as predicted by zero-temperature quantum theory of Sec. VIII B. (b) Equivalent results
for quadrupole moments SQM

Q (q, ω). (c) Equivalent results for A matrices SQM
A (q, ω). (d) Dynamical structure factor SMD

S (q, ω) found in
molecular dynamics simulations within u(3) representation (u3MD). (e) Equivalent results for SMD

Q (q, ω). (f) Equivalent results for SMD
A (q, ω).

Simulations were carried out for HD [Eq. (261)], with parameters Eq. (268), at a temperature T = 0.05 J , for a cluster of linear dimension
L = 96 (N = 9216 spins). Numerical results have been multiplied by a prefactor ω/T to correct for classical statistics, following Eq. (246).
All results have been convoluted with a Gaussian in frequency of FWHM = 0.35 J.

We consider most general form of spin-anisotropic Hamil-
tonian allowed for a spin-1 magnet

H� =
∑
〈i, j〉

Jαμ

βν Âα
iβÂ

μ
jν +

∑
i

Lα
βÂα

iβ, (256)

where the only restriction placed on the interactions Jαμ
βν ,

and single-ion anisotropy Lα
β , is the requirement that H� be

Hermitian. It follows that

∂tÂγ

iη = −i
[
Âγ

iη,H�

]
= − i

2

∑
δ

(
Jηα

μβÂ
γ
iμ+ Jαη

βμÂ
γ
iμ

− Jμα
γβ Â

μ
iη− Jαμ

βγ Â
μ
iη

)
Âα

i+δβ

− i

2

(
Lη

αÂ
γ

iα − Lα
γ Âα

iγ

)
. (257)

Setting η = γ and taking the trace, we find

∂t Tr Ai = − i

2

∑
δ

(
Jαγ

βμÂ
γ
iμ − Jαμ

βγ Â
μ
iγ

)
Âα

i+δβ

− i

2

(
Lγ

α Â
γ
iα − Lα

γ Âα
iγ

)
, (258)

where we have used the relationship

Jαμ

βν = Jμα

νβ , (259)

which follows from the fact that components of A on different
lattice sites commute [Eq. (8)]. By rearranging indices on the
right-hand side of Eq. (258), we can easily show that

∂t Tr Âi = 0, (260)

as required.

It follows that the trace of A is conserved within u3MD
simulations, and therefore that simulations carried for out for
arbitrary spin-anisotropic interactions respect the constraint
on spin length. The implication of this result is that solving
the u(3) equations of motion, Eq. (73), for a spin-1 state,
is exactly equivalent to solving the much more complicated
equations of motion for spin-1 moments found in the algebra
su(3) [58–60], regardless of spin anisotropy.

B. Application to FQ state with easy-plane anisotropy:
Analytic theory

For illustration, we now consider the simplest extension of
the results developed thus far to anisotropic interactions: the
spin-1 BBQ model with single-ion, easy-plane anisotropy

HD = HBBQ + HSI, (261)

where HBBQ is defined in Eq. (1), and

HSI =
∑

i

D
(
Ŝy

i

)2
, [D > 0]. (262)

This model has previously been studied in [100].
Like the BBQ model it descends from, HD supports a FQ

ground state for a wide range of (J1, J2 < 0), and we can
easily generalise the theory of excitations developed in Sec. V
to take account of single-ion anisotropy. Transcribing HSI in
terms of A matrices, by way of Eq. (50), we find

HSI =
∑

i

D

(
−2

3
Ây

iy + 1

3
Âx

ix + 1

3
Âz

iz + 2

3

)
. (263)

Written in this form, it is immediately clear that HSI is a
special case of the single-ion term in Eq. (256).
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From here, we can use Eq. (173) to express HSI in terms
of the bosonic basis introduced in Sec. IV A. Its effect is to
introduce new diagonal terms in the matrix controlling the
dispersion of excitations [Eq. (175)], viz,

MSI
k =

⎛
⎜⎝

Ak + D −Bk 0 0
−Bk Ak + D 0 0

0 0 Ak + D −Bk
0 0 −Bk Ak + D

⎞
⎟⎠, (264)

where Ak and Bk are given in Eq. (128). Solving the appropri-
ate eigensystem [Eq. (178)], we find two physical branches of
excitation, with dispersion

εk =
√

(Ak + D)2 − B2
k. (265)

It follows that the effect of easy-plane anisotropy is to open a
gap

� =
√

2A0D + D2, (266)

to the Goldstone modes of FQ order. This is to be expected
since, in the presence of easy-plane anisotropy, the FQ ground
state does not break spin-rotation symmetry.

It is also straightforward to generalise the calculations of
structure factors described in Sec. V B. Results for SQM

A (q, ω)
[Eq. (208)], SQM

Q (q, ω) Eq. (201)], and SQM
S (q, ω) [Eq. (193)]

can be adapted to easy-plane anisotropy through the simple
substitution

Ak −→ Ak + D. (267)

Doing so, and considering parameters

J1 = 0, J2 = −1.0, D = 0.2, (268)

we obtain the predictions shown in Figs. 21(a)–21(c).

C. Application to FQ state with easy-plane anisotropy:
Numerical results

Building on Sec. VIII A, we can also apply the u3MD sim-
ulation approach to the easy-plane model HD [Eq. (261)]. In
Figs. 21(d)–21(f), we show results obtained for the parameter
set Eq. (268). Once corrected for the effect of classical statis-
tics, through Eq. (246), simulations show good agreement
with the predictions analytic theory developed in Sec. VIII B.

These results provide an explicit demonstration of the abil-
ity of u3MD simulations to describe the excitations of spin-1
models with spin-anisotropic interactions.

IX. SUMMARY, CONCLUSIONS, AND OUTLOOK

In this article, we have introduced a method for simulating
both the thermodynamics and dynamics of spin-1 magnets,
established the validity of this method through detailed com-
parison with known limits, and used it to obtain a number
of results for the spin-1 bilinear-biquadratic (BBQ) model on
a triangular lattice. Several other interesting findings entail.
Foremost among these is an explicit connection between clas-
sical simulations at finite temperature, and zero-temperature
quantum dynamics, treated at a semi-classical level. Also of
interest are a low-temperature expansion for the thermody-
namic properties of spin-1 magnets, and a novel derivation
of a well-established multiple-boson expansion.

The key to this method, introduced in Sec. II, is the repre-
sentation of spin-1 moments through the algebra u(3). Unlike
mappings onto an O(3) vector, this approach treats dipole and
quadrupole moments on an equal footing. And for this reason,
it provides a valid (semi-)classical limit of a spin-1 moment.
From this starting point, we have developed a framework for
classical Monte Carlo simulation in the space of “A matrices”,
Âα

β , which act as generators belonging to u(3) (u3MC). We

also derived equations of motion (EoM) for Âα
β in a form

suitable for numerical integration [Eq. (73)]. These form the
basis for a “molecular dynamics” scheme for exploring the
dynamics of spin-1 magnets (u3MD).

The numerical implementation of u3MC and u3MD sim-
ulations was described in Sec. III. A Marasaglia-like update
in the space of Âα

β was introduced, and used to develop a
MC scheme based on a local Metropolis update. The resulting
u3MC approach was shown to reproduce known results for
the thermodynamic properties of the spin-1 BBQ model on
a triangular lattice, and used to derive a finite-temperature
phase diagram (Fig. 3). Meanwhile, numerical integration of
EoM using an RK-4 update was shown to conserve the trace
Âα

β , establishing u3MD as valid approach for simulating the
dynamics of spin-1 magnets.

In order to illustrate the u3MC and u3MD approaches,
we then turned to the specific example of ferroquadrupolar
(FQ) order, as found in the spin-1 BBQ model on a trian-
gular lattice (Fig. 10). To better understand simulations, we
first developed an analytic theory of fluctuations about this
state, described in Sec. IV. Treated at a classical level, these
fluctuations were shown to form bands with either dipolar or
quadrupolar character [Figs. 12(a)–12(c)], which provide the
framework for a classical low-temperature (low-T) expansion
of the free energy [Eq. (136)]. This low-T expansion was used
to make predictions for classical thermodynamic properties
of the BBQ model, for subsequent comparison with u3MC
simulation.

Next, in Sec. V, we showed how these fluctuations could
be quantized, leading to a multiple-boson expansion of excita-
tions about FQ order. This theory, which is exactly equivalent
to a known “flavor-wave” expansion, was used to develop
zero-temperature quantum predictions for dynamical structure
factors within a FQ state, for subsequent comparison with
u3MD simulation [Figs. 12(d)–12(f)].

With this ground work in place, in Sec. VI we explored
both the predictions of u3MC for the low-temperature ther-
modynamic properties of the FQ phase, and the predictions
of u3MD for its dynamics. u3MC results for heat capacity
c(T → 0) (Fig. 13), ordered moment Q (Fig. 14) and equal
time structure factors Sλ(q) [Fig. 15] were shown to be in
perfect agreement with the predictions of the classical low-
T expansion. Meanwhile “raw” u3MD results for dynamics
were shown to give a good account of the dispersion of exci-
tations, but fail to reproduce their spectral weight (Fig. 16).

The reason for the disagreement between u3MD and
the T = 0 quantum theory was identified as coming from
classical statistics, inherited from u3MC simulation. This
observation formed the basis for a detailed exploration of
quantum-classical correspondence within u3MD simulation,
building on the analytic theories of classical and quantum
excitations, and described in Sec. VII. This analysis leads to
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a simple, and very general, prescription for correcting MD
simulation for the effect of classical statistics, in the limit
T → 0 [Eq. (245)]. Corrected in this way, the predictions
of u3MD were shown to perfectly reproduce the predictions
of zero-temperature quantum theory, considered at a semi-
classical level (Figs. 18 and 19). The comparison of u3MC
and u3MD results with published QMC simulations of the FQ
phase of the BBQ model was also discussed.

Up to this point, all results were derived under the as-
sumption of SU(2) symmetry, appropriate to the BBQ model.
However many spin-1 magnets display anisotropy in their
exchange interactions, and at the level of individual ions.
For this reason, in Sec. VIII, we revisited the derivation of
the u3MD method, establishing that it remains valid for the
most general anisotropy permitted for a spin-1 magnet. To
illustrate this result, we demonstrated that u3MD simulations
correctly describe the dynamics of a FQ state in the presence
of single-ion anisotropy, perfectly reproducing the predictions
of a T = 0 quantum theory (Fig. 21).

We conclude that the u3MC and u3MD methods intro-
duced in this Article provide a reliable guide to the classical
thermodynamics, and semi-classical dynamics of spin-1 mag-
nets. This opens many new perspectives for both theory, and
the interpretation of experiment.

On the theoretical side, the lack of well-developed methods
means that the thermodynamic properties of spin-1 magnets,
and in particular their phase transitions, remain relatively
unexplored. This is of particular interest for phases built of
on-site quadrupole moments, which cannot occur in spin-1/2
magnets, and for orders, which support interesting topologi-
cal excitations. Moreover the possibility of combining u3MC
with u3MD means that, where an interesting phase transition
is identified, the associated dynamics can also be explored.

From this point of view, the phase diagram of the simple
BBQ model shown in Fig. 3 already poses many interest-
ing questions. The ordered ground states of this model are
already known to support a wide array of topological exci-
tations [23,113–116]. These take on particularly interesting
form where the model has an enlarged, SU(3) symme-
try [61,88], and the range of possibilities becomes still wider
in the presence of spin-anisotropy [117–120]. In the context
of a two-dimensional model, this presents the opportunity to
study both the thermodynamics, and the dynamics, of a wide
array of different topological phase transitions. We will return
to this question elsewhere, in the context of FQ phase of the
BBQ model [97].

It would also be interesting to use u3MD to look more
deeply into the dynamics of spin-1 magnets at finite tempera-
ture. While MD simulation does not respect quantum quantum
statistics, it does allow for interactions between quasiparticles.
Preliminary analysis of the damping of excitations, described
in Sec. VII of this article, suggest that u3MD results are
consistent with the predictions of hydrodynamic theories, at
least at a qualitative level. More work would be needed to
put these results on a quantitative footing, but this remains
a promising avenue for future exploration. To this end, it
is worth noting that simulations based on U(3) are still in
their infancy, and there is considerable room for technical
improvement, e.g., in Monte Carlo updates. And very recently,

there have been encouraging developments in the application
of SU(3) approaches to spin-1 magnets, complimentary to the
results of this article [121,122].

It is also interesting to speculate about the possible
extension of a U (N ) approach to higher-spin moments. Para-
doxically, while increasing the size of the moment S, will
suppress quantum fluctuations, it also increases the complex-
ity to the problem, through the number of parameters needed
to describe a single site, and the number of bands of excita-
tions found on a lattice. For example, the passage from spin-1
to spin-3/2 increases the Hilbert space from to CP 2 to CP 3,
and the number of parameters needed from 4 to 6. It also
brings a new piece of physics, octupole moments at the level
of a single site, and a new algebra, su(4). This trend continues
for larger S, with each moment possessing its own, unique,
semi-classical limit. Taken appropriately, this limit should
become an increasingly good approximation as S → ∞.

For this reason, further development of semi-classical
methods for high-spin moments makes very good sense. To
this end, we note that coherent-state representation has already
been used to derive general equations of motion for spin-S
moments within the algebra su(N ), where N = 2S + 1 [60].
Quite generally, it is possible to embed such an su(N ) algebra
within u(N ), and seek simplification of the algebra represent-
ing the original spin-S moment, of the type found for spin-1
in this paper. We leave this as a topic for future study.

On the experimental side, many interesting spin-1
magnets have come to light. Celebrated examples
include the triangular-lattice spin-nematic candidate
NiGa2S4 [18,19,27–30], and the pyrochlore spin-liquid
candidate NaCaNi2F7 [32,33]. However there are also steady
stream of new arrivals, and interesting new results for older
materials [123]. Spin-1 models also arise in the context of
cold atoms [44–48], and as a proxy for describing various
forms of quantum liquid crystal, including the nematic phases
of Fe-based superconductors [39–43]. Many aspects of the
physics of these systems remain ambiguous, and the ability
to simulate the dynamics of realistic, microscopic, spin-1
models could prove decisive.

The second major conclusion of this paper, is that it is
possible to correct for the effect of classical statistics in
finite-temperature “molecular dynamics” (MD) simulations
of magnets, and thereby use them to study zero-temperature,
quantum (semi-classical) dynamics. This is a result of broad
relevance, applying equally to conventional MD simulations
in the space of O(3) vectors. And it goes some way to explain-
ing why, despite its humble classical origins, MD simulation
has been so successful in describing the dynamics of exotic
quantum magnets [66,92,124]. The deeper exploration of this
form of quantum-classical correspondence, for example by
pairing u3MD with QMC simulations, is another promising
avenue for future research. And the u(3) basis, which un-
derpins this paper could also be used as starting point for
explicitly quantum calculations, e.g., through the use of vari-
ational wave functions based on tensor networks.

Consider together, this is an absorbing set of prob-
lems, and it will be interesting to see how much more
can be learned through the numerical simulation of spin-1
magnets.
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FIG. 22. Eigenstates of Ŝx
i and basis states of Bx .
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APPENDIX A: SPIN FLUCTUATION PROBABILITY

In this Appendix, we detail how the spin fluctuation prob-
abilities drawn namely in Figs. 1, 5, 10, 11, 22, and 23 are
calculated.

Fluctuations around a given state |α〉 can be calculated
by computing its spin fluctuation probability, defined as the
spatial probability distribution of the overlapping between the
state |α〉 and the spin coherent state |�〉. The spin coherent
state |�〉 is obtained by applying a rotation operator in 3
dimensions defined by the angles θ and φ on the m = 1 state
|1〉:

|�〉 = R(θ, φ)|1〉. (A1)

The spin coherent state represents then a spin pointing in the
direction defined by the angles θ and φ. In the case of a spin
1, the spin coherent state is expressed as

|�〉 = 1 + cos θ

2
e−iφ |1〉 + sin θ√

2
|0〉 + 1 − cos θ

2
e−iφ |1〉.

