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Statistics of free memory recall
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Numerous studies analyzed the performance of participants in free recall of randomly assembled lists of
words with the focus on the average number of words recalled for different experimental parameters such as
list length, presentation speed, etc. The distribution of performance around the mean was not systematically
studied, even though it is well-known that recall is an unpredictable process resulting in highly variable results
over different trials. We recently introduced the mathematical model of free recall that reproduced well the
average performance of human participants in experiments with randomly assembled lists of words or short
sentences. The model assumes that during recall, each memory item currently recalled triggers a recall of a next
item based on the random symmetric matrix of similarity measures between items in the list. When applying
the model to experimental data, a crucial assumption was made that upon presentation, a certain fraction of
presented items remain in memory that are candidates for recall, and that the number of such items can be
estimated with recognition experiments performed by the same group of participants under identical conditions
of item presentation as in the recall experiments. It is not clear whether this assumption is valid under different
experimental paradigms and with different groups of participants. Here we propose that calculating the variance
of recall performance allows one to formulate interesting predictions that can be tested without performing
recognition experiments. Comparison of model predictions with experimental data on young and old participants
indicates that the same recall algorithm is involved in both groups, even though old participants may have fewer
candidate memory items for recall after presentation.
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I. INTRODUCTION

Memory recall is notoriously unreliable both in real-life
situations and in laboratory settings. Very often people cannot
recall events or facts that they clearly still remember, which is
attested for by later spontaneous or cued retrieval. Therefore,
there is a general belief that memory phenomena cannot be
described by the laws derived from simple principles, neither
on a behavioral level nor physiological. On the behavioral
side, cognitive psychologists have developed several classical
paradigms to study human memory, where participants are
presented with lists of randomly assembled items of various
lengths. In particular, two paradigms that are relevant for
the current study are recognition and free recall. In the first
paradigm, participants are asked to determine whether a par-
ticular item was earlier presented to them. This paradigm can
be used, under some assumptions elaborated later, to estimate
the number of items that remain in memory by the time of the
test. In the second paradigm, participants are simply requested
to recall as many items as they can, in an arbitrary order.
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Comparing the results in these two paradigms, the gap was
observed between the number of items that can be remem-
bered and those that can be recalled [1], indicating that some
remembered items cannot be readily accessed, for unknown
reasons. Many detailed mathematical models of recognition
and recall have been proposed in psychological literature over
the years [2], however, the origin of this gap has not been
specifically addressed. On the physiological side, the domi-
nating view is that memory is a collective effect in dedicated
neuronal networks. It is generally assumed that sparse random
groups of neurons encode each specific memory item via
an attractor mechanism and become active when memory is
recalled or perceived [3,4]. Experimental confirmation for this
picture is provided by the vast literature on stimulus-specific
persistent activity observed during memory tasks in monkeys
(see, e.g., Ref. [5]). More recently, electrical recordings in
human participants also found specific neuronal activations
just prior to stimulus recall [6,7].

We recently introduced a phenomenological model where
free recall is implemented as a trajectory on a highly diluted
graph [8]. The size of the graph is supposed to be the num-
ber of items that remain in memory after the presentation.
This idea emerged from our simulations of sparse associative
memory network of [4] to which we added a neuronal adapta-
tion and temporarily modulated inhibition to cause transitions
between attractors corresponding to different items in the
remembered list [8,9]. This model requires some mechanism
of isolating the remembered items from all other items in the
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long-term memory of the participant, which could come about
either via restoring items in a separate network dedicated
to short-term memory (e.g., hippocampus) or binding them
together via a hierarchical scheme involving a higher-order
encoding of a context of the experiment [10,11]. When simu-
lating the network, we observed that transitions tend to occur
in such a way that the next attractor activated by the network
has the largest overlap with the currently active one [9,12].
We therefore considered the matrix of overlaps between re-
membered items as a symmetric similarity matrix (SM) that
defines the deterministic search process responsible for recall.
The gap between the number of remembered items and the
number of recalled ones is naturally explained by the fact that
the recall process enters a cycle after some number of transi-
tions, after which no new items can be recalled. In the sparse
coding limit, the SM matrix can be approximated as a random
symmetric matrix, resulting in a parameter-free mathematical
model of free recall. This model can be solved to produce an
analytical expression for the average number of items that can
be recalled (R) given the number of remembered items (M)
[13]:

< R >=
√

3π

2
M. (1)

Since this equation has no free parameters to tune, it appears
to be incompatible with numerous observations that recall
performance depends on various aspects of experimental pro-
tocol, such as, e.g., presentation speed of the material or
the age of participants [14–23]. These observations could,
however, be reconciled with the universality of Eq. (1) if
one assumes that all the above observations are explained
by changes in M. To test for this possibility, we recently
performed recall and recognition experiments on the same sets
of participants under equivalent experimental conditions and
found that in all situations that we tested (seven different list
lengths from eight to 512 words and two different presentation
speeds), the experimental results lie surprisingly close to the
predicted relation given by the above equation [13]. Moreover,
we showed that the same relation also holds when lists of
short sentences expressing well-known facts are used instead
of single words, demonstrating some degree of universality of
the obtained results.

