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Continuous measurement boosted adiabatic quantum thermal machines
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We present a unified approach to study continuous measurement-based quantum thermal machines in static
as well as adiabatically driven systems. We investigate both steady-state and transient dynamics for the time-
independent case. In the adiabatically driven case, we show how measurement-based thermodynamic quantities
can be attributed geometric characteristics. We also provide the appropriate definition for heat transfer and
dissipation owing to continuous measurement in the presence and absence of adiabatic driving. We illustrate
the aforementioned ideas and study the phenomenon of refrigeration in two different paradigmatic examples: a
coupled quantum dot and a coupled qubit system, both undergoing continuous measurement and slow driving.
In the time-independent case, we show that quantum coherence can improve the cooling power of measurement-
based quantum refrigerators. Exclusively for the case of coupled qubits, we consider linear as well as nonlinear
system-bath couplings. We observe that nonlinear coupling produces cooling effects in certain regimes where
otherwise heating is expected. In the adiabatically driven case, we observe that quantum measurement can
provide significant boost to the power of adiabatic quantum refrigerators. We also observe that the obtained
boost can be larger than the sum of power due to individual effects. The measurement-based refrigerators can
have similar or better coefficient of performance in the driven case compared to the static one in the regime where
heat extraction is maximum. Our results have potential significance for future application in devices ranging from
measurement-based quantum thermal machines to refrigeration in quantum processing networks.
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I. INTRODUCTION

Thermal transport and heat-to-work conversion in quantum
systems has been extensively studied theoretically as well
as experimentally owing to its significance in various fields
ranging from quantum thermal machines [1–15] to quantum
information processing [16,17]. Likewise, continuous quan-
tum measurement has also been a modern subject of interest,
investigated both theoretically [18–25] and experimentally
[26–30], disclosing applications to quantum control [31–33]
as well as thermal transport in nanoscale devices [34–44].
The effect of continuous quantum measurements on thermal
transport and heat-to-work conversion in driven as well as
static systems will be the primary focus of this paper.

The measurement-based thermal machine in itself is a re-
cently introduced subject. However, most of the works are
based on strong projective measurements [36,38–43,45,46].
Some research has also been done to study the steady-state
devices based on continuous measurement [35,44,47,48].
Connecting a monitor to the system, one can make weak
generalized measurements revealing some but not com-
plete information about the system. Undergoing continuous
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quantum measurement changes the state of the system and
hence the dynamics of the device. One can utilize this unique
property of quantum measurement, monitoring an observable
incompatible with energy, to alter the energy transport in
nanoscale devices.

In the framework of open quantum systems, adiabatic ther-
mal machines can be obtained by slow modulation of device
parameters, where the time scale associated with driving is
larger than the relaxation time of the system [49–52]. It has
been observed that adiabatic driving can be utilized to pump
heat from one bath to another, obtaining heat engines and
refrigerators [53,54]. Moreover, adiabatically pumped heat
current per cycle is geometric in nature and does not depend
on the details of the driving [51,53]. However, the magnitude
of heat extraction is rather small due to the slow nature of driv-
ing. Note that the performance of adiabatic quantum thermal
machines can be improved by using shortcuts to adiabaticity
techniques [55,56].

In this paper, we present a comprehensive study of whether
the phenomena of measurement can be utilized to enhance
the performance of adiabatic quantum thermal machines or to
even realize a quantum thermal machine per se. Under
the Born-Markov approximation, the contributions from the
thermal baths and the measurement probe to the master equa-
tion are additive [20]. We expand the master equation at
different orders of driving frequency to obtain the contribution
from adiabatic driving [52]. We present a theoretical formu-
lation that unifies two different means of powering a ther-
mal machine, namely quantum measurement and adiabatic
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driving. We also show how measurement-based thermody-
namic quantities can be attributed geometric characteristics
in the adiabatic limit. Our work is important to understand
and control thermal transfer in slowly driven quantum cir-
cuits as well as to improve the power and performance of
measurement-based thermal machines. Considering two dif-
ferent setups based on coupled quantum dots and coupled
qubits, we show that continuous quantum measurement can
not only significantly boost the power of adiabatic quantum
refrigerators but also improve the coefficient of performance
(COP) under suitable conditions. It has been previously
observed that quantum coherence can improve the power
of refrigeration only in highly nonequilibrium conditions
[57,58]. We observe that under continuous monitoring, quan-
tum coherence can help improve the power of refrigeration
even when the baths are maintained at same temperature.

This paper has been organized in the following order. In the
next section, we will present the model under investigation.
In Sec. III, we will study the combined effect of adiabatic
driving and continuous measurement in open quantum sys-
tems. In Sec. IV, we will define different thermodynamic
quantities relevant to the setup considered. In Sec. IV A, we
will study the geometric nature of work done by continuous
measurement in the presence of adiabatic driving. In Sec. V,
we will utilize the formulation developed in the previous
sections for two different paradigmatic examples, namely a
coupled quantum dot system attached to fermionic baths and
coupled qubit system attached to bosonic baths. In Sec. VI, we
will present the results for the coupled quantum dot system.
We will study both time-independent and driven cases. For
the time-independent case, we will study the transient dynam-
ics and the effect of coherence on the measurement-induced
refrigeration. In Sec. VII, we will present some results for
the coupled qubit setup. The conclusions will be drawn in
Sec. VIII.