(A2)
The spin fluctuation probability of the state |α〉 is defined as
the norm of the scalar product with the spin coherent state:

P(θ, φ)|α〉 = |〈α|�〉|2. (A3)

APPENDIX B: PROPERTIES OF A MATRICES

Here, we present the fundamental properties of the “A
matrix”. From its definition in Eq. (48), we note that the A
object is mathematically a (1,1) tensor, but for simplicity, we
might usually refer to it as a matrix. In this Appendix, we also
give the detailed explanations accompanying the symmetry

FIG. 23. Fluctuations created by the generators Âx
y , Âx

z , Ây
x , and

Âz
x , according to Eq. (117), for an angle φαβ = π

8 .

analysis of the BBQ model [Eq. (9)] that we discuss at the
end of Sec. II.

1. Properties of a single A matrix

First, we present how Equation (61) is obtained.
Equation (61) tells us how an object like Âα

β would transform
under a general linear transformation �. To this end, as ex-
plained in Sec. II, we consider a general linear transformation
� : V → V , such that det� 
= 0, so that � is invertible, and
we define

�̃ = �−1T
. (B1)

Under such a transformation, the basis vector ei of the vector
space V will transform according to

ei = �̃
j

i e j . (B2)

Since the vector v = viei is a mathematical object, which
existence does not depend on the basis, the components vi

should transform according to

vi = �i
jv

j, (B3)

such that the vector v = viei = viei stays invariant. It is then
also possible to introduce the dual basis {e�i} of the dual vector
space V �. The basis vectors can be defined by the relations

e�i(e j ) = δi
j . (B4)

Any element v� of V � can be decomposed as

v� = v�
i e�i, (B5)

where the components v�
i are simply given by the value of the

function v� on the basis vector ei of V

v�
i = v�(ei ). (B6)

Under a general transformation � on the basis vectors ei, the
dual basis vectors e�i will transform according to

e�i = �i
je

� j, (B7)

in order to preserve Eq. (B4). And the component v�
i will

transform as

v�
i = �̃

j
i v�

j . (B8)

Finally, under such a general transformation �, the compo-
nent of an object like Âα

β , which is actually a (1,1) tensor, will
transform as stated in Eq. (61).
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2. Properties of quadratric terms of A matrices

We here show how the products of two objects like Âα
β

would transform under a linear transformation, in order to
analyze the symmetry properties of the BBQ Hamiltonian
rewritten in terms of Â “matrices” [Eq. (9)]. Again, we em-
phasis that an object like Âα

β is mathematically a tensor, but
for simplicity, we might sometimes refer to them as matrices.

Going back to Eq. (9), it can easily be seen that the first
term Âα

iβÂ
β
jα is U(3) symmetric because both indexes α and

β are contravariant on one site and covariant on the other. The
Âα

iβÂ
β
jα will therefore stay invariant under a transformation

U ∈ U(3), for which we have

U ∈ U(3) : UU † = U †U = I ⇒ U † = U −1. (B9)

Indeed, under a U(3) symmetry, the first term will transform
as (

Âα
iβ

)μ
ν

(
Âβ

jα

)ν
μ

→ U μ
γ U †κ

ν

(
Âα

iβ

)γ
κ
U ν

η U †λ

μ

(
Âβ

jα

)η
λ

= U μ
γ U †λ

μU ν
η U †κ

ν

(
Âα

iβ

)γ
κ

(
Âβ

jα

)η
λ

= δλ
γ δκ

η

(
Âα

iβ

)γ
κ

(
Âβ

jα

)η
λ

= (
Âα

iβ

)γ
κ

(
Âβ

jα

)κ
γ
. (B10)

The second term in Eq. (9), on the other hand, is not U(3)
symmetric, but it is O(3) symmetric. We can see that under a
U(3) transformation, it transforms as(

Âα
iβ

)μ
ν

(
Âα

jβ

)μ
ν

→ U μ
γ U †κ

ν

(
Âα

iβ

)γ
κ
U μ

η U †λ

ν

(
Âα

jβ

)η
λ

= U μ
γ U μ

η U †λ

νU †κ

ν

(
Âα

iβ

)γ
κ

(
Âα

jβ

)η
λ
. (B11)

Clearly, this is not invariant under a U(3) transformation, but
it is under a O(3) transformation. If U = O ∈ O(3), we have

O ∈ O(3) : OOT = OT O = I ⇒ OT = O−1, (B12)

and under a O(3) transformation, it transforms as

(
Âα

iβ

)μ
ν

(
Âα

jβ

)μ
ν

→ Oμ
γ Oμ

η OT λ

νOT κ

ν

(
Âα

iβ

)γ
κ

(
Âα

jβ

)η
λ

= OT μ

γ Oμ
η OT λ

νOκ
ν

(
Âα

iβ

)γ
κ

(
Âα

jβ

)η
λ

= δγηδ
κλ
(
Âα

iβ

)γ
κ

(
Âα

jβ

)η
λ

= (
Âα

iβ

)γ
κ

(
Âα

jβ

)γ
κ
. (B13)

The Hamiltonian is therefore overall O(3) symmetric, in-
deed both terms are invariant under an O(3) symmetry. And
in the case of J1 = J2, the second term in Eq. (9) vanishes,
and the Hamiltonian is U(3) symmetric. Therefore, working
in U(3) does not change the global symmetry of the Hamil-
tonian, since o(3) � su(2), and there is an homomorphism
from SU(2) into O(3). However, the locally augmented SU(3)
symmetry of the Hamiltonian when J1 = J2 is enlarged from
SU(3) to U(3).

The Hamiltonian can be rewritten in a more general form
as

HBBQ =
∑
〈i, j〉

Jαμ
βν Âα

iβÂ
μ
jν, (B14)

with

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝J2 0 0

0 0 0
0 0 0

⎞
⎠

⎛
⎝ 0 J2 − J1 0

J1 0 0
0 0 0

⎞
⎠

⎛
⎝ 0 0 J2 − J1

0 0 0
J1 0 0

⎞
⎠

⎛
⎝ 0 J1 0

J2 − J1 0 0
0 0 0

⎞
⎠

⎛
⎝0 0 0

0 J2 0
0 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 J2 − J1

0 J1 0

⎞
⎠

⎛
⎝ 0 0 J1

0 0 0
J2 − J1 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 J1

0 J2 − J1 0

⎞
⎠

⎛
⎝0 0 0

0 0 0
0 0 J2

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B15)

The indexes α and β correspond respectively to the line and
the row of the table that assigns the designated matrix, whose
components are then given by μ and ν. For example,

J1μ
2ν =

⎛
⎝ 0 J2 − J1 0

J1 0 0
0 0 0

⎞
⎠, J12

21 = J1, J11
22 = J2 − J1.

(B16)
The symmetries of the Hamiltonian are now hidden in the

symmetries of the tensor Jαμ
βν . Firstly, we see that the Hamilto-

nian is O(3) symmetric, because the repeated summed indexes
are always either covariant or contravariant. The tensor is also
symmetric under the exchange αβ ↔ μν

Jαμ

βν = Jμα

νβ . (B17)

Equation (B17) expresses the fact that there is actually a
tensor product between the two operators Âα

iβ and Âμ
jν acting

on different sites. We also have α ↔ ν with β ↔ μ together,
which is just relabeling the indexes.

In the case of J1 = J2, the tensor is also symmetric under
the exchanges α ↔ μ and β ↔ ν or both

Jαμ

βν = Jμα

βν = Jαμ

νβ . (B18)

It is also symmetric under the exchanges β ↔ μ and α ↔ ν

Jαμ

βν = Jαβ
μν = Jνμ

βα = Jνβ
μα, (B19)

in which case, it can easily be seen that the Hamiltonian is
U(3) invariant, since every index is now summed covariantly.
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APPENDIX C: CONVENTIONS FOR THE TRIANGULAR
LATTICE

In this Appendix, we present the convention that we used
to describe the triangular lattice and its reciprocal space. We
choose the real space lattice vectors, linking a single site unit
cell to another, to be

a =
(

1
0

)
; b = 1

2

(
1√
3

)
. (C1)

The associated vectors in reciprocal space are given by

ka = 2π√
3

(√
3

−1

)
; kb = 2π√

3

(
0
2

)
. (C2)

We define the points along the irreducible wedge in reciprocal
space to be

� =
(

0
0

)
; K = 4π

3

(
1
0

)
; M = π√

3

(√
3

1

)
. (C3)

The vectors δ linking the six neighboring sites are given by

δ =
(

1
0

)
;

1

2

(
1√
3

)
;

1

2

(−1√
3

)
;

(−1
0

)
;

1

2

( −1
−√

3

)
;

1

2

(
1

−√
3

)
. (C4)

For the triangular lattice, the coordination number and the
geometrical factor given in Eq. (129) yield

z = 6; γ�(k) = 1

3

(
cos(kx ) + 2 cos

(
kx

2

)
cos

(√
3ky

2

))

(C5)
The numerical simulations that we present in this Article

are all performed on a cluster of sites defined by the real space
basis vectors given by Eq. (C1) and scaled by L, such that
N = L2 is the number of lattice sites, with periodic boundary
conditions.

APPENDIX D: STRUCTURE FACTORS CLASSICALLY

We present here in more detail the results obtained in
Sec. IV C where we introduced a fictive field h that couples
to the moments (dipoles, quadrupoles or A matrices) that
we are considering [Eq. (154)]. This allows us to then take
the appropriate derivatives of the free energy with respect
to the fictive field components evaluated at zero-field, and
calculate the desired thermodynamic quantities, such as the
structures factors.

The calculation for the structure factors is divided into two
parts. The first part is valid for q 
= 0. It consists in taking into
account up to linear order in the expansion of fluctuations and
is presented below. We provide details of the calculation for
q 
= 0 for dipole moments in Appendix D 2, quadrupole mo-
ments in Appendix D 4, and A matrices in Appendix D 6. The
second part captures the ground-state contribution at q = 0
and consists in taking into account up to quadratic order in the
expansion of fluctuations. The general steps of the calculation
at q = 0 are given in Appendix D 1. The details at q = 0
are provided in Appendix D 3 for the dipole moments, in
Appendix D 5 for the quadrupole moments, in Appendix D 7
for the A matrices.

We assume that the field dependent part of the Hamiltonian
is given by Eq. (154), and that the moment Ôα

i,β can be written
down in terms of the fluctuations φi. Considering up to second
order in fluctuations, the moments Ôα

i,β becomes

Ôα
i,β = qα

βμν
φ

μ
i φν

i + lα
βμ

φ
μ
i + cα

β + O(φ3), (D1)

where we implicitly sum over μ and ν, and where qα
βμν

, lα
βμ

,
and cα

β , are respectively the quadratic, linear, and constant
coefficients from the expansion of Ôα

i,β in terms of the fluc-
tuations φi. The field depend part of the Hamiltonian then
becomes

�H[hi] = −
∑

i

hα
i,βqα

βμν
φ

μ
i φν

i + hα
i,β lα

βμ
φ

μ
i + hα

i,βcα
β,

(D2)
where we also implicitly sum over α, β, and where we neglect
terms in O(φ3), which will from now on be disregarded. We
now perform a Fourier transform according to Eq. (126), and
obtain

�H[hq] = −
∑

q

[
lα
β μ

hα
q,βφ

μ
−q +

√
Ncα

βhα
q,βδq,0

]

−
∑

q

∑
k

1√
N

qα
βμν

hα
q,βφ

μ

k φν
−q−k, (D3)

where N is the number of lattice sites. We notice that if we
were to include this in the total Hamiltonian Eq. (153) and
write it down in the same form as Eq. (124), the interaction
matrix Mk would take the same dimension as the number of
lattice site, because of the form of quadratic term in Eq. (D3).
We should then calculate if for a fixed q. Namely, for q = 0,
we get

�H[hq=0] = −lα
β μ

hα
q=0,βφ

μ
−q=0 −

√
Ncα

βhα
q=0,β

−
∑

k

1√
N

qα
βμν

hα
q=0,βφ

μ

k φν
−k. (D4)

We note that the form of Eq. (D4) is compatible with the
form of Eq. (124). Indeed, for q = 0, the contribution of the
second order in fluctuations will enter the interaction matrix
Mk, modifying its eigenvalues, i.e., its relation dispersions,
which will also depend on the field h, and the interaction
matrix Mk can be easily diagonalized. Therefore, we decide
to only take into account up to second order in fluctuations
for q = 0, since it is exactly solvable and since we will need it
when comparing the ordered moments at q = 0, and to neglect
them for q 
= 0. To make the fact that we are taking the second
order in fluctuations into account only at q = 0 more obvious,
we write

�H[hq]

= −
∑

q

lα
β μ

hα
q,βφ

μ
−q

−
∑

q

(√
Ncα

βhα
q,β +

∑
k

1√
N

qα
βμν

hα
q,βφ

μ

k φν
−k

)
δq,0.

(D5)

We then rewrite the field depend part of the Hamilto-
nian such that the Hamiltonian is symmetric in �φq and �φT

q
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[Eq. (131)], which will be necessary when calculating the
structure factors at q = 0. We have

�H[hq] = −
∑

q

N1[hq]T �φ−q + �φT
q N2[h−q] + C̃[hq]δq,0,

(D6)
where we define

N1[hq]μ = 1
2 lαβμ

hα
q,β , N2[h−q]μ = 1

2 lαβμ
hα

−q,β , (D7)

and

C̃[hq] =
√

Ncα
βhα

q,β +
∑

k

1√
N

qα
μνhα

q=0,βφ
μ

k φν
−k. (D8)

N1,2[hq] are n-dimensional vectors whose components de-
pend linearly on the fields hα

q,β and represent the linear terms

in φq of the moments Ôq. C̃[hq] represents the zero-order term
and the second-order contribution in φq of the moments Ôq at
q = 0. C̃[hq] is also linear in the fields hα

q,β . Plugging Eq. (D6)
in Eq. (153), using the definition of the partition function in
Eq. (132), and using Eq. (H1e) to perform the integral, we get

Z[hq] = e−βE0

N∏
q

[√
(2π )n

βn det(Mq)
e2βN1[hq]T M−1

q N2[hq]

× eβ(C̃[hq]δq,0 )

]
, (D9)

where E0 is given in Eq. (125), and the n × n square matrix
Mq is given by Eq. (127). n is the dimension of Mq, i.e., the
number of independent classical fluctuations. In our case, we
have n = 4. N is the number of lattice sites.

