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Probing quantum chaos in multipartite systems
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Understanding the emergence of quantum chaos in multipartite systems is challenging in the presence of
interactions. We show that the contribution of the subsystems to the global behavior can be revealed by probing
the full counting statistics of the local, total, and interaction energies. As in the spectral form factor, signatures
of quantum chaos in the time domain dictate a dip-ramp-plateau structure in the characteristic function, i.e., the
Fourier transform of the eigenvalue distribution. With this approach, we explore the fate of chaos in interacting
subsystems that are locally maximally chaotic. Global quantum chaos can be suppressed at strong coupling,
as illustrated with coupled copies of random-matrix Hamiltonians and of the Sachdev-Ye-Kitaev model. Our
method is amenable to experimental implementation using single-qubit interferometry.
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I. INTRODUCTION

Identifying signatures of chaos in the quantum domain
remains a nontrivial task in complex systems [1]. Quantum
chaos has manifold applications and appears in different fields
involving the study of many-body complex quantum systems
[2—-4], statistical mechanics of isolated quantum systems [5,6],
anti—de Sitter black holes [7-11], holographic quantum matter
[12], and quantum information science [13,14], among other
examples. Several diagnostic tools for quantum chaos have
been proposed. They include the spectral form factor (SFF)
[1], fidelity decay in short-time [15] and long-time regimes
[16], Loschmidt echo (LE) [17], out-of-time-order correla-
tor (OTOC) [18], quantum circuit complexity [19,20], etc.
Connections among these diagnostics have been explored in
specific areas ranging from many-body systems to quantum
field theory [17,21-25]. More recently, diagnostics of quan-
tum chaos have been extended to open systems to account for
the effect of decoherence and dissipation [26-37].

A prominent signature of quantum chaos is the repul-
sion among energy levels. For instance, the spacing between
nearest-neighbor levels follows the Wigner-Dyson distribu-
tion in quantum chaotic systems, while it is described by
Poisson statistics in the presence of conserved quantities
(e.g., in integrable systems) [38]. The SFF is proportional to
|Z(B +it)/Z(B)|>, where Z(-) is the partition function and
B = 1/kpgT. This quantity probes the level statistics of both
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close and far-separated energy eigenvalues, providing a tool
to detect the ergodic nature of the system [1]. For a generic
chaotic system, the SFF exhibits a dip-ramp-plateau structure
(see, e.g., Fig. 1). Its short-time decay forms a slope. The
physical origin of the subsequent ramp is the long-range re-
pulsion between energy levels [11]. The transition from the
slope to the ramp forms the dip. The final plateau originates
from the finite Hilbert space dimension and approaches a
constant value Z(28)/Z(B )2 in the absence of degeneracies in
the energy spectrum. The SFF has been widely employed in
the study of the discrete energy spectrum of quantum chaotic
systems [11,39-45].

Quantum chaotic systems composed of multipartite sub-
systems subject to generic interactions typically have a
complicated energy spectrum [45-48]. We shall focus on a
global subsystem composed of strongly chaotic subsystems,
interacting with each other. In this setting, any subsystem
can be seen as an open quantum system embedded in an
environment, composed of the remaining subsystems. The
subsystem dynamics are thus governed by dissipative quan-
tum chaos [1], which is currently under exhaustive study
[29,30,33,34,37,49-53]. We shall depart from the standard
practice of assuming an effective open quantum dynamics as
ubiquitously done in the literature. Instead, we will account
for the exact unitary dynamics of the global composite system
with no approximations (e.g., without invoking the Markovian
description or an effective master equation). The above diag-
nostics can be employed to detect global quantum chaos in
multipartite systems [48]. However, apart from proposals like
the fidelity based SFF [34,37] and the related partial SFF [45],
they are not suited to directly detect how chaotic behavior
stems from the subsystems and their interactions. In this work,
we provide an experimentally realizable approach to this end
by considering the measurement of an energy observable X,
which can be the Hamiltonian of a subsystem or the inter-
action energy. As measurement outcomes are stochastic, we
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FIG. 1. The dip-ramp-plateau structure: an indicator of quantum
chaoticity. The absolute square value of the generating function G(z)
for the total energy distribution averaged over GOE(d) (d = 2'°) and
GOE(d,) ® GOE(d,) (did, = d), with 500 independent realizations,
and 8 = 0.01. Analytical Eq. (7) for GOE(d) is depicted in red color.
For systems with less chaoticity than the full GOE, the span of the
ramp will shrink or even vanish.