II. MODEL

The setup we consider is sketched in Fig. 1. The central
system consists of a quantum system whose energy eigen-
states are represented by the velocity vector �U (t ). The velocity
vector is driven adiabatically, such that the driving frequency
is associated with the smallest energy scale pertaining to the
setup. We consider that the quantum system is in contact with
two thermal baths. The Hamiltonian for the setup without the
measurement probe is given by

H (τ ) = HS (τ ) + HB + HC, (1)

where the system Hamiltonian is

HS (τ ) = �F · �U (τ ), (2)

where �F is the force vector, which can be written in terms
of projection operators onto the eigenbasis of the system
Hamiltonian [51,53]. The bath Hamiltonian HB = HB,L +
HB,R consists of two terms corresponding to the two baths L
and R. The baths are considered to have continuous degrees
of freedom and a finite temperature (TL for the left bath and
TR for the right bath). We consider, TR � TL. The baths can be
of bosonic or fermionic nature: in the latter case, the chemical
potential will be fixed to zero, μL = μR = 0. The Hamiltoni-

FIG. 1. An adiabatically driven system attached to two thermal
baths; the bath on the left-hand side (L) is kept at temperature TL

and on the right-hand side (R) is kept at temperature TR. We will
consider, TL � TR. In the meantime, the system is being continuously
monitored by a measurement apparatus (M).

ans of the bosonic and the fermionic baths are given by

H (F )
B =

∑
k,α=L,R

εkαc†
kα

ckα,

H (B)
B =

∑
k,α=L,R

εkαb†
kα

bkα, (3)

where ckα and c†
kα

(bkα and b†
kα

) are the annihilation and
creation operators of excitation energy εkα and quantum num-
ber k for fermionic (bosonic) bath α. The annihilation and
creation operators satisfy usual commutation or anticommu-
tation relations depending on whether the baths are bosonic
or fermionic, respectively: [bkα, b†

lη] = δklδαη, {ckα, c†
lη} =

δklδαη, where [· · · ] and {· · · } are commutator and anticommu-
tator, respectively. The exchange of particle or energy between
the system and the baths is governed by the contact Hamilto-
nian, HC . The form of the contact Hamiltonian depends on the
specific model considered.

III. ADIABATIC DRIVING
AND CONTINUOUS MEASUREMENT

Assuming weak coupling between the measurement probe
and the system, the contribution from continuous measure-
ment can be kept at same footing with respect to the baths
[20]. In fact, it has been observed that continuous mea-
surement of position in harmonic oscillators is equivalent to
attaching the system with a bath at zero temperature [20]. On
the other hand, the bath can also be viewed as a probe that
by continuously monitoring and taking the information away
from the system helps the system to relax. Based on above
assumptions, the quantum master equation for the reduced
density matrix of the system (ρ) is given by

dρ(t, τ )

dt
= −i[HS (τ ), ρ(t, τ )] +

∑
α=L,R

Lα (τ )ρ(t, τ )

+ LM(t )ρ(t, τ ),

(4)

033103-2



CONTINUOUS MEASUREMENT BOOSTED ADIABATIC … PHYSICAL REVIEW RESEARCH 4, 033103 (2022)

where the first term on the right-hand side gives the unitary
evolution of the density matrix with respect to the system
Hamiltonian whereas the second term gives the contribution
of the baths to the leading order of system-bath coupling
strength (see Ref. [52] for the microscopic derivation of
adiabatic quantum master equation). The last term on the
right-hand side is the quantum measurement contribution. It
can be expressed as [18,20]

LMρ = �M

[
XρX † − 1

2

[
X †Xρ + ρX †X

]]

+
√

2�M
[
Xρ + ρX † − 〈X + X †〉ρ]dW

dt
,

(5)

where �M determines the strength of the measurement and
X is the system operator being measured. dW is a stochastic
quantity, which results from the random nature of measure-
ments. The distribution for dW is Gaussian with zero mean
and variance dt .

We have introduced two time scales in Eq. (4) (see
Refs. [52,63] for more details): t is the relaxation time for the
system in the presence of baths and the measurement probe.
In other words assuming Markovian dynamics, for t → ∞
the system goes to the steady state. τ is associated with the
adiabatic driving and runs from 0 to 2π/
 for periodic driv-
ing, 
 is the driving frequency. We consider the driving to
be slow enough such that 2π
−1 � t . This implies h̄
 is the
smallest energy scale in the system and h̄
 � �, where �

is the average coupling strength between the system and the
environment (baths and the measurement probe).

In the weak system-bath coupling and adiabatic driv-
ing limit, the master equation can be broken down into
instantaneous and adiabatic contributions [51–53,59]. The in-
stantaneous contribution to the master equation is given by

dρ (i)(t, τ )

dt
= −i

[
HS (τ ), ρ (i)(t, τ )

] +
∑

α

Lα (τ )ρ (i)(t, τ )

+ LMρ (i)(t, τ )
(6)

and the adiabatic correction

dρ (i)(t, τ )

d �U · d �U
dτ

= −i
[
HS (τ ), ρ (a)(t, τ )

] +
∑

α

Lα (τ )ρ (a)(t, τ )

+ LMρ (a)(t, τ ), (7)

where ρ = ρ (i) + ρ (a), ρ (i) is the instantaneous contribution
and ρ (a) is the adiabatic contribution to the density matrix. The
expression on the left-hand side of Eq. (7) has two contribu-
tions: one associated with the rate of change of instantaneous
density matrix as a function of the driving τ and the other
due to the change of eigenstates �U with respect to τ . The
latter contribution vanishes under the secular approximation
[52,60]. The two density matrices satisfy the following nor-
malization condition:

Tr[ρ (i)] = 1; Tr[ρ (a)] = 0. (8)

A. Discarding measurement record and the steady state

In this paper, we will define the steady state only for the
case when the measurement record is discarded. Later, we
will also study the transient regime where we will take into
account the stochasticity associated with quantum measure-
ment process. When the measurement records are discarded,
the system reaches the steady state for t → ∞. The contri-
bution to the system dynamics due to continuous quantum
measurement reduces to

LMρ = �M
[
XρX † − 1

2 (X †Xρ + ρX †X )
]
. (9)

In the steady state, the time derivative of the instantaneous
density matrix goes to zero, i.e dρ (i)(t → ∞, τ )/dt = 0. We
represent the steady-state density matrix as, ρ (i/a)(∞, τ ) ≡
ρ (i/a)(τ ). The quantum master equations become

0 = −i[HS (τ ), ρ (i)(τ )] +
∑

α

Lα (τ )ρ (i)(τ ) + LMρ (i)(τ )

(10)

for the instantaneous contribution and

dρ (i)(τ )

d �U · d �U
dτ

= −i[HS (τ ), ρ (a)(τ )]

+
∑

α

Lα (τ )ρ (a)(τ ) + LMρ (a)(τ )
(11)

for the adiabatic contribution.