The free energy then becomes

F [hq] = − ln(Z[hq])

β

= E0 −
N∑
q

C̃[hq]δq,0 − 2
N∑
q

N1[hq]T M−1
q N2[h−q]

+ n

2β

∑
q

ln

(
β

2π

)
+ 1

2β

∑
q

ln (det(Mq))

+ O(T 2). (D10)

The first derivatives of the free energy with respect to field
components hq give〈

Ôμ
q,ν

〉 = − ∂F

∂hμ
q,ν

∣∣∣∣
h=0

= ∂C̃[hq]

∂hμ
q,ν

∣∣∣∣
h=0

δq,0. (D11)

The second derivatives of the free energy with respect to field
components hq correspond to〈

Ôα
q,βÔμ

−q,ν

〉 − 〈
Ôα

q,β

〉〈
Ôμ

−q,ν

〉
= − 1

β

∂2F

∂hα
q,β∂hμ

−q,ν

∣∣∣∣
h=0

(D12a)

= 2

β

∂2

∂hα
q,β∂hμ

−q,ν

N∑
q

(
N1[hq]T M−1

q N2[h−q]
)∣∣∣∣∣

h=0

,

(D12b)

where we used the fact that C̃[hq] is linear in the field com-
ponents hα

q,β . For q 
= 0, it turns out to be more convenient
to work with M̃q [Eq. (144)], which is diagonal and which
inverse then simply holds

( ˜M−1
q
)λλ = 1

M̃q
λλ

= 1

ωq,λ

. (D13)

We are allowed to do this because for q 
= 0, the interaction
matrix stays unchanged. However, we need to be more care-
ful for q = 0 as explained in Appendix D 1. Then, N1,2[hq]
become Ñ1,2[hq]

Ñ1[hq]T = N1[hq]T O, (D14a)

Ñ2[h−q] = OT N2[h−q], (D14b)

such that Ñ1,2[hq] corresponds to the linear term when ex-
pressing the operators Ôα

i in terms of the fluctuations �vq that
diagonalize the BBQ Hamiltonian as shown in Eq. (142).
Indeed, we then obtain

�H[hq] = −
∑

q

Ñ1[hq]T �v−q + �vT
q Ñ2[h−q] + C̃[hq]δq,0,

(D15)
Therefore, we can simply write

F [hq] = E0+
N∑
q

C̃[hq]δq,0− 2
N∑
q

Nλ∑
λ=1

(Ñ1[hq]T )λÑ2[h−q]λ

ωq,λ

+ Nλ

2β

∑
q

ln

(
β

2π

)
+ 1

2β

∑
q

Nλ∑
λ=1

ln(ωq,λ)

+ O(T 2), (D16)

where we have used Eq. (137) and where Nλ = 4 is the
number of modes. Equation (D11) stays unchanged, but
Eq. (D12b) takes the simple form given by〈

Ôα
q,βÔμ

−q,ν

〉 − 〈
Ôα

q,β

〉〈
Ôμ

−q,ν

〉 = (D17)

2

β

∂

∂hα
q,β∂hμ

−q,ν

(
Nλ∑

λ=1

(Ñ1[hq]T )λÑ2[h−q]λ

ωq,λ

)∣∣∣∣∣
h=0

. (D18)

The dynamical factor associated with the operator Ô is defined
by

SCL
O (q) =

∑
α,β

〈
Ôα

q,βÔβ
−q,α

〉
(D19)

We can generalize a spectral decomposition of the structure
factors as

SCL
O (q, ω) =

∑
α,β,λ

〈
Ôα

q,βÔβ
−q,α

〉
λ
δ(ω − ωq,λ), (D20)

and calculate the following quantity

SCL
O (q, ω) =

∑
α,β,λ

[〈
Ôα

q,β

〉
λ

〈
Ôβ

−q,α

〉
λ
+ χ

αββα

λ (q)
]

× δ(ω − ωq,λ), (D21)
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where generalized susceptibility

χ
αβμν

λ (q) = 〈
Ôα

q,βÔμ
−q,ν

〉
λ
− 〈

Ôα
q,β

〉
λ

〈
Ôμ

−q,ν

〉
λ

= 2

β

∂

∂hα
q,β∂hμ

−q,ν

(
(Ñ1[hq]T )λÑ2[h−q]λ

ωq,λ

)∣∣∣∣
h=0

.

(D22)

is diagonal in λ. From Eq. (D11), we note that the first mo-
ments 〈Ôα

q,β〉 will only contribute at q = 0. Therefore, for

q 
= 0, we can neglect the 〈Ôα
q,λ〉〈Ôβ

−q,λ〉 term and we obtain

SCL
O (q 
= 0) =

∑
αβλ

χ
αββα

λ (q) + O(T 2), (D23)

1. Structure factors classically at q = 0

We here show how the calculation for the structure at q = 0
is obtained. At q = 0, the structure factor associated with the
operator Ô is defined by

SCL
O (q = 0) =

∑
α,β

〈
Ôα

q=0,βÔβ

q=0,α

〉
. (D24)

The relevant source term is given by Eq. (154). By expanding
Eq. (154) in terms of the fluctuations, we obtained Eq. (D5).
We see that the contribution of the second order in fluctuations
has the same form as the Hamiltonian expressed as Eq. (124)
and will enter the interaction matrix Mk, modifying its eigen-
values, i.e., relation dispersion relations, which will all also
depend on the field h. We can therefore assume that, at q = 0,
the total Hamiltonian [Eq. (153)] has the following form

H = E0 + 1

2

∑
k

[ �φT
k Mk[hq=0] �φ−k

]

+
∑

k

[
NT

1 [hk] �φ−k + �φT
k N2[h−k]

]
δk,0

+
∑

k

C[hq=0]δk,0 + O(φ3), (D25)

where C[hq=0] represents the zero-order term in φq of the
moments Ôq. The second-order contribution at q = 0 is now
included in Mk[hq=0]. As before, N1,2[hk] are n-dimensional
vectors whose components depend linearly on the fields hα

k,β

and represent the linear terms in φk of the moments Ôk.
Neglecting terms in O(φ3), and using Eq. (H1e) to perform
the integral, we find

Z = e−βE0

N∏
k

[∫
e−β 1

2
�φT

k Mk[hq=0] �φk e−β[NT
1 [hk] �φ−k+ �φT

k N2[h−k]]δk,0

× e−βC[hq=0]δk,0

]
d �φk (D26a)

= e−βE0

N∏
k

[√
(2π )n

βn det Mk[hq=0]

× e2βNT
1 [hk]M−1

k [hq=0]N2[h−k]δk,0 e−βC[hq=0]δk,0

]
, (D26b)

where E0 is defined through Eq. (125), and the n × n matrix
Mk[hα

q=0β] through Eq. (D25) that includes up to second order

in fluctuations. n is the dimension of Mk[hα
q=0β], i.e., the

number of independent classical fluctuations. In our case, we
have n = 4. N is the number of lattice sites. It follows that the
free energy is

F = − ln(Z )

β

= E0 +
∑

k

C[hq=0]δk,0

− n

2β

∑
k

ln

(
(2π )

β

)
+ 1

2β

∑
k

Nλ∑
λ=1

ln(ωk,λ[hq=0])

− 2
∑

k

NT
1 [hk]M−1

k [hq=0]N2[h−k]δk,0 + O(T 2),

(D27)

where ωk,λ[hq=0] are the eigenvalues of Mk[hq=0], and we
have used Eq. (137). The moments are given by〈

Ôα
q=0,β

〉 = − ∂F

∂hα
q=0,β

∣∣∣∣
h=0

, (D28)

and〈
Ôα

q=0,βÔμ
q=0,ν

〉 = 〈
Ôα

q=0,β

〉〈
Ôμ

q=0,ν

〉 − 1

β

∂2F

∂hα
q=0,β∂hμ

q=0,ν

∣∣∣∣
h=0

.

(D29)

Using Eqs. (D27) and (D28) yields〈
Ôα

q=0,β

〉 = − ∂C[hq=0]

∂hα
q=0,β

∣∣∣∣
h=0

− 1

2β

∑
k

Nλ∑
λ=1

1

ωk,λ[hq=0]

∂ωk,λ[hq=0]

∂hα
q=0,β

∣∣∣∣∣
h=0

+ 2
∂
[
NT

1 [hq=0]M−1
q=0[hq=0]N2[hq=0]

]
∂hα

q=0,β

∣∣∣∣∣
h=0

+ O(T 2), (D30)

where the last derivative turns out to be null when evaluated
at h = 0, for dipoles, quadrupoles and A matrices. Eq. (D29)
becomes〈

Ôα
q=0,βÔμ

q=0,ν

〉
= 〈

Ôα
q=0,β

〉〈
Ôμ

q=0,ν

〉
− 1

β

∂2C[hq=0]

∂hα
q=0,β∂hμ

q=0,ν

∣∣∣∣
h=0

+ 2

β

∂2
[
NT

1 [hq=0]M−1
q=0[hq=0]N2[hq=0]

]
∂hα

q=0,β∂hμ
q=0,ν

∣∣∣∣∣
h=0

+ O(T 2), (D31)

where the terms including second derivatives of C[hq=0] are
zero, since C[hq=0] is linear in hα

q=0,β by definition. Finally,
Eq. (D24) can be calculated by using Eqs. (D30) and (D31).
For each type of moments, dipole, quadrupole or A matrix,
the interaction matrix Mk[hq=0], the source terms NT

1 [hq] and
N2[hq] and the constant term will be different. They are given
below.
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2. Dipole moments: Classical structure factor for q �= 0

First, we consider the structure factor for dipole moments
of spin

SCL
S (q) =

∑
α

〈
Ŝα

q Ŝα
−q

〉
. (D32)

The relevant source term is

�H
[
hα

i,β

] = −
∑
i,λ

hα
i,βδαβ Ŝβ

i,λ. (D33)

According to Eq. (50) and using Eq. (121), we can express
the spin dipole components in function of the fluctuations.
Considering fluctuation terms up to first order and using
Eq. (145), the spin dipole moments in terms of the fluctuations
diagonalizing the BBQ Hamiltonian are given by

Ŝx
i = −

√
2v4,i,

Ŝy
i � 0, (D34)

Ŝz
i =

√
2v2,i.

After performing a Fourier transform, the change in the
Hamiltonian due to �H[hα

i,β ] [Eq. (D33)] yields

�H[hq] = −
∑

q

[√
2

2
hz

qv−q,2 +
√

2

2
hz

−qvq,2

−
√

2

2
hx

qv−q,4 −
√

2

2
hx

−qvq,4

]
,

and according to Eq. (D15), we get

C̃[hq] = 0, (D35)

where we neglected second-order terms in fluctuations, since
they only contribute for q = 0, and

Ñ1[hq]T =
(

0,

√
2

2
hz

q, 0, −
√

2

2
hx

q

)
,

Ñ2[h−q] =

⎛
⎜⎜⎝

0√
2

2 hz
−q

0

−
√

2
2 hx

−q

⎞
⎟⎟⎠. (D36)

According to Eq. (D11), the first moments are given by the
first derivative of C̃[hq] [Eq. (D35)] with respect to the fictive
field h. We get 〈

Sx
q

〉 = 〈
Sz

q

〉 = 0. (D37)

The total structure factor for the dipole moment is given by
Eq. (D32), and using Eqs. (D22), (D23), and (D36), we obtain

SCL
S (q 
= 0) = 2

βωq,2
+ 2

βωq,4
+ O(T 2) = 4

βω−
q

+ O(T 2),

(D38)
where we used Eq. (140b). Its spectral decomposition
[Eq. (D21)] becomes

SCL
S (q 
= 0, ω) = 4

βω−
q

δ(ω − ω−
q ) + O(T 2). (D39)

3. Dipole moments: Classical structure factor at q = 0

We now consider the dipole structure factor at the origin
of the reciprocal space called the � point. We consider the
structure factor for the spin dipole moments

SCL
S (q = 0) =

∑
α

〈
Ŝα

q=0Ŝα
q=0

〉
. (D40)

We follow the procedure depicted in Appendix D 1. The rel-
evant source term for dipole moments is given by Eq. (D33)
that we need to rewrite it in the same form as Eq. (D25). We
use Eqs. (124)–(127) for the BBQ Hamiltonian, as well as
Eqs. (121) and (50) to express Eq. (D33) up to second order
in terms of the fluctuations. For the total Hamiltonian given in
Eq. (153), and written in the form of Eq. (D25), we obtain

Mk[hq=0]

=

⎛
⎜⎜⎜⎝

Ak −Bk 0 i√
N

hy
q=0,y

−Bk Ak − i√
N

hy
q=0,y 0

0 i√
N

hy
q=0,y Ak −Bk

− i√
N

hy
q=0,y 0 −Bk Ak

⎞
⎟⎟⎟⎠,

(D41)

N1[hk]T = 1

2

(−hz
k,z, −hz

k,z, hx
k,x, hx

k,x

)
,

N2[h−k] = 1

2

⎛
⎜⎜⎝

−hz
−k,z

−hz
−k,z

hx
−k,x

hx
−k,x

⎞
⎟⎟⎠, (D42)

C[hk] = 0. (D43)

We diagonalize Eq. (D41) to obtain the eigenmodes. We find

ω+
k [hq=0] = ωk,1[hq=0] = ωk,3[hq=0]

= Ak +

√√√√( hy
0,y√
N

)2

+ B2
k, (D44a)

ω−
k [hq=0] = ωk,2[hq=0] = ωk,4[hq=0]

= Ak −

√√√√( hy
0,y√
N

)2

+ B2
k. (D44b)

We now can calculate the spin dipole moments through
Eq. (D30), where we use Eqs. (D43) and ((D44)), and where
for the last term, we simply invert Eq. (D41) and multiply by
the vectors in Eq. (D42). We obtain〈

Sx
q=0

〉 = 〈
Sy

q=0

〉 = 〈
Sz

q=0

〉 = 0. (D45)

For the square dipole moments, we use Eq. (D31). We find

〈
Sx

q=0Sx
q=0

〉 = 2

β

1

Aq=0 − Bq=0
= 2

β

1

ω−
0

, (D46a)

〈
Sy

q=0Sy
q=0

〉 = 0, (D46b)

〈
Sz

q=0Sz
q=0

〉 = 2

β

1

Aq=0 − Bq=0
= 2

β

1

ω−
0

, (D46c)

where we used Eq. (140).
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Finally, we calculate the dipole structure factor at the �

point given by Eq. (D40). We get

SCL
S (q = 0) = 4

β

1

ω−
0

+ O(T 2). (D47)

Because the q = 0 contributions are coming from the ground
state and happen for ω = 0, the spectral representation of
Eq. (D47) yields

SCL
S (q = 0, ω) = 4

β

1

ω−
0

δ(ω) + O(T 2). (D48)

Combining Eqs. (D38) and (D47), we get Eq. (157). And
considering their respective spectral representation Eqs. (D39)
and (D48), we obtain Eq. (158).

4. Quadrupole moments: Classical structure factor for q �= 0

Next, we consider the structure factor for quadrupole mo-
ments of spin

SCL
Q (q) =

∑
αβ

〈
Q̂αβ

q Q̂βα
−q

〉
, (D49)

where the scalar contraction implied by the sum on α, β

respects SU(2) symmetry. In this case the source term is

�H[hi] = −
∑

i

hα
i,βQ̂αβ

i . (D50)

The quadrupole components Q̂αβ
i in the function of the classi-

cal fluctuations can be found using Eqs. (51) and (121). Using
Eq. (145), we can express �H[hi] in terms of the fluctuations
that diagonalize the BBQ Hamiltonian. After performing a
Fourier transform, and rewriting the Hamiltonian in the form
of Eq. (D15), we get

C̃[hq] =
√

N

(
− 4

3
hyy

q + 2

3

(
hxx

q + hzz
q

))
, (D51)

where we neglected second-order terms in fluctuations, since
they only contribute for q = 0, and

Ñ1[hq]T =
(

0,
i
√

2

2
ξ 1

q , 0, − i
√

2

2
ξ 1

q

)
,

Ñ2[h−q] =

⎛
⎜⎜⎜⎝

0
i
√

2
2 ξ 1

−q
0

− i
√

2
2 ξ 1

−q

⎞
⎟⎟⎟⎠, (D52)

where

ξ 1
q = (

hxy
q + hyx

q

)
, ξ 2

q = (
hyz

q + hzy
q

)
. (D53)

The total quadrupole structure factor is given by Eq. (D49).
According to Eqs. (D22) and (D23), and using Eq. (D52), we
obtain

SCL
Q (q 
= 0) = 4

βωq,1
+ 4

βωq,3
+ O(T 2) = 8

βω+
q

+ O(T 2),

(D54)

where we used Eq. (140a). and its spectral decomposition
[Eq. (D21)] becomes

SCL
Q (q 
= 0, ω) = 8

βω+
q

δ(ω − ω+
q ) + O(T 2). (D55)

5. Quadrupole moments: Classical structure factor at q = 0

We now consider the quadrupole structure factor at the �

point, which is defined as

SCL
Q (q = 0) =

∑
αβ

〈
Q̂αβ

q=0Q̂βα

q=0

〉
. (D56)

We follow the same procedure as depicted in Appendix D 1.
The relevant source term for quadrupole moments is given by
Eq. (D50). We use Eq. (127) for the BBQ Hamiltonian as well
as Eqs. (121) and (51) to express Eq. (D50) up to second order
in terms of the fluctuations. For the total Hamiltonian given by
Eq. (153), and written in the form of Eq. (D25), we obtain

Mk[hq=0] =

⎛
⎜⎝

Ak + α1 −Bk 0 β1

−Bk Ak + α1 β1 0
0 β1 Ak + α2 −Bk
β1 0 −Bk Ak + α2

⎞
⎟⎠,

(D57)

N1[hk]T = −i

2

(−ξ 1
k , ξ 1

k , ξ 2
k , −ξ 2

k

)
,

N2[h−k] = i

2

⎛
⎜⎜⎝

−ξ 1
−k

ξ 1
−k

ξ 2
−k

−ξ 2
−k

⎞
⎟⎟⎠, (D58)

C[hq=0] =
√

N

(
4

3
hy

q=0,y − 2

3

(
hx

q=0,x + hz
q=0,z

))
, (D59)

where we define

α1 = 2√
N

(
hx

q=0,x − hy
q=0,y

)
, α2 = 2√

N

(
hz

q=0,z − hy
q=0,y

)
,

β1 = 1√
N

(
hx

q=0,z + hz
q=0,x

)
, (D60)

ξ 1
k = (

hx
k,y + hy

k,x

)
, ξ 2

k = (
hy

k,z + hz
k,y

)
.

