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Quantum computing is a promising approach to harnessing strong correlation in molecular systems; however,
current devices only allow for hybrid quantum-classical algorithms with a shallow circuit depth, such as the
variational quantum eigensolver (VQE). In this paper, we report the importance of the Hamiltonian symmetry
in constructing VQE circuits adaptively (ADAPT-VQE). This treatment often violates symmetry, thereby
deteriorating the convergence of fidelity to the exact solution and ultimately resulting in deeper circuits. We
demonstrate that spin-symmetry projection can provide a simple yet effective solution to this problem, by
keeping the quantum state in the correct symmetry space, to reduce the overall gate operations. To further
investigate the role of spin-symmetry in computing molecular properties with ADAPT-VQE, we have derived
the analytical derivative of symmetry-projected VQE energy. Our illustrative calculations reveal the significance
of preserving symmetry in providing accurate dipole moments and geometries with variational approximations.
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I. INTRODUCTION

Recent advances in quantum technology have attracted
widespread attention in various disciplines. Electronic struc-
ture theory is one of the fields expected to potentially
benefit from the development of quantum computers be-
cause strong correlation can be handled by mapping the wave
function directly onto entangled qubits without an exponen-
tial increase in computational cost. However, current noisy
intermediate-scale quantum (NISQ) devices cannot imple-
ment error correction owing to the limited quantum resources;
hence, they suffer from errors triggered by noise and short
coherent times [1–3], which limit the application of gen-
eral quantum algorithms such as quantum phase estimation.
Therefore, several hybrid quantum-classical algorithms have
been proposed to address the technical challenges emerg-
ing in NISQ hardware. The variational quantum eigensolver
(VQE) is one such algorithm [4,5], in which a quantum state
is propagated by a parameterized short quantum circuit that
can be optimized in classical postprocessing, to variationally
lower the energy expectation value and obtain the Hamiltonian
ground state.

In quantum chemistry, the most conventional Ansatz for
VQE circuit is the unitary coupled cluster (UCC) [6–10],
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where fermionic excitation operators with respect to the Fermi
vacuum [e.g., Hartree-Fock (HF)] are anti-hermitized and
exponentiated to form unitary gates. Given the remarkable
success of the standard coupled cluster (CC) in a wide range
of classical applications, the UCC with single and double
substitutions (UCCSD) is expected to be a feasible starting
point for chemical Hamiltonians. Nevertheless, the UCCSD
is manifestly incapable of describing strong correlations [11],
which is the primary target of quantum computing. Extend-
ing the excitation manifold to include general orbitals, the
generalized UCCSD captures higher excitation effects in a
compact manner and is thus known to often provide accurate
results for strongly correlated systems [11,12]. However, these
UCC-based methods are inhibited by a limited representabil-
ity because of the fixed structure of unitary gates; in addition,
they also require several parameters and deep circuits, which
makes them difficult for NISQ devices to handle.

Ansatz-free algorithms are more flexible and can control
the accuracy and circuit depth in a highly black-box manner
[13–17]. A prominent algorithm in this context is ADAPT-
VQE proposed by Grimsley et al. [13], which adaptively adds
a set of short unitary gates to the quantum circuit successively.
Each unitary is chosen from an operator pool comprising
generalized-UCCSD excitation operators, based on the VQE
energy gradient. Later, Tang et al. [15] proposed qubit-
ADAPT, which employs Pauli rotations instead of a UCC-like
operator to drastically reduce the gate depth. To minimize the
size of the pool in qubit-ADAPT, Shkolnikov et al. [18] chose
Pauli operators that conserve symmetries against the initial
HF state. Recently, Yordanov et al. [19] demonstrated that
qubit excitations, each of which is a linear combination of
Pauli strings in qubit-ADAPT, can be implemented with only
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a handful of CNOT gates. Based on this result, they employed
qubit excitations to form an operator pool in what they called
qubit-excitation-based (QEB) ADAPT [17]. However, these
ADAPT-based methods are prone to break important symme-
tries of chemical Hamiltonians.

On many occasions, breaking symmetry triggers several
undesired consequences. For instance, the result of the Ŝ2

(spin) symmetry breaking in molecular applications is well
documented in the literature, which includes inaccurate ener-
gies and properties, a slow convergence to the exact state, and
difficulty in interpreting obtained results [20–22]. ADAPT-
based methods can result in symmetry breakages because
of the use of fermionic or qubit excitations, for which
spin-symmetry adaptation is especially difficult when expo-
nentiated. This is more the rule than the exception. In fact,
in strongly correlated systems, spin symmetry is completely
broken because ADAPT typically requires large rotation pa-
rameters to represent the multiconfiguration character. As will
be demonstrated, this causes the slow convergence of ADAPT
algorithms and inaccurate results with truncated operators.

We note that there have been several studies that con-
sider the importance of symmetries for the performance of
VQE. For hardware-efficient circuits, Barkoutsos et al. [23]
introduced particle-conserving gates to keep the number (N̂)
symmetry. Gate operations that preserve the Ŝ2 symmetry
were proposed and used to singlet-pair states for a Heisen-
berg model [24,25]. Gard et al. [26] also developed general
circuits that conserve all N̂ , Ŝz, and Ŝ2 symmetries. From
a different perspective, recently, symmetry projection has
been also combined with VQE, to restore broken symmetries
of prepared quantum states [27–31], showing promise for
even more accurate VQE simulations. A desirable feature
of symmetry projection is that it can be applied straight-
forwardly to general circuits including Pauli rotations used
in ADAPT-VQE. Therefore, to address the above symmetry
issue in ADAPT-VQE, in this paper, we focus on the effect
of spin projection. It should be mentioned that, related to
this idea, Romero et al. [31] have very recently combined
the number-symmetry projection with ADAPT-VQE to tackle
the spontaneous symmetry-breaking of the particle number
in the Lipkin model. Here, we particularly consider the Ŝ2

symmetry, noting that the N̂ and Ŝz symmetries are rather
straightforward to conserve in chemical systems. We employ
a spin-projection circuit [27], which restores the total spin
quantum number to restrict ADAPT and explore the operator
candidate in the correct symmetry space. We demonstrate that
our algorithm can generally reduce the circuit depth, although
it increases the measurement cost. In particular, our numerical
tests show that the spin-projected (SP) ADAPT outperforms
the UCCSD as a better tradeoff between accuracy and circuit
depth, even in the case where ADAPT (without projection)
turns out not to be particularly advantageous over the UCCSD
in terms of these criteria. To investigate the importance of
spin-symmetry in molecular property calculations, we further
derive the first-order energy derivative in the presence of the
spin-projection operator.

The remainder of this paper is organized as follows. In
Secs, II A and II B, we review the original algorithms for
ADAPT-VQE, and we describe how they break symmetries
in Sec. II C. Section II D presents detailed discussions on

the application of spin projection to each ADAPT scheme,
including an explanation on how the simulated qubits can be
tapered off in the presence of spin projection. Subsequently,
we derive the energy derivative for ADAPT in Sec. III, es-
pecially focusing on the importance of orbital response. In
Sec. IV B, we demonstrate that the convergence in ADAPT
becomes increasingly slower for strongly correlated systems,
and in Sec. IV C, we present our benchmark results on the SP-
ADAPT, comparing the accuracy and gate efficiency between
different methods. Section IV D demonstrates how the number
of operators in a pool can be reduced in QEB-ADAPT. The
calculations for dipole moment and geometry are explained in
Sec. IV E. Finally, we conclude this paper in Sec. V.

II. ADAPT-VQE ALGORITHM

A. Fermionic ADAPT-VQE

First, we review the ADAPT-VQE algorithm proposed by
Grimsley et al. [13]. This algorithm is based on the observa-
tion that the state obtained with exact diagonalization, also
called full configuration interaction (FCI), can be reached
from the HF state using the exponential form [13,32]:

|�FCI〉 =
∏

k

exp[tk τ̂ (k)]|�HF〉, (1)

where τ̂ (k) is the kth instance of arbitrarily ordered operators
comprising the antisymmetrized single and double excita-
tions:

τ̂ p
q = a†

paq − a†
qap, (2a)

τ̂ pq
rs = a†

pa†
qaras − a†

s a†
r aqap. (2b)

Here, we have adopted p > q, r > s to denote general
spin orbitals. Note that the same antisymmetrized excitation
operators can appear repeatedly in Eq. (1) but with differ-
ent variational parameters tk . Although Eq. (1) includes only
singles and doubles, the effect of higher excitations such as
triples and quadruples can be conveniently considered by their
exponential products [32].