propose to study the full counting statistics, characterized by
the eigenvalue distribution of X at thermal equilibrium. Its
Fourier transform, the characteristic function, reveals chaotic
behavior through the dip-ramp-plateau structure. Its analysis
shows that strong interactions among the different subsystems
can suppress the global chaotic behavior of the multipartite
system, even when the subsystems are maximally chaotic,
as revealed by the study of global and local observables.
This scheme not only provides a convenient theoretical tool
to diagnose quantum chaos in complex multipartite quantum
systems, but it can be experimentally realized by using single-
qubit interferometry with an ancillary qubit.

Our Letter is organized as follows. In Sec. II, we introduce
the characteristic function of an energy observable, which is
then used as a tool to detect the chaotic features stemming
from the subsystems and their interactions in Sec. III. Then,
we employ this method to analyze the chaotic behavior in
multipartite systems sampled from the Gaussian orthogonal
ensemble (GOE) in Random Matrix Theory (RMT) [2,54] in
Sec. IV and the coupled Sachdev-Ye-Kitaev (cSYK) mod-
els [55-64] in Sec. V. Finally, we summarize in Sec. VI
with concluding remarks and a brief discussion of potential
applications.

II. THE CHARACTERISTIC FUNCTION
OF THE ENERGY OBSERVABLE X

Let H = ), H; be the Hilbert space of a multipartite sys-
tem and X be an energy observable of a local subsystem in
the subspace @), Hx < H. We focus on the Hamiltonian of
the subsystems (local energy) and the interaction energy, as
choices of the observable X. The probability distribution of
the observable X with eigenvalues {x} averaged over an initial
thermal equilibrium state py, = e ## /Z(B) is [65]

P(x) = tr[pmd (X — x)]. ey

The eigenvalue probability distribution P(x) encodes the full
counting statistics of the observable X, that is, the probability
to find the system in an eigenstate with eigenvalue x when
prepared in the state py,. In terms of the integral representation
of the Dirac delta function, the probability distribution can be
expressed as the Fourier transform

1 400 )
P(x) = —/ g(t)e "™ dt, 2)

2 J_»

of the characteristic (moment generating) function

g(t) = tr(pne™), 3

that captures the statistical properties of the spectrum of the
observable X. While in the following we refer to ¢ as a time
variable, it is to be understood as the Fourier conjugate to x.

Experimentally, the characteristic function Eq. (3) can be
measured by introducing an auxiliary qubit coupled to the
system. This technique known as single-qubit interferometry
has been widely used in measuring fidelity decay [27], form
factors of Floquet operators [66], local density of states [67],
LE [68,69], work statistics [70-72], Lee-Yang zeros [73-75],
OTOC [76], quantum-state reconstruction of dark systems
[77], full distribution of many-body observables [65], and SFF
[78]. The key procedure is to perform a controlled X gate
conditioning on the auxiliary qubit, i.e.,

Ut)=1[1)(1] ® exp(itX) + |0)(0] ® 1. 4

This allows us to recover the real and imaginary parts of
Eq. (3) by measuring a pair of Pauli operators on the ancil-
lary qubit [65], i.e., Re(g(t)) = tr(azpancillary) and Im(g(t)) =
tr(o—ypancillary), where Pancillary = trsystem (H ® ]lU(t)|+><+| ®
panUT(1)H® 1), H is the Hadamard gate, and |+) = (|0) +
1)/+/2.

III. A PROBE FOR QUANTUM CHAOS IN MULTIPARTITE
SYSTEMS

In what follows, we consider the absolute square value of
the generating function in Eq. (3), i.e.,

G(t) = |gt)* = |tr(pme™)I?, t € [0, 00), S

as a tool for probing quantum chaos in multipartite systems,
identifying contributions from the subsystems and their inter-
actions. The choice X = H; represents the local energy that
can be employed to diagnose the chaotic behavior contributed
by the jth subsystem in an N-partite system. By contrast, the
observable X = H; ® H; ® H; can be used to detect the sig-
nature of quantum chaos attributed to the interactions among
subsystems j, k, and /.

