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Von Neumann’s information engine without the spectral theorem
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Von Neumann obtained the formula for the entropy of a quantum state by assuming the validity of the
second law of thermodynamics in a thought experiment involving semipermeable membranes and an ideal gas of
quantum-labeled particles. Despite being operational for the most part, von Neumann’s argument departs from an
operational narrative in its use of the spectral theorem. In this work, we show that the role of the spectral theorem
in von Neumann’s argument can be taken over by the operational assumptions of repeatability and reversibility,
and, using these, we are able to explore the consequences of the second law also in theories that do not possess a
unique spectral decomposition. As a byproduct, we obtain the Groenewold-Ozawa information gain as a natural
monotone for a suitable ordering of instruments, providing it with an operational interpretation valid in quantum
theory and beyond.
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I. INTRODUCTION

Ever since Maxwell summoned his demon [1], the mu-
tual influence between physics (i.e., the representation of a
system’s physical properties), information (i.e., the represen-
tation of an agent’s knowledge about a physical system), and
the measurement process (i.e., the interaction between sys-
tem and agent) has emerged as one of the main themes of
debate in theoretical physics. Von Neumann is surely among
the most influential names to have contributed to this discus-
sion. In his mathematical formulation of quantum theory [2],
much space is devoted to a careful analysis of the interplay
between quantum measurement theory and thermodynamics.
Therein, von Neumann approaches the problem using the
artifact—common, as he explicitly remarks, in phenomeno-
logical thermodynamics and used before him also by Einstein
[3] (see, also, Ref. [4]) and Szilard [5,6]—of an ideal gas of
particles, whose mechanical degrees of freedom obey the laws
of classical mechanics, while their states (which should really
be thought of, in this context, as mere labels) are described
according to quantum theory, but are otherwise irrelevant from
an energetic viewpoint. In this way, it is possible to separate,
on the one side, the mechanical and thermal properties of
the gas, and, on the other side, the information that an agent
acting on the gas has about its particles. The “missing link”
between physics and information is provided by two assump-
tions: the first is the existence of particular devices called
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semipermeable membranes; we will discuss them extensively
in what follows. The second assumption is about the validity
of the second law of thermodynamics, which is posited by
von Neumann ab initio. Following this line of thought, von
Neumann was able to explore the consequences of the second
law in quantum theory and obtain his famous formula for the
entropy of quantum states.

The argument constructed by von Neumann, although op-
erational for the most part (i.e., the quantum entropy is defined
using a thermodynamic protocol, which, in principle, also
provides a way to measure the quantum entropy), still relies
on the structure of Hilbert spaces. In particular, a crucial
role is played by the spectral decomposition of self-adjoint
operators [2]. A natural question is then to see how far von
Neumann’s discussion can be reconstructed from purely oper-
ational assumptions. The common way to approach this kind
of problem utilizes the framework of general probabilistic the-
ories (GPTs; see, e.g., Refs. [7–16]). These provide a modern
take on the operational approach to quantum theory, which
can be traced back to works by Ludwig [17,18], Davies and
Lewis [19], Gudder [20], and Ozawa [21].

Without Hilbert spaces, in GPTs there exist various ways to
introduce the entropy functional in an operational way, which
all turn out to be equivalent in conventional quantum theory,
but not so in general [12,22–24]. A possible approach is to add
assumptions that are strong enough to conclude that a unique
spectral decomposition exists [25,26]. However, in more gen-
eral setups, the uniqueness of the spectral decomposition is
not guaranteed [15,27,28]: in all such cases, von Neumann’s
argument seems to be a nonstarter.

In this paper, we clarify the importance of two implicit
assumptions in von Neumann’s argument: the existence of
repeatable measurement processes, on the one hand, and of
states that are the fixed point of some nontrivial repeat-
able measurement, on the other hand. These two operational
assumptions—we argue—can take over the role played, in von
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Neumann’s argument, by the spectral theorem, which instead
is not operational. In this way, we can provide von Neumann’s
thought experiment with a fully operational narrative, and
to explore the consequences of the second law of thermo-
dynamics also in GPTs that do not have a unique spectral
decomposition. However, to achieve this, some modifications
to von Neumann’s argument are needed: in particular, the
thermodynamic process must be modified into a cycle. As a
byproduct, our argument allows us to also obtain an analog
of the Groenewold-Ozawa information gain [29,30] in a wide
range of GPTs, and to equip it with the operational meaning
of monotone, with respect to a suitable preorder of the mea-
surement processes.