Regardless of its exactness, Eq. (1) is extremely cumber-
some and long because it requires a large number of k; hence,
its realization is prohibitively difficult on quantum computers.
On the one hand, from a circuit complexity perspective, such
as the number of CNOT gates, one can employ only a limited
number of unitaries exp[tk τ̂ (k)] on NISQ computers. On the
other hand, it is expected that such a truncated Ansatz with
a reasonable number n of unitaries can still outperform fixed
Ansätze such as the UCCSD, especially for strongly corre-
lated systems, with appropriately chosen τ̂ (k) (k = 1, · · · , n)
and variationally optimized tk . Therefore, the objective of
ADAPT-VQE is to dynamically create an Ansatz that ap-
proaches FCI, using a maximally compact sequence of n
unitary operators, which are successively determined based
on the energy gradient. To do so, an operator pool P is first
defined, which comprises M operators that are used to con-
struct the trial state. There exist several different definitions
of such operator pools. As considered in Ref. [13], fermionic
ADAPT-VQE prepares the following pool:

P = {
τ̂ pα

qα
+ τ̂

pβ

qβ
, τ̂ pαqα

rαsα
+ τ̂

pβ qβ

rβ sβ
, τ̂

pαqβ

rαsβ
+ τ̂

pβ qα

rβ sα

}
, (3)
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where we explicitly consider the spins α and β, and each
linear combination of operators is labeled by m = 1, · · · , M.
Note that each combination of doubles does not comprise the
spin-adapted form, which we address later in this paper.

A trial state of ADAPT-VQE at the nth cycle is given by

|ψn〉 = exp(θnÂn) exp(θn−1Ân−1)

× · · · exp(θ1Â1)|ψHF〉, (4)

where Âk ∈ P , and the parameters {θk} are variationally opti-
mized to minimize the energy expectation value. To select the
most contributing operator from P for the (n + 1)th cycle, we
create trial states with each Âm ∈ P (m = 1, · · · , M ) as

|ψn+1,m〉 = exp(θn+1Âm)|ψn〉, (5)

and calculate the energy gradient for each |ψn+1,m〉 around
θn+1 = 0:

R(n)
m = ∂〈ψn| exp(−θ Âm)Ĥ exp(θ Âm)|ψn〉

∂θ

∣∣∣∣
θ=0

= 〈ψn|[Ĥ, Âm]|ψn〉, (6)

which can be evaluated with up to a three-body reduced den-
sity matrix because of the commutator property. The operator
with the largest gradient R(n)

m is selected as Ân+1, with which
the parameters {θk : k = 1, · · · , n + 1} in |ψn+1〉 are all opti-
mized by the standard VQE.

The ADAPT algorithm presented above is converged when
the norm of Eq. (6) is smaller than the threshold ε. It
is worth noting that such a condition is closely related to
the k-particle generalized Brillouin theorem [33]. Kutzelnigg
[33] demonstrated that an exact FCI wave function satis-
fies 〈�FCI|[Ĥ, τ̂μ]|�FCI〉 = 0 for all excitation ranks. The
convergence in fermionic ADAPT-VQE with ε = 0 only
corresponds to the 1- and 2-particle generalized Brillouin
conditions, and therefore, fermionic ADAPT-VQE may not
necessarily be equivalent to FCI at convergence. However,
in practice, it approaches the FCI accuracy as ||R|| decreases
[34], although there are cases where ADAPT-VQE with only
single and double excitations in the pool fails to converge to
the FCI state. Appendix A showcases such an example using
N2 with a π active space.

B. Qubit-based ADAPT-VQE

The aforementioned fermionic ADAPT is based on the
Jordan-Wigner transformation for mapping fermionic excita-
tion operators Eq. (2) to Pauli operators. This introduces the
chain of Z operations because of the antisymmetric character
of fermions, e.g.,

τ̂ pq
rs = i

8
(YpXqXrXs + XpYqXrXs − XpXqYrXs

− XpXqXrYs − XpYqYrYs − YpXqYrYs

+ YpYqXrYs + YpYqYrXs)
p−1⊗

t=q+1

Zt

r−1⊗
u=s+1

Zu, (7)

where we assume p > q > r > s, but similar relations can be
obtained for other cases. The exponential of τ̂

pq
rs is usually im-

plemented by decomposing the eight Pauli strings presented

in Eq. (7), for which each requires the ladders of CNOT
gates to consider the parities for t = q + 1, · · · , p − 1 and
u = s + 1, · · · , r − 1; refer to Fig. 1 as an example. There-
fore, such a naïve implementation of exp(θ τ̂

pq
rs ) necessitates

8(p − q + r − s + 2) � 48 CNOTs. However, several studies
[35–37] have demonstrated that, even if all the Z operators
from the Pauli string in Eq. (7) are discarded to define the
qubit excitation:

ˆ̃τ pq
rs = i

8

(
YpXqXrXs + XpYqXrXs − XpXqYrXs

− XpXqXrYs − XpYqYrYs − YpXqYrYs

+ YpYqXrYs + YpYqYrXs), (8)

the accuracy obtained by VQE will be similar to that with
the full τ̂

pq
rs , although it eliminates a considerable number of

CNOT gates. Tang et al. [15] attempted to further decom-
pose ˆ̃τ pq

rs and construct a reduced operator pool for what they
called qubit-ADAPT-VQE, noting that each Pauli string has a
similar action. Using circuits depicted in Fig. 1(a), each oper-
ator exp(θmÂm) requires only six CNOT gates (similarly, two
CNOT gates for single excitation variants, YpXq). However, as
will be discussed, this treatment significantly breaks several
symmetries in the Hamiltonian and slows down the conver-
gence of the algorithm for chemical applications. Moreover,
because it violates the number symmetry, it cannot be applied
to ionized states or half-filled Hubbard models.

Recently, Yordanov et al. [19] demonstrated that the role
of exp(θ ˆ̃τ pq

rs ) is to rotate the bit strings between |0p0q1r1s〉
and |1p1q0r0s〉 by θ , while everything else is unaffected, and
proposed the application of a controlled-Ry gate, as illustrated
in Fig. 1(b), up to the phase. This implementation requires
only 13 CNOT gates, although the connectivity between pqrs
is assumed. They have also established that a standard double
excitation exp(θτ

pq
rs ) can be similarly implemented [Fig. 1(c)],

where the number of CNOT gates is reduced to 2(p − q +
r − s) + 9. Using Eq. (8) and Fig. 1(b), they proposed QEB
ADAPT, which was shown to perform significantly better than
qubit-ADAPT of Ref. [15] in terms of CNOT gate counts and
number of parameters [17].

C. Symmetry-breaking in ADAPT-VQE

In the proposal by Grimsley et al. [13], it appears to be
convenient to choose τ̂

pαqα
rαsα

+ τ̂
pβ qβ

rβ sβ
and τ̂

pαqβ

rαsβ
+ τ̂

pβ qα

rβ sα
as the

elements of the operator pool for fermionic ADAPT because
operators in each linear combination are symmetric in terms
of spin. However, they are neither generally commutative
(τ̂ pαqβ

rαsβ
and τ̂

pβ qα

rβ sα
do not commute if p = q or r = s) nor spin

adapted. This results in two limitations. First, because the
operator selection is based on Eq. (6) while the VQE part
(implicitly) introduces no Trotter decomposition, i.e., a single
Trotterization step, the gradients evaluated in these two parts
can be inconsistent, which may cause an occasional numerical
instability. Specifically, for P̂1 = τ̂

pα pβ

rαsβ
and P̂2 = τ̂

pβ pα

rβ sα
, where

[P̂1, P̂2] �= 0,

exp[θ (P̂1 + P̂2)] �= exp(θ P̂1) exp(θ P̂2), (9)
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FIG. 1. Quantum circuits for (a) exp(− iθ
8 XpXqYrXs ), where the CNOT with a dashed line is shorthand for the CNOT ladder to convey the

parities (refer to the inset), (b) exp(θ ˆ̃τ pq
rs ), and (c) exp(θ τ̂ pq

rs ) using the controlled-Ry gate.

and therefore,

∂

∂θ
exp[θ (P̂1 + P̂2)] = (P̂1 + P̂2) exp[θ (P̂1 + P̂2)], (10)

is different from

∂

∂θ
[exp(θ P̂1) exp(θ P̂2)] = P̂1 exp(θ P̂1) exp(θP2)

+ exp(θ P̂1)P̂2 exp(θ P̂2). (11)

The operator selection step Eq. (6) relies on Eq. (10), whereas
the VQE step is based on Eq. (11). This indicates that the
same operator could potentially be chosen between consec-
utive ADAPT cycles, although in practice we do not see such
an ill behavior. Second, the application of a spin-dependent
operator basis sacrifices the conservation of spin s. Although
a more recent study has employed the spin-adapted doubles
generator, that is, the sum of these two combinations [15], it
necessitates an undesired Trotter decomposition, as demon-
strated in our previous study [27]. Using such spin-incomplete
operators provokes a serious issue widely known in electronic
structure as spin contamination. This is especially problem-
atic in strongly correlated systems where the initial HF state
significantly deviates from the FCI state, and therefore, large
amplitudes θk are essential. Certainly, a lost spin symmetry
would be eventually recovered by the ADAPT algorithm,
provided the target spin state is the ground state and the
aforementioned instability is circumvented. However, large
spin-symmetry breaking is inevitable in the early steps of the
ADAPT procedure, which often leads to unphysical gradients
and a poor convergence, as demonstrated below. The qubit-
ADAPT algorithm [15] is also expected to suffer from the
same problem. Furthermore, the candidate operators in qubit-
ADAPT break two other important symmetries, Ŝz and N̂ , and
the problem becomes even more severe. This fact can be easily
confirmed by transforming each of the strings in Eq. (8) back
to their corresponding fermionic representations; for example,
for the case where p = 6, q = 3, r = 1, and s = 0, we have

i
8Y6X3X1X0 = 1

8 (a†
6a†

3a1a0 + a†
6a†

3a†
1a†

0

− 2a†
6a†

4a†
1a†

0a4a3 + · · · − H.c.). (12)

Hence, it is important to maintain the correct symmetry
throughout the ADAPT algorithm, as much as possible, to
prevent any unnecessary diversion toward FCI. Accordingly,

in this paper, we investigate the importance of a symmetry-
conserving sequence of operators, with a special focus on spin
symmetry. One may employ the constraint approach where
λ(Ô − o)2 is added to the energy functional as a penalty to
enforce the target state to be an (approximate) eigenfunction
of the symmetry operator Ô with the eigenvalue o. Here, we
take a different approach and restore the broken symmetry in
each step of ADAPT by adopting appropriate posttreatments,
that is, spin projection.

