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Reversible bond kinetics from single-molecule force spectroscopy experiments close to equilibrium
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Analysis of bond rupture data from single-molecule force spectroscopy experiments commonly relies on the
strong assumption that the bond dissociation process is irreversible. However, with increased spatiotemporal
resolution of instruments it is now possible to observe multiple unbinding-rebinding (or unfolding-refolding)
events in a single pulling experiment. Here we augment the theory of force-induced unbinding by explicitly
taking into account rebinding kinetics and provide approximate analytic solutions of the resulting rate equations.
Furthermore, we use a short-time expansion of the exact kinetics to construct numerically efficient maximum
likelihood estimators for the parameters of the force-dependent unbinding and rebinding rates, which pair well
with and complement established methods, such as the analysis of rate maps. The estimators are independent of
the applied force protocol and can therefore be used to globally analyze multiple force-extension traces for both
force-ramp and force-clamp experiments. We provide an open-source implementation of the theory, evaluated
for Bell-like rates, which we apply to synthetic data generated by a Gillespie stochastic simulation algorithm for
time-dependent rates.
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I. INTRODUCTION

Single-molecule force spectroscopy (SMFS) is an experi-
mental technique used to gauge the stability of intermolecular
and intramolecular bonds by repeatedly stretching and break-
ing them with the help of a time-varying external force [1].
In force-ramp protocols, the external force is increased with
time, and in force-clamp protocols, feedback loops are used
to maintain a constant external force. Among other applica-
tions, SMFS has been used to study (poly)protein unfolding
[2–5] and to explore the mechanical strength of cell adhe-
sion molecules [6–8] and ligand-receptor complexes [9–11].
The yield forces measured in force-ramp spectroscopy exper-
iments are conventionally analyzed with the help of minimal
theories [12–16], which have been remarkably successful
despite the enormous reduction in complexity from a high-
dimensional molecular system to a low-dimensional kinetic
or diffusive representation [17]. These theoretical models pro-
vide closed-form expressions for experimentally accessible
observables, such as the rupture force distribution (RFD) or
the most probable rupture force as a function of the loading
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rate Ḟ = dF/dt . However, most of these theories model the
unbinding process as an irreversible transition, which is only
a reasonable assumption to make for large pulling speeds
and for molecules with slow rebinding or refolding rates.
Furthermore, technical advances have in recent years led to
microsecond response times in force actuators [5,18,19] that
paved the way for elaborate transition-path measurements
[18,20] and the detection of rapid unfolding and refolding
transitions in local regions of macromolecules [21]. One
therefore must take into account rebinding or refolding effects
when analyzing data recorded at such high time resolution.

In principle, the theory of reversible bond kinetics under
force-ramp protocols is already well established [22,23], but
the corresponding expressions for key experimental quantities
cannot be computed in closed form without introducing fur-
ther simplifications. A widely used ansatz is to treat rebinding
only indirectly, as done by Friddle et al. [24], who considered
the extreme case of having unresolved rebinding events below
a certain threshold force. For forces above this threshold,
Friddle et al. assumed rebinding to be negligible. The resulting
mean rupture force, as a function of the loading rate, then has
a nonzero vertical intercept at a value corresponding to the
threshold force. Friddle followed up on this idea in Ref. [25],
where he constructed an approximate closed-form solution to
the coupled rate equations describing the unbinding-rebinding
kinetics of a two-state system.

In this paper, we revisit the kinetic modeling of reversible
bond rupture under a time-dependent force. Force-ramp pro-
tocols have significant advantages over their force-clamp
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counterparts. In particular, by sweeping through a wide range
of forces, they are essentially guaranteed to reveal state
transitions [26]. However, the application of time-dependent
forces complicates the kinetic modeling. Here we address this
main drawback of slow force-ramp experiments compared to
force-clamp experiments. For concreteness, we refer in the
following to the kinetics of unbinding and rebinding; however,
the theory is general and also applies to unfolding and refold-
ing, as well as to other bond rupture and formation processes.

Starting from the rate equations of Friddle [25], we extend
the theory to the regime of small force loading rates, where re-
binding is likely to take place. In this regime, nonequilibrium
effects are suppressed and multiple transition events can occur
in a single pulling trace. We show that a quasiequilibrium
treatment gives excellent results in this limit and allows for the
analytic calculation of experimentally accessible quantities.
To facilitate the analysis of experimental data, we provide
asymptotically exact maximum likelihood estimators (MLEs)
for the parameters of Bell-like rates to complement the es-
tablished nonparametric method of rate-map analysis [27,28].
The estimators do not depend on the applied force proto-
col and can therefore be used to analyze data from both
force-ramp and force-clamp experiments, either separately or
collectively.

The paper is structured as follows. In Sec. II, we briefly
review the two-state Markov modeling ansatz behind the cou-
pled rate equations, present their formal solution, and provide
general recipes for constructing the corresponding RFD and
calculating the average number of unbinding events, as well
as its higher moments. Section III discusses closed-form ap-
proximations to the formal solution of the rate equations,
in particular Friddle’s instantaneous rebinding approximation
[25], as well as our quasiequilibrium approximation. We then
proceed to develop a likelihood function in Sec. IV that can
be maximized to give estimates of model parameters and used
to analyze time series involving unbinding-rebinding kinetics
driven by force. The resulting MLEs become exact in the limit
of infinitesimally small time steps and can be used to globally
analyze multiple force-extension traces, irrespective of the
applied force protocol, as the estimators are not limited to
quasiequilibrium situations. To demonstrate the applicability
of our approach, we use it to analyze simulation data gener-
ated by a modified Gillespie stochastic simulation algorithm
[29] that accounts for the time dependence of the rates. Fi-
nally, we conclude in Sec. V with a summary of our results. A
computationally efficient open-source implementation of the
MLEs, as well as the simulation code, are provided in a data
analysis package [30] written in Julia [31].

II. GENERAL THEORY

Conformational changes of macromolecules or the
unbinding-rebinding kinetics of a protein-ligand complex can,
to a first approximation, often be described as a two-state
Markov process, characterized by the following coupled rate
equations:

Ḃ(t ) = −koff(t )B(t ) + kon(t )U (t ),

U̇ (t ) = −kon(t )U (t ) + koff(t )B(t ). (1)

Here a dot indicates the time derivative, i.e., Ḃ(t ) = dB(t )/dt ;
B(t ) and U (t ) are the relative populations inside the bound
and the unbound states, respectively; and koff/on(t ) denote the
time-dependent unbinding (“off”) and rebinding (“on”) rates,
respectively, driving the kinetics. Note that “binding” is to be
understood as a synonym for bond formation or folding. The
time dependence of the rates is assumed to originate solely
from an external force protocol F (t ), ignoring the thermal
fluctuations inherent in molecular systems [13]. Under the
assumption that F (t ) is monotonic (i.e., an invertible function
for all t), we can therefore freely switch between the variables
t and F with the help of the loading rate Ḟ [F ] = dF/dt . We
shall reserve parentheses for time-domain functions f (t ) and
denote force-dependence via the bracket notation

f [F ] ≡ f [t (F )].