II. BASIC DEFINITIONS

In order to discuss von Neumann’s thought experiment in
GPTs, we begin by briefly reviewing the basics of a simple
single-system theory (see, e.g., Refs. [8,9] and references
therein). A single-system GPT is determined by providing all
possible events, thought of as “black boxes” with an input
and an output, which can be either the system of the theory
or the trivial system (i.e., a system with only one possible
state). The input-output arrangement determines the type of
the event. Events with trivial input are interpreted as prepara-
tion events, whereas events with trivial output are interpreted
as observation events, or effects. Families of events of the
same type form a test: one has, therefore, preparation tests and
observation tests. The latter are usually called measurements.
Tests describe what can happen in an experiment: among the
events it contains, one and only one will occur in any given
repetition of the same experiment. Therefore, tests with only
one element describe deterministic events. In particular, a
common assumption (corresponding to a “no-signaling from
the future” principle [31,32]) is that only one deterministic
measurement exists. Instead, a theory typically provides many
possible deterministic preparations: these are the (normalized)
states of the theory and form its state space, denoted by �.
Normalized states naturally form a convex set: its extremal
points are called pure states, otherwise they are mixed.

Tests can be composed, following the idea that any ex-
periment can be seen as a preparation-process-measurement
chain. Since states can be convexly mixed, tests are naturally
assumed to satisfy linearity on such convex combinations.
This observation allows for a more concrete definition of
single-system tests as families {s j} j∈J of affine maps acting on
� [33]. Denoting by u the unique deterministic measurement,
normalization of probability requires that

∑
j (u ◦ s j )ρ = 1,

for all ρ ∈ �. In conventional quantum theory, it is easy to
recognize that tests are quantum instruments [34], whereas the
composition {u ◦ s j} j∈J provides the generalization of positive
operator-valued measures (POVMs). For this reason, in what
follows we will call instruments those tests that have both
input and output nontrivial, while the term measurement will
only be used to denote the analog of POVMs. Summarizing,
in what follows, we will work with normalized states, denoted
by ρ, σ , etc., instruments, denoted by {s j} j∈J , {tk}k∈K , etc., and
measurements, denoted by {e j} j∈J , { fk}k∈K , etc.

Finally, an important notion is that of perfect distinguisha-
bility: a family of normalized states {ρ j} j∈J , ρ j ∈ � is said

FIG. 1. A schematic representation of the notion of Groenewold
majorization t �ρ s.

to be perfectly distinguishable if there exists a measurement
{e j} j∈J such that

e j (ρ j′ ) = δ j j′ ,

for all j, j′ ∈ J .
The measurement stage. As anticipated in Sec. I, von

Neumann’s thermodynamic thought experiment makes use
of semipermeable membranes (SPMs). These are devices
that can separate, reversibly and without any thermody-
namic cost, the particles of a gas, as long as their states
are distinguishable—at least in principle, of course. Von
Neumann goes to a great length to justify the use of such ideal-
ized devices, which, he argues, represent “the thermodynamic
definition of difference” [2]. In what follows, we characterize
SPMs from an operational viewpoint.

The first property of SPMs, implicit in their definition, is
their repeatability: the first time a particle collides with the
membrane, a measurement occurs determining whether the
arriving particle is a “pass” or a “bounce,” and it will remain
so until the end of the experiment, even if the same particle
collides with the membrane multiple times. Hence, our first
assumption is that the theory contains repeatable instruments.
Formally, an instrument {s j} j∈J is repeatable if and only if

s j′ ◦ s j = δ j′ j s j

holds, for all j, j′ ∈ J .
The second requirement needed to go along with von

Neumann’s discussion is the existence of states that are the
fixed points of some repeatable instrument. This is necessary
if we want to speak, as von Neumann does, of thermodynamic
reversibility with respect to the system’s initial state. Since
even in quantum theory there exist repeatable instruments
without invariant states [35], we need to treat this requirement
as a further assumption. In thermodynamic terms, the assump-
tion of state invariance makes it reasonable to assume that
there are no hidden thermodynamic costs (besides the macro-
scopic mechanical ones) incurred when using SPMs that
preserve the mixture being separated. Formally, we say that an
instrument {s j} j∈J is ρ-preserving whenever

∑
j s j (ρ) = ρ.