In this paper, we present a further mathematical analysis of
our recall model by considering the distribution of the number
of recalled items for a given experimental condition. We begin
by calculating the second moment of the number of items that
can be recalled, < R2 >. The motivation for this analysis, be-
yond mathematical interest, are severalfold. First, we want to
see how well the model predicts the distribution of R obtained
experimentally. Second, as mentioned above, estimating the
number of items in memory from recognition experiments is
not direct and is based on several assumptions. The basis for
this estimation is the relation between the number of items in
memory and the probability for the correct answer to a 2AFC
recognition trial (C), where a randomly chosen item from the
presented list of length L is paired against a lure:

C = 1

2

(
1 + M

L

)
. (2)

This relation is derived by assuming that if the presented item
chosen for recognition is in memory, a participant points to it
securely; if this item is not in memory, a participant chooses
randomly between the presented item and a lure. To justify
Eq. (1), it has to be further assumed that all of the items
that are in memory become candidates for recall on equal
footing. These simplifying assumptions could be violated in
several different ways. For example, the dichotomy between
an item being in memory or not (forgotten) may be false,
and one could recognize an item based on very partial in-
formation, without it being firmly remembered. One could
also imagine that remembered items do not constitute a ho-
mogeneous group that are equal candidates for recall, rather
they could be broken into two or more groups that cannot be
reached from each other. The close agreement between the
model and experimental results achieved in Ref. [13] indicates
that assumptions described above apparently hold for those
experiments but it is not clear how general this conclusion
is when other experimental conditions or other groups of
participants are involved. For example, it is possible that when
delay is introduced between presentation and test, or when
older participants are involved, not all memory items that can
be successfully recognized as familiar can be recalled. As
we will see below, considering the second moment of the
number of recalled items could be a way to address these
issues by deriving the mathematical predictions that can be
tested without knowing the number of words in memory (M),
i.e., without the need for recognition experiments.

II. RESULTS

A. Model

Our model of free recall was introduced in previous pub-
lications [8,13,24]. Briefly, for a given set of items being
recalled (i.e., items that are in memory after the presenta-
tion), we consider a random symmetric matrix of inter-item
similarities. This matrix could, e.g., represent the overlaps
between long-term neuronal encodings of the presented items,
but its precise nature does not have to be agreed on for the
purpose of this paper. We hypothesize that free recall proceeds
according to the following deterministic transition rule: The
first item to be recalled is chosen randomly. After that, each
time an item is recalled, the next item that has the largest
similarity to the current one is chosen, excluding the one that
was recalled just before the current one. For a given SM,
the process just described is an entirely deterministic one,
hence it invariably converges into a cycle after which no new
items can be recalled, and the length of the recall trajectory
corresponds to the number of items recalled on a particular
trial (R). Moreover, as follows by the transition rule, recall is
entirely determined by the position of the largest and second-
largest elements in each row of SM and hence distribution
of recall trajectories does not depend on the distribution of
matrix elements of the SM as long as they are independent
from each other, subject to symmetry constraint. The model
can be illustrated by a graph with each node corresponding
to a memory item and two arrows from each node point to
nodes with either largest or second-largest elements of the
corresponding row of the SM (see Fig. 1 for an example of
a SM and the corresponding recall trajectory).
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FIG. 1. Associative search model of free recall. (a) SM (similar-
ity matrix) for a list of 16 items (schematic). For each recalled item,
the maximal element in the corresponding row is marked with a black
spot, while the second maximal element is marked with a red spot.
(b) A graph with 16 nodes illustrates the items in the list. Recall
trajectory begins with the first node and proceeds to an item with
the largest similarity to the current one (black arrow) or the second
largest one (red arrow) if the item with the largest similarity is the
one recalled just before the current one. When the process returns
to the tenth item, a second subtrajectory is opened up (shown with
thinner arrows) and converges to a cycle after reaching the 12th node
for the second time. Adapted from Ref. [13].

To calculate the statistics of R over different realizations of
SMs, in Ref. [13] we first considered a simpler model where
the SM is chosen to be a matrix of random and independent
elements (i.e., asymmetric), which can be solved analytically.
Indeed, since in this model transitions between all pairs of
items have the same probability 1

M−1 (where M as before is the
number of items in memory), the probability to recall R items
before colliding with a previously recalled one and converging
to a cycle is given by

P(R; M ) =
(

1 − 1

M − 1

)(
1 − 2

M − 1

)

...