The fact that Eq. (1) describes a closed system, which
can only transition between the bound and the unbound state,
i.e., B(t ) + U (t ) = 1, can be used to decouple the equations,
giving

Ḃ(t ) = −[koff(t ) + kon(t )]B(t ) + kon(t ),

U (t ) = 1 − B(t ). (2)

The formal solution of Eq. (2) reads [32]

B(t ) = B(t ′)e−K (t,t ′ ) +
∫ t

t ′
dτ e−K (t,τ )kon(τ ), (3)

where t � t ′ and the function K is defined as

K (t, t ′) =
∫ t

t ′
dτ [koff(τ ) + kon(τ )],

K (t ) ≡ K (t, 0),

K (t, t ′) = K (t ) − K (t ′). (4)

If recrossings are forbidden, then the unbinding process be-
comes irreversible and Eq. (3) reduces to

Birr(t ) = Birr(t
′) exp

[
−
∫ t

t ′
dτ koff(τ )

]
.

This expression can, in combination with the identity

pirr[F ]dF = koff(t )Birr(t )dt, (5)

be used to calculate the RFD pirr[F ] in closed form for lin-
ear force-ramp protocols F (t ) ∝ Ḟ t and popular rate models,
such as the Bell rate [33] or the Dudko-Hummer-Szabo (DHS)
rate [14].

If multiple unbinding and rebinding events occur before
the bond dissociates permanently, as is illustrated in the ex-
emplary force-extension curves of Figs. 1(a) and 1(b), then
the corresponding RFD p[F ] describes the statistics of all
unbinding events collectively. The properly normalized RFD
is given by

p[F ]dF = koff(t )B(t )

〈Noff〉 dt,

〈Noff〉 =
∫ ∞

t ′
dτ koff(τ )B(τ ), (6)

where the normalization factor 〈Noff〉 corresponds to the av-
erage number of unbinding events [34] and t = t ′ denotes the
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FIG. 1. Schematic of SMFS experiments using dynamic force
protocols. (a) Idealized force-extension curve for a linear force proto-
col, defined by a constant loading rate Ḟ = κv and a state-dependent
force offset F ∗ = κy(s). Here κ and v denote the spring constant and
speed of the force transducer, respectively. (b) More realistic force-
extension curve, where the bound (s = b) and unbound (s = u) force
branches are modeled by wormlike chains with different contour
lengths. In this case, the loading rate Ḟ [F ] is a nonlinear function
of force. (c) Comparison of RFDs for reversible (solid blue line)
and irreversible unbinding (dashed red line). The unbinding forces
in (a) are distributed according to p[F ], which is much broader than
the distribution pirr[F ] for strictly irreversible unbinding.

initiation time of the force protocol. Figure 1(c) demonstrates
that p[F ] is much broader and takes significant values at
higher rupture forces than pirr[F ], which is why one has to
be careful not to interpret data collected at reversible con-
ditions with a theory developed for irreversible rupture. A
corresponding expression for the distribution of rebinding
forces and the average number of rebinding events can be
constructed analogously to p[F ] and 〈Noff〉. Higher moments
of the number of unbinding events can be calculated by adapt-
ing the theory of Refs. [35,36], which, e.g., for the second

factorial moment of Noff gives the following expression:

〈Noff (Noff − 1)〉 = 2
∫ ∞

t ′
dτ koff(τ )

∫ τ

t ′
dτ ′ e−K (τ,τ ′ )kon(τ ′)

×
∫ τ ′

t ′
dτ ′′ koff(τ

′′)B(τ ′′). (7)

A detailed derivation of the moments and the probabilities of
observing exactly n unbinding transitions after a certain time
t can be found in Appendix A.

Unfortunately, the integral term in Eq. (3) cannot be
computed analytically for the above-mentioned common
rate expressions, which is why quantities like 〈Noff〉 and
〈Noff (Noff − 1)〉 contain nested integrals that are computation-
ally expensive to evaluate. It is therefore of great interest to
find closed-form approximations to Eq. (3) that remain valid
in the parameter range where rebinding events are frequent.

In what follows, we shall discuss two approximations that
hold in opposing limits, namely for vanishingly low and ex-
tremely large loading rates Ḟ . The latter limit was originally
treated in Ref. [25] but, as we shall see in Sec. III, turns out
to be the less interesting of the two, because rebinding rarely
occurs in this regime if at all.

III. APPROXIMATIONS

At this point it is convenient to introduce the auxiliary
population

Bqe(t ) = kon(t )

koff(t ) + kon(t )
, (8)

where the “qe” label refers to “quasiequilibrium.”
With the spontaneous unbinding and rebinding rates
k0

on/off = kon/off(t � t ′), respectively, Eq. (8) reduces to the
equilibrium population k0

on/(k0
off + k0

on) required for detailed
balance to hold for t � t ′, where the force protocol has not
yet been initiated. By rewriting the integrand in Eq. (3) in
terms of the quasiequilibrium population, namely

e−K (t,τ )kon(τ ) = [koff(τ ) + kon(τ )]e−K (t,τ )Bqe(τ )

=
[

∂

∂τ
e−K (t,τ )

]
Bqe(τ ),

Eq. (3) can be integrated by parts to give

B(t ) = Bqe(t ) + [B(t ′) − Bqe(t ′)]e−K (t,t ′ )

−
∫ t

t ′
dτ e−K (t,τ )Ḃqe(τ ). (9)

In this form, the integral term denotes nonequilibrium
corrections to the quasiequilibrium population Bqe(t ) with
correspondingly modified initial conditions. Equation (9) has,
in principle, the same structure as Eq. (3) but is more
convenient to work with when trying to find approximate
closed-form expressions for B(t ).

A. Instantaneous rebinding approximation

Starting from Eq. (9), Friddle [25] considered the ex-
treme case of a rebinding rate that causes the bond to
instantaneously reform if it is broken at some force F < F1/2,
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but is otherwise negligible. The threshold force F1/2 is chosen
as the coexistence force at which the unbinding and rebinding
rates are equal, and is therefore a solution to the transcendental
equation

koff[F1/2] = kon[F1/2].

For t ′ → −∞, B(t ′) = 1, and a force protocol F (t ) = Ḟ t
present at all times t ∈ R, the second term in Eq. (9) vanishes,
which can also be achieved with a force protocol initiat-
ing at t = t ′ and the requirement that the system starts in
equilibrium, i.e., B(t ′) = Bqe(t ′). Furthermore, in the limit of
the extreme rebinding kinetics considered by Friddle, one
can approximate Bqe(t ) by a Heaviside unit step function
�, i.e.,

Bqe(t ) ≈ B(t ′)�(t1/2 − t ) =
{

B(t ′), t < t1/2

0, otherwise (10)

with t1/2 = F1/2/Ḟ . Note that the prefactor B(t ′) was not
explicitly considered in Ref. [25], but we include it here to
account for the situation that the force protocol has a finite ini-
tiation time, as mentioned above. The approximation behind
Eq. (10) makes it possible to evaluate the integral in Eq. (9),
giving

Binst(t ) = B(t ′)[�(t1/2 − t ) + �(t − t1/2)e−K (t,t1/2 )]. (11)

In this approximation, no unbinding events occur below F1/2,
with B(t < t1/2) ≡ B(t ′). If the rebinding rate kon[F ] can be
neglected for F > F1/2, then the corresponding RFD can be
calculated from Eq. (5), resulting in

pinst[F ] = koff[F ]

Ḟ
�[F − F1/2]

× exp

(
− 1

Ḟ

∫ F

F1/2

df koff[ f ]

)
, (12)

where the sole effect of rebinding is contained in the parame-
ter F1/2. Equation (12) can be used to rederive the closed-form
expression for the mean rupture force in Ref. [24].