The original motivation behind Eq. (5) is based on the
fact that when the observable X is chosen as the global
Hamiltonian X = H (H € H), the absolute square value of
the generating function in Eq. (5) turns out to be G(t) =
|Z(Zﬁ(;;’ )12, which equals the SFF [11,23,79] and can be in-
terpreted as the fidelity between the initial coherent Gibbs
state (or a thermofield double state) and the state resulting
from its evolution [34,44]. In addition, when X is a small
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perturbation of the Hamiltonian H, i.e., H = Hy + X, and
commutes with H (or Hyp), Eq. (5) is similar to the LE G(¢) =
[(Wole™ e~Ho |3fry) |2, which captures the overlap between two
identical initial states (1)) evolving under slightly differ-
ent Hamiltonians H and Hj [17]. Note that according to the
Baker-Campbell-Hausdorff formula, Eq. (5) and the LE differ
in the general case, when [X, H] # 0.

We emphasize that the observable X in Eq. (5) is not
required to represent a small perturbation or to commute
with H. When it describes the local energy of a subsystem
Q) Hie S H, Eq. (5) provides the possibility to directly de-
tect the chaotic behavior contributed by the subsystems or
interactions to the global multipartite system. It can be used
to either diagnose quantum chaos of a one-partite system
(as done by the SFF) or a structured multipartite system. To
support this observation, we illustrate its use in the following
examples involving coupled random-matrix Hamiltonians and
the coupled SYK model.

IV. PROBING THE CHAOTICITY IN COUPLED
RANDOM-MATRIX HAMILTONIANS

Consider an N-partite system with a general Hamiltonian
of the form

N N
_ (0) (1) (1)
H=YH va Y oH"

j=1 Jj<k=2

N
N—1
+en @,
j=1

(6)

where H}O) is the Hamiltonian of the jth subsystem and
€/—1 is the coupling constant for the [-partite interaction
®, !

For the sake of illustration, let us sample the Hamiltoni-
ans from the Gaussian orthogonal ensemble (GOE) [2,54],
which is a paradigmatic random matrix ensemble for physical
applications involving systems with time-reversal symmetry
and exhibiting quantum chaos. GOE is the ensemble of real
symmetric matrices, whose elements are chosen at random

from a Gaussian distribution. The joint probability density of
H; € GOE(d;) (d; denotes the dimension of the Hilbert space
‘H ;) is proportional to exp(— mtrH 2), where o is the standard
dev1at10n of the random matrix elements of H;.

The first example we consider is N = 1 and X=H.In
this scenario, we focus on H € GOE(d) and H € GOE(d;) ®
GOE(d,) (d\dy = d) as an example. Equation (5) averaged
over the full GOEs [i.e., GOE( d)] yields

. (Z(2B))cok - Cook + {Z(B + it))coE|?
G = ,
(G(1))GoE Z B n

(N

where (-) represents the ensemble average and = denotes the
annealing approximation [11]. In Eq. (7), the GOE averaged
partition function is given by (see Appendix A)

Vdl,2o+/dx)

ox

(Z(x))GoE = ®)

where I,,(-) is the modified Bessel function of first kind and
order n, and the coefficient reads

. - m(l+ 7)., 1 <2Vd/o, o
GOE =

_ t+\/3/(r

2 [1 Py t>2Jd/o.