IV. HEAT CURRENTS, POWER, AND EFFICIENCY

There can be three different contributions to the heat cur-
rents: (i) difference of temperature in the left and the right
bath, (ii) adiabatic driving that pumps heat from one bath to
another bath, and (iii) quantum measurement, which influ-
ences the state of the system leading to the change in the heat
current flowing into the baths. The heat current flowing out of
bath α is given by

J (i/a)
α (t, τ ) = Tr[HS (τ )Lαρ (i/a)(t, τ )], (12)

where J (i)
α is the instantaneous heat current and is zero for

TL = TR and �M = 0 whereas J (a)
α is the adiabatic contribu-

tion to the heat current. The effect of quantum measurement
is manifested through the density matrix. The heat current
flowing out of the measurement probe to the system is
given by

JM (t, τ ) = Tr[HS (τ )LMρ(t, τ )]. (13)

The power supplied by the driving is given by

PD(t, τ ) = d �U
dτ

· �ρ(t, τ ). (14)

The setup can be utilized to obtain a variety of thermal ma-
chines such as heat engines, refrigerators, heat pumps, thermal
accelerators, and so on. The choice of thermal machine we
obtain depends on the parameter regime considered. In this
paper, we are mostly interested in the process of refrigeration.
A refrigerator extracts heat from a cold bath (R) and deposit it
into the hot bath (L) using the power provided by the adiabatic
driving as well as the quantum measurement. The coefficient
of performance for the refrigerator is given by the ratio of the
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amount of heat extracted from the bath R to the total amount
of power supplied to the system, i.e.,

C(t, τ ) = JR(t, τ )

PD(t, τ ) + JM (t, τ )
, (15)

where Jα (t, τ ) = J (i)
α (t, τ ) + J (a)

α (t, τ ). The above expression
for the coefficient of performance does not include dissipation
in the measurement probe. The coefficient of performance in
the instantaneous limit is given by

C(i)(t, τ ) = J (i)
R (t, τ )

J (i)
M (t, τ )

. (16)

Similarly, if the device were to work as a heat engine, it would
utilize a part of heat flow due to thermal bias to work against
the mechanism of adiabatic driving and quantum measure-
ment. The efficiency of such a device would be given by an
inverse ratio [51].

For any observable O(t, τ ) of Eq. (15), the time-averaged
counterpart in the steady state is given by

Ō = 


2π

∫ 2π



0
O(τ )dτ. (17)

A. First and the second law of thermodynamics

Along with the measurement Hamiltonian (HM), the total
Hamiltonian can be written as

Htot (τ ) = H (τ ) + HM. (18)

The heat currents have a transport as well as a dissipative com-
ponent. The transport heat current is conservative in nature
whereas the dissipative part of the heat current is nonconser-
vative in nature and gives rise to entropy. To study the energy
fluxes entering and exiting different parts of the device, we
study the time evolution of the Hamiltonian

d〈Htot〉
dτ

= d〈H〉
dτ

+ d〈HM〉
dτ

, (19)

where the time evolution would be given by the Heisenberg
equation of motion. For instance,

d〈H〉
dτ

= i〈[Htot, H]〉 +
〈
∂HS

∂τ

〉
. (20)

In the steady state, the dynamics for the bath and contact
Hamiltonian would be given by

d〈HB〉
dτ

= i〈[Htot, HB]〉 =
∑

α

Jα (τ ),

d〈HC〉
dτ

= i〈[Htot, HC]〉 =
∑

α

JC,α (τ ), (21)

where the instantaneous and adiabatic components of Jα (τ )
will be given by steady-state solutions of Eq. (12) in the Born-
Markov approximation. Similarly we can identify the power
provided by the driving as well as the measurement probe as

PD(τ ) =
〈
∂HS

∂τ

〉
,

JM(τ ) = i〈[HS, HM]〉. (22)

Note that when the system and the measurement Hamiltonians
commute, the power provided by the measurement probe to
the system vanishes. Hence, only the measurement of observ-
ables, which do not commute with the system Hamiltonian
can power measurement-based thermal devices.

Similar to the case of heat currents, the expression for the
powers in the Born-Markov approximation would be given by
the steady-state solutions of Eqs. (14) and (13). Substituting
above relations for powers and heat currents in Eq. (19), we
obtain

0 = JS (τ ) +
∑

α

(Jα (τ ) + Jc,α (τ )) + JM(τ ), (23)

which gives the first law of thermodynamics. We defined,
JS (τ ) = i〈[Htot, HS]〉 and used d〈Htot〉

dτ
= 〈 ∂HS

∂τ
〉 = PD. The heat

current stored in the contact region goes to zero on time
averaging. Equation (23) reduces to

0 = J̄S +
∑

α

J̄α + J̄M. (24)

The power dissipated by the driving and the measurement
probe are nonconservative in nature and in general gives rise
to entropy production. Therefore, when both baths as well as
the measurement probe are kept at temperature T , the time-
average entropy production rate would be given by

T ˙̄S = P̄D + P̄M, (25)

where P̄M is the power dissipated due to measurement, which
is neglected while calculating the coefficient of performance
in Eqs. (15) and (16). Since, both P̄D and P̄M are greater
than or equal to zero, we obtain ˙̄S � 0 giving the second
law of thermodynamics. If the measurement probe and the
two baths have different temperatures, which is the case in
general, the total entropy production will be given in terms
of heat currents, the corresponding temperatures and the dis-
sipated power due to driving and measurement [51,61]. The
formulation used in this paper only addresses the change in
the dynamics of the system due to the measurement probe but
not vice versa and hence is inadequate to study the dissipation
in the measurement probe.