B. Quasiequilibrium approximation

For sufficiently slow force protocols, the nonequilibrium
component of Eq. (9) becomes negligible and the relative
population in the bound state is approximately given by

B(t ) ≈ Bqe(t ) + [B(t ′) − Bqe(t ′)]e−K (t,t ′ ). (13)

Equation (9) coincides with Eq. (13) whenever koff and kon

are constant, which is why we shall refer to the latter as the
quasiequilibrium approximation in the remainder of the paper.
Numerical approximations to the integral in Eq. (3) can be
used to improve on the quasiequilibrium approximation where
needed.

As before, choosing either B(t ′) = Bqe(t ′) for a force pro-
tocol initiated at t = t ′ or B(t ′) = 1 for t ′ → −∞ and a
monotonically increasing force protocol makes the second
term in Eq. (13) vanish, giving

B[F ] ≈ Bqe[F ] = kon[F ]

koff[F ] + kon[F ]
. (14)

Note that this expression is independent of the loading rate
Ḟ when evaluated using quasistatic rate models, i.e., models
whose rates are only force dependent and do not explicitly
vary with Ḟ , such as the Bell rate or the DHS rate. The
corresponding average number of unbinding events

〈
Nqe

off

〉
[Ḟ ] =

∫ ∞

Ḟ t ′
df

1

Ḟ

koff[ f ]kon[ f ]

koff[ f ] + kon[ f ]
(15)

scales inversely with the loading rate for linear force proto-
cols, which implies that pulling 10 times faster results in 10
times fewer unbinding events on average. The quasiequilib-
rium RFD, which is given by

pqe[F ] = 1

Ḟ 〈Nqe
off〉[Ḟ ]

koff[F ]kon[F ]

koff[F ] + kon[F ]
, (16)

is therefore also independent of Ḟ . Note that the prefactor of
Eq. (16) is independent of F and therefore only needs to be
computed once to evaluate pqe[F ] for multiple rupture forces.

Figure 2(a) explores the validity of the quasiequilibrium
approximation [Eq. (14)] and Friddle’s instantaneous rebind-
ing approximation [Eq. (11)] by comparing them directly to
the exact solution [Eq. (9) with B(t ′) = Bqe(t ′)] at different
loading rates. We thereby assume Bell-like binding and un-
binding rates, namely

koff[F ] = k0
offe

β�xoffF ,

kon[F ] = k0
one−β�xonF , (17)

and a linear force protocol F (t ) = Ḟ t . Here �xoff/on denote the
distances from the bound and unbound state to the transition
state, respectively, and β = (kBT )−1 is the inverse thermal
energy scale with Boltzmann constant kB and absolute tem-
perature T . In the opposing limits of extremely low and
high loading rates, the bound population is well described
by Bqe[F ] and Binst[F ], respectively. The average numbers of
unbinding events observed in these limits are very different,
as demonstrated in Fig. 2(b). While the instantaneous re-
binding approximation only seems appropriate for 〈Noff〉 ≈ 1,
the quasiequilibrium approximation holds for arbitrarily large
〈Noff〉. The two curves cross at 〈Noff〉 ≈ 2.65 for the parameter
values considered here, meaning that the quasiequilibrium
approximation outperforms the instantaneous rebinding ap-
proximation in situations where three or more unbinding
events are observed on average. Note that the curves have
been truncated below the value of 〈Noff〉 = 1, because we
always expect to observe at least one unbinding event. For
loading rates where 〈Noff〉 is predicted to take values less
than 1, the simpler theory of irreversible rupture should be
used.

We can combine the two approximations by replacing the
first term of Eq. (11) with Bqe(t ) in the integral that defines us
〈N inst

off 〉 in Fig. 2(b). This gives rise to the following expression:

〈
Nhybrid

off

〉
[Ḟ ] =

∫ ∞

Ḟ t ′
df

koff[ f ]Bqe[ f ]

Ḟ

+ Bqe(t ′)
∫ ∞

F1/2

df
koff[ f ]e−K[ f ,F1/2]

Ḟ
, (18)
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FIG. 2. Validity range of approximations. (a) Relative population
in the bound state as a function of the applied force F = Ḟ t , plotted
for different loading rates Ḟ . The quasiequilibrium approximation
[Eq. (14), red dashed line] is independent of Ḟ and captures well the
low-loading-rate behavior of the exact solution [Eq. (9), blue solid
lines], whereas the instantaneous rebinding approximation [Eq. (11),
green dashed-dotted lines] only becomes applicable at high loading
rates. (b) Average number of unbinding events as a function of the
loading rate for t ′ = 0. The two approximations [Eq. (15), red dotted
line, and Eq. (6) evaluated for Binst(t ), green dashed-dotted line]
correctly reproduce the asymptotic limits of 〈Noff〉 (blue solid line),
respectively. Their point of intersection (open black circle) lies just
below 〈Noff〉 = 3. The hybrid expression in Eq. (18) (orange dashed-
double-dotted line) interpolates between the two limiting regimes
and holds for all loading rates. All equations were evaluated using
the Bell-like rates of Eq. (17) with β−1 = 4 pN nm, �xoff = 0.5 nm,
k0

off ≈ 0.18 s−1, �xon = 1.0 nm, and k0
on ≈ 14.9 s−1.

which nicely interpolates between the two limits and, unlike
Eq. (6), does not require the evaluation of nested integrals.

C. Effects of rebinding on experimental observables at low
loading rates

In practice, poor time resolution might erase certain
features from force-extension curves with multiple unbinding-
rebinding transitions, like the ones in Figs. 1(a) and 1(b). In
the extreme case, one might therefore only resolve a single
unbinding event. However, the effects of rebinding may still
affect specific experimental observables, such as the most

probable rupture force, which corresponds to the mode Fmode

of the RFD and must satisfy

d p[F ]

dF

∣∣∣∣
F=Fmode

= 0. (19)

Under the quasiequilibrium approximation, which should be
valid in the limit of small loading rates, the RFD is given by
Eq. (16), for which Eq. (19) reduces to

k′
off[Fmode]

koff[Fmode]2
= − k′

on[Fmode]

kon[Fmode]2

with k′
off/on[F ] = dkoff/on[F ]/dF . The equation above can be

solved for the Bell-like rates of Eq. (17), resulting in the
following loading-rate independent value:

Fmode = F1/2 + ln(�xoff/�xon)

β(�xoff + �xon)
, (20)

which is offset by a constant from the coexistence force F1/2 =
β−1 ln(k0

on/k0
off )/(�xoff + �xon). In contrast to the case of ir-

reversible unbinding, where the mode decreases with ln(Ḟ )
and vanishes at a finite loading rate value [12], the mode of
p[F ] ≈ pqe[F ] converges to a fixed value as Ḟ → 0.