As shown by the red dotted curve (or the dark blue curve by
numerical simulations) in Fig. 1, Eq. (7) exhibits a typical fea-
ture of quantum chaos, namely a dip-ramp-plateau structure.
The early decay from unit value comes to an end, forming a
dip (also known as correlation hole) with the onset of a ramp.
The latter extends until it saturates at a plateau value at the
characteristic plateau time #pjarean = 2Jd /o [see Eq. (9)]. The
existence of the ramp, a period of linear growth of (G(#))coE,
is a consequence of the repulsion between long-range energy
levels [11]. This long-range repulsion causes the energy lev-
els to be anticorrelated. The plateau stems from the discrete
energy spectrum, whose height is (Z(28))cor/(Z(B ))éOE.
Similar chaotic features have been studied in the Gaussian
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FIG. 2. Chaos is suppressed by enhancing the interaction in a bipartite system. (a) Equation (5) averaged over GOEs for observables

X=HH=H"+H"+eH"®
GOE independently, with 500 realizations, d; = d, =

Hz(')) with coupling strength €; = 0.1,
10, and B = 0.01 (for other temperature and number of realizations, see Appendix B).

1, 5, and 10 respectively. Hl(o‘l) and Hz(o‘l) are sampled from

The size of the dip and ramp shrinks when the coupling constant €; is enhancing, implying that chaos is suppressed. The GOE averaged G(t)

is depicted with X = Hl(o) in (b) and X
plays an important role in attenuating the chaoticity.

= Hl(” ® Hz(l) in (c), respectively, in which H 1(1) ® Hz(l) with no obvious dip-ramp-plateau structure
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FIG. 3. Chaos is suppressed by enhancing the interactions among
a tripartite system. Equation (5) averaged with GOEs for observables
@X=H,0)X=H,C)X=HQH,and( X =H QH,®
H;, respectively. H,, H,, and H; are sampled from GOE indepen-
dently, with 500 realizations, d; = d, = d; = 5, and § = 0.01.

Unitary Ensemble (GUE) [34,44,80], Gaussian ensembles un-
der infinite temperature [81], and Sachdev-Ye-Kitaev (SYK)
models [11,82,83].

For systems with less chaoticity than the full GOE, the span
of the ramp will shrink or even disappear (see light blue curves
in Fig. 1).

Without loss of generality, we then consider a bipartite
system with HI(_OZ’]) independently sampled from GOEs. As
the total system is composed of two partitions each described
by a random-matrix Hamiltonian, it is not surprising that in
the absence of (or weak) interactions the full system exhibits
visible dip-ramp-plateau structure when choosing X = H [see
the dark blue curve in Fig. 2(a)]. However, when the coupling
strength €; between subsystems 1 and 2 is enhanced, the
dip-ramp-plateau structure gradually washes out [light blue
curves in Fig. 2(a)].

To account for this phenomenon, we look at the character-
istic function for different choices of the observable X = HI(O)
in Fig. 2(b) and X = Hl(l) ® Hz(l) in Fig. 2(c) and show how
these choices identify the contributions to quantum chaos
by the first subsystem and the interactions between subsys-
tems 1 and 2. Obviously, Hl(l) ®H2(1> plays an important
role in diminishing the chaotic behavior, since the charac-
teristic function reflects no obvious ramp structure. Indeed,
from the perspective of the nearest-neighbor level distribu-
tion, the Kronecker product of random matrices will tend to
break the Wigner-Dyson distribution under certain conditions
[84]. When the coupling is enhanced, the interaction term
H fl) ® Hz(l) dominates, and the chaoticity of the whole system
is gradually suppressed.

Similar phenomena exist in more structured systems, as
shown in Fi% 3 for a tripartite s(ystem. For simplicity, we only
consider H1,02),3 = Hl(ylm = H1‘22)’3 and omit the superscript
therein. Both bipartite interactions (e.g., H; ® H,), and the
tripartite interaction H; ® H, ® Hj play an import role in de-
creasing the chaoticity of the composite global system, while
the local chaotic nature of each subsystem can be detected

() [y or o
10 (a) 10 (b)
,1 4
x 107 1 —p=0 | £l
21072 p=0.1 | 3107 —x=p,
G107 p=l W S X,
<107 u=10 | =107
107 X=H 1
10

T -3
1072 10° 10> 10* 10° 1072 10° 102 10* 10°
t t
FIG. 4. Chaotic behavior in a coupled Sachdev-Ye-Kitaev
(cSYK) model. Equation (5) averaged with cSYK for observables
()X =H, (b) X = H., and X = Hp, respectively. The Hamiltonian
is sampled by 500 realizations with 2N = 20, 8 = 0,andJ = K = 1.

by choosing a local observable (e.g., X = H;) even at strong
coupling.