We diagonalize Eq. (D57) to obtain the eigenmodes. We find

ωk,1[hq=0] = Ak + B2
k + 1

2 (α+ + �), (D61a)

ωk,2[hq=0] = Ak − B2
k + 1

2 (α+ + �), (D61b)

ωk,3[hq=0] = Ak + B2
k + 1

2 (α+ − �), (D61c)

ωk,4[hq=0] = Ak − B2
k + 1

2 (α+ − �), (D61d)

where

α+ = α1 + α2, � =
√

(α1 − α2)2 + 4β2
1 . (D62)

Finally, we use Eqs. (D30) and (D31) to compute the
quadrupole structure factor at the � point given by Eq. (D56).
When calculating Eqs. (D30) and (D31), we use Eqs. (D59)
and (D61), and for the last term, we simply invert Eq. (D57)
and multiply by the vectors expressed in Eq. (D58). We
obtain

SCL
Q (q = 0) = 8

β

1

ω+
0

+ 8

3
N − 8

β

∑
k

[
1

ω+
k

+ 1

ω−
k

]
+ O(T 2).

(D63)

However, we note that at the � point, ω+
0 = 0. Therefore, in

order to get rid of confounding divergent terms, we rewrite the
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quadrupole structure factor as

SCL
Q (q = 0) = − 8

β

1

ω−
0

+ 8

3
N− 8

β

∑
k 
=0

[
1

ω+
k

+ 1

ω−
k

]
+ O(T 2).

(D64)

Because the q = 0 contributions are coming from the ground
state and happen for ω = 0, the spectral representation of
Eq. (D64) yields

SCL
Q (q = 0, ω) = − 8

β

1

ω−
0

δ(ω) + 8

3
Nδ(ω)

− 8

β

∑
k 
=0

[
1

ω+
k

+ 1

ω−
k

]
δ(ω) + O(T 2).

(D65)

Combining Eqs. (D54) and (D64), we obtain Eq. (161).
Considering their respective spectral representation given by
Eqs. (D55) and (D65), we obtain Eq. (163).

6. A matrices: Classical structure factor q �= 0

The matrix Âα
β is the most fundamental object describing

the spins, and its structure factor is defined by

SCL
A (q) =

∑
αβ

〈
Âα

qβÂ
β
−qα

〉
. (D66)

We note that the sum on the contracted indices α, β preserves
the full U(3) symmetry of the representation. The correspond-
ing source term is

�H[hi] = −
∑

i

hα
i,βÂα

iβ. (D67)

The components of the A matrix Âα
iβ in the function of the

classical fluctuations are given in Eq. (121). After express-
ing them in the function of the fluctuations that diagonalize
the BBQ Hamiltonian [Eq. (145)], performing a Fourier
transform, and rewriting the total Hamiltonian [Eq. (153)]
according to Eq. (D15), we get

C̃[hq] =
√

Nhyy
q , (D68)

where we neglected second-order terms in fluctuations, since
they only contribute for q = 0,

Ñ1[hq]T =
(

i
√

2

2
ξ 1

q ,
i
√

2

2
ξ 1

q , − i
√

2

2
ξ 2

q − i
√

2

2
ξ 2

q

)
,

Ñ2[h−q] =

⎛
⎜⎜⎜⎜⎝

i
√

2
2 ξ 1

−q
i
√

2
2 ξ 1

−q

− i
√

2
2 ξ 2

−q

− i
√

2
2 ξ 2

−q

⎞
⎟⎟⎟⎟⎠, (D69)

where

ξ 1
q = (

hxy
q + hyx

q

)
, ξ 2

q = (
hyz

q + hzy
q

)
. (D70)

The total structure factor for A matrices is obtained by
computing Eq. (D66). According to Eqs. (D23) and (D22),

and using Eq. (D69), we obtain

SCL
A (q 
= 0) = 1

βωq,1
+ 1

βωq,2
+ 1

βωq,3
+ 1

βωq,4
+ O(T 2)

= 2

βω+
q

+ 2

βω−
q

+ O(T 2), (D71)

where we used Eq. (140). Its spectral decomposition is given
by

SCL
A (q 
= 0, ω) = 2

βω+
q

δ(ω − ω+
q ) + 2

βω−
q

δ(ω − ω−
q )

+ O(T 2). (D72)

Again replacing the eigenvalues by their expressions given in
Eq. (140), we have

SCL
A (q 
= 0, ω) = 2

β

1

Aq + Bq
δ(ω − ω+

q )

+ 2

β

1

Aq − Bq
δ(ω − ω−

q ) + O(T 2). (D73)

7. A matrices: Classical structure factor at q = 0

We now consider the structure factor for the A matrix at the
� point, which is defined as

SCL
A (q = 0) =

∑
αβ

〈
Âα

q=0βÂ
β

q=0α

〉
. (D74)

Again, we follow the procedure depicted in Appendix D 1.
The relevant source term for dipole moments is given by
Eq. (D67). We use Eq. (127) for the BBQ Hamiltonian as
well as Eq. (121) to express Eq. (D67) up to second or-
der in terms of the fluctuations. For the total Hamiltonian
given in Eq. (153), and written in the form of Eq. (D25),
we obtain

Mk[hq=0] =

⎛
⎜⎝

Ak − α1 −Bk 0 −β1

−Bk Ak − α1 −β2 0
0 −β1 Ak − α2 −Bk

−β2 0 −Bk Ak − α2

⎞
⎟⎠,

(D75)

N1[hk]T = i

2

(−hx
k,y, hy

k,x, hy
k,z, −hz

k,y

)
,

N2[h−k] = −i

2

⎛
⎜⎜⎝

−hy
k,x

hx
k,y

hz
k,y

−hy
k,z

⎞
⎟⎟⎠, (D76)

C[hq=0] = −
√

Nhy
q=0,y, (D77)

where we defined

α1 = 1√
N

(
hx

q=0,x − hy
q=0,y

)
, α2 = 1√

N

(
hz

q=0,z − hy
q=0,y

)
,

β1 = 1√
N

hz
q=0,x, β2 = 1√

N
hx

q=0,z. (D78)

We diagonalize Eq. (D57) to obtain the eigenmodes. We find

ωk,1[hq=0] = Ak − 1
2 (α+ − �−), (D79a)

ωk,2[hq=0] = Ak − 1
2 (α+ + �−), (D79b)

033106-44



SEMI-CLASSICAL SIMULATION OF SPIN-1 MAGNETS PHYSICAL REVIEW RESEARCH 4, 033106 (2022)

ωk,3[hq=0] = Ak − 1
2 (α+ − �+), (D79c)

ωk,4[hq=0] = Ak − 1
2 (α+ + �+), (D79d)

where

α+ = α1 + α2,

�− =
√

α2− + 4
(
B2

k + β1β2 −
√

B2
k(α2− + β2−)

)
,

�+ =
√

α2− + 4
(
B2

k + β1β2 +
√

B2
k(α2− + β2−)

)
, (D80)

with

α− = α1 − α2,

β− = β1 − β2. (D81)

Finally, we use Eqs. (D31) and (D30) to compute the struc-
ture factor for the A matrix at the � point given by Eq. (D74).
When calculating Eqs. (D31) and (D30), we use Eqs. (D77)
and (D79), and for the last term, we simply invert Eq. (D75)
and multiply by the vectors in Eq. (D76).

SCL
A (q = 0) = 2

β

[
1

ω+
0

+ 1

ω−
0

]
+ N − 2

β

∑
k

[
1

ω+
k

+ 1

ω−
k

]

+ O(T 2). (D82)

Again, just as for the quadrupole structure factor, we note
that at the � point, ω+

0 = 0. Therefore, in order to get rid of
confounding divergent terms, we rewrite the structure factor
as

SCL
A (q = 0) = N − 2

β

∑
k 
=0

[
1

ω+
k

+ 1

ω−
k

]
+ O(T 2). (D83)

Because the q = 0 contributions are coming from the ground
state and happen for ω = 0, the spectral representation of
Eq. (D83) yields

SCL
A (q = 0, ω) = Nδ(ω) − 2

β

∑
k 
=0

[
1

ω+
k

+ 1

ω−
k

]
δ(ω)

+O(T 2). (D84)

Combining Eqs. (D71) and (D83), we obtain Eq. (165).
Considering their respective spectral representation given by
Eqs. (D72) and (D84), we obtain Eq. (166).

APPENDIX E: BOGOLIUBOV TRANSFORMATION

We here show how the Bogoliubov transformation that we
present in Sec. V is performed.

A Bogoliubov transformation consists in finding new
bosons v̂†α

k and v̂kα expressed in terms of the bosons ŵ†α
k and

ŵkα [Eq. (175)], such that they diagonalize the Hamiltonian

HBBQ ∼
∑

k

εkv̂†
kv̂k. (E1)

Let us assume that the components are given by

v̂kα =Uk
β
αŵkβ,

v̂†α
k = ŵ†β

k U †α
kβ , (E2)

where Uk is the transformation from basis made out of bosons
expressed by time-reversal basis states to the basis in which
the Hamiltonian is diagonal. Requiring them to have bosonic
commutation relations [Eq. (176)], leads to[

v̂kα, v̂†β
q

] = [
Uk

γ
α ŵkγ ,U †β

qη ŵ†η
q

]
= Uk

γ
αU †β

qη

[
ŵkγ , ŵ†η

q

]
= Uk

γ
αU †β

qη γ0
η
γ δkq

!= γ0
β
αδkq

⇒ Uk
γ
αγ0

η
γU †β

kη = γ0
β
α

⇒ γ0
η
γU †β

kη γ0
α
β = U −1

k
α

γ
, (E3)

where γ0 is defined in Eq. (177), and where we used the fact
that

γ0 = γ0
−1. (E4)

In the compact form, Eq. (E3) becomes

γ0U
†
k γ0 = U −1

k . (E5)

We see that the transformation Uk is not unitary, U −1
k 
= U †

k ,
and that we shall use Eq. (E5) to find the inverse transforma-
tion.

Inverting Eq. (E2) and plugging it into the Hamiltonian
leads us to look for a transformation Uk such that Ukγ0MkU −1

k
is diagonal. If we define Dk as being a diagonal matrix, we can
write

Ukγ0MkU −1
k = Dk

⇒ γ0
α
ν Mk

β
αU −1

k
i
β

= U −1
k

i
ν
Dk

i
i for i = 1, 2, 3, 4, (E6)

where we see that U −1
k

i
ν

is an eigenvector of γ0Mk with eigen-
value Dk

i
i. Equation (E6) is rewritten as Eq. (178) in the main

text. This means that we need to diagonalize γ0Mk and that
the corresponding eigenvectors are the column of the matrix
U −1

k .
Finding the Bogoliubov transformation reduces then to find

the eigenvalues and eigenvectors of the system in Eq. (178).
Since Eq. (178) consists of twice the same system, we only
need to solve it once, and we only consider

σzmkei = εk,iei i = 1, 2, (E7)

where

σz =
(

1 0
0 −1

)
, mk =

(
Ak −Bk
Bk −Ak

)
, (E8)

and where σz plays the role of γ0 but for the two independent
subsystems for (â−k, â†

k ) and (b̂−k, b̂†
k ). The eigenvalues

εk,1/2 of σzmk are given in Eq. (180). The eigenvectors are
given by

e1 =
(

α1

1

)
, e2 =

(
α2

1

)
, (E9)

in the basis {âk, â†
−k} and where we define

αi = −Ak + εk,i

Bk
. (E10)
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The columns of the matrix U −1
k are given by the eigenvectors

U −1
k =

(
α1 α2

1 1

)
. (E11)

Using Eq. (E5), we can calculate Uk as follows:

Uk = σzU
†−1
k σz =

(
α1 −1

−α2 1

)
. (E12)

Using Eq. (E2), the new bosons that diagonalize the Hamilto-
nian are given by

α̂k = v̂k1 = Uk
1
1ŵk1 + Uk

2
1ŵk2 = α1âk − â†

−k, (E13a)

α̂
†
−k = v̂k2 = Uk

1
2ŵk1 + Uk

2
2ŵk2 = −α2âk + â†

−k, (E13b)

α̂
†
k = v̂†1

k = ŵ†1
k U †1

k1 + ŵ†2
k U †1

k2 = α1â†
k − â−k, (E13c)

α̂−k = v̂†2
k = ŵ†1

k U †2
k1 + ŵ†2

k U †2
k2 = −α2â†

k + â−k. (E13d)

For instance, we note that we should have v̂k1 = v̂†2
−k, i.e.,

α̂k(k) = α̂−k(−k). However, we see that it is not the case

v̂k1 = α1âk − â†
−k 
= −α2â†

−k + âk = v̂†2
−k. (E14)

For it to be the case, we see that we need the matrix element
of the transformation to be

Uk
1
1 = U †2

−k2, (E15a)

Uk
2
1 = U †2

−k1. (E15b)

To solve this issue, we can assume that we can multiply the
eigenvectors by some parameters, a and b for instance, such
that Eq. (E15) is satisfied

e1 = a

(
α1

1

)
, e2 = b

(
α2

1

)
. (E16)

And U −1
k is given by

U −1
k =

(
aα1 bα2

a b

)
. (E17)

Using Eq. (E5), we can calculate Uk as follows:

Uk = σzU
†−1
k σz =

(
aα1 −a

−bα2 b

)
. (E18)

We also have

U †
k =

(
aα1 −bα2

−a b

)
. (E19)

Note that the coefficients α1 and α2 depend on k through εk.
However we have εk = ε−k and the dependency in k for α1

and α2 has been dropped. Eq. (E15) implies then

Uk
1
1 = U †2

−k2,

aα1 = b,

a
−Ak −

√
A2

k − B2
k

Bk
= b,

a

−Bk
= b

Ak +
√

A2
k − B2

k

, (E20a)

and

Uk
2
1 = U †2

−k1,

− bα2 = −a,

− b
−Ak +

√
A2

k − B2
k

Bk
= −a,

b

−Bk
= −a

−Ak +
√

A2
k − B2

k

. (E20b)

We see that if we multiply the last line of Eq. (E20b) by
−Bk

Ak+
√

A2
k−B2

k

we get
−Bk

Ak +
√

A2
k − B2

k

b

−Bk

= −Bk

Ak +
√

A2
k − B2

k

−a

−Ak +
√

A2
k − B2

k

, (E21a)

⇒ b

Ak +
√

A2
k − B2

k

= a

−Bk
. (E21b)

We note that Eq. (E21b) is exactly the same condition as in the
last line of Eq. (E20a). This makes sense, because the 1st con-
dition, namely Uk

1
1 = U †2

−k2 is correlated the second one Uk
2
1 =

U †2
−k1, as the components Uk

1
1, Uk

2
1 are not independent, as

they need to be eigenvectors, and nor are the components
U †2

−k2, U †2
−k1. We could also choose the 2nd solution, as up

to scalar multiplication, it gives the same eigenvectors. By
normalizing the eigenvectors, we then get rid of this. This
means, for instance, that we can choose

a = −Bk, (E22)

b = Ak +
√

A2
k − B2

k. (E23)