In Ref. [24] a similar result was derived for the mean
rupture force 〈F 〉[Ḟ ], while indirectly employing the instan-
taneous rebinding approximation. The authors of the study
found that 〈F 〉[Ḟ → 0] = F1/2, which coincides with our es-
timate [Eq. (20)] whenever �xoff ≈ �xon but otherwise can
deviate significantly from Fmode.

IV. EXTRACTING RATES AND TRANSITION STATE
LOCATIONS FROM PULLING EXPERIMENTS

The data recorded in SMFS experiments are force-
extension curves, showing transitions between discrete states.
We assume that each point of the curve can be assigned to one
of the two possible states, i.e., either the bound (s = b) or the
unbound (s = u) state. This gives rise to a time series

{sn}N
n=0 = {b, b, . . . , b, u, u, . . . , u, b, b, . . . } (21)

accompanied by the forces {Fn}N
n=0 applied at each time in-

stance. Such data can be analyzed in various ways, e.g., one
can construct a likelihood [15,37] using the RFD in Eq. (16)
or analyze the dwell times in each state [32]. However, these
approaches involve integrals over the rates, which have to
be evaluated numerically for more elaborate rate expressions
than the Bell rate or the DHS rate, just to name a few, and the
nonlinear force protocols commonly realized in experiments
[see Fig. 1(b)]. This increases the numerical cost of data fit-
ting, because said integrals have to be re-evaluated each time
the parameters are varied.

For this reason, we instead opt here for an alternative
approach, where we exploit the “stroboscopic” nature of the
data set and assume that the time step between subsequent
observations is sufficiently small to facilitate a short-time
expansion of difficult-to-evaluate functions and integrals. This
gives rise to a set of MLEs that are asymptotically exact for
small time steps.
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A. Maximum likelihood estimators

The data structure in Eq. (21), combined with the Markov
assumption that all state transitions (even transitions into
the current state) are history independent, allows us to de-
compose the joint probability of observing M time series
{s1

n}N1
n=0, {s2

n}N2
n=0, . . . , {sM

n }NM
n=0 in terms of the state-transition

probabilities as follows [38]:

Pr
({

sm
n

}) =
M∏

m=1

Pr
(
sm

0 , tm
0

) Nm∏
n=1

Pr
(
sm

n , tm
n

∣∣sm
n−1, tm

n−1

)
. (22)

In the following, we only consider trajectories that start in
the bound state, i.e., Pr(sm

0 = b, tm
0 ) = 1 ∀m. The trajectories

must all have been sampled at discrete times tn = n�t with the
same constant time step �t between two subsequent measure-
ments. No further requirements are made, e.g., the trajectories
do not need to be of equal length or have been generated using
the same force protocol. Pr(s, t | s′, t ′) denotes the conditional
probability of finding the system in state s at time t if it was
previously observed in state s′ at time t ′.

Equation (22) can be reinterpreted as a likelihood, where
the individual components are approximately given by (see
Appendix B)

Pr(b, tn | b, tn−1) ≈ 1 − koff(tn−1)�t,

Pr(b, tn | u, tn−1) ≈ kon(tn−1)�t,

Pr(u, tn | b, tn−1) ≈ koff(tn−1)�t,

Pr(u, tn | u, tn−1) ≈ 1 − kon(tn−1)�t, (23)

for a two-state system and a sufficiently small time step �t . In
the more general case, where transitions to and from multiple
intermediate states (s = i1, i2, . . . ) are also observed, Eq. (22)
still holds and can be evaluated using the following state-
transition probabilities (see Appendix B):

Pr(s, tn | s, tn−1) ≈ 1 −
∑

s′
ks→s′ (tn−1)�t,

Pr(s, tn | s′, tn−1) ≈ ks′→s(tn−1)�t . (24)

Here the state variable s is no longer dichotomous but can
take various values s ∈ {b, i1, i2, . . . , u}, and ks→s′ (t ) denotes
the transition rate from state s to state s′. Although the general
case is tractable, we will restrict ourselves to the kinetics of a
two-state system in the remainder of the paper.

Note that Eqs. (23) and (24) only contain the rates them-
selves and not their integrals, which circumvents the issues
plaguing the analyses of dwell times and rupture forces. Also
note that Eqs. (23) and (24) hold irrespective of the applied
force protocol, because they do not depend on the quasiequi-
librium approximation. In particular, this makes the associated
MLEs applicable to nonlinear force-extension curves, such as
the one depicted in Fig. 1(b). The time step �t only needs
to be sufficiently small to suppress systematic biases (see
further Sec. IV B). For long time steps, accurate transition
probabilities Pr(s, tn | s′, tn−1) can be evaluated, e.g., by nu-
merical integration of the rate equations [Eq. (1)] or their
generalizations to multiple states.

If the rates are modeled Bell-like [Eq. (17)], then the four-
dimensional optimization problem of maximizing the like-
lihood with respect to the parameters {�xoff, k0

off,�xon, k0
on}

reduces effectively to two independent one-dimensional prob-
lems (see Appendix B), where the negative log-likelihoods

L(�xoff | {sn}) = Nb→u ln

(
Nb→b∑
n=1

eβ�xoffF b→b
n

)

−
Nb→u∑
n=1

β�xoffF
b→u

n , (25)

L(�xon | {sn}) = Nu→b ln

(
Nu→u∑
n=1

e−β�xonF u→u
n

)

+
Nu→b∑
n=1

β�xonF u→b
n , (26)

have to be minimized with respect to �xoff and �xon, re-
spectively, to find the MLEs of these parameters. Here we
have lumped together all the forces F i→ j

n , n = 1, 2, . . . , Ni→ j ,
observed in the M time series associated with transitions from
state i to j, and

N = Nb→b + Nb→u + Nu→b + Nu→u

is the total number of transition counts. Note that Nb→u corre-
sponds to the total number of unbinding events in the data set.
The remaining two parameters, k0

off and k0
on, can be estimated

as follows:

k0
off = Nb→u

�t

[
Nb→b∑
n=1

eβ�xoffF b→b
n

]−1

, (27)

k0
on = Nu→b

�t

[
Nu→u∑
n=1

e−β�xonF u→u
n

]−1

. (28)

The numerical minimization of Eqs. (25) and (26) can be
conducted efficiently using robust derivative-free algorithms.
Our own code [30] relies on an implementation of Brent’s
method [39] provided by the Optim package [40].

The uncertainties of our parameter estimates can be as-
sessed using the standard errors δθi = √

var(θi ), which are
bounded from below by the Cramér-Rao bounds as follows:

var(θi) � I−1
ii .

Here I−1
ii denotes the ith diagonal element of the inverse of the

Fisher information matrix I(�θ ), whose elements are given by

Ii j =
〈
∂2L(�θ | �s)

∂θiθ j

〉
.