In the assumption of state invariance, however, we need
to exclude the trivial case of the deterministic identical instru-
ment, which is of course repeatable and for which all states are
fixed points. We thus strengthen our requirements as follows:
first, we define a set of “maximal” instruments with respect
to a suitable preorder, and then require the existence of states
that are fixed points of some instrument that is maximal and
repeatable. As a straightforward extension of the postprocess-
ing preorder of POVMs [36] to the case of instruments, we
introduce the following preorder (see, also, Fig. 1):
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Definition 1. Groenewold majorization. Given two instru-
ments s = {s j} j∈J and t = {tk}k∈K , and a state ρ ∈ �, we say
that t Groenewold-majorizes s given ρ, in formula

t �ρ s,

if and only if there exists a conditional probability distribution
p( j|k) such that

s j (ρ) =
∑
k∈K

p( j|k)tk (ρ), (1)

for all j ∈ J .
In the above definition, we could have in fact chosen a more

general scenario, including also some suitable transformations
before and after the randomization. However, since for our
purposes we are only interested in the maximal points of
�ρ and since these are the same with or without the extra
transformations, for the sake of simplicity, we choose to work
with the above definition.

Definition 2. Fine-grained instruments. An instrument s =
{s j} j∈J is said to be fine grained if and only if, for all preorders
�ρ (i.e., for all states ρ), the condition t �ρ s implies that s �ρ

t holds also.
Definition 3. MPP instruments. An instrument s = {s j} j∈J

is said to be of the measure-and-prepare-pure (MPP) form if
and only if it is completely characterized by one measurement
{e j} j∈J and one family of normalized pure states, {σ j} j∈J ,
such that the jth state σ j is prepared whenever the jth effect
e j occurs.

The following lemma holds (for the proof, see
Appendix A).

Lemma 1. Let s = {s j} j∈J be a fine-grained instrument.
Then, s j (ρ) is (up to normalization) a pure state, for all states
ρ ∈ � and all j ∈ J . In other words, s is an MPP instrument.

The above lemma guarantees that fine-grained instruments
are all physically admissible, simply because they can be
physically realized as measurements followed by the prepa-
ration of pure states that only depend on the outcome. As
such, they do not require any notion of composition (i.e.,
complete positivity) to be discussed. We denote fine-grained
instruments as pairs {e j, σ j} j∈J , where {e j} is a measurement
and {σ j} is a family of normalized pure states.

Hence, the following two assumptions:
(i) the existence of fine-grained and repeatable

instruments; and,
(ii) the existence of states that are fixed points of some fine-

grained and repeatable instrument,
together with Lemma 1, imply that the theory contains states
that can be decomposed on a set of perfectly distinguishable
pure (PDP) states. Following [15,26], we call such states
weakly spectral. For simplicity, we summarize the previous
discussion into one assumption as follows:

Assumption 1. Weak spectrality. We assume that the theory
contains weakly spectral states ρ ∈ �, that is, states that admit
a (possibly nonunique) convex decomposition into PDP states
ρ = ∑

i piρi.
Notice that we are not assuming that all states of the theory

are weakly spectral. In what follows, for ease of notation, for
a weakly spectral ρ, we denote by D(ρ) the set of all possible
probability distributions {pi} that appear in at least one of its
PDP decompositions.

Assumption 1 (A1) above is “weak” because in the lit-
erature its “strong” version is often encountered, and the
separation between the two is strict. More precisely, instead
of A1, the property of (unique or strong) spectrality assumes
that all PDP decompositions of the same state correspond to
distributions {pi} which differ, at most, in a permutation of the
indices [27,28]. Strong spectrality is hence akin to assuming
the spectral theorem from the onset. Instead, the existence of
weakly spectral states is guaranteed as soon as there exist at
least two perfectly distinguishable pure states. Examples of
theories that satisfy weak spectrality but not strong spectrality
are given in Ref. [28]. For what follows, it is convenient to
introduce the following definition:

Definition 4. ρ-separating SPMs. A set of SPMs is said to
be ρ-separating if it corresponds to a repeatable MPP instru-
ment {e j, σ j} j∈J , which is in particular ρ-preserving, that is,

ρ =
∑
j∈J

e j (ρ)σ j .

From the above discussion, it is clear that ρ-separating
SPMs exist if and only if ρ is weakly spectral.

III. THE FEEDBACK STAGE

Von Neumann’s argument also involves a feedback control
stage, during which a suitable transformation is applied to
the system, depending on the measurement outcome. Again,
to follow von Neumann’s narrative, we need an assumption,
which we identify in the following:

Assumption 2. Free pure-state transformations [13,26,37].
For any pair of pure states, ρin and ρout, the theory contains
a deterministic event F : � → � which is reversible, that is,
there exists another deterministic event G such that G ◦ F =
id, and satisfies F (ρin) = ρout.

According to the thermodynamic narrative, a reversible
operation is one that does not cause any change to the entropy
of the thermodynamic universe. Notice that we do not put
any constraints on what the operation does on states other
than ρin. In this sense, Assumption 2 (A2), like A1 before, is
weak: instead of A2, in the literature it is common to find the
assumption of strong symmetry, which assumes that any two
collections of PDP states are connected by one simultaneous
reversible process [15,26,28]. A counterexample of a theory
that satisfies A2 but is not strongly symmetric is given in
Appendix B, where we explicitly construct a GPT that con-
tains two pairs of PDP states that cannot be simultaneously
and reversibly converted.