It is worthwhile to note that the presence of interactions
could also induce chaos if the interactions tend to mix the
subsystems, just as shown in the coupled kicked rotors [46].

V. COUPLED SACHDEV-YE-KITAEV MODEL

The second example we consider is the coupled Sachdev-
Ye-Kitaev (cSYK) model [55-64] . A system composed of
2N Majorana fermions is divided into two separated sides
and each subsystem is described by the SYK model [85,86].
We consider the left and right SYK Hamiltonians H; g with
a bilinear coupling Hy,. The total Hamiltonian of the cSYK
model reads

H = Hp + Hg + pH,

=2 )

a=L,R 1<k<l<m<n<N

N

Jktmn Xi X[ Xom X+ 14 ZKkakLX/f»
k=1

10)

where (1 controls the strength of the the bilinear coupling and
Xxx denote Majorana fermion operators satisfying the anticom-
mutation relations {xx, x;} = 8x;. Jumn and Ky are random
coupling constants independently sampled from Gaussian dis-

. . . . 2 _ 3!‘/2
tributions with zero expectation values and (J;,.) = 57,

(Kkzk) = 1]\% A similar model has been used to study the
holographic duality of an eternal traversable wormhole: By
preparing the SYK model in a thermofield double state and
turning on the coupling between the two sides, the wormhole
is traversable in the context of gravity [55].

Figure 4 shows the numerical result for the disorder-
averaged (G(t)), in agreement with the random matrix theory.
From Fig. 4(b), we see that the bilinear coupling plays an
important role in controlling the chaotic behavior of the whole
system, as the generating function has no obvious dip-ramp-
plateau structure. The chaotic character of the system is robust
when the bilinear coupling is weak (i < 0.1). When enhanc-
ing the coupling, the dip-ramp-plateau structure of the entire
system is gradually washed out [Fig. 4(a)]. This implies that
the entire system becomes less chaotic when the bilinear cou-
pling is strong, even when the chaoticity of the subsystems
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FIG. 5. Different number of ensemble realizations in Fig. 2(a). Data for G(¢) is averaged over 1, 10, and 100 realizations of GOE.

remain consistent. As in the GOE example, the chaotic nature
of each subsystem can be detected by choosing a local observ-
able (e.g., X = H}), as shown in Fig. 4(b).

VI. DISCUSSION AND CONCLUSION

We have introduced a protocol to directly detect quantum
chaos in interacting multipartite systems by measuring the
statistical distribution of an energy observable X at thermal
equilibrium. Specifically, we make use of the absolute square
value G(¢) of the generating function of the eigenvalue distri-
bution associated with the observable X. When the observable
equals the total Hamiltonian, G(¢) reduces to the SFF. For
local observables, chaotic features give rise to a dip-ramp-
plateau structure in G(t), which is similar to that in SFF.
G(t) directly detects the contributions to quantum chaos in a
composite system from different subsystems by choosing the
observable for k-partite interactions. We have shown that the
coupling of chaotic systems can give rise to the suppression
of quantum chaos in the composite system, as the interac-
tion strength among the subsystems is increased. From the
perspective of decoherence, sampling the eigenvalue statistics
of a subsystem is like sampling the local energy. Quantum
chaos is generally expected to be suppressed as a result of
decoherence [34,87]; see however [37]. In addition, even at
strong coupling, the chaotic character of the subsystems can
be unveiled by choosing X as a local observable, as demon-
strated by considering the multipartite GOEs and the coupled
SYK models.