For the Bell-like rates of Eq. (17), we have
�θ = (�xoff, k0

off,�xon, k0
on)T and I(�θ ) is therefore a 4 × 4

matrix. However, within the low-order approximation of the
propagators in Eq. (23) the parameters of the binding rate are
assumed to be independent of the parameters of the unbinding
rate. The Fisher information matrix then decomposes into
two independent 2 × 2 matrices, namely Ioff(�xoff, k0

off ) and
Ion(�xon, k0

on) with elements (see further Appendix C)

Ioff
11 = β2k0

off�t e(β�xoffδF )2/2
Nb→b∑
n=1

eβ�xoffF b→b
n

×[δF 2 + (
F b→b

n + β�xoffδF 2
)2]

,
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Ioff
12 = β�t e(β�xoffδF )2/2

Nb→b∑
n=1

eβ�xoffF b→b
n

×(F b→b
n + β�xoffδF 2),

Ioff
22 = Nb→u(

k0
off

)2 ,

Ion
11 = β2k0

on�t e(β�xonδF )2/2
Nu→u∑
n=1

e−β�xonF u→u
n

×[δF 2 + (
F u→u

n − β�xonδF 2
)2]

,

Ion
12 = −β�t e(β�xonδF )2/2

Nu→u∑
n=1

e−β�xonF u→u
n

×(F u→u
n − β�xonδF 2

)
,

Ion
22 = Nu→b(

k0
on

)2 .

Here δF 2 denotes the experimentally determined mean-
squared fluctuations of the applied force, which we assume to
be constant. The elements of the reduced information matrices
can be used to estimate the standard errors δθi = √

var(θi )
from below, giving

δ�xoff �

√√√√ Ioff
22

Ioff
11 Ioff

22 − (
Ioff
12

)2 ,

δk0
off �

√√√√ Ioff
11

Ioff
11 Ioff

22 − (
Ioff
12

)2 ,

δ�xon �
√

Ion
22

Ion
1,1Ion

22 − (
Ion
12

)2 ,

δk0
on �

√
Ion
11

Ion
11 Ion

22 − (
Ion
12

)2 , (29)

where equality can be assumed for large data sets containing
multiple transition events.

B. Analysis of synthetic force-extension curves

To demonstrate the applicability of our results, we used
them to analyze synthetic force-extension curves, generated
by a Gillespie stochastic simulation algorithm for time-
dependent rates [29] (see Appendix D for details). For
convenience, we only considered force protocols with Ḟ =
const., but the estimators in Eqs. (25)–(28) are applicable
to arbitrary monotonically increasing F (t ). To accommodate
for the fact that more unbinding-rebinding transitions are ob-
served at slower loading rates prior to permanent dissociation,
we varied the number of pulling experiments M to keep the
total number of average unbinding events M × 〈Noff〉 approx-
imately constant for each data set. Our combinations of Ḟ
and M are listed in Table I, along with the number of replica
simulations generated to calculate sample statistics. All sim-
ulations were conducted using the “ground-truth” parameter

TABLE I. Simulation specifications. With increasing loading
rate Ḟ , the (sample) average number of unbinding events Noff ≈
〈Noff〉 per pulling experiment decreased, so the number of experi-
ments M in each replica had to be adjusted to compensate. A total of
Nrepl replica simulations were run for each considered loading rate.

Ḟ (pNs−1) Noff M M × Noff Nrepl

10 1069.9 1 1070 100
100 107.40 10 1074 100
1000 11.28 100 1128 100

values

�xtruth
off = 0.4 nm, �xtruth

on = 0.2 nm,

k0,truth
off = 3 s−1, k0,truth

on = 4000 s−1. (30)

The time series of each replica data set were analyzed
separately, using Eqs. (25)–(28) to estimate the model pa-
rameters {�xoff, k0

off,�xon, k0
on}, and Eq. (29) to estimate the

corresponding uncertainties {δ�xoff, δk0
off, δ�xon, δk0

on}. Note
that the applied force did not fluctuate in our simulations, so
δF 2 ≡ 0. The sample average and sample standard deviation
of the replica MLEs were calculated as follows:

θ = 1

Nrepl

Nrepl∑
n=1

θn,

δθ =
√√√√Nrepl∑

n=1

(θn − θ )2

Nrepl − 1
,

for θ ∈ {�xoff, k0
off,�xon, k0

on}, and are plotted against the sin-
gle replica MLEs and associated uncertainties of the Ḟ =
100 pNs−1 simulations in Fig. 3. As expected, the standard er-
ror predictions for the replica MLEs mostly coincide with the
sample standard deviation, which demonstrates the usefulness
of Eq. (29) to gauge the uncertainty of parameter estimates,
especially when only a single or few time series are available
for the analysis.

We also investigated the influence of limited instrumental
response times on our MLEs. Our estimators rest on a short-
time approximation of the transition probabilities [Eq. (23)],
which can introduce biases for long observation intervals �t
[41]. We therefore increased the time step �t between obser-
vations to generate time series with a limited time resolution
that we then subsequently analyzed. In Fig. 4 we demonstrate
how the distributions of the MLEs vary with �t at different
loading rates. At �t = 0.01 μs, the estimators are virtually
unbiased, whereas at larger response times the relative bias
can result in estimates up to twice as large as the ground-truth
values. This behavior is also observed in the corresponding
rate maps, as seen in Fig. 5, where we compare the binned
rate estimates obtained by the method proposed in Ref. [28]
to Eq. (17), evaluated for the ground-truth values [Eq. (30)]
and the associated MLEs, respectively. The two methods are
fairly consistent, even for large time steps, because they both
rely on the fact that the probability to observe an unbinding
or rebinding event within the time interval [t, t + dt] corre-
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FIG. 3. Single replica MLEs of linear force-extension curves and their sample statistics. Each replica simulation (Ḟ = 100 pNs−1, other
simulation parameters as specified in Appendix D) generated a data set of M = 10 time series, which was analyzed using the estimators in
Eqs. (25)–(28) at a fixed time step �t = 0.1 μs. The individual parameter estimates (gray open circles) scatter around their respective sample
average (solid lines), resulting in a sample standard deviation (shaded regions) of comparable size as the corresponding standard error estimate
[Eq. (29) with δF 2 ≡ 0, error bars]. Slight deviations between sample averages and ground-truth values of the parameters (dashed lines) are
due to the use of a finite time step, and therefore vanish as �t → 0 (see Fig. 4).

sponds to either koff(t )dt or kon(t )dt . They also complement
each other in the sense that rate maps give nonparametric
predictions for the force dependence of the rates, whereas
our theory provides an optimal and straightforward way to
fit explicit rate expressions to the data. However, the benefit
of analyzing the data directly with MLEs avoids the fitting of
rate models to the data points of a rate map, which becomes
somewhat ambiguous for rate maps with poor time resolution,
such as the one in Fig. 5(b), where it is unclear which data
points are truly reliable.