B. Geometric nature of the work done
by quantum measurement

When a quantum system is driven adiabatically in a cy-
cle, the system’s final state acquires a gauge-invariant phase,
which is geometric in nature [62]. Based on aforementioned
arguments, it was recently shown that different thermody-
namic quantities associated with adiabatically driven open
quantum systems can have geometric contribution [51,63].
Different thermodynamic quantities associated with adiabat-
ically driven quantum systems in the linear response regime
can be described in terms of thermal geometric tensor [51,63].
Heat-to-work conversion, which lies at the heart of the per-
formance of thermal machines is given by the antisymmetric
component of the thermal geometric tensor. Furthermore, the
antisymmetric component has the structure of Berry curva-
ture and depends only on the geometry of the trajectory
traversed in the parameter space. On the other hand, the
symmetric component of the thermal geometric tensor does
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not have a structure of Berry curvature but has a geometric
interpretation in terms of thermodynamic length. The sym-
metric components are dissipative in nature and give rise
to entropy production. Consequently, optimization protocols
in adiabatically driven system are determined by the best
tradeoff between the anitsymmetric and symmetric compo-
nents of the thermal geometric tensor [63]. From now on,
we will use the term geometric only for the terms having the
structure of Berry curvature.

It has been experimentally observed that a sequence of
weak measurements continuously varying in measurement
strength can induce a geometric phase akin to the one ob-
tained with adiabatic driving [64]. Furthermore, topological
transitions in measurement-induced geometric phases when
one gradually varies the measurement strength were recently
studied theoretically in Ref. [65]. The aforementioned ob-
servations motivate the study of geometric characteristics of
measurement-based thermal devices.

Neglecting the off-diagonal terms of the density matrix, the
commutator in Eqs. (10) and (11) vanishes. The adiabatic con-
tribution to the density matrix can be written in the following
form:

ρ (a)(τ ) =
(∑

α

Lα ( �U ) + LM

)−1
dρ (i)(τ )

d �U · d �U
dτ

. (26)

Note that the off-diagonal terms were neglected only for the
sake of simplicity. The results in this section hold even when
quantum coherence is taken into account. Plugging Eq. (26)
into Eq. (13), the adiabatic contribution to the heat current
flowing out of measurement probe is given by

J (a)
M (τ ) = Tr

[
HS ( �U )LM

[ �R( �U )ρ (i)(τ )
] · d �U

dτ

]
, (27)

where

�R( �U ) =
(∑

α

Lα ( �U ) + LM

)−1
d

d �U . (28)

Defining �� = Tr[HS ( �U )LM[ �R( �U )ρ (i)(τ )]], the time average
of Eq. (27) expressed as

2π



J̄ (a)

M =
∫

∂S

�� · d �U (29)

is a geometric quantity, which implies that the amount of work
done by continuous measurement per driving period does not
depend on the details of the driving but only on the trajectory
traversed (∂S) by �� in the parameter space defined by �U (see
Fig. 2).

We define the adiabatic work done by measurement
through 2π J̄ (a)

M = 
W̄ (a)
M . Using the Stoke’s theorem, one can

express the adiabatic work performed as a surface integral
given by

W̄ (a)
M =

∫
∂S

��.d �U =
∫

S

(∇U × ��) · d �S, (30)

where S is the surface defined in the �U space whose boundary
is given by the control trajectory (∂S). In the geometrical inter-
pretation, the adiabatic work done by the continuous quantum
measurement process is given by the flux of the curl of ��

FIG. 2. The contour (∂S) traversed by �� in the parameter space
defined by �U . The adiabatic work done by the continuous measure-
ment is given by the flux of curl of �� across surface S.

across surface S, provided ∂S is a simple closed curve and
�� has continuous first-order partial derivatives in the region
defined by S. For T = 0 and in the absence of measurement,
the work done by the driving force has no geometric com-
ponent associated with it and is entirely dissipative in nature
[51]. Instead, the work done by the continuous measurement
has both geometric (W̄ (a)

M ) as well as dissipative components
(W̄ (i)

M ) even for T = 0. The geometric optimization protocol
and heat-to-work conversion is rooted in the geometric com-
ponents of work done to the system. As observed in Ref. [63],
the optimization is based on finding a protocol with a maxi-
mum ratio between the geometric and dissipative components
of the work done to the system. For the case of T = 0, this
ratio (κ) in our case would be given by

κ = J̄ (a)
M

J̄ (i)
M + P̄D

. (31)

V. COUPLED QUBITS AND COUPLED QUANTUM DOTS

In order to illustrate the ideas developed in the previous
sections, we consider two different examples: a coupled qubit
system in contact with bosonic reservoirs and a coupled quan-
tum dot system in contact with fermionic reservoirs. One of
the qubits (quantum dots) is coupled to the bath L and the
other one to the bath R. The Hamiltonian for coupled qubit
can be written as

HS,Qbt = εLπ̂LL + εRπ̂RR + g(π̂LR + π̂RL), (32)

where π jk = | j〉〈k| is the outer product operator onto the
excited state of qubit j(k). We choose a common ground
state 0 for both qubits, and fix its energy to zero, ε0 = 0. The
Hamiltonian for the coupled quantum dot system is given by

HS,QD = ELa†
LaL + ERa†

RaR + G(a†
LaR + a†

RaL), (33)

where a j (a
†
j ) are the creation (annihilation) operators for

quantum dot j and Ej is the bare energy of the quantum
dot j. The fermionic annihilation and creation operators for
the quantum dots (allowing no more than one electron in
the quantum dots) can be written in terms of outer product
operators as

a j = |0〉〈 j|; a†
j = | j〉〈0| (34)
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such that the system Hamiltonian becomes