We conclude this section by noticing that conventional
quantum theory satisfies both strong spectrality and strong
symmetry. In fact, it is known that any GPT satisfying both
strong spectrality and strong symmetry becomes, to a large
extent, akin to quantum theory [38].

IV. ENTROPY FROM THERMODYNAMIC
CONSIDERATIONS

We are now ready to formulate our version of von
Neumann’s thought experiment in the language of GPTs. As
already noticed, we follow von Neumann’s argument, in that
the particles’ mechanical degrees of freedom obey the clas-
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(a) (b) (c) (d)

FIG. 2. The process of separating particles in a state ρ = q1σ1 + q2σ2 using suitable ρ-separating SPMs. The dashed line is a SPM
transparent to σ1 but perfectly elastic for σ2; the dash-dotted line represents vice versa.

sical laws of ideal gases, whereas the nonclassical degrees
of freedom, i.e., the generalized states labeling the different
“isomers,” are thought of as internal degrees of freedom with
a completely degenerate Hamiltonian so that they do not di-
rectly enter in the energetic balance of the process.

We begin with the calculation of the work needed to sepa-
rate the particles by means of SPMs. The separation process
is depicted in Fig. 2. An ideal, thermostatted gas contains N
particles in the mixture state ρ. According to the above discus-
sion, ρ is assumed to satisfy the property of weak spectrality.
For simplicity, we assume that ρ contains only two pure
components, that is, ρ = q1σ1 + q2σ2, where {q j} j=1,2 is a
probability distribution and {σ j} j=1,2 are two PDP states. The
generalization to a larger number of components is straight-
forward.

Closely following von Neumann, we apply a set of
ρ-separating SPMs, corresponding to the repeatable MPP in-
strument {e j, σ j} j∈{1,2} with effects such that e j (σ j′ ) = δ j j′ .
This is physically modeled by two SPMs with opposite me-
chanical behaviors: if one SPM is transparent for, say, σ1, the
other is transparent for σ2. After the separation, which is done
isothermally, the two species (σ1 and σ2) are contained in two
separate chambers, both of them the same size as the initial
chamber. The number of particles in a state σ j is e j (ρ)N =
q jN . In agreement with our preceding discussion and previous
analyses [2,26,37], we can assume that this first step of the
separation is basically a solid translation of coordinates, so
that the work worth of this step is zero.

The two SPMs are then replaced by impermeable walls and
we isothermally compress the chamber with σ1 (σ2) until its
volume becomes q1V (q2V ), so that after the compression,
both chambers have the same (initial) pressure. From the
ideal gas law, the amount of work needed for the isothermal
compression c → d is

−
∫ q1V

V

q1NkT

V ′ dV ′ −
∫ q2V

V

q2NkT

V ′ dV ′

= H ({q j})NkT ln 2, (2)

where T is the temperature of the environment, k is the
Boltzmann constant, and H ({q j}) := −∑

j q j ln q j . This ends
the separation protocol. If the decomposition of ρ has more
than two PDP states, we repeat this protocol for each perfectly
distinguishable state and obtain the same result.

Next, we consider the mixing process. Here we deviate
from von Neumann’s process, in that we want to go back to
the initial mixed state, whereas von Neumann’s final state is
pure. After the separation process has been completed, we
are in the situation in which the two (pure, distinguishable)
species σ1 and σ2 are in two separate chambers with equal

pressure (i.e., the initial pressure). The total volume of the
two chambers together equals the initial volume, but now
we know which species is present in each chamber. If we were
to replace the wall between the two chambers again with the
same SPMs used during the separation step, by letting the two
species slowly and independently expand, we would be able
to gain back the work invested in the separation stage with the
gas restored to its initial state. We would then have achieved a
trivial, reversible cycle.

Instead, we consider a different decomposition of ρ in pure
distinguishable states, as assumption A1 does not exclude
such a possibility. Let us denote the alternative decomposition
of ρ by

∑
i piρi. As depicted in Fig. 3, we can freely insert

additional partitions in a suitable way, and transform the pure
states (which are known) in each partition into ρ1 or ρ2, as
needed. In this way (by removing additional walls as neces-
sary), we have transformed the arrangement corresponding to
the decomposition

∑
j q jσ j into the arrangement correspond-

ing to
∑

i piρi without the need to account for any new term
in the thermodynamic balance, thanks to assumption A2.