V. CONCLUSIONS

We have explored and quantified the effects of rebinding
kinetics on single-molecule force spectroscopy experiments
under external loads, particularly in the near-equilibrium
limit of slow pulling, where multiple unbinding-rebinding
(or unfolding-refolding) transitions can be observed prior
to a permanent dissociation of the bond. In this limit, the
system can be assumed to be close to equilibrium, which
resolves the inherent problem of nonequilibrium ramping typ-
ically associated with driven force protocols. Furthermore, the
quasiequilibrium approximation allowed us to derive a closed-
form expression for the relative population in the bound state
[Eq. (13) for arbitrary initial conditions, Eq. (14) for equilib-
rium initial conditions], and a near closed-form expression for
the corresponding rupture force distribution [Eq. (16)].

As one of the limitations, our approach assumes an explicit
dependence of the applied force on time, and thus ignores
fluctuations both in the measurement apparatus and in the
attached molecular construct [13], as well as finite relaxation
times of the apparatus and linker [42]. Including such effects
will require more elaborate theoretical formulations, e.g., by

going from the rate equations of Eq. (1) to low-dimensional
diffusion models [13,42]. Another limitation is the low-order
approximation of the propagators in Eq. (23). This approxi-
mation can be improved upon by discrete integration of the
kinetics between the sampled state observations with a short
time step, δt < �t . However, this finer time integration or the
use of diffusion models will result in more complex likeli-
hood functions that are less amenable to analytical treatment
and numerical optimization. Finally, on the experimental side,
one may not be able to deduce the state at the sampled
times tn with confidence. If one uses probabilities to ex-
press the confidence in the respective state observations, then
one again ends up with a modified likelihood function less
amenable to optimization. Therefore, we concentrated here on
the unbinding-rebinding kinetics in its simplest form.

We demonstrated how a short-time expansion of a state
propagator, whose kinetics is described by Eq. (1), can be used
to analyze experimental force-extension curves with multiple
unbinding-rebinding transitions via the principle of maximum
likelihood. The resulting likelihood can be evaluated for rates
with arbitrarily complex functional forms, and does not ex-
plicitly depend on the applied force protocol. It can therefore
be used to globally analyze multiple force-extension traces,
measured at different pulling rates and including data from
both force-ramp and force-clamp experiments, respectively.

In the special case of Bell-like rates, the four-dimensional
optimization problem of maximizing the likelihood with
respect to the model parameters reduces to two separate one-
dimensional ones. This gives rise to a numerically efficient
scheme to estimate the parameters and their associated un-
certainties, which we have implemented in an open-source
data analysis package [30]. We have validated our approach
against extensive kinetic simulation data, which also revealed
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FIG. 4. Estimating relative bias in the rate parameter MLEs with respect to the loading rate Ḟ and time step �t . To imitate the experimental
situation of limited instrumental time resolution, we lengthen the time step between subsequent observations in our data sets and analyze the
resulting time series using Eqs. (25)–(28). Generally, the accuracy of the parameter estimates decreases with increasing �t . We observe this
trend at three different loading rates, (a) Ḟ = 10, (b) Ḟ = 100, and (c) Ḟ = 1000 pNs−1, in exactly the same fashion, thus indicating that the
effect is Ḟ -independent. Note that we did not exclude any outliers, so the whiskers of the box plots mark the maximum and minimum values
of each sample.

potential biases in the analysis of experiments with limited
time resolution. In cases where the small bias resulting from
the use of short-time approximated state propagators in the
likelihood is not acceptable, one can use the exact propagators
[Eq. (3)] obtained by solving the two-state kinetic model of
Eq. (1). For rate models where analytical calculations are not
feasible, the state propagators can be calculated numerically
using standard numerical solvers for ordinary differential
equations. Our maximum-likelihood estimators for unbind-
ing and rebinding rates complement existing methods, in
particular rate maps [28], and should find use in a range of ap-
plications, from single-molecule force spectroscopy [1,21,41]
to the nanoscopic chemical imaging of surfaces using atomic
force microscopes [43].
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APPENDIX A: STATISTICS OF TRANSITION COUNTS

Let us consider a two-state system, whose kinetics is de-
scribed via Eq. (1). We are interested in the statistics of the
number of unbinding events, as the system evolves from an
initial bound state at time t = 0 to some uncertain state at
time t . This problem can be tackled with the theory introduced
in Refs. [35,36], which we adapt to our problem with time-
dependent rates.

As a first step, we construct the generating function of
the distribution of unbinding transition counts. One thereby
considers a modification of the rate matrix behind Eq. (1),
namely

K(t | λ) =
[−koff(t ) kon(t )
λkoff(t ) −kon(t )

]
,
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FIG. 5. Comparing rate map predictions to MLEs at limited
response times. A single set of force-extension curves (Ḟ =
100 pNs−1, M = 10) was analyzed, on the one hand, using the
rate-map method of Ref. [28] (gray circles and squares, where
error bars represent one standard deviation) and, on the other
hand, via the estimators in Eqs. (25)–(28) (red dashed lines). The
MLEs are as follows: (a) �xoff = (0.411 ± 0.007) nm, k0

off = (2.5 ±
0.3) s−1, �xon = (0.227 ± 0.006) nm, k0

on = (5200 ± 500) s−1 for
�t = 10 μs, and (b) �xoff = (0.441 ± 0.009) nm, k0

off = (1.8 ±
0.2) s−1, �xon = (0.265 ± 0.007) nm, and k0

on = (7700 ± 800) s−1

for �t = 100 μs. Deviations from the exact rates (blue solid lines)
increase as the time resolution gets poorer.

where λ plays the role of a so-called counting parameter. This
name originates from the fact that a system, which evolves
according to K(t | λ), picks up a factor λ every time an un-
binding transition occurs. The corresponding rate equations,

d

dt

[
P(t )
Q(t )

]
= K(t | λ)

[
P(t )
Q(t )

]
, (A1)

can be formally solved to give

[
P(t )
Q(t )

]
= T

{
exp

[ ∫ t

0
dτ K(τ | λ)

]}[
P(0)
Q(0)

]
.

Here the time-ordering operator T gives rise to a path-
ordered exponential, which is applied to the vector of initial
states. According to Gopich and Szabo [35,36], the sought-
after generating function is defined as the summed up

probabilities, i.e.,

G(λ, t ) =
[

1
1

]T[
P(t )
Q(t )

]
= P(t ) + Q(t ), (A2)

and satisfies the key relation

G(λ, t ) =
∞∑

n=0

Pr(n | t )λn,

where the coefficients Pr(n | t ) give the probabilities of ob-
serving exactly n unbinding transitions after a certain time t .

Next, we use a perturbation expansion in λ = 1 + ε with
ε → 0 to solve Eq. (A1), namely

P(t ) = P0(t ) + εP1(t ) + ε2P2(t ) + . . . ,

Q(t ) = Q0(t ) + εQ1(t ) + ε2Q2(t ) + . . . , (A3)

where P0(t ) = B(t ) and Q0(t ) = U (t ) satisfy Eq. (1). By sort-
ing the terms according to powers of ε, we arrive at

Ṗn(t ) = −koff(t )Pn(t ) + koff(t )Qn(t ),

Q̇n(t ) = koff(t )Pn(t ) − koff(t )Qn(t ) + koff(t )Pn−1(t ).