HS,QD = ELπ̂LL + ERπ̂RR + G(π̂LR + π̂RL), (35)

We observe that in terms of outer product operators πmn, the
system Hamiltonian for the coupled quantum dot and coupled
qubit setup are equivalent. Hence we will denote by HS both
the system Hamiltonians. We will consider fermionic baths for
coupled quantum dots and bosonic baths for the case of qubits.
The Hamiltonian for the baths are given in Sec. II. We will
consider two different coupling Hamiltonians for the bosonic
case. The linear coupling Hamiltonian,

HC =
∑

k,α=L,R

Vkα[πα0bkα + π0αb†
kα

]. (36)

In some cases, we will also consider nonlinear coupling be-
tween the system and bath R given by [66]

HC,R =
∑

k

VkR
[
πR0 b2

kR + π0R(b†
kR)2

]
. (37)

For the fermionic case, the contact Hamiltonian is

HC =
∑

k,α=L,R

Vkαa†
αckα + H.c. (38)

We can diagonalize the system Hamiltonian through a
suitable change of basis |L〉 = cos θ |+〉 − sin θ |−〉 and |R〉 =
sin θ |+〉 + cos θ |−〉 where for the case of coupled qubits
θ = 1

2 tan−1( 2g
εL−εR

), sin 2θ = 2g/h; cos 2θ = /h, where

h =
√

4g2 + 2 and  = εL − εR. Similar relations can
be obtained for the coupled quantum dot case simply by
replacing ε j with Ej and g with G as the two system
Hamiltonians are equivalent. In addition,we obtain

sin θ =
√

h − 

2h
; cos θ =

√
h + 

2h
. (39)

In the new basis the system Hamiltonian reads

HS = ε+|+〉〈+| + ε−|−〉〈−|, (40)

where ε± = (εL + εR)/2 ± h/2 for the case of qubits and
ε± = (EL + ER)/2 ± h/2 for the case of quantum dots. In
Eq. (40), we do not include the term representing the state
(|0〉) when both quantum dots are empty or both qubits are
in the ground state assuming the energy associated with state
|0〉 is zero. The contact Hamiltonian gets modified accord-
ingly. In the following sections, we will study the dynamics
considering only the diagonal terms of the density matrix,
the calculations with the off-diagonal terms is presented in
Appendix A.

A. Dynamics induced by bath and continuous measurement

We will use the global quantum master equations to study
the transfer of heat and dissipation in the aforementioned
two setups. We will investigate only the regime where global
master equations are valid, i.e., �α � g, |εL − εR| � g for
the case of quantum dots and �α (Eα ) � G, |EL − ER| �
G for the case of qubits [67]. If we disregard the off-
diagonal terms of the density matrix, the density matrix can
be written in a simple vector form ρ = [ρ00 ρ++ ρ−−]T ,
where ρ j j = 〈 j|ρ| j〉 is the population of the eigenstate j and

ρ j j = ρ
( f )
j j + ρ

(a)
j j . Moreover, the Lindbladian associated with

the bath α is given by

Lα =
⎡
⎣−(γα,0+ + γα,0−) γα,+0 γα,−0

γα,0+ −γα,+0 0
γα,0− 0 −γα,−0,

⎤
⎦, (41)

where γα,0m and γα,m0 are the transition rates for going from
state 0 to state m and from state m to state 0, respectively. For
linear system-bath coupling, they are defined as

γα,m0 = h̄−1λα,0m�α (εm0)(1 ± nα (εm0)),

γα,0m = h̄−1λα,0m�α (εm0)nα (εm0), (42)

where λL,0+ = λR,0− = cos2 θ , λR,0+ = λL,0− = sin2 θ ,
εm0 = εm − ε0, nα (ω) is the Fermi-Dirac or Bose-Einstein
distribution depending on whether we are considering coupled
quantum dot or coupled qubit system, respectively and �α (ω)
is the spectral density for bath α defined as

�α (ω) = 2π
∑

k

|Vkα|2δ(ω − εkα ). (43)

For fermionic baths, we will consider characterless baths, i.e.,
�α (ω) = �α (0) ≡ �α whereas for the bosonic baths we will
consider Ohmic baths, �α (ω) = ϒαωe−ω/ωC , where ωC is the
cutoff frequency.

The measurement operator is chosen to be X = |R〉〈R|.
Taking only the diagonal terms of the density matrix, we have

〈X 〉 = sin2 θρ++ + cos2 θρ−−. (44)

Moreover,

〈0|LMρ|0〉 = −2
√

2�M〈X 〉ρ00
W

t
,

〈+|LMρ|+〉 = sin2 θ cos2 θ (ρ−− − ρ++)

+ 2
√

2�M(sin2 θρ++ − 〈X 〉ρ++)
W

t
. (45)

We will consider a Gaussian distribution for W with zero
mean and variance t . For each small time step t , W
would be selected randomly from the Gaussian distribution.
The sequence of values of dW gives the noise realization for
the particular trajectory the system follows.

B. Heat current and coefficient of performance

The time-resolved density matrix calculated using Eqs. (6)
and (7) along with Lindbladian calculated in the previous
section fully describes the dynamics of the system. For linear
system-bath coupling, the heat current flowing out of bath α

can be expressed in terms of density matrix and transition
rates as

J (i/a)
α (t, τ ) =

∑
m

εm0(τ )
[ − γα,m0(τ )ρ (i/a)

mm (t, τ )

+ γα,0m(τ )ρ (i/a)
00 (t, τ )

]
.