D. SP-ADAPT

In electronic structure theory and nuclear physics, symme-
try projection is a vital tool [38–43] and has recently exhibited
a significant potential in quantum computing in the context
of VQE [27,28,31]. Specifically spin projection, which corre-
sponds to the angular momentum symmetry projection in the
field of nuclear physics [39], restores the spin of the broken-
symmetry quantum state |ψ〉, where Ŝ2|ψ〉 �= s(s + 1)|ψ〉, by
applying a spin-projection operator P̂, such that

Ŝ2P̂|ψ〉 = s(s + 1)P̂|ψ〉, (13)

ŜzP̂|ψ〉 = msP̂|ψ〉, (14)

where ms = (Nα − Nβ )/2. Following our previous work, we
express P̂ as a linear combination of unitary operators:

P̂ = |s; ms〉〈s; ms|

= 2s + 1

8π2

∫


dDs∗
msms

exp(−iαŜz )

× exp(−iβŜy) exp(−iγ Ŝz ) ≈
Ng∑
g

wgÛg, (15)

where  = (α, β, γ ) are Euler angles [39]. We
have used the numerical integration with Ûg =
exp(−iαgŜz ) exp(−iβgŜy) exp(−iγgŜz ) and wg are weights
defined by the Wigner D-matrix Ds

msms
. In VQE, we are

interested in the expectation value of energy:

E = 〈ψ |P̂†Ĥ P̂|ψ〉
〈ψ |P̂†P̂|ψ〉 ≈

∑
g wg〈ψ |ĤÛg|ψ〉∑

g wg〈ψ |Ûg|ψ〉 , (16)
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where we have used P̂2 = P̂ = P̂† and [Ĥ, P̂] = 0. Note that,
using transfer operators |s; m〉〈s; k|, which generate a spin
s state with ms = m from ms = k, a more general projec-
tor

∑
m′

s
cm′

s
|s; ms〉〈s; m′

s| introduces more variational freedom,

provided |ψ〉 is not an eigenstate of Ŝz, by diagonalizing the
Hamiltonian in the subspace of {|s; ms〉〈s; m′

s|ψ〉} to determine
the coefficients ck [41]; however, for simplicity, we only con-
sider |s; ms〉〈s; ms|, which results in Eqs. (15) and (16). When
|ψ〉 is an eigenstate of Ŝz, Eq. (16) can be further simplified us-
ing the commutativity between Ĥ and Ŝz, and one only needs
to evaluate the Hamiltonian coupling 〈ψ |Ĥ exp(−iβgŜy)|ψ〉
and the overlap 〈ψ | exp(−iβgŜy)|ψ〉. These expectation val-
ues are estimated, for instance, by the Hadamard test with
one ancilla qubit, with a constant number of CNOTs (4nqubit).
With the Gauss-Legendre quadrature (see Appendix B), we
take Ng = 2 in the applications below; hence, the overall mea-
surements will be doubled, while the circuit length is almost
unchanged with or without P̂.

The basic idea here is to introduce P̂ to ADAPT-VQE
and constrain the operator search in the correct spin space
for a better convergence. Accordingly, we simply define the
SP-ADAPT by applying P̂ to Eq. (4):

|ψSP
n

〉 = P̂ exp(θnÂn) exp(θn−1Ân−1)

× · · · exp(θ1Â1)|ψHF〉. (17)

The energy gradient evaluated to find the (n + 1)th operator
is then like Eq. (6), as follows:

R(n)
m = ∂

∂θ

〈ψn| exp(−θ Âm)Ĥ P̂ exp(θ Âm)|ψn〉
〈ψn| exp(−θ Âm)P̂ exp(θ Âm)|ψn〉

∣∣∣∣
θ=0

= 〈ψn|[(Ĥ − E )P̂, Âm]|ψn〉
〈ψn|P̂|ψn〉

. (18)

The commutator involves higher rank operators owing to the
presence of P̂, and R(n)

m requires a four-body transition reduced
density matrix between |ψn〉 and Ûg|ψn〉. However, in practice,
they can be handled by the (fermionic-)shift rule without
explicitly computing reduced density matrices [44–46] con-
sistently, both in the operator selection and VQE steps.

The operator candidates used in the original fermionic
ADAPT algorithm are pairwise in terms of spin because, if
only either of the spin-dependent excitations is employed in
ADAPT-VQE, the other would become almost indispensable
to restore the spin symmetry. However, when P̂ is introduced,
such a pairwise treatment is no longer necessary. For example,
consider the single excitation operators τ̂

pα
qα

and τ̂
pβ

qβ
. Although

each operator excites (and de-excites) an electron from the
qth orbital to the pth orbital, the role of τ̂

pβ

qβ
is simply to

complement the lost spin in τ̂
pα
qα

and vice versa, which can
be handled by P̂. Based on this consideration, it is advisable
to employ completely spin-dependent excitation operators as
a pool for the fermionic ADAPT Ansatz:

P spin = {
τ̂ pα

qα
, τ̂

pβ

qβ
, τ̂ pαqα

rαsα
, τ̂

pβ qβ

rβ sβ
, τ̂

pαqβ

rαsβ
, τ̂

pβ qα

rβ sα

}
. (19)

In the presence of P̂, the role of τ̂
pαqβ

rαsβ
becomes less signif-

icant if its spin-flipped operator τ̂
pβ qα

rβ sα
is already treated in

the Ansatz. Therefore, some spin-flipped operators that pri-
marily produce effects similar to P̂ would not be chosen in

the algorithm, which will potentially minimize the overall cir-
cuit depth. Furthermore, the exponent of each operator in the
pool P spin can be treated without the Trotter decomposition;
therefore, the energy derivatives estimated in the VQE part
and Eq. (18) are equivalent for the last chosen operator. This
eliminates the algorithmic problem discussed in Sec. II C.

Spin projection is also applicable to qubit-based ADAPT.
However, as we have discussed, qubit-ADAPT, which adopts
the decomposed Pauli strings as candidate operators, vio-
lates the Ŝz symmetry and therefore prevents us from using
the simplified exp(−iβgŜy) rotation for spin projection. The
full rotation operator exp(−iαgŜz ) exp(−iβgŜy) exp(−iγgŜz )
allows one to project the correct ms state but entails both α

and γ rotation grids, which results in a drastic increase in the
number of measurements, by two orders of magnitude. In con-
trast, in QEB-ADAPT, ˆ̃τ pq

rs preserves the Ŝz and N̂ symmetries.
Because the difference between ˆ̃τ pq

rs and τ̂
pq
rs is simply that the

former neglects the parities between qubits, we can express it
as

ˆ̃τ pq
rs = τ̂ pq

rs +
∑

t

ct τ̂
pqt
rst +

∑
tu

ctuτ̂
pqtu
rstu + · · · , (20)

where t, u are the qubit indices appearing as a Z string in
Eq. (2), that is, t, u = [q + 1, p − 1], [s + 1, r − 1]. As a con-
crete example, it can be verified that

ˆ̃τ 63
10 = τ̂ 63

10 − 2τ̂ 634
104 − 2τ̂ 635

105 − 4τ̂ 6354
1054 . (21)

Hence, spin projection can be easily combined with QEB-
ADAPT, and we call such an algorithm SP-QEB.

Finally, let us briefly consider the tapering-off technique
for spin projection. As it is known, because chemical Hamil-
tonians possess number and point-group symmetries, one can
identify unitaries that transform a Hamiltonian such that it
has only Pauli operators that trivially act on certain qubits,
which can thus be discarded [47,48]. Such unitaries are iden-
tified using the Z2 symmetry, namely, the parities of α and β

electron numbers for the number symmetry [47], and the sign
changes of the underlying wave function by (Abelian) point-
group symmetry operations [48]. However, the spin-rotation
operator exp(−iβŜy) changes the number parity of α and β

electrons as follows:

Ŝy = 1

2i

∑
p

(a†
pα

apβ
− a†

pβ
apα

). (22)

Therefore, the Z2 symmetry can be exploited only for the total
number operator N̂ = N̂α + N̂β , but not for Ŝz = 1

2 (N̂α − N̂β )
because [Ŝy, Ŝz] �= 0, resulting in the reduction of only one
qubit instead of two. This is a necessary cost for spin pro-
jection to exert its advantages; note that the Ŝ2 symmetry
is not categorized as a Z2 symmetry, and the tapering-off
scheme is not applicable. From a different perspective, spin
projection can explore a hidden Hilbert space that is not acces-
sible by standard UCC-like Ansätze by deliberately breaking
and restoring the number symmetry of each electron spin.
Although one cannot use number parity to discard the other
one qubit from the simulation, there is no such restriction
for the point-group symmetry. In some of our calculations
discussed below, we taper qubits to ease the computational
cost. However, we will assume the number of CNOT gates
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NCNOT, which is central to measuring the circuit complexity in
this paper, remains the same. In addition, we will not discuss
how gate operations would change by the transformation in
the tapering-off algorithm.