Using the initial conditions B(0) = P0(0) = 1 and U (0) =
Q0(0) = Pn(0) = Qn(0) = 0 for n � 1, we obtain the follow-
ing solutions:

Pn(t ) =
∫ t

0
dτ e−K (t,τ )kon(τ )

∫ τ

0
dτ ′ koff(τ

′)Pn−1(τ ′),

Qn(t ) = −Pn(t ) +
∫ t

0
dτ koff(τ )Pn−1(τ ),

for n � 1 and Eq. (3) with t ′ = 0 for n = 0. See Eq. (4) in the
main text for a definition of K . This motivates us to define a
series of functions

f0(t ) = P0(t ) + Q0(t ) = 1,

fn(t ) = Pn(t ) + Qn(t ) =
∫ t

0
dτ koff(τ )Pn−1(τ ), (A4)

which, according to Eqs. (A2) and (A3), must satisfy

G(λ, t ) = P(t ) + Q(t ) =
∞∑

n=0

fn(t )εn

or, equivalently,
∞∑

n=0

fn(t )εn = G(1 + ε, t ) =
∞∑

n=0

Pr(n | t )(1 + ε)n.

It thus becomes apparent that the factorial moments of n after
time t can be computed with the help of fn(t ) as

〈n(n − 1) . . . (n − m + 1)〉 = dmG(1 + ε | t )

dεm

∣∣∣∣
ε=0

= m! fn(t ). (A5)

The factorial moments of Noff can be calculated recursively
via Eqs. (A4) and (A5). The first two moments, characterized
by m = 1 and m = 2, are given by Eqs. (6) and (7) in the main
text.

In cases where Eq. (A5) is not analytically tractable, the
factorial moments can be calculated efficiently by applying
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standard numerical solvers for ordinary differential equa-
tions (ODE) to the following system of first-order linear
equations:

Ṗn(t ) = −[koff(t ) + kon(t )]Pn(t ) + kon(t ) fn(t ),

ḟn+1(t ) = koff(t )Pn(t ),

using the initial conditions P0(0) = 1 and fn(0) = Pn(0) = 0,
as well as the fact that f0(t ) = 1 by definition.

Finally, we want to point out that the probabilities Pr(n |
t ) of the unbinding transition counts can be determined by
quadrature. For this, we unroll the two-state system onto a
line, i.e.,

0
k0(t )→ 1

k1(t )→ 2
k2(t )→ 3

k3(t )→ . . . ,

with kn(t ) = koff(t ) for n even and kn(t ) = kon(t ) for n odd.
The populations Rn of this “unrolled” process satisfy

R0(t ) = exp

[
−
∫ t

0
dτ koff(τ )

]
,

Rn(t ) =
∫ t

0
dτ exp

[
−
∫ t

τ

dτ ′ kn(τ ′)
]

kn−1(τ )Rn−1(τ ),

which can be solved recursively for n � 1. The population
after exactly n unbinding events is then

Pr(n | t ) = R2n−1(t ).

Again, if the integrals cannot be evaluated analytically,
one can use a standard ODE solver for efficient numerical
solution.

APPENDIX B: DERIVATION OF THE MAXIMUM
LIKELIHOOD ESTIMATORS

As discussed in Sec. IV A, the idea of the maximum like-
lihood principle is to reinterpret Eq. (22) as a likelihood
and maximize it with respect to the model parameters. We
thereby need explicit expressions for the conditional proba-
bilities Pr(sn, tn | sn−1, tn−1), which can be constructed from
the relative populations B(t ) and U (t ) = 1 − B(t ), giving

Pr(b, tn | b, tn−1) = B(tn)
∣∣∣
B(tn−1 )=1

,

Pr(b, tn | u, tn−1) = B(tn)
∣∣∣
B(tn−1 )=0

,

Pr(u, tn | b, tn−1) = 1 − B(tn)
∣∣∣
B(tn−1 )=1

,

Pr(u, tn | u, tn−1) = 1 − B(tn)
∣∣∣
B(tn−1 )=0

.

Here, vertical bars are used to indicate the initial conditions
that should be used when solving Eq. (1) for t = tn and
t ′ = tn−1.

We consider a short-time expansion of the formal solu-
tion for B(tn) [Eq. (3)] with t ′ = tn−1, where we assume that
the time step �t = tn − tn−1 = const. is sufficiently small to
approximate the integral behind the function K and the cor-
responding exponential function with a left Riemann sum,

namely

K (tn, tn−1) ≈ [koff(tn−1) + kon(tn−1)]�t,

e−K (tn,tn−1 ) ≈ 1 − [koff(tn−1) + kon(tn−1)]�t .

The integral term of Eq. (3) therefore reduces to∫ tn

tn−1

dτ e−K (tn,τ )kon(τ ) ≈ kon(tn−1)�t,

because we only consider terms in �t up to first order. The
relative population in the bound state then takes the form

B(tn) ≈ kon(tn−1)�t + B(tn−1)

×[1 − koff(tn−1)�t − kon(tn−1)�t], (B1)

which finally gives rise to Eq. (23) in the main text. Note that
Eq. (B1) has the exact same form as one would obtain for
constant rates and koff/on�t � 1.

An alternative derivation of Eq. (B1) follows from the
short-time solution of Eq. (A1) for λ = 0, namely[

B(tn)
U (tn)

]
≈ exp

(
K(tn−1)�t

)[B(tn−1)
U (tn−1)

]
. (B2)

Here K(tn−1) = K(tn−1 | λ = 0) is a 2 × 2 matrix, which al-
lows for an analytic treatment of the matrix exponential, but
a series expansion to first order in �t further simplifies the
calculation, giving

exp[K(tn−1)�t]
�t�1≈ 1 + K(tn−1)�t, (B3)

where 1 is the identity matrix. Equation (B1) is now simply
read off the first row of Eq. (B2). The benefit of this approach
is that it easily generalizes to systems with multiple interme-
diate states with relative populations I j (t ), j = 1, . . . , N . The
probabilities Pr(sn, tn | sn−1, tn−1) must simply be read off⎡

⎢⎢⎢⎢⎣
B(tn)
I1(tn)

...

IN (tn)
U (tn)

⎤
⎥⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎢⎣

B(tn−1)
I1(tn−1)

...

IN (tn−1)
U (tn−1)

⎤
⎥⎥⎥⎥⎦+ K(tn−1)�t

⎡
⎢⎢⎢⎢⎣

B(tn−1)
I1(tn−1)

...

IN (tn−1)
U (tn−1)

⎤
⎥⎥⎥⎥⎦

for an appropriate rate matrix K(tn−1). This results in Eq. (24)
in the main text.