Our scheme can be implemented in quantum devices, such
as NMR systems [69,72,74] and trapped ions [75], by intro-
ducing an auxiliary qubit coupled to the systems, as both the
random spin and SYK models are realizable in the laboratory
[88-94]. Our approach for diagnosing the chaos in multi-
partite quantum systems may thus find broad applications
in interdisciplinary studies in quantum information, quantum
matter, and AdS/CFT duality, especially in analyzing quan-
tum chaos in structured quantum many-body systems.
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APPENDIX A: THE GENERATING FUNCTION G(t)
AVERAGED OVER ENSEMBLES

In Appendix A, we intend to briefly introduce the calcula-
tion of the generating function G(¢) averaged over ensembles.
The averaged G(¢) in terms of annealing approximation is
given by [34,44]

(1Z(B +in)?)
zpyn* -

This annealing average is in agreement with the quenched
average (|Z(B + it)lz/Z(,B)z) in a high temperature region
[11,34]. Then the denominator and numerator of Eq. (A1) can
be written as

(G@)) = (A1)

(ZB) = / dEp(E)e PE, (A2)

and

(1Z(B + i) = / dE p(E)e "

i /dEdE’p(E, E')e~ BHIDE o= (B=inE',
(A3)
where p(E) is the spectral density and p(E, E’) is the two-
point probability density function.

1. Gaussian orthogonal ensemble statistics

For GOE, the spectral density and two-point probability
density function are given by [34]

1 Lo 5 E
E) = det K (E,E), and E := ——, Ad
p(E) N et Ky( ), an NP (A4)
and
1 |:(Kd(E,E) Kd(E,E/))]
P(E,E') = — det o _ ], AS)
20 KiE'E) KyE,E)

respectively, and K;(x,y) is the kernel [2]. Note that GOE
and GUE share the same form of N-point probability density
function. The only difference is that the kernel K;(x,y) in
Egs. (A4) and (AS5) for GOE is a quaternion. Note that o is
selected as o = 1/«/5 in Ref. [2], 0 = 1 in Ref. [54], and
o = 1/+/d in Ref. [11], respectively. In this Letter, we keep o
in the formulas for convenience.
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FIG. 6. Temperature dependence of G(t) in Fig. 2(a). Data for G(¢) is averaged over 100 realizations of GOE with g = 0, 0.01, and 0.1,

respectively.

According to Dyson’s theorem [2],

detA = pf(ZyO[A]), (A6)

an N x N self-dual quaternion matrix A can be represented
by a 2N x 2N complex matrix (®[-] is the matrix form
of a quaternion). Here, pf denotes a Pfaffian and Zy =

@1};1(21 (1)) ;. Then Egs. (A4) and (AS5) can be written as

1 L.
E)=—1pf(ZO[K,;(E, E))]), A7
p(E) ﬁapm[d( ) (A7)
and
1 Ki(E,E) K4(E,E
,o(E,E’):—zpf 7,0 o o .
20 Ki(E' E) Kq(E' E)

(A8)

The above method can be straightforwardly extended to

higher point correlation functions. Similar work has been done

in Ref. [81] for evaluating spectral form factors under infinite
temperature.

2. G(t) averaged by GOEs
With Eq. (A7), the partition function [Eq. (A2)] averaged
over the GOEs is approximated by

Vd1,2o/dx)

ox

(Z(xX))Goe = (A9)

where I,,(-) is the modified Bessel function of first kind and
order n [Eq. (8) in the main text].

According to Eq. (A8), the imaginary time partition func-
tion [Eq. (A3)] averaged over the GOEs reads

(1Z(B + in)*)cor = (Z2B))cok + Z(B + it))coEl* + *,

(A10)
where
Dt’\/g g o o
—T[ _f/_j+2t7j]n(l+j/_3)]’ t<2«/3/o,
k =
ad _ _to t+~/3/a
T[l 27 I r-ﬁ/a]’ t>2Vdfo.
(A11)
Considering G(t) should be 1 when r = 0, « reads
o
o~ _d<Z(2.3)>GOE- (A12)

Substitution of Eq. (A12) and Eq. (Al1) into Eq. (A10) to-
gether with the averaged partition function in Eq. (A9), the
GOE averaged G(¢) in Eq. (A1) can be obtained straightfor-
wardly, see Eq. (7) and Eq. (9) in the main text.

APPENDIX B: THE TEMPERATURE AND NUMBER
OF REALIZATIONS IN ENSEMBLE AVERAGE

In the main text, we consider a fixed number of realizations
and temperature for the illustration. In this section, we append
Fig. 5 and Fig. 6 to illustrate G(¢) with the dependence of the
number of realizations and temperature.
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