Then, by using two new SPMs tuned to match the new
PDP decomposition

∑
i piρi, and by following the separation

steps backward, we can bring the system back to its original
state, having gained in the process (isothermal expansion) an
amount of work equal to

H ({pi})NkT ln 2. (3)

FIG. 3. The cycle used in the proof of Theorem 1. [α → β]:
work is invested to achieve the separation as in Fig. 2. [β → γ ]: ad-
ditional partition plates are inserted at proper positions (zero work).
[γ → δ]: to each chamber, a suitable reversible transformation, with
zero work cost, is applied and the states contained therein are trans-
formed into ρi. [δ → α]: work is extracted by running the separation
process for the decomposition ρ = ∑

i piρi backwards.
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FIG. 4. The proof of the concavity of spectral entropy. [(a) →
(b)]: separate ρ into PDP states; this process needs work
H (ρ )NkT ln 2. [(b) → (c)]: create ρ1 and ρ2 from pure states; the
amount of work

∑
i piH (ρi )NkT ln 2 can be extracted from this

process. [(c) → (a)]: since ρ is the convex combination of ρ1 and
ρ2, we can accomplish this process by just removing the wall with
no work.

As a whole, therefore, the amount of work we can extract from
this cycle is calculated from (2) and (3) as follows:

	W = [H ({pi}) − H ({q j})] NkT ln 2. (4)

We now invoke, following von Neumann, the second law
of thermodynamics, which implies that 	W cannot be strictly
positive; otherwise, we would have constructed a perpetuum
mobile of the second kind. Moreover, since the same must also
hold if we exchange the role of the two decompositions, we
conclude that 	W must be exactly zero. But this must hold for
any PDP decomposition of ρ. Hence we obtain the following:

Theorem 1. Under assumptions A1 and A2, the second law
of thermodynamics implies that for all weakly spectral ρ ∈ �,
we have

H ({pi}) = H ({qi}), (5)

for all {pi}, {qi} ∈ D(ρ). In other words, a necessary condition
for the validity of the second law is that any weakly spectral
state has a unique spectral entropy. Indeed, we provide an
explicit example of a GPT where the spectral entropy is not
uniquely defined in Appendix C.

Next, we derive concavity of the spectral entropy under the
assumption that all the states of the theory are weakly spectral
and that the second law is valid.

Theorem 2. Concavity. Let ρ1, ρ2 ∈ � be states. Then, we
have the following inequality:

H (p(ρ1) + (1 − p)ρ2) � pH (ρ1) + (1 − p)H (ρ2), (6)

for any value 0 � p � 1.
Proof. Consider a state ρ whose decomposition into PDP

states is ρ = ∑
i qiσi. First, as shown in Fig. 4, we sep-

arate it into its pure components using a suitable set of
ρ-separating SPMs. The resulting arrangement is shown in
Fig. 4(b) and costs an amount of work proportional to H (ρ).
Then, by adding partitions, transforming pure states, and mix-
ing, we can arrive at the arrangement shown in Fig. 4(c).
In this step, we can gain an amount of work proportional
to

∑
j p jH (ρ j ), where p1ρ1 + p2ρ2 = ρ. Finally, since ρ is

the convex combination of ρ1 and ρ2, we can accomplish

the process (c) → (a) by only removing the partition, with-
out requiring any work. Therefore, the work we can extract
from the isothermal cycle (a) → (b) → (c) → (a) is 	W =
[−H (ρ) + ∑

j p jH (ρ j )]NkT ln 2. The second law implies
that 	W � 0, which completes the proof.

�

V. GROENEWOLD-OZAWA INFORMATION GAIN

The uniqueness of the spectral entropy functional can be
used to extend the definition of the Groenewold-Ozawa infor-
mation gain [29,30] to GPTs that satisfy weak spectrality as
follows:

Definition 5. For any state ρ ∈ � and instrument s, we
define the Groenewold-Ozawa information gain as follows:

IG(ρ, s) := H (ρ) −
∑

j

e j (ρ)H

(
s j (ρ)

e j (ρ)

)
, (7)

where e j (ρ) := (u ◦ s j )(ρ) is the probability of the jth
outcome.

The Groenewold-Ozawa information gain earns an oper-
ational interpretation in terms of the preorder introduced in
Definition 1 as a consequence of the following fact, proved in
Appendix D.

Theorem 3. For any state ρ ∈ � and instruments t and s,
t �ρ s implies the following inequality:

IG(ρ, t ) � IG(ρ, s). (8)

Recently, Ref. [39] proved a relation between the
Groenewold-Ozawa information gain and the heat absorbed
by the system during a measurement process. This result,
together with our inequality (8), suggests a link between the
thermodynamic and the resource-theoretic characterization of
quantum measurements. We leave this point open for future
studies.