III. FIRST-ORDER MOLECULAR PROPERTIES WITH
ADAPT-VQE

In molecular systems, one is often interested not only in the
total energy but also chemical properties. Time-independent
molecular properties are defined as the total energy change
with respect to a perturbation x introduced to the Hamiltonian.
To obtain properties from quantum computing, several stud-
ies have focused on evaluating analytical energy derivatives
[49,50]. Although higher-order properties such as polarizabil-
ity require higher-order derivatives and therefore are difficult
to compute, first-order properties dE [x]/dx such as force
and dipole moment can easily be obtained in VQE. This is
because the quantum state is variational with respect to VQE
parameters {θk} used in the quantum circuit:

∂E [θ]

∂θk
= 0. (23)

However, in both ADAPT-VQE and SP-ADAPT-VQE, the
canonical orbitals of HF commonly employed as a starting
point are generally not optimal. The fully parameterized wave
function is given by P̂ exp(κ̂ )|ψADAPT[θ]〉 (P̂ is discarded for
standard ADAPT-VQE), where

κ̂ =
∑
p>q

κpqτ̂
p
q . (24)

Hence, the total energy:

E [θ, κ, x] = 〈ψADAPT[θ]| exp(−κ̂ )Ĥ [x]P̂ exp(κ̂ )|ψADAPT[θ]〉
〈ψADAPT[θ]| exp(−κ̂ )P̂ exp(κ̂ )|ψADAPT[θ]〉 ,

(25)

is not usually fully stationary with respect to orbital change:

∂E [θ, κ, x]

∂κpq

∣∣∣∣
κ=0

�= 0, (26)

unless it is fully converged to the FCI state. In other words,
the 1-particle generalized Brillouin condition is not satisfied;
note that the left side of Eq. (26) is equivalent to the gradient
Rm with Âm = τ̂

p
q defined in Eqs. (6) and (18) for standard

ADAPT and SP-ADAPT Ansätze, respectively (we will de-
note this as Rpq below). To address this issue, we can compute
the changes in molecular orbitals induced by x, by solving the
coupled-perturbed HF equation [51,52] or the Z-vector equa-
tion [53], similar to previous studies [49,50]. In this paper,
we adopt an alternative (but mathematically equivalent) for-
mulation commonly used in quantum chemistry [54,55] and
rederive the necessary equations to obtain first-order molecu-
lar properties in SP-ADAPT.

Accordingly, we introduce the following Lagrangian:

L[θ, κ, z, x] = E [θ, κ, x] +
∑
p>q

zpqFpq, (27)

where zpq and Fpq are Lagrange multipliers to be determined
and off-diagonal elements of the canonical Fock matrix, re-
spectively. We note that the canonical HF orbitals require

Fpq = 0 for p �= q at each x, and therefore, L is stationary with
respect to zpq. Evidently, for any x, L[θ, κ, z, x] reproduces
the same value as E [θ, κ, x], and therefore, dL/dx ≡ dE/dx;
however, L has an added advantage in that it can be stationary
with respect to all variational parameters: θ, κ, and z [note that
∂L/∂θk = 0 is automatically satisfied by VQE, see Eq. (23)].
The stationary condition for κ can be achieved by solving the
linear equation to determine z:

∂L[θ, κ, z, x]

∂κrs
= Rrs +

∑
p>q

zpqApq,rs = 0, (28)

where

Apq,rs = ∂Fpq

∂κrs
(29)

is the Hessian of the HF energy and can easily be computed
by a classical computer. We present the explicit form of A and
the solution to Eq. (28) in Appendix C.

Using the chain rule,

dE

dx
= dL

dx

= ∂L
∂x

+
∑

k

(
∂L
∂θk

dθk

dx

)

+
∑
p>q

(
∂L
∂κpq

dκpq

dx
+ ∂L

∂zpq

dzpq

dx

)

= ∂L
∂x

, (30)

where the last term is straightforward to evaluate once z is
available. It is noteworthy that this approach is applicable
to higher-order derivatives in a mathematically clear way,
although we will not go into the details.

The Lagrangian L can be expressed by the so-called re-
laxed density matrices Drelax, which incorporate the response
correction ascribed to the orbital change by perturbation (Ap-
pendix C). It can easily be shown that molecular properties
as energy derivatives are computed using the relaxed density
matrices, instead of the expectation value of the corresponding
observable operator, that is, with the regular density matrices
Dpq = 〈ψ |a†

paq|ψ〉. The simple expectation value using the
latter is generally less accurate because the orbital response
is neglected. To extend the orbital response correction to
SP-ADAPT, we can resort to the derivation in Ref. [56]. In
Appendix C, we summarize the equations and also review the
evaluation of nuclear gradients in the case where HF orbitals
are a function of nuclear coordinates.

Although this approach can be applied to any VQE method,
in several chemistry-inspired Ansätze such as the UCCSD, Rrs

values are zero or negligible because single excitations may
be explicitly treated in the variational optimization. However,
we note that the frozen-core (or frozen-virtual) approxima-
tion is frequently exercised both in classical and quantum
computing, where the lower core (higher virtual) orbitals are
considered inert and fixed to those of the reference state that
is often HF. Because these frozen orbitals are not explicitly
optimized within VQE, a response correction is required.
This can easily be achieved by simply expanding the range
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TABLE I. Summary of ADAPT protocols.

Method Pool Symmetry

Fermionic Eq. (3) Ŝz, N̂
Spin-dependent fermionic Eq. (19) Ŝz, N̂

Qubit {XpYq, XpXqXrYs} None
QEB { ˆ̃τ p

q , ˆ̃τ pq
rs } Ŝz, N̂

of orbital space p, q in Eq. (27) to include the frozen or-
bitals. In such cases, matrix elements with frozen orbitals,
denoted by I, J , are required. Although the expression for
Apq,rI remains the same, the gradient RrI needs to be handled
in classical computers because I is not mapped to qubits (refer
to Appendix C for comprehensive derivations). Certainly, all
these problems would be eliminated if orbitals are optimized
[57,58]; however, orbital-optimized VQE itself requires these
quantities and extra VQE simulations.

As mentioned above, for both fermionic and SP-fermionic
ADAPTs, we have access to R(n)

rs at each nth cycle by con-
struction. Therefore, the energy derivative and first-order
molecular properties are readily available by processing den-
sity matrices in a classical computer. Conversely, for the
qubit-based ADAPT, Rrs are not available in the course of the
ADAPT-VQE protocol, and therefore, one needs to explicitly
evaluate these quantities to properly estimate molecular prop-
erties, unless the obtained quantum state is an exact eigenstate
of the Hamiltonian where Rrs = 0.

IV. ILLUSTRATIVE CALCULATIONS

A. Computational details

Before discussing our numerical results, we describe the
computational details. All simulations were conducted using
Quantum Unified Kernel for Emulation (QUKET), developed
by us, without the effect of noise [59]. QUKET compiles sev-
eral open-source libraries to generate a Hamiltonian mapped
to a qubit basis and perform quantum simulations with
parallel computing. Specifically, it employs PYSCF [60] to
generate molecular orbitals and integrals, and OPENFERMION

[61] to perform the Jordan-Wigner transformation. To sim-
ulate quantum circuits, we utilize QULACS [62]. The energy
minimization in VQE uses the Broyden-Fletcher-Goldfarb-
Shannon (BFGS) algorithm implemented in Scipy. The
geometry optimization was performed by interfacing QUKET

with PYBERNY [63].
For fermionic ADAPT, we adopt two different pools,

Eqs. (3) and (19), and the controlled-Ry circuit to perform
exp(θ τ̂

pq
rs ) and exp(θ τ̂

p
q ) and estimate the number of CNOT

gates NCNOT in Fig. 1(c). We will not consider the effect of
noise in this paper but simply evaluate the expected perfor-
mance.

We summarize the ADAPT protocols used in this paper
and the corresponding operator pools in Table I. For spin pro-
jection, we always use the pool of either the spin-dependent
fermionic excitations or qubit excitations.

FIG. 2. Fidelity (solid lines) and 〈Ŝ2〉 (dotted lines) of ADAPT-
VQE, plotted against NCNOT for N2 with different bond lengths:
(a) 1.098 Å, (b) 1.8 Å, and (c) 2.5 Å. Circles indicate each ADAPT
step.

B. Spontaneous symmetry breaking in ADAPT

First, we examine the spontaneous symmetry breaking and
its consequence in ADAPT for the N2 molecule with the
STO-3G basis set. We have considered three different bond
lengths, RN−N = 1.098, 1.8, and 2.5 Å to represent weakly
and strongly correlated cases. The solid lines in Fig. 2 depict
the fidelity of the fermionic ADAPT-VQE state to the exact
FCI state |〈�FCI|ψADAPT〉|2 as a function of NCNOT, using
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either P or P spin, labeled as fermionic and fermionic (spin),
respectively. In all these cases, ADAPT-VQE approaches
the exact state as more operators are added, as expected.
The figure indicates that there is no significant difference in
convergence between P and P spin, although the former, the
original algorithm proposed in Ref. [13], is more advanta-
geous in that it requires less VQE parameters, as indicated
by the circles. However, the convergence behavior is signifi-
cantly different depending on the system. In other words, the
stronger the correlation of a system, the slower the conver-
gence of ADAPT-VQE to FCI.