(46)

In the steady state, the power provided by the continuous
measurement is given by

JM(τ ) = sin2 θ cos2 θ �M(ε+(τ ) − ε−(τ ))(ρ−− − ρ++).
(47)
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FIG. 3. Heat current as a function of time for time-independent
case when the measurement records are discarded (dashed black
curve) and when the measurement records are taken or the stochas-
tic term in Eq. (5) is taken into account (solid magenta, blue,
and red curves). Parameters: �L = �R = 0.2kBT , kBTL = kBTR =
kBT = 1, EL = 2kBT , ER = 3kBT , G = 0.1kBT , �M = 0.01kBT ,
t = 0.005h̄/kBT . The initial state was taken as ρ00(0) = 0.5,
ρ++(0) = 0.2, ρ−−(0) = 0.3.

Similarly the power provided by the driving source is
given by

PD(τ ) =
∑

m

dεm

dτ
ρmm(τ ). (48)

The time-averaged heat currents and powers can be calculated
using Eq. (17). Using Eqs. (15) and (16), one can calculate
the total and the instantaneous component of the coefficient
of performance, respectively.

VI. RESULTS: COUPLED QUANTUM DOTS

In this section, we will present some numerical results for
the coupled quantum dot setup mentioned above. We will
study two different conditions: (i) transient dynamics for the
undriven case and (ii) effect of continuous measurement on
steady-state adiabatic quantum thermal machines.

A. Time-independent case

We study the transient dynamics for static coupled quan-
tum dots system both discarding the measurement record as
well as keeping the measurement record. For similar set of
parameters, we plot the heat current extracted from the right
bath as a function of time (t) for the aforementioned two cases
using Eq. (46). In Fig. 3, the black dashed curve is obtained by
averaging over the measurement record and the solid curves
are obtained using the stochastic master equation. We ob-
serve that system reaches the steady state on average for t →
∞. For the particular choice of parameters, we observe that
heating dominates over the cooling effect on average (black
dashed curve). However, if we consider only one realization of
the measurement record, cooling can be obtained for a period
of time (see magenta and blue curves for 20 < t � 30). One
important aspect of keeping the measurement record is that
one can resort to quantum feedback loops to suitably tune
the dynamics and obtain more efficient thermal machines. For

FIG. 4. Steady-state cooling as a function of measurement
strength with (solid red curve) and without (dashed black curve)
eigenstate coherence in coupled quantum dot system. Parameters:
�L = �R = 0.2kBT , G = 0.5kBT , EL = 4kBT , ER = 0.15kBT .

instance, depending on the outcome of measurement one can
apply a suitable unitary quantum gate to the system achieving
enhanced cooling effects [68].

In Fig. 4, we study the effect of quantum coherence on
measurement-powered refrigeration. We plot the extracted
heat current as a function of measurement strength. The solid
red line is obtained when the master equation takes into ac-
count both the diagonal as well as off-diagonal terms of the
density matrix (see Appendix A) whereas the dashed black
line is obtained using only the diagonal terms of the den-
sity matrix as illustrated in Sec. V A. We observe that for
larger values of measurement strength, quantum coherence
can significantly enhance the cooling effect. This is in con-
trast to what is observed in adiabatic quantum refrigerators
where quantum coherence usually leads to decrease in cooling
[50]. Quantum coherence can improve cooling of adiabatic
quantum refrigerators only in highly nonequilibrium situa-
tions [57,58]. However, in our current setup we observe that
quantum coherence can improve cooling effect even when
TL = TR.

B. Driven case

The quantum dots are driven adiabatically following
the protocol: EL = E0,L + E1,L cos(
t ) and ER = E0,R +
E1,R cos(
t + φ). The phase difference of φ is required to
pump heat from one bath to another bath. The amount of
heat pumped per cycle depends on the contour traversed on
the parameter space but not on the speed of driving. In the
presence of continuous measurement, there are two contribu-
tions to the heat current (i) instantaneous component, which
goes to zero in the absence of measurement for TL = TR and
(ii) adiabatic component, which is geometric in nature. The
total heat current flowing out of a bath is given by the sum of
aforementioned two components.

In the top panel of Fig. 5, we study the heat current as a
function of measurement strength. The black dashed curve is
for the instantaneous case and the red curve is the total heat
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FIG. 5. Cooling as a function of �M (top) for G = 0.15kBT
and inter-dot coupling strength (bottom) for �M = 0.08kBT
in adiabatically driven quantum dots. Parameters: �L =
�R = 0.05kBT , EL = 1.5kBT + 0.2kBT cos(0.005kBT t/h̄),
ER = 0.3kBT + kBT cos(0.005kBT t/h̄ + π/2), (TL + TR)/2 = T
and T = TL − TR = 0.05T .

current extracted from the right reservoir. We observe that
the adiabatic heat current shows a maximum as a function
of �M (for �M ≈ 0.1kBT ). Hence, a boost in adiabatic heat
current is obtained via continuous monitoring of system op-
erator X . Although the magnitude of adiabatic heat current is
smaller compared to the instantaneous heat current, the adia-
batic contribution is always positive in the entire range of �M

considered and provides a boost to the measurement-induced
instantaneous heat current (see the black dashed and solid
red curves). Furthermore, we can define the interplay between
the two power sources through J̄ (int)

R = J̄R − J̄ (i)
R − J̄ (a)

R [�M =
0] = J̄ (a)

R − J̄ (a)
R [�M = 0]. Since both J̄ (a)

R and J̄ (a)
R [�M = 0]

are geometric quantities, the interplay term J̄ (int)
R is geomet-

ric in nature as well. We plot J̄ (int)
R as a function of �M in

the inset of top panel of Fig. 5. We observe that J̄ (int)
R is positive

in the cooling regime (�M � 0.022kBT ) and has a maximum
in the regime where J̄ (i)

R ≈ −J̄ (a)
R . Hence, we can state that

the extracted power due to the combined effect is larger than
the sum of individual contributions (J̄ (a)

R |�M=0 + J̄ (i)
R |�M �=0)

in the parameter regime considered. Similar observation can
be made from the bottom panel of Fig. 5 where we plot
the extracted heat current as a function of interdot coupling.