In this case, the eigenvectors become

e1 =
(

�k
−Bk

)
, e2 =

(−Bk
�k

)
, (E24)

where �k is given Eq. (183). And the transformation matrix
becomes

U −1
k =

(
�k −Bk
−Bk �k

)
. (E25)

Using Eq. (E5), we can calculate Uk as follows:

Uk = σzU
†−1
k σz =

(
�k Bk
Bk �k

)
. (E26)

We also have

U †
k =

(
�k Bk
Bk �k

)
. (E27)

Using Eq. (E2), the new bosons that diagonalize the Hamil-
tonian are given by

α̂k = v̂k1 = Uk
1
1ŵk1 + Uk

2
1ŵk2 = �kâk + Bkâ†

−k, (E28a)

α̂
†
−k = v̂k2 = Uk

1
2ŵk1 + Uk

2
2ŵk2 = Bkâk + �kâ†

−k, (E28b)

α̂
†
k = v̂†1

k = ŵ†1
k U †1

k1 + ŵ†2
k U †1

k2 = �kâ†
k + Bkâ−k, (E28c)

α̂−k = v̂†2
k = ŵ†1

k U †2
k1 + ŵ†2

k U †2
k2 = Bkâ†

k + �kâ−k. (E28d)
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We see that now we indeed have v̂k1 = v̂†2
−k, i.e., α̂k(k) =

α̂−k(−k) = α̂k. However, we still need to normalize the new
bosons. Indeed they should also satisfy bosonic commutation
relations

[α̂k, α̂
†
k] =

[
1√
N

(�kâk + Bkâ†
−k ),

1√
N

(�kâ†
k + Bkâ−k )

]

= 1

N

(
�2

k[âk, â†
k] + B2

k[â†
−k, â−k]

)
= 1

N

(
�2

k − B2
k

) != 1 (E29a)

⇒ N = �2
k − B2

k. (E29b)

Finally, the transformation matrix becomes

Uk = 1√
�2

k − B2
k

(
�k Bk
Bk �k

)
. (E30)

The inverse [Eq. (E5)] holds

U −1
k = σzU

†
k σz = 1√

�2
k − B2

k

(
�k −Bk
−Bk �k

)
. (E31)

By inverting the Bogoliubov transformation [Eq. (E2)], we
can express the old bosons in terms of the new Bogoliubov
bosons using Eq. (E31),

âk = ŵk1 = U −1
k

β

1 v̂kβ = 1√
�2

k − B2
k

(�kα̂k − Bkα̂
†
−k ) ,

(E32a)

â†
−k = ŵk2 = U −1

k
β

2 v̂kβ = 1√
�2

k − B2
k

(−Bkα̂k + �kα̂
†
−k ),

(E32b)

â†
k = ŵ†1

k = v̂†β

k U †−1
k

1

β
= 1√

�2
k − B2

k

(�kα̂
†
k − Bkα̂−k ),

(E32c)

â−k = ŵ†2
k = v̂†β

k U †−1
k

1

β
= 1√

�2
k − B2

k

(−Bkα̂
†
k + �kα̂−k ).

(E32d)

For the other part of the Hamiltonian containing the b̂†

bosons, the problem is exactly the same, and therefore, we
can just use the solutions we found above. The eigenvalues
εk,3 and εk,4 associated to the Bogoliubov bosons for the
(b̂−k, b̂†

k ) subsystem are given by Eq. (180). To express the
old bosons in terms of the new Bogoliubov bosons, we can
just use Eq. (E32),

b̂k = 1√
�2

k − B2
k

(�kβ̂k − Bkβ̂
†
−k ), (E33a)

b̂†
−k = 1√

�2
k − B2

k

(−Bkβ̂k + �kβ̂
†
−k ), (E33b)

b̂†
k = 1√

�2
k − B2

k

(�kβ̂
†
k − Bkβ̂−k ), (E33c)

b̂−k = 1√
�2

k − B2
k

(−Bkβ̂
†
k + �kβ̂−k ). (E33d)

There is a constant term coming from the Bogoliubov
transformation [Eqs. (E32) and (E33)]. For the bosons
â†
±k, â±k it holds

−Ak +
√

A2
k − B2

k = −Ak + εk,1, (E34a)

and for the bosons b̂†
±k, b̂±k,

−Ak +
√

A2
k − B2

k = −Ak + εk,3, (E34b)

where we use Eq. (180).
After performing the Bogoliubov transformation, the

Hamiltonian becomes

H = E0 + 1

2

∑
k

[
εk,1α̂

†
kα̂k + εk,1α̂

†
−kα̂−k − Ak + εk,1

+ εk,3β̂
†
kβ̂k + εk,3β̂

†
−kβ̂−k − Ak + εk,3

]
, (E35)

that we can rewrite as

H =E0 +
∑

k

[
εk,1

(
α̂

†
kα̂k + 1

2

)
+ εk,3

(
β̂

†
kβ̂k + 1

2

)
− Ak

]
,

(E36)

where E0 is given in Eq. (125). Equation (E36) is given in the
main text by Eq. (184), where we used the fact that εk,1 =
εk,3 [Eq. (180)], since they are the eigenvalues of an identical
problem.

APPENDIX F: DYNAMICAL STRUCTURE FACTORS
WITHIN ZERO-TEMPERATURE QUANTUM THEORY

In this Appendix, we present the outline of the method used
to calculate the zero-temperature quantum structure factors in
Sec. V B.

In Appendix F 1, we first present how to calculate dy-
namical structure factors at finite energy through the explicit
calculation of matrix elements within a multiple-boson expan-
sion, and its application to dipole [Appendix F 2], quadrupole
[Appendix F 3], and A matrix moments [Appendix F 4].

In Appendix F 5, we explain how the calculation for
the static structure factors (ω = 0) can also be computed
through functional derivatives of the ground-state energy, in
order to account for the ground-state and zero-point energy
contribution at q = 0. We show calculations for the dipole
[Appendix F 6], quadrupole [Appendix F 7], and A matrix
moments [Appendix F 8].

1. Quantum structure factors at general values of q

The definition of the structure factor is given by Eq. (187)
and its components by

SQM
O (q, ω)αμ

βν =
∫ ∞

−∞

dt

2π
eiωt

〈
Ôα

q,β (t )Ôμ
−q,ν (0)

〉
. (F1)
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where in our case, the averages 〈Ôα
q,β (t )Ôμ

−q,ν (0)〉 are taken
on the ground state. We can rewrite the time dependency of
Ôα

q,β (t ) in the Heisenberg picture using the time evolution
operator, and we obtain

Ôα
q,β (t ) = e

iĤt
h̄ Ôα

q,β (0)e
−iĤt

h̄ . (F2)

For a complete basis {|ν〉} of Hilbert space, the closure rela-
tion holds ∑

ν

|ν〉〈ν| = 1. (F3)

By using Eq. (F2) and inserting the closure relation,
Eq. (F3) twice in Eq. (F1), we get

Sαμ

O,βμ(q, ω) =
∫ ∞

−∞

dt

2π
eiωt

〈
e

iĤt
h̄

∑
ν

|ν〉〈ν|Ôα
q,β (0)

∑
μ

|μ〉

×〈μ|e −iĤt
h̄ Ôμ

−q,ν (0)

〉
+ SGS

O (q = 0, ω)

=
∑

μ

〈0|Ôα
q,β (0)|μ〉〈μ|Ôμ

−q,ν (0)|0〉δ(ω − εμ)

+ SGS
O (q = 0, ω), (F4)

where we assumed that |ν〉 is an eigenstate of the Hamiltonian
of energy Eν = h̄εν and used

e
iĤt

h̄ |ν〉 =
∞∑

n=0

(iĤt )n

n
|ν〉 =

∞∑
n=0

(iEνt )n

n
|ν〉

= e
iEν t

h̄ |ν〉 = eiεν t |ν〉, (F5)

and where SGS
O (q = 0, ω) represents the ground state and

zero-point energy contribution to the structure factor, as ex-
plained below.

In order to compute Eq. (F4), we first note that, in our case,
the excited states, for all values of k

|αk〉 = α̂
†
k|0α〉, (F6)

|βk〉 = β̂
†
k|0β〉, (F7)

form a complete basis, where |0α〉 is the Bogoliubov ground
state for the α̂ bosons, i.e., α̂k|0α〉 = 0, and similarly for the β̂

bosons. Since the Hilbert space consists of the direct product
|α〉 ⊕ |β〉,we can replace

∑
μ

|μ〉〈μ| →
∑

k

α̂
†
k|0α〉〈0α|α̂k +

∑
k

β̂
†
k|0β〉〈0β |β̂k = 1.

(F8)

in Eq. (F4). However, by replacing Eq. (F3) by Eq. (F8)
in Eq. (F4), we account for the first-excited states and we
therefore disregard the ground state and zero-point energy
contribution to the structure factor, which is expressed by
the term SGS

O (q = 0, ω) in Eq. (F4). The ground state and
zero-point energy only contribute at q = 0 and ω = 0. We
present how to calculate it below in Appendix F 5.

2. Dipole moments: Quantum structure factor
at general values of q

We consider first the dynamical spin structure factor

SQM
S (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑
μ

〈
Ŝμ

q (t )Ŝμ
−q(0)

〉
. (F9)

Substituting Eq. (173) in the expression for spin operators,
Eq. (50), and keeping terms to linear order, we find

Ŝx
i � i(b̂†

i − b̂i ), (F10a)

Ŝy
i � 0, (F10b)

Ŝz
i � −i(â†

i − âi ). (F10c)

Performing a Fourier transform and using the Bogoliubov
transformation Eq. (182), we can express these as

Ŝx
q � iξS(q)(β̂†

−q − β̂q), (F11a)

Ŝy
q � 0, (F11b)

Ŝz
q � −iξS(q)(α̂†

−q − α̂q), (F11c)

where ξ (q) is the coherence factor

ξS(q) = �q + Bq√
�2

q − B2
q

. (F12)

Using Eq. (F4), we can then calculate the structure factor for
dipole moments as

SQM
S (q, ω) =

∑
μ,k

∣∣〈nk|Ŝμ
q |0〉∣∣2δ(ω − ωnk

) + SGS
S (q = 0, ω),

(F13)

where |0〉 is the FQ ground state [Eq. (114)], and

|nk〉 = α̂
†
k|0〉 ⊗ β̂

†
k|0〉. (F14)

represents the first excited states where ⊗ implies a direct
product, as the bosons α̂†

q and β̂†
q are independent. By using

Eq. (F14), we account for the first-excited states and we
therefore disregard the ground state and zero-point energy
contribution to the structure factor, which is expressed by the
term SGS

O (q = 0, ω) in Eq. (F13).
Finally, we find

SQM
S (q, ω) = 2

√
Aq + Bq√
Aq − Bq

δ(ω − ωq) + SGS
S (q = 0, ω),

(F15)
where we used Eq. (183). Detailed calculations for q = 0 con-
tributions to the dipole moment structure factor can be found
in Appendix F 6. More precisely, SGS

S (q = 0, ω) is given by
Eq. (F53), which combined with Eq. (F15) gives the total
quantum structure factor for the dipole moments expressed in
Eq. (193).

3. Quadrupole moments: Quantum structure factor
at general values of q

We now consider the dynamical structure factor associated
with quadrupole moments

SQM
Q (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑
μν

〈
Q̂μν

q (t )Q̂μν
−q(0)

〉
. (F16)
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Following the same steps as for the spin-structure factor, we use Eq. (173) to express the quadupole components up to linear
order in Eq. (51). We find

Q̂i
∼=

⎛
⎝ 2

3 −â†
i − âi 0

−â†
i − âi − 4

3 −b̂†
i − b̂i

0 −b̂†
i − b̂i

2
3

⎞
⎠, (F17)

An equivalent calculation of matrix elements in the Bogoliubov basis [Eq. (182)] yields

Q̂q
∼=

⎛
⎝ 2

3

√
Nδ(q) ξQ(q)(α̂†

−q + α̂q) 0
ξQ(q)(α̂†

−q + α̂q) − 4
3

√
Nδ(q) ξQ(q)(β̂†

−q + β̂q)
0 ξQ(q)(β̂†

−q + β̂q) 2
3

√
Nδ(q)

⎞
⎠, (F18)

where N is the number of sites and where ξQ(q) is the coher-
ence factor for quadrupoles defined as

ξQ(q) = Bq − �q√
�2

q − B2
q

. (F19)

Using Eq. (F4), we can then calculate the structure
factor for quadrupole moments as defined in Eq. (F16).
We obtain

SQM
Q (q, ω) = 4

√
Aq − Bq√
Aq + Bq

δ(ω − ωq) + SGS
Q (q = 0, ω),

(F20)

where we used Eq. (183). Detailed calculations for q = 0
contributions to the quadrupole moment structure factor can
be found in Appendix F 7. More precisely, SGS

Q (q = 0, ω) is
given by Eq. (F64), which combined with Eq. (F20) gives
the total quantum structure factor for the quadrupole moments
expressed in Eq. (201).

4. A matrices: Quantum structure factors at general values of q

The most fundamental objects in our theory are not dipoles
or quadrupoles, but the A matrices, which describe the quan-
tum state of the spin-1 moment. It is therefore useful to
introduce a dynamical structure factor

SQM
A (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑
μν

〈
Âμ

ν (t )Âν
μ(0)

〉
. (F21)

Neglecting second-order and higher terms, Eq. (173) becomes

Âi �
⎛
⎝0 â†

i 0
âi 1 b̂i

0 b̂†
i 0

⎞
⎠. (F22)

Once again we can use the Bogoliubov basis [Eq. (182)] to
find

Âq �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ξ−
A (q)α̂†

−q0 0−ξ+
A (q)α̂q

−ξ+
A (q)α̂†

−q −ξ+
A (q)β̂†

−q√
Nδq,0+ξ−

A (q)α̂q +ξ−
A (q)β̂q

ξ−
A (q)β̂†

−q0 0−ξ+
A (q)β̂q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (F23)

where N is the number of sites and ξ+
A (q) and ξ−

A (q) are the
coherence factors for A matrices defined as

ξ+
A (q) = ξS(q) + ξQ(q)

2
, (F24a)

ξ−
A (q) = ξS(q) − ξQ(q)

2
, (F24b)

where ξS(q) and ξQ(q) are defined in Eqs. (F12) and (F19)
respectively.

Using Eq. (F4), we can then calculate the structure factor
for quadrupole moments as defined in Eq. (F21). We obtain

SQM
A (q, ω) = 2

Aq√
A2

q − B2
q

δ(ω − ωq) + SGS
A (q = 0, ω),

(F25)

where we used Eq. (183). Detailed calculations for q = 0
contributions to the A matrix structure factor can be found
in Appendix F 8. More precisely, SGS

A (q = 0, ω) is given by
Eq. (F66), which combined with Eq. (F25) gives the total
quantum structure factor for the A matrices expressed in
Eq. (208).

5. Quantum structure factors: Contribution
of the ground state at q = 0

We here present how to describe the zero-temperature
correction of the ground state and the zero-point energy fluc-
tuations’ contribution to the quantum structure factors, which
is expected to happen at q = 0 and ω = 0.

We therefore consider the zero-temperature quantum struc-
ture factor at q = 0 to be given by

SGS
O (q = 0) =

∑
αβ

〈
Ôα

q=0,βÔβ

q=0,α

〉
T =0

. (F26)

Calculating the contribution of the ground state and the zero-
point energy fluctuations to the zero-temperature quantum
structure factor can be achieved by adding a source term to
the BBQ Hamiltonian that includes a fictive field h coupled to
the spin moments, similarly to what we did for the classical
case [see Sec. IV C 2 and Appendix D]. The structure factors
can then be calculated by taking the appropriate derivative of
the free energy with respect to the fictive field h.