This behavior is attributed to the broken spin characterized
by 〈Ŝ2〉, which is also illustrated in Fig. 2 with the dotted lines.
In the strongly correlated case of RN−N = 2.5 Å [Fig. 2(c)],
the HF state exhibits a very small overlap with FCI, with a
fidelity of 0.2, which quickly increases to 0.8 after the initial
few ADAPT steps with ∼200 CNOTs. However, simultane-
ously, 〈Ŝ2〉 (simply the degree of the spin-symmetry breaking)
becomes >1, and at this point, the fidelity convergence gets
trapped in a plateau.

Such large spin-symmetry breaking occurs initially be-
cause, in the VQE step of ADAPT, large VQE parameters
are essential for describing strong correlations (i.e., highly
excited configurations from the HF reference). Consequently,
the α and β electrons are treated quite differently, especially
in the absence of the Trotter decomposition [27]. We should
mention that the spin symmetry is safely conserved if paired
double excitations such as τ̂

pα pβ

qαqβ
are chosen. In fact, the first

few operators selected in ADAPT are of this type, and 〈Ŝ2〉
remains zero (see Fig. 2). However, paired double excitations
do not have a sufficient ability to describe all types of corre-
lation effects, and spin-unpaired excitations are more suitable
in several cases. With 〈Ŝ2〉 > 1, the ADAPT state is a mixture
of several different spin states, each with a significant weight.
Therefore, the derivative approach expressed in Eq. (6) to de-
termine the operator candidate is likely inappropriate because
such an operator search is performed in an incorrect symmetry
space. Of course, by further processing ADAPT with more
operators and CNOT gates, the lost spin symmetry starts to be
restored [∼700 CNOTs for Fig. 2(c)]. At this point, the fidelity
also quickly increases to one. Similar but less pronounced
results can be confirmed for the tests with shorter bond
lengths.

Although fermionic ADAPT follows the Ŝz and N̂ sym-
metries, qubit-ADAPT breaks all, and as a result, exhibits
a significant slowdown of convergence to FCI. This is il-
lustrated by Fig. 3, where we have plotted the fidelity and
symmetry expectation values 〈Ŝ2〉, 〈Ŝz〉, and 〈N̂〉 using the
problematic case of N2 at RN−N = 2.5 Å. We note that,
in this particular case, both algorithms coincidentally re-
sult in similar CNOT gate counts to achieve the FCI state.
However, the number of VQE parameters for fermionic
ADAPT to achieve a fidelity of 0.99 is 30, while that for
qubit-ADAPT is 128, implying that more measurements are
required for qubit-ADAPT. Interestingly, the symmetry break-
ing of qubit-ADAPT in Ŝz and N̂ is rather moderate; however,
the error in 〈Ŝ2〉 is substantially larger than that of fermionic
ADAPT. Apparently, such a large error in 〈Ŝ2〉 severely af-
fects the fidelity, and it is evident that the plateaus that

FIG. 3. Comparison between fermionic ADAPT and qubit-
ADAPT for N2 at RN−N = 2.5 Å. Circles indicate each ADAPT step.

emerge in the fidelity and 〈Ŝ2〉 plots correspond to each
other.

C. Accuracy and gate efficiency in ADAPT and SP-ADAPT

As demonstrated above, symmetry breaking is associ-
ated with strong correlation and occurs spontaneously in the
ADAPT algorithms, thereby slowing down the convergence.
Therefore, one would naturally expect that maintaining the
correct symmetry can mitigate the problem. In this section,
we study the effect of spin projection using several systems,
which include the N2 molecule (with RN−N = 1.098, 2.5 Å),
linear chain of H6 equally separated by 2 Å, and half-filled
one-dimensional periodic Fermi-Hubbard model with six sites
and U = 8. For the molecular systems, we have used the
STO-3G basis set and six electrons in six orbitals. Therefore,
all the models considered here are composed of 12 qubits.

We choose the initial state to be the HF determinant for
the molecular systems; however, for the Hubbard model, we
intentionally set the charge localized state where the first three
sites are doubly occupied and the remaining three sites are
empty to break the spatial symmetry.

Figure 4 presents the energy error from FCI and the
number of CNOT gates in the quantum circuit for several
methods, where the shaded area in orange corresponds to
chemical accuracy (<1 mHartree error). We first consider
the performance of qubit-ADAPT [15]. For the molecular
systems [Figs. 4(a)–4(c)], no significant advantage is found
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FIG. 4. Energy error from the full configuration interaction (FCI; in Hartree) at each CNOT gate count. (a) N2 at equilibrium geometry
(RN−N = 1.098 Å), (b) stretched N2 (RN−N = 2.5 Å), (c) stretched H6 (RH−H = 2 Å), (d) half-filled 6-site Hubbard chain (U = 8). The green
and red plots indicate the standard unitary coupled cluster with single and double substitutions (UCCSD) and broken-symmetry UCCSD,
respectively.

over fermionic ADAPT in terms of CNOT gate counts. This
is because the current implementation of fermionic ADAPT
relies on the controlled-Ry circuit of Ref. [19], which can
eliminate a large number of CNOT gates. In contrast, we find
that qubit-ADAPT is disadvantageous in two aspects. First,
the energy lowering in each VQE step is considerably small,
as plotted in Fig. 5, and it requires several VQE parameters
(measurements), which also makes it difficult to converge
each VQE step because of a highly nonlinear parameter space.
Second, it breaks the electron number symmetry; the applica-
tion of qubit-ADAPT to ionic cases is not straightforward, as
illustrated by the example of the half-filled Hubbard model,
where qubit-ADAPT falls into the true ground state of 〈N̂〉 =
4 and 〈Ŝ2〉 = 2.

Now let us focus on the results obtained by spin projection.
Evidently, by eliminating the incorrect spin-symmetry com-
ponents, SP-ADAPT methods (both for fermionic and QEB)
require much less CNOT gates to achieve the same accuracy
as those without spin-projection. SP-fermionic ADAPT is al-
ready effective for the weakly correlated N2 at equilibrium
geometry, as illustrated in Fig. 4(a). The CNOT gate reduction
in this system with spin projection (by a factor of 0.6–0.7)
is almost solely attributed to the fact that spin-complement

excitations (i.e., those that are missing to make a certain
excitation spin adapted) are handled by the superposition of
spin-rotated states; in contrast, with fermionic ADAPT, one
needs to explicitly construct a quantum circuit to perform
spin-complement excitations, except for paired doubles. This
can be verified by plotting the energy error against the number
of VQE parameters (Fig. 5). From Fig. 5(a), the number of
VQE parameters required to achieve the same accuracy is
quite similar between fermionic and SP-fermionic ADAPT
algorithms, which implies the two algorithms yield similar
quantum states for each ADAPT iteration.

The efficacy of spin projection becomes more distinct for
strongly correlated systems. For the stretched N2 and H6

[Figs. 4(b) and 4(c)], the number of CNOT gates required
to reach the FCI ground state with SP-ADAPT is less than
half of that with the corresponding broken-symmetry ADAPT.
Having said that, spin projection may not seem to be advanta-
geous because it employs up to 200 CNOT gates. For instance,
QEB-ADAPT exhibits a lower energy than SP-QEB-ADAPT
in the stretched N2 case, and the convergence of qubit-ADAPT
is initially even faster. However, this is an artifact due to
the unphysical spin contamination effect, and the quality
of the quantum state is far from satisfactory. A large spin
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FIG. 5. Same as Fig. 4 but as a function of the number of parameters.

contamination also leads to incorrect properties and state as-
signment. Furthermore, as seen in Fig. 3, again, it often causes
the plateau.

The number of required parameters in SP-ADAPT (Fig. 5)
is less than half of standard ADAPT, as expected. As illus-
trated in Fig. 6, the scaling of CNOT gate counts with the

FIG. 6. Increase in the number of CNOT gates with the number
of parameters for H6.

number of used parameters is essentially identical between
ADAPT and SP-ADAPT when the same operator pool is
used. Therefore, a lower number of parameters in the latter
simply implies a more gate-efficient circuit at each energy
accuracy. SP-fermionic ADAPT converges slightly faster than
SP-QEB-ADAPT; this may simply be because the former
contains more operators in the pool. However, it is interesting
to observe that both the SP-fermionic and SP-QEB algorithms
require almost the same number of parameters to represent the
exact FCI. This suggests we can further reduce the number of
operators to form a pool, which can reduce the measurements
for derivative evaluations, while expecting an unchanged fine
convergence behavior.