FIG. 6. Instantaneous (black dashed curve) and total (red curve)
coefficient of performance as a function of interdot coupling for
adiabatically driven quantum dots taking �M = 0.05kBT . In the inset,
we plot the total COP as a function of �M. All other parameters are
the same as in Fig. 5 except kBTL = kBTR = kBT .

For G = 0, the instantaneous heat current vanishes and total
heat current becomes equal to the adiabatically pumped heat
current. In addition, we observe that the total extracted heat
current shows a peak before reducing into the heating regime.
For very large values of interdot coupling, even the contribu-
tion from adiabatic driving goes to the heating regime (not
shown in the figure). However, the direction of heat current
depends strongly on the driving protocol considered. Inter-
estingly, there is a finite and positive adiabatic heat current
flowing even when the interdot coupling (G) goes to zero. We
use the global master equation to study the dynamics, which
is not suited for the regime, G � �α, h̄
 giving inaccurate
results. Since for G = 0, the system reduces to a single qubit
in contact with bath C and one cannot extract heat from a
single bath just by driving the system attached to it. We ob-
serve a ≈2% enhancement due to interplay between adiabatic
driving and continuous measurement in the regime where the
cooling effect is maximum (see the blue curve in the inset).
The interplay term has a stronger effect for G > 0.2kBT where
cooling is small.

In Fig. 6, we plot the coefficient of performance as a func-
tion of the �M. The red curve is the total COP whereas the
black dashed curve gives the instantaneous contribution. For
small values of interdot coupling, we observe that the COP
is larger in the instantaneous case. However, in the regime
where the extracted heat current shows maximum (see the
bottom panel of Fig. 5), the total COP (which includes both
adiabatic contribution and the contribution from continuous
measurement) is slightly larger than the instantaneous COP. In
the inset of Fig. 6, we plot the total COP as a function of �M.
The COP increases with increase in �M for small values of
�M before showing a peak and then decreases monotonously.
The value for which the peak is reached depends on the value
of other parameters and the driving protocol considered.
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FIG. 7. Cooling as a function of εL in the coupled-qubit setup
for linear and nonlinear coupling between the system and the
bath R. Parameters: ϒL = ϒR = 0.1, �M = 0.2kBT , kBTL = kBTR =
kBT = 1, g = 2kBT , εR = 3kBT , εC = 100kBT .

VII. RESULTS: COUPLED QUBITS

In this section, we will study the effect of quantum mea-
surement on refrigeration in coupled qubit system. Since the
Hamiltonian for the coupled qubit system is similar to the
coupled quantum dot system in terms of outer product oper-
ators, the behavior of extracted heat current is qualitatively
similar to Figs. 3–5. Similar arguments hold also for the
case of coefficient of performance. For the aforementioned
reasons, we will only study the effect of nonlinear coupling,
peculiar to bosonic systems, on extracted heat current and
the coefficient of performance. With nonlinear coupling in
the right contact, the form of the contribution of the baths
to the master equation in Eq. (41) remains intact, but the
transition rates associated with the right bath changes to [66]

γR,m0 = h̄−1λR,0m�R(εm0/2)(1 + nR(εm0/2))2,

γR,0m = h̄−1λR,0m�R(εm0/2)n2
R(εm0/2). (49)

In Fig. 7, we plot the heat current flowing out of bath R
as a function of excitation energy of the qubit (εL) attached
to the left reservoir. We consider linear coupling in the left
contact whereas for the right contact we consider both linear
and nonlinear couplings [see Eqs. (36) and (37)]. In both cases
we observe that the extracted heat shows a peak for a partic-
ular value of εL before decreasing monotonously. Although
the maximum with linear coupling is higher compared to the
nonlinear coupling case, we observe that nonlinear coupling
can produce cooling in the parameter regime where otherwise
heating would be expected.

In Fig. 8, we plot the coefficient of performance as a func-
tion of interqubit coupling strength for linear (black dashed
curve) as well as nonlinear (solid red curve) coupling between
the coupled qubit system and the bath R. As observed in the
case of coupled quantum dots, cooling is observed only for
small values of G. For the set of parameters considered, the
system goes to the heating regime for G > 0.32kBT (see the
inset for the behavior of the heat currents). We observe that for
G < 0.05kBT , nonlinear coupling between the coupled qubit

FIG. 8. Coefficient of performance as a function of interqubit
coupling for linear and non-linear coupling between the cou-
pled qubit system and the bath R. Parameters are taken sim-
ilar to Fig. 6: ϒL = ϒR = 0.05, �M = 0.05kBT , εL = 1.5kBT +
0.2kBT cos(0.005kBT t/h̄), εR = 0.3kBT + kBT cos(0.005kBT t/h̄ +
π/2), kBTL = kBTR = kBT , εC = 10kBT .

system and the bath R gives a better coefficient of perfor-
mance whereas linear coupling gives better performance in the
opposite regime. In addition, the coefficient of performance
shows a peak as a function of G for linear coupling. We plot
the total heat current for the same set of parameters in the
inset. We observe better heat extraction with linear coupling
as compared to nonlinear one.

VIII. CONCLUSIONS

We presented a formalism based on master equations to
study the effect of continuous quantum measurement on adi-
abatic quantum thermal machines. Particularly, we expressed
the dynamics of density matrix in terms of the dynamics in-
duced by the baths as well as the measurement probe for both
steady-state and adiabatically driven case. We included both
average dynamics as well as the noise realizations induced by
the measurement probe. In addition, using the density matrix
obtained from the aforementioned quantum master equations,
we defined different thermodynamics parameters, such as heat
currents and coefficient of performance, to describe the effect
of continuous quantum measurement on adiabatic quantum
refrigerators. We observed that the continuous measurement-
induced adiabatic heat current (discarding the measurement
record) is geometric in nature.