We consider the total Hamiltonian to be given by Eq. (153),
and the source term to be of the form given in Eq. (154).
We can then rewrite the operators Ôα

qβ of Eq. (154) in func-
tion of the fluctuations orthogonal to the FQ ground state
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[Eq. (112)]. Refer to Sec. IV A for details on the creation of or-
thogonal fluctuations. Expanding the source term Hamiltonian
[Eq. (154)] up to second order in bosons, Fourier transforming
it and considering its contribution for q = 0, we can assume
that it takes the following form:

�H[hq] =C[hq=0] + 1

2

∑
k

[ŵ†
kmk[hq=0]ŵk

+ [N[hk]T ŵk + ŵ†
kN[hk]]δk,0], (F27)

where C[hq=0] is the coefficient for the zeroth-order term of
the source term expended in terms of the fluctuations orthog-
onal to the FQ ground state, ŵk represents these fluctuations
orthogonal to the FQ ground state and is given Eq. (175),
mk[hq=0] represents the interaction matrix for second-order
terms in fluctuations and depends on hq=0, and where
N[hk]† and N[hk] are the coefficients for the linear terms
in fluctuations. By definition of the source term Hamiltonian
[Eq. (154)], all the coefficients C[hq=0], N1[hk]T , N2[hk], and
mk[hq=0] depend linearly on the fictive field h and will be
different whether we are considering dipole, quadrupole, or
A-matrix moments for the source term [Eq. (154)].

Using Eq. (174) for the BBQ Hamiltonian, we can assume
that the total Hamiltonian [Eq. (153)] in terms of the bosons
then take the following form:

H = E0 + C[hq=0] + 1

2

∑
k

[ŵ†
kMk[hq=0]ŵk

+ [N[hk]†ŵk + ŵ†
kN[hk]]δk,0], (F28)

where E0 is the mean-field ground state given in Eq. (125), and
where Mk[hq=0] is the interaction matrix for the total Hamilto-
nian. It includes contributions from the BBQ Hamiltonian and
the source term mk[hq=0], and, therefore, depends on hq=0.

Following the method described in Appendix E, we per-
form a Bogoliubov transformation in order to diagonalize
the total Hamiltonian. We assume that the new Bogoliubov
bosons v̂k

v̂k =

⎛
⎜⎜⎝

α̂k

α̂
†
−k
β̂k

β̂
†
−k

⎞
⎟⎟⎠, (F29)

are given in terms of the bosons orthogonal to the FQ
ground state ŵk by Eq. (E2). We can then assume that the
total Hamiltonian in terms of the Bogoliubov bosons v̂k
becomes

H = E0 + �E0[hq=0] + C[hq=0]

+ 1

2

∑
k

[εk,α[hq=0]α̂†
kα̂k + εk,β[hq=0]β̂†

kβ̂k

+ [Ñ[hk]†v̂k + v̂†
kÑ[hk]]δk,0], (F30)

where εk,α[hq=0] and εk,β[hq=0] are the two physical eigenval-
ues obtained by diagonalizing Mk[hq=0] [see Eq. (E6)], where
�E0[hq=0] is the ground state contribution of the Bogoliubov
bosons and where

Ñ[hk]† = N[hk]†U −1,

Ñ[hk] = U †−1
N[hk]. (F31)

Here, U is the Bogoliubov matrix change defined by Eq. (E2)
and remains to be determined. We also note that U −1 (and
U †−1) should be calculate from Eq. (E3).

The canonical partition function is defined by

Z = Tr(e−βĤ), (F32)

where β is defined by Eq. (134), and Ĥ is the operator Hamil-
tonian. However in order to compute the partition function and
the free energy, we want to get rid of the linear terms Ñ[hk]†

and Ñ[hk], which only contribute for k = 0. The partition
function is then the one of a set of independent harmonic
oscillators for the k 
= 0 terms, but still contains linear terms
with respect to the bosons for k = 0,

Z = Tr

(
e−βE0−β�E0[hq=0]−βC[hq=0]

×
∏
k 
=0

(e−βεk,α [hq=0]α̂†
kα̂k )(eβεk,β [hq=0]β̂†

k β̂k )

× (
e− 1

2 βεk=0,α [hq=0]α̂†
k=0α̂k=0− 1

2 βn1[hk=0]α̂†
k=0− 1

2 βn2[hk=0]α̂k=0
)

×(
e− 1

2 βεk=0,β [hq=0]β̂†
k=0β̂k=0− 1

2 βn3[hk=0]β̂†
k=0− 1

2 βn4[hk=0]β̂k=0
))

.

(F33)

where

n1[hk=0] = Ñ[h−k=0]†,2 + Ñ[hk=0]1,

n2[hk=0] = Ñ[hk=0]†,1 + Ñ[h−k=0]2,

n3[hk=0] = Ñ[h−k=0]†,4 + Ñ[hk=0]3,

n4[hk=0] = Ñ[hk=0]†,3 + Ñ[h−k=0]4, (F34)

with Ñ[hk]†,1 denoting the first component of Ñ[hk]†. To do
this, we note that we can perform a change a variables by
completing the square. For the k = 0 term, for the α̂

†
k, α̂k

bosons for instance, we have

−1

2
βε0,α[hq=0]α̂†

0 α̂0 − 1

2
βn1[hk=0]α̂†

0 − 1

2
βn2[hk=0]α̂0

= −1

2
βε0,α[hq=0]

(
α̂

†
0 + n1[hk=0]

ε0,α[hq=0]

)(
α̂0 + n2[hk=0]

ε0,α[hq=0]

)

+β
n1[hk=0]n2[hk=0]

ε0,α[hq=0]
, (F35)

We note that we have

n1[hk=0] = n2[hk=0]†, (F36)

so that we can define the change of variable

ρ̂
†
k=0 = α̂

†
k=0 + n1[hk=0]

εk=0,α[hq=0]
,

ρ̂k=0 = α̂k=0 + n2[hk=0]

εk=0,α[hq=0]
, (F37)

which ensures that ρ̂
†
k=0 and ρ̂k=0 have bosonic commutation

relations and are associated with the eigenmode εk=0,α[hq=0].
We follow the same argument for the β̂

†
k=0, β̂k=0 bosons, and
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get new bosons σ̂
†
k=0 and σ̂k=0:

σ̂
†
k=0 = β̂

†
k=0 + n3[hk=0]

εk=0,β[hq=0]
,

σ̂k=0 = β̂k=0 + n4[hk=0]

εk=0,β[hq=0]
,

(F38)

associated with the eigenmode εk=0,β[hq=0] The partition
function is then the one of a set of independent harmonic
oscillators. We obtain

Z = Tr

(
e−βE0−β�E0[hq=0]−βC[hq=0]

×
∏
k 
=0

(e−βεk,α [hq=0]α̂†
kα̂k )(e−βεk,β [hq=0]β̂†

k β̂k )

× (e−βεk=0,α [hq=0]ρ̂†
k ρ̂k )(e−βεk=0,β [hq=0]σ̂ †

k σ̂k )

×e
β

n1[hk=0]n2[hk=0]
εk=0,α [hq=0] e

β
n3[hk=0]n4[hk=0]

εk=0,α [hq=0]

)
. (F39)

We then perform the trace on the Fock space, and use the
fact that the trace is independent of the choice of the basis.
This means we can compute it separately for the α̂

†
k bosons on

their respective Fock basis |nα
k〉 and for the ρ̂

†
k=0 bosons on its

respective Fock basis |nρ

k=0〉, and similarly for β̂
†
k and σ̂

†
k=0.

Taking the trace over the Fock space as explained above, we
obtain

Z = e−βE0−β�E0[hq=0]−βC[hq=0]

×
∏

k

1

1 − e−βεk,α [hq=0]

1

1 − e−βεk,α [hq=0]

× e
β

n1[hk=0]n2[hk=0]
εk,α [hq=0] e

β
n3[hk=0]n4[hk=0]

εk,α [hq=0] . (F40)

We note here that instead of doing the change of variable for
k = 0, we could also The free energy is given by

F = − ln(Z )

β

= E0 + �E0[hq=0] + C[hq=0]

+ 1

β

∑
k

ln(1 − e−βεk,α [hq=0] )

+ 1

β

∑
k

ln(1 − e−βεk,β [hq=0] )

− 2
n1[hk=0]n2[hk=0]

εk,α[hq=0]
− 2

n3[hk=0]n4[hk=0]

εk,α[hq=0]
+ O(T 2).

(F41)

The moments are given by taking the appropriate derivative
of the free energy. They are given by the same expression that
we obtained for the classical case expressed in Eqs. (D28)
and (D29). We now note that we are interested in the zero
temperature T = 0 structure factor, and we can disregard the

terms with 1
β

in the free energy. Eq. (D28) then becomes

〈
Ôα

q=0,β

〉
T =0

= − ∂[�E0[hq=0] + C[hq=0]]

∂hα
q=0,β

∣∣∣∣
h=0

+ 2
∂
[ n1[hk=0]n2[hk=0]

εk,α [hq=0] + n3[hk=0]n4[hk=0]
εk,α[hq=0]

]
∂hα

q=0,β

∣∣∣∣∣
h=0

.

(F42)

We also note that the terms with n1[hk=0]n2[hk=0] and
n3[hk=0]n4[hk=0] are at least quadratic (if not of higher or-
der, depending on εk[hq=0]) in the field components hq=0,
as any of the ni=1,2,3,4 is independently linear in h−k=0 by
definition. Therefore taking the first derivative of the terms
with n1[hk=0]n2[hk=0] and n3[hk=0]n4[hk=0] and evaluating
them at zero field will inevitably lead to a null contribution.
We then are simply left with

〈
Ôα

q=0,β

〉
T =0

= − ∂�E0[hq=0] + C[hq=0]

∂hα
q=0,β

∣∣∣∣
h=0

. (F43)

The second moments are given by Eq. (D28) and disregarding
again the term with 1

β
, it simply becomes

〈
Ôα

q=0,βÔμ
q=0,ν

〉
T =0

= 〈
Ôα

q=0,β

〉
T =0

〈
Ôμ

q=0,ν

〉
T =0

. (F44)

We can insert Eq. (F44) into Eq. (F26) to calculate the ground-
state contribution to the quantum structure factor. Therefore
all we need to do is find the zeroth-order contribution of the
source term, i.e., find C[hq=0], and compute the zero-point
energy of the Bogoliubov transformation �E0[hq=0].

6. Dipole moments: Contribution of the ground state
to the quantum structure factor at q = 0

First, we consider the structure factor for dipole moments
of spin

SGS
S (q = 0) =

∑
α

〈
Ŝα

q=0Ŝα
−q=0

〉
T =0

. (F45)

The relevant source term is given by Eq. (D33). According
to Eq. (50) and using Eq. (173), we can express Eq. (D33)
in function of fluctuations orthogonal to the FQ ground state
[Eq. (112)]. Considering fluctuation terms up to second order,
we have

Ŝx
i = −i(b̂i − b̂†

i ),

Ŝy
i = i(â†

i b̂i − âib̂
†
i ), (F46)

Ŝz
i = −i(â†

i − âi ).

After performing a Fourier transform, and considering the
source term Hamiltonian �H[hα

i,β ] [Eq. (D33)] at q = 0, we
have

�H[hq] = −
∑

q

[
ihx

−q(b̂†
q − b̂q) − ihz

−q(â†
q − âq)

]
δq,0

−
∑

k

i√
N

hy
q=0(â†

kb̂k − âkb̂†
k ). (F47)
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And using Eq. (174) for the BBQ Hamiltonian, the total
Hamiltonian [Eq. (153)] in terms of the bosons takes the same
form as in Eq. (F28), where Mk[hq=0] is given by

Mk[hq=0]

=

⎛
⎜⎜⎜⎜⎜⎝

Ak −Bk − i√
N

hy
q=0 0

−Bk Ak 0 i√
N

hy
q=0

i√
N

hy
q=0 0 Ak −Bk

0 − i√
N

hy
q=0 −Bk Ak

⎞
⎟⎟⎟⎟⎟⎠,

(F48a)

where Ak and Bk are given in Eq. (128) and where N[hk] is
given by

N[hk] = i

⎛
⎜⎜⎜⎜⎝

hz
−k

−hz
k

−hx
−k

hx
k

⎞
⎟⎟⎟⎟⎠, (F48b)

and where C[hq=0] holds

C[hq=0] = 0. (F48c)

Following the procedure depicted in Sec. V and detailed in
Appendix E, we perform a Bogoliubov transformation and the
eigenvalues εk,λ are given by

εk,1[hq=0] = −εk,2 = +
√

A2
k − B2

k + 1√
N

hy
q=0, (F49a)

εk,3[hq=0] = −εk,4 = +
√

A2
k − B2

k − 1√
N

hy
q=0. (F49b)

After performing the Bogoliubov transformation, the Hamil-
tonian can be rewritten as follows:

H = E0 + �E0[hq=0]

+
[∑

k

εk,1[hq=0]α̂†
kα̂k + εk,3[hq=0]β̂†

kβ̂k

]
, (F50)

where C[hq=0] is disregarded since it is null [Eq. (F48c)], and
where �E0[hq=0] is the zero-point energy

�E0[hq=0] = 1

2

∑
k

[εk,1[hq=0] + εk,3[hq=0]]. (F51)

According to Eq. (F43), the ground-state contribution to the
first moments yield〈

Sx
q

〉
T =0

= 〈
Sz

q

〉
T =0

= 0, (F52a)

〈
Sy

q

〉
T =0

= 1

2

∑
k

[
1√
N

− 1√
N

]
= 0. (F52b)

And according to Eqs. (F44) and (F45), the spin dipole
structure factor at q = 0 yields

SGS
S (q = 0) = 0. (F53)

Indeed, the ground state is quadrupolar and does not break
time-reversal symmetry. Therefore, at zero temperature, the
contribution of quantum fluctuations from the zero-point en-
ergy should average to zero for the spin dipole moments.
The spectral representation of Eq. (F53) is then also triv-
ially null. Combining Eqs. (F15) and (F53), we obtain
Eq. (193).