Finally, we also performed the UCCSD to evaluate the
advantages of ADAPT and SP-ADAPT. In our UCCSD im-
plementation, only the gates with nonzero parameters are
constructed to minimize the gate depth. Because the molec-
ular systems we consider have a high spatial symmetry, most
UCCSD excitations are symmetry forbidden, thereby permit-
ting gate-efficient circuits. With such a treatment, the UCCSD
is already as powerful as ADAPT for N2 at equilibrium
and H6 [see the green plots in Figs. 4(a) and 4(c)]. For
the stretched N2, ADAPT appears to be significantly more
efficient and accurate; however, this may well be attributed
to the spin-symmetry breaking. For a fair comparison, we
also present the broken-symmetry UCCSD [27] in red, which
provides a fully variational solution at the cost of large spin
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contamination. In addition, note that the full UCCSD, which
performs symmetry-forbidden gate operations, that is, even if
the amplitudes are zero, can be prepared with 2001 CNOT
gates for all cases. For the Hubbard model, the UCCSD nat-
urally requires all excitations, and thus, 2001 CNOT gates, as
we have initiated the calculation with no spatial symmetry;
the performance of the UCCSD is similar to QEB-ADAPT.
In conclusion, although ADAPT is imminently more flexi-
ble than the fixed Ansatz of the UCCSD, fermionic ADAPT
passes through a UCCSD-like state in the process of converg-
ing to the FCI state; this is quite logical because the UCCSD is
usually considered an accurate method that is both chemically
and theoretically well established.

D. Comparison between different operator pools

The previous section suggested that not only is the number
of CNOT gates required to obtain the FCI state constantly
smaller for QEB-ADAPT than for fermionic ADAPT, but
also the number of required variational parameters is very
similar with spin-projection. We also performed calculations
with spin-dependent fermionic ADAPT using P spin defined
in Eq. (19) and arrived at the same conclusion for broken-
symmetry standard ADAPT algorithms.

The authors of Ref. [15] verified that only 2n − 2 Pauli
operators can span the n-qubit real Fock space. Although this
theorem appears very promising, much more operators are
usually required in the ADAPT algorithm because it chooses
only one operator at a time; thus, the pool has to be physical in
some sense (i.e., it should contain fermionic excitations higher
than singles to examine the k-particle generalized Brillouin
theorem). Nevertheless, the theorem suggests the number of
operators in the QEB pool can be further reduced, thereby
providing an opportunity to save the computational efforts
to choose the next operator. Here, we propose the following
three additional qubit-excitation pools and compare their per-
formances:

(1) Scheme 1. ˆ̃τ pα
qα

, ˆ̃τ pβ qα

rβ sα
(β singles and doubles with the

same spins are omitted).
(2) Scheme 2. Same as Scheme 1 but with p � q.
(3) Scheme 3. Same as Scheme 2 but with r � s.
For the 12-qubit systems, the number of operators in each

pool is 855, 555, 400, 190, and 155 for spin-dependent
fermionic, QEB, and schemes 1–3, respectively. We have
plotted the energy convergence of the earlier H6 example
against CNOT gates in Fig. 7 and parameter numbers in Fig. 8.
From these figures, it can be observed that, at convergence
(an energy error of 10−6), all QEB schemes perform similarly
in terms of both the numbers of CNOT gates and VQE pa-
rameters. However, each plot behaves slightly differently. For
broken-symmetry ADAPT algorithms (indicated by the lines
without points), full QEB provides a slightly better description
than Scheme 3 before the convergence. This could be be-
cause the entire operator pool in QEB contains more choices
than Scheme 3. In particular, the latter does not contain
spin-complement operators, which are subsequently chosen in
several instances because spin-complement excitations result
in similar energy gradients. It is also clear from Fig. 8 that
spin-dependent fermionic ADAPT generally exhibits a better
energy convergence for a given number of VQE parameters,

FIG. 7. Comparison of the CNOT performance between different
operator pools in qubit-excitation-based (QEB) and spin-projected
QEB (SP-QEB).

although it is inefficient in terms of CNOT gate counts. For ex-
ample, with 100 parameters, the energy obtained by fermionic
ADAPT is one order of magnitude more accurate than those
by QEB schemes.

With spin projection, the performances of different QEB
schemes are almost equivalent with a certain CNOT gate
count and parameter number. In particular, its accuracy is
comparable with SP-fermionic ADAPT when the number

FIG. 8. Same as Fig. 7 but as a function of the number of
parameters.
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of parameters is fixed because spin projection can partially
replicate the spin-complement effects. However, SP-fermionic
ADAPT is almost always more accurate than SP-QEB-
ADAPT, although slightly. In the particular case of H6, their
differences are marginal and may be rather attributed to the
fact that the current approach to determining the next operator
is not optimal; operators that are not chosen could identify a
lower energy than the chosen one when VQE is performed.
However, this behavior is general, as is clearly observed
in Fig. 5, and can seemingly become more significant for
larger systems, as will be demonstrated later. Nevertheless, the
improved similarity between the SP-fermionic and SP-QEB
algorithms over standard ADAPT is encouraging for practical
applications where the actual operator number (or CNOT gate
counts) that can be implemented is assumed to be limited.

E. Molecular properties

In this section, we study the molecular properties computed
by several ADAPT-based algorithms using the method dis-
cussed in Sec. III. In a practical application of the ADAPT
algorithm, we cannot expect to obtain FCI accuracy but must
make a tradeoff between accuracy and either the circuit depth
or the number of measurements. To benchmark their accuracy,
we compare the results obtained with the fixed number of
VQE parameters Nparam or the number of CNOT gates NCNOT.

1. Dipole moment of H2O

The dipole moment is an important first-order property of
a molecule, providing a measure of polarity of the system.
To assess the accuracy of ADAPT in computing this quantity,
we have employed the H2O molecule with a fixed angle of
104.5◦ and varied the OH bond length symmetrically. Fig-
ure 9 summarizes the dipole moment error from the FCI value
calculated at different ADAPT cycles (Nparam = 6, 9, and 12).
The results of spin-dependent fermionic ADAPT without and
with the orbital response correction are presented in Figs. 9(a)
and 9(b), respectively. As can be observed from the figures,
the orbital response correction is important for describing
the dipole moment correctly at short bond lengths (∼1.5 Å).
Note that the correction effect is almost absent in the UCCSD
because it takes care of single excitations explicitly in VQE by
playing the role of orbital relaxation. For the larger bond dis-
tance, the orbital response correction sometimes worsens the
result; however, this means the ADAPT state is not stationary
with respect to orbital rotation, and the good dipole moments
obtained in the unrelaxed results [Fig. 9(a)] are fortuitous.
Having said that, because we are using the HF canonical or-
bitals in ADAPT, the orbital Hessian matrix A in Eq. (28) can
be nearly singular at a certain bond length (∼1.9 Å), where the
first-order relaxed density matrix of ADAPT is overcorrected.
This singular behavior is circumvented by increasing the num-
ber of operators such that the residual Rrs is close enough to
zero.

When spin projection is applied, we essentially observe
a similar trend [see Figs. 9(c) and 9(d)]. Although spin-
symmetry breaking in ADAPT does not affect the estimated
dipole moment because both the singlet and contaminated
triplet states give almost zero dipole moments at stretched
bond lengths, SP-fermionic ADAPT shows promising results,

FIG. 9. Error from the full configuration interaction (FCI) in
the calculated dipole moment of H2O by altering the number of
operators in ADAPT. (a) Spin-dependent fermionic ADAPT without
orbital response, (b) spin-dependent fermionic ADAPT with orbital
response, (c) SP-fermionic ADAPT without orbital response, and
(d) SP-fermionic ADAPT with orbital response.

yielding better convergence with respect to Nparam, especially
in a more strongly correlated region [Fig. 9(d)].

2. Geometry and potential curve of O3

It is difficult to investigate the accuracy in estimating ge-
ometrical parameters of strongly correlated systems, as we
are restricted to small molecules or toy models because of
a limited computational budget, and most small molecules
are only weakly correlated at equilibrium. In fact, previous
studies have considered such simple molecules [49,50,64],
which do not allow one to properly evaluate the potential
of quantum computers. Another issue is that, for adaptive
algorithms like ADAPT, the potential energy surface is not
smooth, and determining the minimum can be challenging.
However, it is interesting to benchmark how effective the
geometry optimization in ADAPT methods can be. We think
it is also pedagogical to compare the results of spin-dependent
fermionic and QEB ADAPT algorithms in predicting potential
energy surfaces when the same quantum resource is available.

Accordingly, we choose the ozone molecule with the STO-
3G basis as our test case, using an active space comprising
9 orbitals and 12 electrons, resulting in an 18-qubit system.
To make a direct comparison between the accuracy of each
ADAPT method, we have assumed that the number of CNOT
gates that one can handle for each calculation is limited (ex-
cept for the UCCSD, where 2534 CNOT gates were required).
Namely, all ADAPT results were obtained with less than a
certain NCNOT ranging from 300 to 1000. In all simulations, we
tapered qubits to reduce the computational cost but assumed
the total number of CNOT gates remain unchanged.