In order to study in detail the effect of continuous quantum
measurement on energy transfer dynamics of static and driven
systems, we considered two different paradigmatic examples,
namely an adiabatically driven coupled quantum dot system
attached to two fermionic baths and an adiabatically driven
coupled qubit system attached to two bosonic baths. In both of
the examples, we studied the phenomenon of refrigeration. In
contrast to absorption refrigerators where it has been observed
that two linearly coupled qubits or quantum dots attached to
three baths cannot produce refrigeration [5,69], we observe
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that refrigeration can be achieved replacing the third bath with
a measurement probe. We observe that quantum measurement
alone (in the absence of adiabatic driving) can induce cool-
ing effect in both cases of quantum dots and qubits [48]. In
this paper, in addition to average dynamics we also study
individual realizations when measurement records are taken
into account. We observe cooling effect for a period of time
in some individual realizations whereas in average heating is
observed. We also study the effect of quantum coherence in
the refrigeration process. We observe that quantum coher-
ence can enhance the cooling effect. For the case of coupled
qubits, we obtained cooling effect with nonlinear system-bath
coupling in a regime where in general (with linear coupling)
heating would be observed.

In adiabatically driven systems, we observed that continu-
ous quantum measurement can provide significant boost to the
refrigeration power. Moreover, we also showed that the boost
in power can be achieved without any loss in performance. In-
stead, for a particular set of parameters, we observed increased
performance in the regime where the power of refrigera-
tion takes a maximum. In summary, combining two different
widely used mechanisms of powering a thermal machine we
obtained higher power output as well as performance. We
also extended the well-studied geometric aspects of adiabatic
quantum thermal machines to the case where the system is
continuously monitored. This provides us with a mechanism
to improve heat-to-work conversion in continuously moni-

tored adiabatic quantum thermal machines. These findings are
central to obtaining better quantum thermal machines as well
as to achieving a more efficient heat management in quantum
processing networks.
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APPENDIX: CALCULATIONS FOR QUANTUM
MASTER EQUATION

Averaging over the measurement record, the master equa-
tion consists of three terms

dρ

dt
= −i[HS, ρ] +

∑
α

Lαρ + LMρ, (A1)

where the first term on the right-hand side gives the unitary
dynamics within the system, the second term gives the effect
of the two baths, and the last term comes from the quantum
measurement. For continuous measurement of the observable
X of the system,

LMρ = �M
[
XρX † − 1

2 (X †Xρ + ρX †X )
]
. (A2)

Let us consider X = |R〉〈R|, such that

〈+|LMρ|+〉 = �M
[

sin2 θ
(
sin2 θρ++ + cos2 θρ−− + sin θ cos θ (ρ+− + ρ−+)

) − sin2 θρ++ − 1
2 sin θ cos θ (ρ+− + ρ−+)

]
,

〈−|LMρ|−〉 = �M
[

cos2 θ
(
sin2 θρ++ + cos2 θρ−− + sin θ cos θ (ρ+− + ρ−+)

) − cos2 θρ−− − 1
2 sin θ cos θ (ρ+− + ρ−+)

]
,

〈+|LMρ|−〉 = �M
[

sin θ cos θ
(
sin2 θρ++ + cos2 θρ−− + sin θ cos θ (ρ+− + ρ−+)

) − 1
2 (sin θ cos θ (ρ++ + ρ−−) + ρ+−)

]
,

〈−|LMρ|+〉 = �M
[

sin θ cos θ
(
sin2 θρ++ + cos2 θρ−− + sin θ cos θ (ρ+− + ρ−+)

) − 1
2 (sin θ cos θ (ρ++ + ρ−−) + ρ−+)

]
.

(A3)

The contribution due to the baths can be directly obtained from Ref. [52]

〈+|Lαρ|+〉 = (γL,0+ + γR,0+)ρ00 − (γL,+0 + γR,+0)ρ++ − 1
4 sin 2θ (−γ̃L,−0 + γ̃R,−0)(ρ+− + ρ−+), (A4)

〈−|Lαρ|−〉 = (γL,0− + γR,0−)ρ00 − (γL,−0 + γR,−0)ρ−− − 1
4 sin 2θ (−γ̃L,+0 + γ̃R,+0)(ρ+− + ρ−+), (A5)

〈0|Lαρ|0〉 = (γL,+0 + γR,+0)ρ++ + (γL,−0 + γR,−0)ρ−− − (γL,0+ + γR,0+ + γL,0− + γR,0−)ρ00

− 1
4 sin 2θ (−γ̃L,−0 − γ̃L,+0 + γ̃R,−0 + γ̃R,+0)(ρ+− + ρ−+), (A6)

and

〈+|Lαρ|−〉 = i

h̄
ε+−ρ+− + 1

4
sin 2θ [(−γ̃L,0− − γ̃L,0+ + γ̃R,0− + γ̃R,0+)ρ00 + (γ̃L,+0 − γ̃R,+0)ρ++ + (γ̃L,−0 − γ̃R,−0)ρ−−]

− 1

2
(γL,−0 + γL,+0 + γR,−0 + γR,+0)ρ+−, (A7)

where

γ̃α,m0 = h̄−1�α (εm0)(1 ± nα (εm0)),

γ̃α,0m = h̄−1�α (εm0)nα (εm0). (A8)

In the steady state, dρ

dt = 0. Using this relation, one can write the off-diagonal terms of density matrix in terms of the diagonal
terms. Once the resultant expressions for off-diagonal terms of density matrices are substituted into the master equations for the
population (diagonal terms), the master equations can be readily solved [52].
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In a similar manner, the heat current flowing into the bath R can be expressed as

JR = ε+0θ (γR,+0ρ++ − γR,0+ρ00) + ε−0(γR,−0ρ−− − γR,0−ρ00) + 1
4 sin 2θ (ε+0γ̃R,+0 + ε−0γ̃R,−0)(ρ+− + ρ−+) (A9)
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