VI. CONCLUSIONS

In this work, we have shown how von Neumann’s thought
experiment can be formulated in a purely operational lan-
guage, without resorting to the structure of Hilbert spaces
or the spectral theorem. An advantage of our reformulation
is that we can now appreciate how important it is, in von
Neumann’s argument, to assume the validity of the second
law of thermodynamics from the beginning. It is the second
law, and not the spectral theorem, to force the entropy to be
unique, lest we build a perpetuum mobile of the second kind.
In this sense, the second law is used by von Neumann as a
consistency check, a first principle of logic rather than a law
of physics [40–43].

A problem left open is that of finding relations between the
spectral entropy considered in this work and other entropies
that can be considered in GPTs [12,22,23,44]. Moreover,
since we can regard von Neumann’s device as a process
for extracting work from measurements, there may be a
close relationship between the present discussion and previ-
ous research on work extraction from quantum measurement
processes [45]. We leave these questions for future works.
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APPENDIX A: PROOF OF LEMMA 1

First we prove that the output states of fine-grained in-
struments are pure. Consider a state space � and a state
ρ ∈ �. Let s = {s j} be a fine-grained instrument and e j (ρ)
denote (u ◦ s j )(ρ) for simplicity. Without loss of generality,
suppose that a postmeasurement state corresponding to the
outcome j = |J|,

σ|J|(ρ) := 1

e|J|(ρ)
s|J|(ρ), (A1)

is not pure, that is, there is a convex decomposition such as

σ|J|(ρ) =
∑
l∈L

qlσl , (A2)

where {ql}l∈L is a probability distribution and |L| > 1. Note
that both {ql}l∈L and σl depend on ρ.

If we multiply both sides of this equation by e| j|(ρ), we
obtain

s|J|(ρ) =
∑
l∈L

e|J|(ρ)qlσl . (A3)

Let us now introduce events s̃l,|J| such that

s̃l,|J|(ρ) = e|J|(ρ)qlσl . (A4)

Let KJ and KL be sets such that

K1 : = {1, . . . , j, . . . , |J| − 1}, (A5)

K2 : = {(1, |J|), . . . , (l, |J|), . . . , (|L|, |J|)}, (A6)

where j ∈ J \ {|J|} and l ∈ L.
Now we define an index k ∈ K as a direct sum of

KJ and KL,

K := K1 ∪ K2. (A7)

There is a family of pure states, {tk (ρ)}k∈K , such that

tk (ρ) :=
{

sk (ρ) if k ∈ K1,

s̃k (ρ) if k ∈ K2.
(A8)

Since we have s|J|(ρ) = ∑
k∈K2

s̃k (ρ), we have t �ρ s. How-
ever, since the | j|th output state of s is mixed, and it is not

possible to make a mixed state pure by further convex mix-
tures, it is clear that s �ρ t . This contradicts the assumption
that s is fine grained, thus proving the first part, that is, the
states 1

e j (ρ) s j (ρ) must be pure for all outcomes j and all initial
states ρ.

Now we show that fine-grained instruments are MPP
instruments. Suppose that a state ρ ∈ � has a convex decom-
position ρ = pρ1 + (1 − p)ρ2, where ρ1, ρ2 are two different
states on �. From the affinity of s j , s j (ρ) = ps j (ρ1) + (1 −
p)s j (ρ2) holds. For what we said before, s j (ρ) is proportional
to a pure state. Therefore, it must be that both s j (ρ1) and
s j (ρ2) are proportional to s j (ρ). This means that the postmea-
surement state does not depend on the initial state, if not from
the outcome j, which implies that s is MPP.

APPENDIX B: A THEORY SATISFYING A2 BUT NOT
STRONG SYMMETRY

Here we give an explicit example of a theory that satisfies
property A2 above, that is, the existence of free pure-state
transformations, but does not satisfy strong symmetry.

Let H be a finite-dimensional Hilbert space and let S be a
state space on H, that is, a convex set of positive semidefinite
matrices on H with unit trace. Also, let P ⊆ S be a set of
rank-one matrices, which corresponds to the set of pure states.
Consider two systems HA and HB and let PA ⊗ PB be the set
of product pure states. The state space � of the theory is the
convex hull SEP(A; B) of PA ⊗ PB.

For a state space �, define a class of transformation F (�)
as the set of all linear maps F satisfying F (�) = �. Any
reversible transformation clearly belongs to F (�).