Figures 10(a) and 10(b) depict the optimized bond length
(Å) and angle (◦), where the FCI result is depicted by the red
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FIG. 10. (a) Optimized bond length of O3 as a function of the maximum number of CNOTs used in ADAPT. (b) Same as (a) but for the
angle. (c) Potential energy curve of O3 in Hartree, computed with NCNOT = 1000. (d) Energy error from the full configuration interaction (FCI).

line (RO−O = 1.400 Å and ∠OOO = 109.9◦). Because O3 is a
two-determinant system, the UCCSD is reasonably accurate,
as indicated by the dotted gray line. Thus, symmetry breaking
in ADAPT is not so significant for both the fermionic and
QEB states. Our calculations indicate that 〈Ŝ2〉 in ADAPT
is ∼0.1 at most, at the equilibrium geometry estimated by
FCI. From the figures, the bond length is more accurately
predicted by fermionic ADAPT than by QEB ADAPT, with
or without spin projection, while the results for the angle
exhibit the opposite trend. Without spin projection, the two
methods yielded significantly different results for geometry
optimization, especially at a larger NCNOT. Increasing NCNOT

does not always lead to more accurate results, at least up
to NCNOT = 1000. However, by applying spin projection, it
appears the geometries predicted by the SP-fermionic and
SP-QEB algorithms are improved with NCNOT. They are also
similar to each other, implying the two methods also result in
similar states.

To further investigate these results, we have plotted in
Fig. 10(c) the potential energy curve of symmetric bond dis-
sociation of O3 with a fixed angle of 109.9◦, using NCNOT =
1000. In Fig. 10(d), we have also presented the energy error
from FCI in Hartree. In all the methods, to a certain degree,
the energy is more accurate at a shorter (weakly correlated)
distance and becomes worse as the bond is stretched (strongly
correlated). While this result is quite reasonable, we found
that the change in QEB energy is rather significant compared
with that in the fermionic methods, especially without spin
projection. When comparing the fermionic and QEB results,
their energy accuracy is inverted at 1.40 Å. We took the non-
parallelity error (NPE) of the potential energy curve, which is
defined as the difference between the maximum and minimum
errors from FCI throughout the potential curve, and tabulated

it in Table II. As this table shows, fermionic ADAPT provides
a more parallel curve to that of FCI than QEB-ADAPT. This
explains why the latter is less accurate than the former in
predicting the bond length, as illustrated in Fig. 10(a).

At this point, we are uncertain whether this failure of
QEB can be attributed to its fundamental deficiency or the
possibly inappropriate choice of operators in the ADAPT
algorithm. Because the deviation between fermionic and
QEB-ADAPT results is significantly mitigated by spin projec-
tion [Figs. 10(c) and 10(d)], we suspect symmetry breaking
to be behind the different behaviors. Therefore, in Fig. 11,
we have summarized the 〈Ŝ2〉 values obtained from the
calculations in Fig. 10(c). In fact, we find that, although
fermionic ADAPT retains the same degree of symmetry
breaking throughout all bond distances, QEB is more spin
contaminated when the molecule is stretched. As we have seen
several times, symmetry breaking can slow down the conver-
gence in ADAPT; therefore, the degree of spin contamination
is directly related to the energy accuracy with a fixed NCNOT.
Hence, spin projection plays an important role in equalizing
the two schemes to some extent.

V. CONCLUSIONS

One of the unsolved problems in quantum chemistry is
a consensus way of treating strong correlations. Quantum

TABLE II. NPE in Hartree.

Fermionic QEB SP-fermionic SP-QEB UCCSD

0.014 0.066 0.009 0.021 0.012
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FIG. 11. Spin contamination of fermionic and QEB-ADAPT
in O3.

computing is expected to provide a solution to this problem
because it can, in principle, handle entangled quantum states
directly mapped onto qubits. The recently proposed ADAPT
algorithm has paved the way to construct an efficient quantum
circuit adaptively; however, for fermionic and QEB-ADAPT
pools, its convergence is slow for strongly correlated systems
because of significant symmetry breaking.

To address this issue, we introduced spin projection to
ADAPT. We demonstrated that spin projection can be quite
effective when combined with ADAPT, offering shallower cir-
cuits with fewer CNOT gates and VQE parameters to achieve
the same accuracy at the cost of increased measurements. This
is especially the case if a gate-efficient circuit is adopted for
fermionic and qubit excitations, whose performances are often
comparable. Our calculations also indicated that the pool of
QEB-ADAPT can be reduced by discarding certain classes
of spin-dependent qubit excitations. However, we concluded
that it is not worthwhile to apply symmetry projection to
qubit-ADAPT because it would require the restoration of lost
Ŝz (and number) symmetry, which considerably increases the
number of measurements in evaluating the energy.

We have also derived the first-order energy derivative in the
presence of spin projection, which enabled the calculation of
dipole moment and geometry optimization with SP-ADAPT.
It was demonstrated that the orbital response correction is
important both for ADAPT and SP-ADAPT in the calculation
of the dipole moment because they are far from stationary with
respect to orbital changes, unlike the UCCSD, which is less
sensitive to orbital rotation because of the presence of explicit
single excitations. Furthermore, the method was applied to the
geometry optimization of O3 to quantify the capabilities of
fermionic and QEB schemes. We found that QEB-ADAPT
is less stable in achieving a constant accuracy throughout
the potential energy surface and thus is less predictable than
fermionic ADAPT in terms of optimized geometry. The de-
viation between the two schemes was caused by a larger spin
contamination in QEB-ADAPT and could be largely mitigated
by performing spin projection. However, the reason behind

FIG. 12. Convergence profile of fermionic ADAPT-VQE using
single and double excitation operators (fermionic pool). The modi-
fied pool additionally contains τ̂

πuy,απux,απux,β
πuy,απgx,απgx,β .

this unfavorable behavior of QEB-ADAPT remains unclear,
and further studies will be required to elucidate its cause.

Note added. After this paper was submitted, a relevant
preprint concerning spin symmetry breaking in ADAPT-VQE
appeared [65].
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APPENDIX A: NUMERICAL EXAMPLE OF THE
k-PARTICLE GENERALIZED BRILLOUIN CONDITION

TEST WITH FERMIONIC ADAPT-VQE

As mentioned in the main text, fermionic ADAPT-VQE
that uses only single and double excitation operators as a
pool satisfies the 1- and 2-particle generalized Brillouin con-
ditions but not necessarily higher rank conditions. If this
happens, then it means ADAPT-VQE is trapped in a local
minimum. To see this, let us consider the N2 molecule with
πux, πuy, πgx, and πgy. In the initial HF state, the first two
orbitals are doubly occupied, and the rest are vacant. Using the
same equilibrium geometry and the basis set (STO-3G) as the
main text, the exact energy is −107.59850562 Hartree. In con-
trast, we obtained −107.5981221 Hartree with ADAPT-VQE,
which is 0.4 mHartree higher than the exact energy. The con-
vergence profile is plotted in Fig. 12. We note the generalized
Brillouin conditions are fulfilled for k = 1, 2 (||R|| < 10−7)
at the seventh cycle. We tested the 3-particle condition against
this converged |ψ〉 and observed that this state fails to satisfy
the condition for some triple excitations; the largest nonzero
gradient is >0.004. These excitations are not purely triple ex-
citations, meaning that some of the creation operators have the
same labels as the annihilation operators, e.g., τ̂

πuy,απux,απux,β
πuy,απgx,απgx,β .

Here, the excitation is a controlled double excitation because
it performs an excitation between |πux,απux,β〉 and |πgx,απgx,β〉
if |πuy,α〉 = |1〉. If we add this excitation in the original pool
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(called modified pool), ADAPT-VQE now converges to the
exact FCI energy at the eighth cycle, fulfilling all the condi-
tions including the 4-particle Brillouin condition.

We should stress that Eq. (1) is rigorous with single and
double excitations in principle [32]. However, this example
critically illustrates the insufficiency of a pool with only single
and double excitations in the ADAPT-VQE algorithm.

APPENDIX B: GAUSS-LEGENDRE QUADRATURE
FOR NUMERICAL INTEGRATION

When evaluating the projected overlap (and Hamiltonian
coupling) in Eq. (16), we assume the quantum state |ψ〉 is an
eigenstate of Ŝz with an eigenvalue of ms, resulting in

〈ψ |P̂|ψ〉 = 2s + 1

8π2

∫ 2π

0
dα

∫ π

0
sin βdβ

∫ 2π

0
dγ Ds∗

msms
()

× 〈ψ | exp(−iαŜz ) exp(−iβŜy) exp(−iγ Ŝz )|ψ〉

= 2s + 1

2

∫ π

0
sin β ds∗

msms
(β )〈ψ | exp(−iβŜy)|ψ〉dβ,

(B1)

where we have used

Ds
msms

= 〈s; ms|Ûg|s; ms〉
= exp(−iαms)ds

msms
(β ) exp(−iγ ms), (B2)

and exp(−iγ Ŝz )|ψ〉 = exp(−iγ ms)|ψ〉, etc. Here, ds
msms

(β ) is
Wigner’s small d function.

To comply with the integration range [−1, 1] for Gauss-
Legendre quadrature, we set

x = − cos(β ), (B3)

which yields

〈ψ |P̂|ψ〉 = 2s + 1

2

∫ 1

−1
f (x)dx, (B4)

f (x) = {
ds

msms
[arccos(x)]

}〈ψ | exp[i arccos(x)Ŝy]|ψ〉, (B5)

and then obtain the weights and quadratures.