7. Quadrupole moments: Contribution of the ground state
to the quantum structure factor at q = 0

We now consider the quadrupole structure factor at the �

point, which is defined as

SGS
Q (q = 0) =

∑
αβ

〈
Q̂αβ

q=0Q̂βα

q=0

〉
T =0

. (F54)

We follow the same procedure as depicted in Appendix F 5.
The relevant source term for quadrupole moments is given by
Eq. (D50). We can express Eq. (D50) up to second order in
terms of the bosons by using Eqs. (173) and (51). We use
Eq. (174) for the BBQ Hamiltonian. We then obtain for the
total Hamiltonian given by Eq. (153), written in the form of
Eq. (F28), where Mk[hq=0] is given by

Mk[hq=0] =

⎛
⎜⎜⎜⎜⎝

Ak + α1 −Bk β1 0

−Bk Ak + α1 0 β1

β1 0 Ak + α2 −Bk

β1 0 −Bk Ak + α2

⎞
⎟⎟⎟⎟⎠,

(F55a)

where N[hk] is given by

N[hk] =

⎛
⎜⎜⎜⎝

ξ 1
−k

ξ 1
k

ξ 2
−k

ξ 2
−k

⎞
⎟⎟⎟⎠, (F55b)

and where C[hq=0] holds

C[hq=0] =
√

N
(

4
3 hy

q=0,y − 2
3

(
hx

q=0,x + hz
q=0,z

))
, (F55c)

with Ak and Bk being given in Eq. (128) and with the follow-
ing definitions:

α1 = 2√
N

(
hx

q=0,x − hy
q=0,y

)
, α2 = 2√

N

(
hz

q=0,z − hy
q=0,y

)
,

β1 = 1√
N

(
hx

q=0,z + hz
q=0,x

)
, ξ 1

k = (
hx

k,y + hy
k,x

)
, ξ 2

k = (
hy

k,z + hz
k,y

)
. (F56)
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Following the procedure depicted in Sec. V and detailed in Appendix E, we perform a Bogoliubov transformation and the
eigenvalues εk,λ are given by

εk,1[hq=0] = −εk,2[hq=0] =
√

A2
k − B2

k + β2
1 + 1

2

(
α2

1 + α2
2

) + Akα+ − �

(
Ak + α+

2

)
, (F57a)

εk,3[hq=0] = −εk,4[hq=0] =
√

A2
k − B2

k + β2
1 + 1

2

(
α2

1 + α2
2

) + Akα+ + �

(
Ak + α+

2

)
, (F57b)

where α+ and � are defined in Eq. (D62). After perform-
ing the Bogoliubov transformation, the Hamiltonian can be
rewritten as follows:

H = E0 + �E0[hq=0] + C[hq=0]

+
[∑

k

εk,1[hq=0]α̂†
kα̂k + εk,3[hq=0]β̂†

kβ̂k

]
, (F58)

where C[hq=0] is given in Eq. (F55c), and where�E0[hq=0] is
the zero-point energy and yields

�E0[hq=0] = 1

2

∑
k

[εk,1[hq=0] + εk,3[hq=0]]. (F59)

According to Eq. (F43), the ground-state contribution to the
first moments yield

〈
Qxx

q=0

〉
T =0

= −2

3

√
N + 1√

N

∑
k

⎡
⎣ Ak√

A2
k − B2

k

⎤
⎦, (F60a)

〈
Qxy

q=0,y

〉
T =0

= 〈
Qyx

q=0

〉
T =0

= 0, (F60b)〈
Qxz

q=0,z

〉
T =0

= 〈
Qzx

q=0

〉
T =0

= 0, (F60c)

〈
Qyy

q=0,y

〉
T =0

= 4

3

√
N − 1√

N

∑
k

⎡
⎣ 2Ak√

A2
k − B2

k

⎤
⎦, (F60d)

〈
Qyz

q=0,z

〉
T =0

= 〈
Qzy

q=0

〉
T =0

= 0, (F60e)

〈
Qzz

q=0

〉
T =0

= −2

3

√
N + 1√

N

∑
k

⎡
⎣ Ak√

A2
k − B2

k

⎤
⎦. (F60f)

Before calculating the structure factor, we note that, as
given in Eq. (F60), the first quadrupole moments consist of
two terms with different scaling behavior with respect to the
parameter we expand fluctuations about, which is the length
of the spin s. Indeed, similarly to multi-boson expansion, or
its linear spin-wave version with Holstein-Primakoff bosons
or Schwinger bosons in the case of a su(2) representation of
the spin, we assume the fluctuation to be sufficiently small
compared to the spin length s. In other words, C[hq=0] from
Eq. (F55c) and the eigenvalues in Eq. (F57) scale with s as

C[hq=0] ∼ shμ
q=0μ, (F61a)

εk,λ[hq=0] ∼ s

√
Const. + hμ

q=0μ

s2
+ O

(
h2

q=0

)
s2

. (F61b)

Their derivatives with respect to hμ
q=0,μ that enters the

quadrupole moments [Eq. (F43)] yield

C[hq=0]

∂hμ
q=0,μ

∣∣∣∣
h=0

∼ s,

∂εk,λ[hq=0]

∂hμ
q=0,μ

∣∣∣∣
h=0

∼ s√
Const.

∂
hμ

q=0μ

s2

∂hμ
q=0,μ

∣∣∣∣∣
h=0

∼ 1

s
. (F62a)

This implies that the scaling behavior of the first
quadrupole moments goes as〈

Qμμ
q=0

〉
T =0

∼ s + 1

s
, (F63)

where s is the length of the spin. We now argue that because
our approximation is valid up to linear order in 1

s , i.e., second
order in fluctuations, we can disregard 1

s2 terms. 1
s2 terms

are physical but should not enter into our level of approxi-
mation. Indeed, one would expect additional contribution to
the 1

s2 term coming from higher orders in perturbation theory.
However, we do not take these into account here and simply
consider terms up to 1

s . According to Eqs. (F44) and (F54),
the spin quadrupole structure factor at q = 0 yields

SGS
Q (q = 0) = 8

3
N − 8

∑
k

⎡
⎣ Ak√

A2
k − B2

k

⎤
⎦ + O

(
1

s2

)
.

(F64)

Its spectral representation is given by

SGS
Q (q = 0, ω) =

⎛
⎝8

3
N − 8

∑
k

⎡
⎣ Ak√

A2
k − B2

k

⎤
⎦
⎞
⎠δ(ω)

+O
(

1

s2

)
. (F65)

Combining Eqs. (F20) and (F65), we obtain Eq. (201).

8. A matrices: Contribution of the ground state to the quantum
structure factor at q = 0

For the quantum zero-temperature structure factor for the
A matrices at q = 0, we make use of the sum rule given in
Eq. (66). This leads to

SGS
A (q = 0) = 1

4
SGS

Q (q = 0) + 1

2
SGS

S (q = 0) + 1

3
Nδq,0

= N − 2
∑

k

⎡
⎣ Ak√

A2
k − B2

k

⎤
⎦ + O

(
1

s2

)
, (F66)
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TABLE I. Temperature intervals used for fitting the parameter
α(L) according to Eq. (218).

System size L Tmin Tmax

L = 12 0.01 0.100177
L = 24 0.01 0.100177
L = 48 0.0252403 0.100177
L = 96 0.0343658 0.100177

where we used Eqs. (F53) and (F64). Its spectral representa-
tion yields

SGS
A (q = 0, ω) =

⎛
⎝N − 2

∑
k

⎡
⎣ Ak√

A2
k − B2

k

⎤
⎦
⎞
⎠δ(ω)

+O
(

1

s2

)
. (F67)

Combining Eq. (F25) with Eq. (F67) gives the total quantum
structure factor for the A matrices expressed in Eq. (208).

APPENDIX G: SYSTEM SIZE DEPENDENCE
OF THE ORDERED MOMENTS

We present in this Appendix, the details of the manufactur-
ing of Sec. VI B. More precisely, we explain how we fitted the
numerical data for the ordered moments and explain how we
calculated the ordered moments from the analytical results.

In Table I, we show the temperature intervals on which the
corresponding ordered parameters values are used for the fits
of the slope α(L) of the ordered parameters in Fig. 14(a), for
different system sizes.

We also present here how the ordered moments as ex-
pressed by Eq. (170) and presented in Fig. 14(b) are
calculated. In order to compute Eq. (170), we need to perform
a sum in k space. We here also show that the sum scales
logarithmically with the system size L by explicitly calculat-
ing the coefficient μ correspond to the logarithmic behavior
[Eq. (G5)]. To do this, we calculate the sum numerically for
different system sizes L and fit it according to Eq. (G5) [as
shown by the orange line in Fig. 14(b)]. Additionally, we also
transform the sum into an integral and extract the logarithmic
scaling behavior.

The Brillouin zone is turned into a parallelogram of area
8π√

3
, as it is spanned by the reciprocal vectors Ka and Kb

given in Eq. (C2). We then discretized it into N = L2 tiles of
dimension δA given by

δka = 1

L
Ka, δkb = 1

L
Kb, (G1)

such that

δA = 8π√
3L2

. (G2)

In order to compare numerical with analytical results, we
consider

1

N

∑
k

Ik ⇒ NδA
∑
kx,kx

Ik =
∫

Ikdk, (G3)

We can now sum over the k space, numerically, or integrate,
analytically.

In Eq. (G3), we take as integrant the term expressed as a
sum in the result obtained in Eq. (170), as we wish to compute
the temperature-dependent part of the ordered moment given
in Eq. (170). Using Eq. (140), we obtain

Ik = 16Ak

ε2
k,1

, (G4)

where εk,1 is given in Eq. (180). We then compute the dis-
crete sum numerically according to Eq. (G3) for the different
system sizes, including the ones given in Table I. When per-
forming the sum, we also avoid the origin k = (0, 0), where
εk,1 vanishes, [indeed, γ (0) = 1, and according to Eq. (128),
A0 = B0] and which is not included in the sum of Eq. (170).
For a specific system size, we then get a number as the results
of the discrete sum obtained for that specific system size.
These numbers are plotted as the red dots in Fig. 14(b).

According to Eq. (218), we assume that the system size
dependency should be of the form

− dSCL
Q (q = �)

dT

∣∣∣∣
T =0

= 1

N

∑
k

Ik ∼ C+μ ln(L)+ ν

L
+ ξ

L2
.

(G5)

We use Eq. (G5) to fit the results obtained by computing the
discrete sum in Eq. (G3), i.e., the red dots in Fig. 14(b). The
fit is shown in Fig. 14(b) by the orange line.

Additionally, we want to investigate how accurate the dis-
crete sum is, compared to the integration, and how it depends
on system size. If we consider the integral version in two-
dimensions for polar coordinates, we can cut off to some small
ks = 4π√

3L
in order to avoid the origin k = (0, 0) as follows:

∫
Ikdk = 2π

∫ �

0
Ikkdk = 2π

∫ ks

0
Ikkdk + 2π

∫ �

ks

Ikkdk.

(G6)
For the FQ state, where we chose J1 = 0.0 and J2 = −1.0, the
coefficients Ak and Bk [Eq. (128)] and the dispersion relation
εk,1 [Eq. (180)] become

Ak = z,

Bk = −zγ (k) (G7)

ε2
k = z2(1 − γ (k)2).

For the triangular lattice, the geometrical factor is given by
Eq. (C5), and for sufficiently small values of k, we can use the
Taylor expansion on it. We obtain

γ (k) � 1 − 1

4

(
k2

x + k2
y

) = 1 − 1

4
k2, (G8a)

ε2
k � z2 1

2
k2, (G8b)

Ik = 16Ak

ε2
k,1

� 16z

z2 1
2 k2

= 32

zk2
, (G8c)

2π

∫ k f

ks

Ikkdk � 2π

∫ k f

ks

32

zk2
kdk. (G8d)
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Since z = 6 for the triangular lattice, we have

2π16

3

∫ k f

ks

1

k
dk = 2π16

3
( ln(k f ) − ln(ks)),

= 2π16

3
ln(L) + 2π16

3
ln(k f )

− 2π16

3
ln

(
4π√

3

)
, (G9)

where in the last line, we used the fact that we chose to
cut off according to ks = 4π√

3L
. Before we fit the sum with

the expression given by Eq. (G5), we need to account for
correction coming from the tiling of the k space as explained
in Eq. (G3). Therefore, we need to divide by

δA ∗ N = 8π2

√
3

. (G10)

From Eq. (G5), we can obtain the value for the coefficient
μ for Eq. (G9), which we can compare with the fit from
the values of the sum calculated numerically as shown in
Fig. 14(b):

μana =
2π16

3
8π2√

3

= 4√
3π

= 0.735, μnum = 0.735. (G11)

APPENDIX H: USEFUL GAUSSIAN INTEGRALS

We present here useful Gaussian integrals that we used to
calculate partition functions for the analytic derivations. We
namely used the following one-dimensional Gaussian inte-
grals: ∫

e− 1
2 ax2

dx =
√

2π

a
, (H1a)

∫
e− 1

2 ax2
e±bxdx =

√
2π

a
e

b2

2a , (H1b)

∫
e− 1

2 ax2
e±ibxdx =

√
2π

a
e− b2

2a , (H1c)

which we can also generalize to a multi-dimensions integral
with a source term∫

e− 1
2 xiAi j x j+Bixi d�x =

√
(2π )n

det A
e

1
2

�BT A−1 �B. (H1d)

or more generally,∫
e− 1

2 xiAi
j x j+BT

1,ix
i+xiBi

2 d�x =
√

(2π )n

det A
e2 �BT

1 A−1 �B2 . (H1e)

where n is the dimension of the matrix A. Below, we give the
proof for Eq. (H1e).

Proof. We assume A to be a real symmetric n × n matrix.
This means that A is orthogonally diagonalizable, i.e., it is
similar to a diagonal matrix D = diag(d1

1, . . . , dn
n)

A = SDS−1, (H2)

and the n × n basis change matrix S is orthogonal. The basis
change matrix S then satisfies

ST = S−1, (H3)

and the old coordinates are related to the new ones by

�x = S�y, (H4a)

�xT = �yST , (H4b)

d�x = det Sd�y = d�y, (H4c)

where in the last line we used the fact that the Jacobian matrix
of the map �x(�y) → S�y is the matrix S itself, and that its
determinant is 1, since it is an orthogonal matrix. The term
in the exponential in Eq. (H1e) then becomes

E : = − 1
2 �xT A�x + �BT

1 �x + �xT �B2 (H5a)

= − 1
2 �yT D�y + �BT

1 S�y + �yT S−1 �B2. (H5b)

If we expand, we obtain

E =
∑

i

[
−1

2
yid

i
iy

i +
∑

α

(
BT

1,αSα
i yi + yi(S

−1)i
αBα

2

)]
,

(H5c)
where we used the fact that D is a diagonal matrix. For the ith
term, we can complete the square as

−1

2
yid

i
i y

i +
∑

α

(
BT

1,αSα
i yi + yi(S

−1)i
αBi

2

)

= − 1

2
di

i

(
yi − 2

di
i

∑
α

BT
1,αSα

i

)(
yi − 2

di
i

∑
β

(S−1)i
βBβ

2

)

+ 2
∑

α

∑
β

BT
1,αSα

i

1

di
i

(S−1)i
βBβ

2 . (H6)

Using again the fact that di
i is the ith diagonal term of D, and

inverting Eq. (H2), we can rewrite 1
di

i
as

1

di
i

= (D−1)i
i =

∑
μ,ν

(S−1)i
μ(A−1)μν (S)νi . (H7)

Performing the variable change as

zi = yi − 2

di
i

∑
α

BT
1,αSα

i , (H8a)

zi = yi − 2

di
i

∑
β

(S−1)i
βBβ

2 , (H8b)

d�z = d�y, (H8c)

and inserting Eq. (H7) into the last term of Eq. (H6), and
summing over all the components, we obtain

E = − 1
2�zT D�z + 2 �BT

1 (A−1) �B2. (H9a)

We now have the product of n Gaussian integrals of the form
of Eq. (H1a)

∫
e− 1

2 xiAi
j x j+BT

1,ix
i+xiBi

2 d�x =
[∏

i

∫
e− 1

2 zidi
izi

dzi

]
e2 �BT

1 (A−1 ) �B2

=
√

(2π )n∏
i d i

i

e2 �BT
1 (A−1 ) �B2 . (H10)
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We then use the fact that

det A = det S det D det S−1 = det D =
∏

i

d i
i , (H11)

to obtain Eq. (H1e).

APPENDIX I: APPLICATION TO AN
EASY-PLANE FERROMAGNET

We here wish to apply the u(3) formalism and its rep-
resentation in terms of the A matrices to the Heisenberg
ferromagnetic easy-plane anisotropic model. The A matrices
are especially useful to work with on the TR-invariant basis,
and relatively easy to use when the ground state is quadrupo-
lar. However, some attention is demanded when working with
systems where dipoles rather than quadrupoles order. We
demonstrate here how one can carefully apply our method
for dipolar ordering. Additionally, as explained in Sec. VIII,
we make the interactions anisotropic. We show results for
the zero-temperature quantum structure factors for dipole,
quadrupole and A-matrix moments applied to the ferromag-
netic (FM) state on the triangular lattice for the anisotropic
Heisenberg Hamiltonian (BBQ Hamiltonian [Eq. (1)] with
anisotropic J1 and J2 = 0), with single-ion anisotropy. such
that

〈1x|Ŝx
i |1x〉 = 1, (I1a)

〈0x|Ŝx
i |0x〉 = 0, (I1b)

〈1x|Ŝx
i |1x〉 = −1, (I1c)

〈α|Ŝμ
i |α〉 = 0 for |α〉 ∈ Bx and μ = y, z. (I1d)

We consider the following Hamiltonian:

H = HEP + HSI. (I2)

HEP represents the Heisenberg Hamiltonian for spin-1 with
easy-plane Heisenberg anisotropic exchange couplings J

HEP =
∑
〈i, j〉

[Ŝi · J · Ŝ j], (I3)

where the spin dipole operator Ŝi is defined in Eq. (2), and
where J corresponds to the usual nearest neighbor spin-spin
coupling tensor. HSI accounts for single-ion anisotropy and is
given by

HSI =
∑

i

ŜiDŜi, (I4)

where D corresponds to the usual single site spin-spin cou-
pling tensor. We assume the spin-spin coupling tensors J and
D to only have diagonal components,

HEP =
∑
〈i, j〉

[
JxxŜx

i Ŝx
j + JyyŜy

i Ŝy
j + JzzŜz

i Ŝ
z
j

]
, (I5)

HSI =
∑

i

[
DxxŜx

i Ŝx
i + DyyŜy

i Ŝy
i + DzzŜz

i Ŝ
z
i

]
. (I6)

We also assume the coupling constants to be negative and the
order to be ferromagnetic,

Jαα < 0, (I7)

Dαα < 0. (I8)

We can assume the ground state to be a state with the spin
pointing somewhere in the xy plane, and we can choose it to
be pointing along the x axis,

|GS〉 = |1x〉. (I9)

As a basis, we choose the eigenstates of Ŝx
i ,

Bx = {|1x〉, |0x〉, |1x〉}, (I10)

as represented in Fig. 22.
Even though the A matrices are deeply linked to the time-

reversal (TR) invariant basis, we will here mostly focus on the
basis Bx [Eq. (I10)] and then transform the required quantities
accordingly.