Definition 6. k-symmetry. We say that a state space � is
k-symmetric if there exists a map F ∈ F (�) such that ρi =
F (σi), for i = 1, . . . , k, for any pair of k-tuples of perfectly
distinguishable pure states {ρi}k

i=1 and {σi}k
i=1.

Now we show the difference between strong symmetry and
weak symmetry by giving the following counterexample.

Theorem 4. SEP(A; B) is 1-symmetric but not 2-symmetric.
We invoke the following two results. The first result is

about the necessary and sufficient condition for two states in
SEP to be perfectly distinguished [46, Theorem 2.4]. Notice
that nonorthogonal states can be perfectly distinguished in
SEP because the set of all measurements in SEP is larger than
the set of bipartite POVMs.

Lemma 2. In SEP(A; B), two pure states ρ1 = ρA
1 ⊗ ρB

1 and
ρ2 = ρA

2 ⊗ ρB
2 are perfectly distinguishable if and only if they

satisfy

TrρA
1 ρA

2 + TrρB
1 ρB

2 � 1. (B1)

The second result gives the form of the transformation
maps in F (SEP(A; B)) concretely [47, Theorem 3].

Lemma 3. For the linear map F from T (HA ⊗ HB) →
T (HA ⊗ HB), the following are equivalent:

(i) F ∈ F (SEP(A; B)).
(ii) F (PA ⊗ PB) = PA ⊗ PB.
(iii) F (A ⊗ B) = FA(A) ⊗ FB(B), or dim HA = dim HB

and F (A ⊗ B) = FB(B) ⊗ FA(A), where FA(A) = UAAU †
A or

UAATU †
A and FB(B) = VBBV †

B or VBBTV †
B .

Proof of Theorem 4. Since F (SEP(A; B)) contains all local
unitary maps, SEP(A; B) clearly satisfies 1-symmetry.
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Now, we show that SEP(A; B) is not 2-symmetric by giving
a counterexample. Take the following four separable pure
states:

ρ1 = ρA
1 ⊗ ρB

1 =
[

1 0
0 0

]
⊗

[
1 0
0 0

]
, (B2)

ρ2 = 1

2

[
1 1
1 1

]
⊗ 1

2

[
1 1
1 1

]
, (B3)

σ1 =
[

1 0
0 0

]
⊗

[
1 0
0 0

]
, (B4)

σ2 =
[

0 0
0 1

]
⊗

[
0 0
0 1

]
. (B5)

By direct inspection, we can verify that the two dichotomies
{ρ1, ρ2} and {σ1, σ2} both satisfy condition (B1) and thus, by
Lemma 2, both contain perfectly distinguishable pure states in
SEP(A; B).

Assume that there is a map F ∈ F (SEP(A; B)) where σ1 =
F (ρ1) and σ2 = F (ρ2). From Lemma 3, the following equality
should hold:

Tr
{
σ1σ2

} = Tr
{
FA

(
ρA

1

)
FA

(
ρA

2

) ⊗ FB
(
ρB

1

)
FB

(
ρB

2

)}
= Tr

{
ρA

1 ρA
2 ⊗ ρB

1 ρB
2

}
= Tr{ρ1ρ2}.

(B6)

However, now we have

Tr{ρ1ρ2} = 1

4
, Tr{σ1σ2} = 0. (B7)

This contradicts (B6). Thus, SEP(A; B) is 1-symmetric but not
2-symmetric. �

APPENDIX C: NONUNIQUENESS OF SPECTRAL
ENTROPY

Theorem 1 says that the entropies corresponding to differ-
ent PDP decompositions must all be equal if the second law is
valid. However, in general, there exist theories where the same
state can have decompositions with different entropies. As a
consequence of Theorem 1, all such theories are intrinsically
incompatible with the second law.

We consider again the state space SEP. Lemma 2 implies
that the following two separable states are perfectly distin-
guishable:

ρ1 =
[

1 0
0 0

]
⊗

[
1 0
0 0

]
, (C1)

ρ2 = 1

2

[
1 1
1 1

]
⊗ 1

2

[
1 1
1 1

]
. (C2)

In addition, Ref. [46] gives the following measurement
{e1, e2} that discriminates {ρ1, ρ2} perfectly:

e1(ρ) = Tr

⎧⎪⎨
⎪⎩

1

2

⎡
⎢⎣

2 0 0 −1
0 0 −1 0
0 −1 0 0

−1 0 0 2

⎤
⎥⎦ρ

⎫⎪⎬
⎪⎭, (C3)

e2(ρ) = Tr

⎧⎪⎨
⎪⎩

1

2

⎡
⎢⎣

0 0 0 1
0 2 1 0
0 1 2 0
1 0 0 0

⎤
⎥⎦ρ

⎫⎪⎬
⎪⎭. (C4)

The two matrices appearing above have negative eigenvalues:
this is because SEP does not contain any entangled state.