Let us now consider the negative logarithm of Eq. (22), i.e.,

L(�θ | {sn}) = −
M∑

m=1

Nm∑
n=1

Pr
(
sm

n , tm
n

∣∣sm
n−1, tm

n−1

)

= −
Nb→b∑
n=1

ln
(

Pr
(
b, t b→b

n

∣∣b, t b→b
n−1

))

−
Nu→b∑
n=1

ln
(

Pr
(
b, t u→b

n | u, t u→b
n−1

))

−
Nb→u∑
n=1

ln
(

Pr
(
u, t b→u

n | b, t b→u
n−1

))

−
Nu→u∑
n=1

ln
(

Pr
(
u, t u→u

n | u, t u→u
n−1

))
,
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where the elements of �θ represent the parameters of the
model, t i→ j

n denotes the time instance of the nth transition
from state i to j and N = Nb→b + Nu→b + Nb→u + Nu→u. If
koff/on[F ]�t � 1 holds, then we can simplify the logarithms
of Pr(b, t | b, t ′) and Pr(u, t | u, t ′) using the Taylor expansion

ln(1 − x) = −x + O(x2),

as x → 0. With Bell-like rates [Eq. (17)], the negative log-
likelihood then reads (up to some negligible constants)

L
(
�xoff, k0

off,�xon, k0
on | {sn}

)
= k0

off�t
Nb→b∑
n=1

eβ�xoffF b→b
n − Nb→u ln

(
k0

off

)

+
Nu→b∑
n=1

β�xonF u→b
n −

Nb→u∑
n=1

β�xoffF
b→u

n

+k0
on�t

Nu→u∑
n=1

e−β�xonF u→u
n − Nu→b ln

(
k0

on

)
. (B4)

This negative log-likelihood can be minimized with respect to
k0

off and k0
on, respectively, which gives rise to Eqs. (27) and

(28) in the main text. These can be substituted into the
negative log-likelihood expression above, resulting in the fol-
lowing effective two-parameter log-likelihood:

L(�xoff,�xon | {sn}) = Nb→u ln

(
Nb→b∑
n=1

eβ�xoffF b→b
n

)

+
Nu→b∑
n=1

β�xonF u→b
n −

Nb→u∑
n=1

β�xoffF
b→u

n

+ Nu→b ln

(
Nu→u∑
n=1

e−β�xonF u→u
n

)
.

Again, we have neglected some irrelevant constants. Further-
more, it turns out that this log-likelihood can be split into two
likelihoods, one for each parameter, which can be minimized
separately. These are given by Eqs. (25) and (26) in the main
text.

APPENDIX C: FISHER INFORMATION MATRIX

By definition, the Fisher information matrix is given by
the ensemble-averaged Hessian of the negative log-likelihood
[Eq. (B4)]. For the short-time approximated state propagators
in the likelihood [Eq. (23)], the parameters of the unbinding
and rebinding rates are fully uncorrelated, as seen by the fact
that

∂2L
∂�xoff∂�xon

= ∂2L
∂�xoff∂k0

on

= 0,

∂2L
∂k0

off∂�xon
= ∂2L

∂k0
off∂k0

on

= 0,

holds for the Bell-like rates of Eq. (17). The 4 × 4 Fisher
information matrix of the whole system therefore reduces to

two separate 2 × 2 matrices, namely

Ioff =
(

Ioff
11 Ioff

12
Ioff
12 Ioff

22

)
, Ion =

(
Ion
11 Ion

12
Ion
12 Ion

22

)
,

with the following elements:

Ioff
11 =

〈
∂2L

∂�x2
off

〉
, Ion

11 =
〈

∂2L
∂�x2

on

〉
,

Ioff
12 =

〈
∂2L

∂�xoff∂k0
off

〉
, Ion

12 =
〈

∂2L
∂�xon∂k0

on

〉
,

Ioff
22 =

〈
∂2L

∂ (k0
off )

2

〉
, Ion

22 =
〈

∂2L
∂ (k0

on)2

〉
.

The first element associated with the unbinding rate is
given by

Ioff
11 = β2k0

off�t
Nb→b∑
n=1

〈
eβ�xoffF b→b

n
(
F b→b

n

)2〉
,

where the calculation of the ensemble average requires a
functional form for the distribution of forces F b→b

n . Here, we
propose a Gaussian with constant variance δF 2, i.e.,

p
[
F b→b

n

] =
√

1

2πδF 2
exp

{
−
[
F b→b

n − F
(
t b→b
n

)]2
δF 2

}
,

with a deterministic protocol F (t ) corresponding to the mean
position in the “bound” branch at time t . The ensemble aver-
age therefore evaluates to

〈
eβ�xoffF b→b

n
(
F b→b

n

)2〉 = e(β�xoffδF )2/2eβ�xoffF (t b→b
n )

× {
δF 2 + [

F
(
t b→b
n

)+ β�xoffδF 2]2}.
However, in most practical cases, one can safely replace
F (t b→b

n ) with F b→b
n without overly skewing the end result. The

elements Ioff
12 , Ion

11 , and Ion
12 can be treated analogously using

the same or, in the case of the rebinding elements, a similar
force distribution.

Finally, the inverses of Ioff and Ion are given by

I−1
off = 1

Ioff
11 Ioff

22 − (
Ioff
12

)2

(
Ioff
22 −Ioff

12
−Ioff

12 Ioff
11

)
,

I−1
on = 1

Ion
11 Ion

22 − (
Ion
12

)2

(
Ion
22 −Ion

12−Ion
12 Ion

11

)
,

of which the bounds to the standard errors in the main text
[Eq. (29)] can simply be read off.

APPENDIX D: SYNTHETIC FORCE-EXTENSION CURVES

To generate the synthetic force-extension curves used in
this paper, we relied on a generalization [29] of the classical
Gillespie stochastic simulation algorithm [44,45] to simulate
the exact transition times between the bound and the unbound
state. For our two-state system, the nth transition times toff/on

n
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satisfy the following equations:

exp

[
−
∫ toff

n

ton
n−1

dτ koff(τ )

]
= Rn,

exp

[
−
∫ ton

n

toff
n

dτ kon(τ )

]
= R′

n, (D1)

if the system is initialized in the bound state at t = ton
0 . Here,

Rn and R′
n denote uniformly distributed random numbers on

[0,1). For Bell-like rates [Eq. (17)] and a force protocol

F (t ) =
{

Ḟ t s = b (“bound state”)
Ḟ t − F ∗ s = u (“unbound state”)

,

Eq. (D1) can be solved analytically for toff/on
n , giving

ton
0 = 0, toff

n = ln

[
koff
(
ton
n−1

)− β�xoff ln(Rn)

k0
off

]
, (D2)

ton
n = ln

[
k0

on

kon
(
toff
n

)+ β�xon ln(R′
n)

]
+ F ∗

Ḟ
. (D3)

In principle, more complicated integrands in Eq. (D1) can be
considered, which arise, e.g., for nonlinear force protocols
or more elaborate rate expressions. In most cases, however,
the resulting integrals will not be analytically tractable and
Eq. (D1) has to be solved numerically, which can become
computationally demanding.

The transition times were generated by iteratively eval-
uating Eqs. (D2) and (D3), up to the point where no real
solution of Eq. (D3) could be found. Subsequently, the as-
sociated time series for a fixed time step �t was constructed
by first rounding off the transition times to the accuracy of
�t , and then calculating the applied force at each time step
according to the force protocol F (t ). Instead of immediately
breaking off the time series beyond the last transition time
ton
n , we continued recording the forces in the unbound state

for a short time interval to improve the estimates of �xon

and k0
on.

All simulations were conducted using F ∗ = 6 pN and a
thermal energy scale of β−1 = 4 pNnm.
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