APPENDIX C: FIRST-ORDER ENERGY DERIVATIVE
OF VQE

1. General strategy

Here, we discuss the most general formulation for the first-
order derivative of energy to obtain the relaxed density matrix
in variational methods. Although the derivation is known, we
believe it is still beneficial to rederive and summarize the
equations for nonexperts. As shown below, we adopt spin
molecular orbitals instead of spatial molecular orbitals to en-
sure that our derivation is as general as possible. With the
canonical HF orbitals, the Fock matrix:

Fpq = hpq +
∑

rs

〈pr||qs〉DHF
rs , (C1)

is diagonal, where we define the idempotent HF density ma-
trix:

DHF
rs = 〈�HF|a†

r as|�HF〉 =
{

1 (r = s ∈ occ)
0 (r �= s) , (C2)

and the one-and two-body integrals of the Hamiltonian:

hpq =
∫

drφ∗
p(r)

(
− 1

2
∇2 −

∑
A

ZA

|r − rA|
)

φq(r), (C3)

〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉, (C4)

〈pq|rs〉 =
∫

dr1dr2
φ∗

p(r1)φ∗
q (r2)φr (r1)φs(r2)

|r1 − r2| . (C5)

Therefore, it is convenient to use off-diagonal elements to
constrain the Lagrangian in Eq. (27). Because canonical HF
orbitals have occupied and virtual spaces, we decompose the
Fock elements in L for convenience as

L[θ, κ, z, x] = E [θ, κ, x] +
vir∑
a

occ∑
i

zaiFai

+
occ∑
i> j

zi jFi j +
vir∑

a>b

zabFab, (C6)

where i, j, k, l denote occupied orbitals, and a, b, c, d denote
virtual orbitals. The requirements for the orbital derivative are

∂L
∂κck

= 0, (C7a)

∂L
∂κkl

= 0, (C7b)

∂L
∂κcd

= 0, (C7c)

and therefore, we compute the derivative of Fock matrix
Apq,rs = ∂Fpq/∂κrs in each orbital sector. The results are

Aai,ck = (Faa − Fii )δacδik + 〈ak||ic〉
+ 〈ac||ik〉, (C8a)

Ai j,ck = 〈ic|| jk〉 + 〈ik|| jc〉, (C8b)

Aab,ck = 〈ac||bk〉 + 〈ak||bc〉, (C8c)

Ai j,kl = (Fii − Fj j )(δikδ jl − δilδ jk ), (C8d)

Aab,cd = (Faa − Fbb)(δacδbd − δadδbc), (C8e)

and all other terms are strictly zero.
We first solve Eq. (C7b). Because i > j and k > l , δil and

δ jk are always zero in Eq. (C8b); hence,

∂L
∂κkl

= ∂E

∂κkl
+

occ∑
i> j

zi jAi j,kl

= Rkl +
occ∑
i> j

zi j (Fii − Fj j )δikδ jl = 0, (C9)

which leads to

zi j = − Ri j

Fii − Fj j
. (C10)

Similarly, solving Eq. (C7c) results in

zab = − Rab

Faa − Fbb
. (C11)

It should be mentioned that, if orbitals are (nearly) degenerate,
the denominator can become numerically zero; however, in
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such a case, we expect the numerator to be ∼0, meaning the
rotation is redundant and can be discarded. We have not faced
such a numerically challenging situation.

Now, from Eq. (C7a), we find

∂L
∂κck

= Rck +
vir∑
a

occ∑
i

zaiAai,ck +
∑
i> j

zi jAi j,ck +
∑
a>b

zabAab,ck

= Rck + Rocc
ck + Rvir

ck +
vir∑
a

occ∑
i

zaiAai,ck

= 0, (C12)

where

Rocc
ck = −

∑
i> j

Ri j

Fii − Fj j
(〈ic|| jk〉 + 〈ik|| jc〉), (C13)

Rvir
ck = −

∑
a>b

Rab

Faa − Fbb
(〈ac||bk〉 + 〈ak||bc〉). (C14)

Therefore, we solve

vir∑
a

occ∑
i

zaiAai,ck + R̃ck = 0, (C15)

with

R̃ck ≡ Rck + Rocc
ck + Rvir

ck , (C16)

to determine zai.
Finally, the relaxed density matrices Drelax

pq and Drelax
pq,rs are

obtained by comparing the one-body and two-body terms in
L:

L =
∑

pq

hpq〈ψ |a†
paq|ψ〉 + 1

4

∑
pqrs

〈pq||rs〉〈ψ |a†
pa†

qasar |ψ〉

+
∑
p>q

zpq(hpq + 〈pr||qs〉〈�HF|a†
r as|�HF〉)

=
∑

pq

hpqDrelax
pq + 1

4

∑
pqrs

〈pq||rs〉Drelax
pq,rs, (C17)

where |ψ〉 represents the VQE wave function, and

Drelax
pq = Dpq + 1

2
zpq, (C18)

Drelax
pq,rs = Dpq,rs + 1

2

(
zprDHF

qs − zqrDHF
ps

− zpsD
HF
qr + zqsD

HF
pr

)
, (C19)

Dpq = 〈ψ |a†
paq|ψ〉, (C20)

Dpq,rs = 〈ψ |a†
pa†

qasar |ψ〉. (C21)

Note that Drelax
pq,rs is explicitly antisymmetrized such that

Drelax
pq,rs = −Drelax

qp,rs, and so on, for convenience.

2. Frozen-core approximation

When the frozen-core approximation is exercised, the VQE
energy derivative with respect to the mixing between the

frozen-core I and active p orbitals (i.e., those mapped to
qubit), RpI , cannot be directly evaluated by qubit measure-
ments. Nevertheless, we can compute these values using the
density matrices within the active space as follows:

RpI = 2

(
h̃I p −

ACT∑
q

Dqph̃qI +
ACT∑

qr

〈Iq||pr〉Dqr

− 1

2

ACT∑
qrs

〈qr||sI〉Dqr,sp

)
, (C22)

where we have defined the core Hamiltonian:

h̃PQ = hPQ +
Frozen-core∑

I

〈PI||QI〉, (C23)

with general spin orbitals P, Q.
The Fock derivatives and multipliers with frozen-core in-

dices, such as AaI,ck and zcI , are computed with the same
equations as above, simply by expanding i, j, k, l to include
the frozen-core orbitals.

For the frozen-virtual approximation, we must consider the
contribution from the frozen-virtual orbitals A:

RAp = 2

(
ACT∑

q

DpAh̃qA + 1

2

ACT∑
qrs

〈qr||sA〉Dqr,sp

)
, (C24)

RAI = 2

(
h̃IA +

ACT∑
pq

〈pI||qA〉Dqp

)
. (C25)

3. Nuclear gradients

In several cases, HF orbitals are expressed as a linear com-
bination of atomic orbitals (AOs) that are functions of atomic
coordinates. If AOs depend on the perturbation x (nuclear
displacement), the electronic energy derivative includes a con-
tribution from the AO overlap derivative S(x) = ∂〈φμ|φν〉/∂x.
The general expression is

dE

dx
=

∑
μν

h(x)
μνDrelax

μν + 1

4

∑
μνλσ

〈μν||λσ 〉(x)Drelax
μν,λσ

+
∑
μν

S(x)
μνWμν, (C26)

where the superscript (x) represents the (explicit) partial
derivative, and Wμν denotes the so-called energy weighted
density matrix:

Wμν = −
(∑

λ

hμλDrelax
νλ + 1

2

∑
λ

〈μκ||λσ 〉Drelax
νκ,λσ

)
. (C27)

4. Spin projection

When the spin-projection operator P̂ is present, the same
procedure is followed, but with Eq. (18) instead of Eq. (6)
for Rpq. As a caveat, for spin-dependent properties such
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as hyperfine coupling constants, the relaxed density matri-
ces need to be slightly modified. Our SP-VQE energy is
expressed as

E = 1

〈ψ |P̂|ψ〉

(∑
pq

hpq〈ψ |a†
paqP̂|ψ〉

+ 1

4

∑
pqrs

〈pq||rs〉〈ψ |a†
pa†

qasarP̂|ψ〉
)

. (C28)

Here, notice that 〈ψ |a†
paqP̂|ψ〉/〈ψ |P̂|ψ〉 does not corre-

spond to the genuine density matrix of SP-VQE, that is,
〈ψ |P̂†a†

paqP̂|ψ〉 �= 〈ψ |a†
paqP̂|ψ〉. In fact, the half-projected

density matrix and its response correction are not spin adapted
and therefore lead to an incorrect spin density. To avoid this

issue, the Wigner-Eckart theorem can be adopted, which is
expressed as

P̂s
m,m(a†

pαaqα + a†
pβaqβ )P̂s

m,m

= 〈s m 0 0|s m〉2(a†
pαaqα + a†

pβaqβ )P̂s
m,m, (C29)

P̂s
m,m(a†

pαaqα + a†
pβaqβ )P̂s

m,m

= 〈s m 1 0|s m〉[〈s m 1 0|s m〉(a†
pαaqα − a†

pβaqβ )P̂s
m,m

+ 〈s m 1 − 1|s m〉a†
pαaqβ P̂s

m−1,m

− 〈s m 1 1|s m〉(a†
pβaqα )P̂s

m+1,m], (C30)

where 〈s1 m1 s2 m2|S M〉 represents the Clebsch-Gordan co-
efficient, and P̂s

m,k = |s; m〉〈s; k| denotes the transfer operator,
which is a general form of the spin-projection operator
P̂ ≡ P̂s

m,m.
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