Next, we extend the state space of SEP slightly. Consider
the following density matrices with unit rank:

σ1 = 1

6

⎡
⎢⎢⎣

3
√

3
√

3
√

3√
3 1 1 1√
3 1 1 1√
3 1 1 1

⎤
⎥⎥⎦, (C5)

σ2 = 1

6

⎡
⎢⎢⎣

3 −√
3 −√

3 −√
3

−√
3 1 1 1

−√
3 1 1 1

−√
3 1 1 1

⎤
⎥⎥⎦. (C6)

Because σ1 and σ2 are not separable, σ1, σ2 �∈ SEP(A; B).
Then consider the following state space �:

� := Hul(SEP(A; B) ∪ {σ1, σ2}), (C7)

where Hul(X ) denotes the convex hull of X . We remark that
ρi and σ j are pure because they are rank-1 matrices.

In the model corresponding to this state space, the set of all
measurements is given as the set of all affine functions {e j} j∈J

satisfying e j (ρ) � 0 and
∑

j e j (ρ) = 1, for any ρ ∈ � and

j ∈ J . Because the state space � is smaller than the set of
all density matrices, but larger than SEP(A; B), the set of all
measurements is larger than the set of POVMs and smaller
than the set of measurements in SEP. In particular, because
e j (σi ) � 0 for all i, j, the measurement {e1, e2} appearing
in Eqs. (C3) and (C4) is allowed in the model. Because the
two states σ1, σ2 are orthogonal quantum states, they can be
perfectly distinguished in conventional quantum theory and,
therefore, are also perfectly distinguishable in this extended
model.

This implies that the state ρ = 1/3ρ1 + 2/3ρ2 := 1
2 (ρ1 +

ρ2) can be decomposed into PDP states in two different ways,
as follows:

ρ = 1/3ρ1 + 2/3ρ2 = 1

2
ρ1 + 1

2
ρ2, (C8)

= 3 + √
3

6
σ1 + 3 − √

3

6
σ2, (C9)

which clearly possess two different values for the spectral
entropy.

APPENDIX D: THE PROOF OF THEOREM 3

Consider two instruments s = {s j} j∈J and t = {tk}k∈K ,
where e j (ρ) = (u ◦ s j )(ρ) and fk (ρ) = (u ◦ tk )(ρ). Suppose
that t �ρ s holds. Then we have

∀ j ∈ J, s j (ρ) =
∑
k∈K

p( j|k)tk (ρ), (D1)

where
∑

j∈J p( j|k) = 1 holds for all k ∈ K .
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First, we have

e j (ρ) = (u ◦ s j )(ρ) =
{

u ◦
(∑

k∈K

p( j|k)tk

)}
(ρ)

=
∑
k∈K

p( j|k)(u ◦ tk )(ρ) =
∑
k∈K

p( j|k) fk (ρ).

(D2)

The third equality is because of the affinity of u. Therefore,
we have

s j (ρ)

e j (ρ)
=

∑
k∈K p( j|k)tk (ρ)∑
k∈K p( j|k) fk (ρ)

=
∑
k∈K

p( j|k) fk (ρ)∑
k∈K p( j|k) fk (ρ)

tk (ρ)

fk (ρ)
.

(D3)

This implies that the state s j (ρ)/e j (ρ) is the convex
combination of states tk (ρ)/ fk (ρ) with the probability
p( j|k) fk (ρ)/

∑
k∈K p( j|k) fk (ρ).

If we use the result of Theorem 3 and (D2), we have∑
j∈J

e j (ρ)H

(
s j (ρ)

e j (ρ)

)

�
∑
j∈J

e j (ρ)
∑
k∈K

p( j|k) fk (ρ)∑
k∈K p( j|k) fk (ρ)

H

(
tk (ρ)

fk (ρ)

)

=
∑
j∈J

e j (ρ)
∑
k∈K

p( j|k) fk (ρ)

e j (ρ)
H

(
tk (ρ)

fk (ρ)

)

=
∑
j∈J

∑
k∈K

p( j|k) fk (ρ)H

(
tk (ρ)

fk (ρ)

)

=
∑
k∈K

fk (ρ)H

(
tk (ρ)

fk (ρ)

)
. (D4)

Therefore, we obtain

H (ρ) −
∑
j∈J

e j (ρ)H

(
s j (ρ)

e j (ρ)

)

� H (ρ) −
∑
k∈K

fk (ρ)H

(
tk (ρ)

fk (ρ)

)
,

(D5)

which is the desired inequality.
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