To do that, we remember that the spin dipole moments can
be rewritten in terms of the A matrices [Eq. (50)], expressed in
the time-reversal (TR) invariant basis [Eq. (36)] as shown in
Fig. 5. Using Eq. (50), the terms of the easy-plane anisotropic
Hamiltonian [Eq. (I5)], in terms of the A matrices, becomes

Ŝx
i Ŝx

j = −(
Ây

iz − Âz
iy

)(
Ây

jz − Âz
jy

)
, (I11a)

Ŝy
i Ŝy

j = −(
Âz

ix − Âx
iz

)(
Âz

jx − Âx
jz

)
, (I11b)

Ŝz
i Ŝ

z
j = (

Âx
iy − Ây

ix

)(
Âx

jy − Ây
jx

)
. (I11c)

For the single ion terms, we use Eqs. (26) and (51) to
rewrite the terms Ŝα

i Ŝα
i of the single-ion anisotropic Hamil-

tonian [Eq. (I6)] in the function of the A matrices, as

Ŝx
i Ŝx

i = − 2
3 Â

x
ix + 1

3 Â
y
iy + 1

3 Â
z
iz + 2

3 , (I12a)

Ŝy
i Ŝy

i = − 2
3 Â

y
iy + 1

3 Â
x
ix + 1

3 Â
z
iz + 2

3 , (I12b)

Ŝz
i Ŝ

z
i = − 2

3 Â
z
iz + 1

3 Â
y
iy + 1

3 Â
x
ix + 2

3 . (I12c)

Using Eqs. (I11) and (I12), the total Hamiltonian [Eq. (I2)] in
terms of the A matrices then becomes

H =
∑
〈i, j〉

[−Jxx
(
Ây

iz − Âz
iy

)(
Ây

jz − Âz
jy

)
−Jyy

(
Âz

ix − Âx
iz

)(
Âz

jx − Âx
jz

)
−Jzz

(
Âx

iy − Ây
ix

)(
Âx

jy − Ây
jx

)]
+
∑

i

[
Dxx

(
− 2

3
Âx

ix + 1

3
Ây

iy + 1

3
Âz

iz + 2

3

)

+ Dyy

(
−2

3
Ây

iy + 1

3
Âx

ix + 1

3
Âz

iz + 2

3

)

+ Dzz

(
−2

3
Âz

iz + 1

3
Ây

iy + 1

3
Âx

ix + 2

3

)]
. (I13)

If we define the basis change �3 to be the basis change
matrix between B2 and Bx, such that if a state |φ〉B2

is given
in the TR invariant basis B2, in the basis Bx, its components
are given by

|φ〉Bx = �3|φ〉B2
. (I14)
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We found that the basis change matrix �3 yields

�3 =
⎛
⎝ 0 1√

2
i√
2

−i 0 0
0 1√

2
− i√

2

⎞
⎠. (I15)

An operator ÔB2 given in the TR invariant basis B2 is ex-
pressed as

ÔBx = �3ÔB2�
†
3, (I16)

in the basis Bx.
We will start working the basis Bx, where everything is

simple, since the ground state is one of the basis states and
the orthogonal fluctuations can be expressed in terms of the
other orthogonal basis states. Indeed, the ground-state matrix
takes the simple form

A0Bx =
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠, (I17)

since the ground state is simply the state |1x〉 [Eq. (I9)] or
expressed in terms of director components

d†
0Bx =

⎛
⎝1

0
0

⎞
⎠. (I18)

We can generate orthogonal fluctuations by application of the
exponential map given in Eq. (117). The new state describing
the fluctuations around the ground state is given by

d†(φ) = R̂(φ)d†
0. (I19)

The A matrix transforms according to Eq. (118). Only the
generators Âx

x, Âx
y, Âx

z , Ây
x, and Âz

x will have non zero con-
tribution when applied to the ground-state matrix [Eq. (I17)].
Fig. 23 represents the action of the generators on the ground
state. We can see, for example, that the generator Âx

y, will
create a fluctuation along |0x〉, i.e., an â† boson, and will
induce the new state to exhibit some quadrupolar features.

Using the constraint on the trace of A matrices [Eq. (49)],
we express the contribution from Âx

x in terms of the others
components in order to ensure the length of the spin to be
S = 1 (which is equivalent to constraining the trace of A to be
equal to 1), so that we properly restrict to su(3) and make sure
that we are correctly representing a spin-1. We obtain

A(φ)Bx =
⎛
⎝1 − φxyφyx − φxzφzx iφxy iφxz

−iφyx φxyφyx φxzφyx

−iφzx φxyφzx φxzφzx

⎞
⎠.

(I20)

We can then easily introduce bosonic fluctuations by

iφxy = â, (I21a)

−iφyx = â†, (I21b)

iφxz = b̂, (I21c)

−iφzx = b̂†, (I21d)

such that we get

ÂBx =
⎛
⎝1 − â†

i âi − b̂†
i b̂i âi b̂i

â†
i â†

i âi â†
i b̂i

b̂†
i âib̂

†
i b̂†

i b̂i

⎞
⎠. (I22)

According to Eq. (I16), the A matrices expressed in the TR
invariant basis B2 are given by

ÂB2 = �
†
3ÂBx �3 =

⎛
⎜⎜⎝

â†
i âi

i√
2
â†

i + i√
2
â†

i b̂i − 1√
2
â†

i + 1√
2
â†

i b̂i

− i√
2
âi − i√

2
âib̂

†
i

1
2 + 1

2 b̂†
i + 1

2 b̂i − 1
2 â†

i âi
i
2 + i

2 b̂†
i − i

2 b̂i − i
2 â†

i âi − ib̂†
i b̂i

− 1√
2
âi + 1√

2
âib̂

†
i − i

2 − i
2 b̂i + i

2 b̂†
i + i

2 â†
i âi + ib̂†

i b̂i
1
2 − 1

2 b̂†
i − 1

2 b̂i − 1
2 â†

i âi

⎞
⎟⎟⎠. (I23)

Inserting Eq. (I23) into Eq. (I12), we get the single-ion terms
in the function of the bosons

Ŝx
i Ŝx

i = 1 − â†
i âi,

Ŝy
i Ŝy

i = 1
2 (1 + â†

i âi − b̂†
i − b̂i ), (I24)

Ŝz
i Ŝ

z
i = 1

2 (1 + â†
i âi + b̂†

i + b̂i ).

We notice that if Dyy is not equal to Dzz, then the Hamiltonian
[Eq. (I13)] has single bosons terms, meaning that the state
about which we expanded the fluctuations is not the ground
state any more. Therefore, to be consistent with the easy-plane
FM order and the ground state [Eq. (I9)], we choose

D⊥ = Dyy = Dzz with |D⊥| < |Dxx|. (I25)

After inserting Eq. (I23) into the total Hamiltonian
[Eq. (I13)], only keeping fluctuations up to second order, and
performing a Fourier transform, the Hamiltonian [Eq. (I13)]

becomes

H = 1

2

∑
k

[
(â†

k, â−k )

(
Ak Bk
Bk Ak

)(
âk

â†
−k

)

+(b̂†
k, b̂−k )

(
Ck 0
0 Ck

)(
b̂k

b̂†
−k

)]

+ 1

2
NzJxx + N (Dxx + D⊥), (I26)

where

Ak = −Jxxz + 1
2 z(Jyy + Jzz )γ (k) + (D⊥ − Dxx ),

Bk = 1
2 z(Jzz − Jyy)γ (k), (I27)

Ck = −2zJxx.

Similarly to the FQ case, we need to solve an eigensystem
analogous to Eq. (178). The dispersion relations for â†

k and âk
can be found by imposing them to have bosonic commutation
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relations [Eq. (E3)], and diagonalizing

σz

(
Ak Bk
Bk Ak

)
=

(
1 0
0 −1

)(
Ak Bk
Bk Ak

)
=

(
Ak Bk

−Bk −Ak

)
,

(I28)

where the multiplication by σz imposes the bosonic commu-
tation relations. The eigenvalues εk are given by

εk,1 = +
√

A2
k − B2

k, εk,2 = −
√

A2
k − B2

k. (I29)

The dispersion relations for the b̂†
k and b̂k are obtained by

diagonalizing

σz

(
Ck 0
0 Ck

)
=

(
Ck 0
0 −Ck

)
. (I30)

The eigenvalues εk are given by

εk,3 = −Ck, εk,4 = +Ck. (I31)

Because the coupling constants are negative, the physical re-
sults are

εk,1 = +
√

A2
k − B2

k, εk,3 = −Ck = 2z|Jxx|, (I32)

where Ak, Bk, and Ck are given in Eq. (I27).
Following the same procedure as for the FQ state in Sec. V,

we calculate dynamical structure factors for the anisotropic
FM case. We start by finding the Bogoliubov transformation
that diagonalizes Eq. (I26). Following the steps given in Ap-
pendix E, we get

âk = 1√
�2

k − B2
k

(�kα̂k − Bkα̂
†
−k ), (I33a)

â†
−k = 1√

�2
k − B2

k

(−Bkα̂k + �kα̂
†
−k ), (I33b)

â†
k = 1√

�2
k − B2

k

(�kα̂
†
k − Bkα̂−k ), (I33c)

â−k = 1√
�2

k − B2
k

(−Bkα̂
†
k + �kα̂−k ), (I33d)

and

b̂k = β̂k, (I34a)

b̂†
−k = β̂

†
−k, (I34b)

b̂†
k = β̂

†
k, (I34c)

b̂−k = β̂−k, (I34d)

where �k is given in Eq. (183), and where Ak and Bk are given
in Eq. (I27).

We follow now the calculations outlined in Appendix F 1 in
order to calculate the quantum structure factors. Since we are
working in the Bogoliubov representation, the ground state
|GS〉 is the vacuum state |vac〉 for the Bogoliubov bosons.
The structure factors are given by Eq. (187). We calculate
〈vac|Ôα

q |μ〉 with |μ〉 = α̂
†
k|vac〉 ⊕ β̂

†
k|vac〉 and Ôα

q = Ŝα
k with

α = x, y, z, for the dipole structure factor for instance. Using
Eqs. (50), (51), and (I23), we can rewrite the spin dipole, the

spin quadrupole, and the A matrix operators in terms of the
bosons up to linear order, and after performing a Fourier trans-
form, we can rewrite them in terms of the Bogoliubov bosons
using Eqs. (I33) and (I34). This allows to easily calculate the
structure factors [Eq. (187)].

Using Eq. (F4), the dynamical spin dipole structure factor,
defined by Eq. (F9), is given by

SFM
S (q, ω) = Aq√

A2
q − B2

q

δ(ω − εq,1) + SGSFM
S (q = 0, ω).

(I35)

The dynamical spin quadrupole structure factor, as given by
Eq. (F16), yields

SFM
Q (q, ω) = 2

Aq√
A2

q − B2
q

δ(ω − εq,1) + 4δ(ω − εq,3)

+ SGSFM
Q (q = 0, ω). (I36)

The total dynamical factor for the Â operators defined in
Eq. (F21) becomes

SFM
A (q, ω) = Aq√

A2
q − B2

q

δ(ω − εq,1) + δ(ω − εq,3)

+ SGSFM
A (q = 0, ω), (I37)

where we explicitly summed over the indexes α and β and
where the terms of the form SGSFM

O (q = 0, ω) represent the
ground state and zero-point energy contribution to the struc-
ture factors at q = 0, but are not calculated here, for simplicity
reasons. For these three results, Eqs. (I35)–(I37), we used
Eq. (183), and εq,1, and εq,3 are given in Eq. (I32).

We also check that the sum rule Eq. (66) is indeed satisfied
after noticing that the constant terms in Eq. (66) would only
contribute for q = 0 and at equal time, and can therefore be
neglected. These results are identical to results that one can
obtain by performing a conventional multi-bosons expansion.

In Fig. 24, we show results for the dynamical struc-
ture factors [Eqs. (I35)–(I37)] for the ferromagnetic state
for the anisotropic Heisenberg Hamiltonian with single-ion
anisotropy [Eq. (I2)] on the triangular lattice. We first no-
tice that the quadrupolar band εq,3, which corresponds to
the �S = 2 excitation band associated with the β̂

†
k boson, is

gapped and nondispersive. Because it essentially corresponds
to the excitation obtained by applying the lowering operator
S+ twice, it is quadrupolar in nature and will only contribute
to the quadrupolar structure factor channel. Moreover, such
a quadrupolar excitation from a FM ground state has a fi-
nite energy cost, and it also does not have any neighboring
quadrupoles to interact with, so it is therefore localized. The
isotropic FM Heisenberg case without single-ion anisotropy is
presented in Figs. 24(a)–24(c). As shown in Figs. 24(d)–24(f),
we note that the introduction of easy-plane anisotropy with
Jyy = Jzz 
= Jxx creates a gap and lifts the dispersion relation
according to Eqs. (I32) and (I27). In Figs. 24(g)–24(i), we
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FIG. 24. Dynamical structure factors obtained from zero-T quantum calculations for SA(q, ω) (A matrices consisting of a mixture of
dipolar and quadrupolar moments), SQ(q, ω) (quadrupolar moments) and SS(q, ω) (dipolar moments) for the ferromagnetic (FM) phase of the
BBQ model on the triangular lattice [Eq. (9)] with J1 being considered as Heisenberg anisotropic exchange interactions [Eq. (I5)] and J2 = 0,
and with an additional single ion anisotropic exchange Hamiltonian [Eq. (I6)]. [(a)–(c)] Dynamical structure factors obtained for the isotropic
FM state of the Heisenberg Hamiltonian [Eq. (I5)] where Jxx = Jyy = Jzz = −1 without any single-ion anisotropy [Eq. (I6)], D⊥ = Dx = 0.
[(d)–(f)] Dynamical structure factors obtained for the easy-plane anisotropic FM state of the Heisenberg Hamiltonian [Eq. (I5)] where Jyy =
Jzz = 0.8Jxx and Jxx = −1 without any single-ion anisotropy [Eq. (I6)], D⊥ = Dx = 0. [(g)–(i)] Dynamical structure factors obtained for the
isotropic FM state of the Heisenberg Hamiltonian [Eq. (I5)] where Jyy = Jzz = Jxx = −1 with single-ion anisotropy [Eq. (I6)], D⊥ = 0.5Dx

and Dx = Jxx . [(j)–(l)] Dynamical structure factors obtained for the easy-plane anisotropic FM state of the Heisenberg Hamiltonian [Eq. (I5)]
where Jzz = 0.8Jxx and Jyy = Jxx = −1 with single-ion anisotropy [Eq. (I6)], D⊥ = 0.8Dx and Dx = Jxx .

see that introducing single-ion anisotropy with D⊥ 
= Dxx also
creates a gap and lifts the dispersion relation again according

to Eqs. (I32) and (I27). In Figs. 24(j)–24(l), we display the
interplay of easy-plane and single-ion anisotropy.
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