(
1 − R − 2

M − 1

)
R − 1

M − 1
. (3)

This expression can be further simplified in the asymptotic
limit of large number of items (M � 1) as

P(R; M ) � R

M
e− ∑R

i=1
R
M � R

M
e− R2

2M , (4)

from which all the moments of R can easily be computed.
We now turn to our original recall model where SM is

a random symmetric matrix. This model is mathematically
considerably more challenging, because (i) due to the SM
symmetry, the probability for the transition between a given
pair of items, say i → j, depends on previous transitions
involving these items; and (ii) the transition rule has memory,
hence collision with the previously recalled item does not
necessarily imply that the process enters into a cycle, rather a
cycle only begins when the transition to the same item repeats
for the second time. As we showed in Ref. [13], asymptot-
ically for large M the probability for the recall process to
collide with each of the previously recalled nodes is 1

2M , i.e.,
one-half of the corresponding probability in the model with
random SM. Moreover, after the collision, the probability
for the process to enter into a cycle is 2/3, otherwise the
process proceeds along the previous trajectory in the opposite
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FIG. 2. Simulations of recall model. Relation between first mo-
ment and variance obtained in simulations (blue), using Eq. (7)
(red) and assuming binomial model (magenta). The ratio between
variance obtained using asymptotic formula and the ones obtained in
simulations is shown in the inset and is slowly approaching 1.

direction until splitting into a new set of items (see Fig. 1
for an example). The probability to collide with each of the
previously recalled item and enter into a cycle is therefore
given by 1

2M
2
3 = 1

3M , as opposed to 1
M in the model with fully

random SM; hence the overall asymptotic probability that the
process enters into a cycle after recalling R items is given by
Eq. (4) with substitution M → 3M,

P(R; M ) � R

3M
e− R2

6M , (5)

resulting in the following asymptotic expressions for the first
two moments of R, m1 = 〈R〉 and m2 = 〈R2〉:

m1(M ) �
√

3π

2
M,

m2(M ) � 6M. (6)

Eliminating M from these equations results in the following
relation between the variance and the mean for the number of
recalled items:

σ 2 �
(

4

π
− 1

)
m2

1, (7)

where σ 2 = m2 − m2
1, i.e., variance in this model scales

quadratcaly with the mean. Since this equation does not ex-
plicitly depend on M, it can, in principle, be tested in recall
experiments alone without performing recognition experi-
ments. One should keep in mind, however, that the above
asymptotic formulas represent the leading order of the corre-
sponding moments for large M and ignore lower order terms,
in particular, the linear correction in the relation between the
variance and the mean of Eq. (7). Currently, we don’t have an
analytical expression for the corrections, hence we resorted to
numerical simulations of the model to access the precision of
the asymptotic expressions (Fig. 2, see Appendix B for de-
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tails). Indeed, one can see the convergence of the asymptotic
value of variance to the one obtained in simulations (Fig. 2,
inset) but this convergence happens at rather large values of
m1. In the following analysis, we therefore used the numerical
dependence of variance on m1 rather than the asymptotic
one. As a simple alternative to our model, we considered a
scheme where each item is recalled independently from the
others with probability p = m1

M , which results in the binomial
distribution for the number of recalled items with mean m1

and variance,

σ 2
B = m1

(
1 − m1

M

)
, (8)

which asymptotes to m1 for large M. In summary, this naive
model results in a much more narrow distribution of recalls
compared to the model introduced above.

The above results shown in Fig. 2 allow us to test pre-
dictions of the model without knowing the number of words
in memory, i.e., without performing recognition experiments.
However, before applying this analysis to experimental data,
one has to take into account that they were obtained assuming
that the number of items in memory (M) is fixed for all
trials. This is, however, not the case when different lists are
presented to the diverse group of participants (remember in
our experiments each participant performed a single recall
trial). Hence the above results provide the lower bound for
the variance for a given first moment rather than the true
estimate, and therefore should not be directly compared to
experimental data. To get the possible range of variance values
for a given mean, we derive its upper bound value. As shown
in Appendix A, the upper bound for the variance is achieved
when in some of the trials all words in the list are remembered
(M = L) and in the others none are remembered (M = 0):

σ 2
u = m1

m2
1(L) + σ 2(L)

m1(L)
− m2

1,

0 � m1 � m1(L), (9)

where m1 and σ 2 stand for the mean and the variance of
recalls for a distribution of M, while m1(L) and σ 2(L) refer
to the mean and the variance of R for the fixed number of
words in memory, M = L. As opposed to the lower bound,
the upper bound for the variance given the mean explicitly
depends on the number of items in the list, L. For a given set
of data with the particular list length, the position of the point
with coordinates (m1, σ

2) depends on the spread of M val-
ues across trials (participants), being closer to lower (upper)
bound for narrower (wider) distributions of M between trials,
correspondingly.

B. Experiments

Before applying the above analysis to the data of Ref. [13],
we consider the large data set of multiple free recall experi-
ments performed by 270 participants over the course of seven
daily sessions, each session consisting of 16 lists of 16 words,
each list presented and recalled one by one. This data set was
collected in the laboratory of Prof. Michael Kahana (UPenn)
and initial part of it was presented in Ref. [22] where more
experimental details can be found. A larger part of this set
was previously analyzed by us in Ref. [25]. As we showed
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FIG. 3. Variance versus first moment in Kahana experiment.
(a) Average daily performance in recall experiment. (b) First moment
and variance of the recall of random lists of words by students, sep-
arately for each session (dark blue circles) and for older participants
(light blue diamond). Dark green (black) line is the lower (upper)
bound for the variance given the mean. Magenta circle represents the
mean and the variance of the binomial model described in the text.

in that publication, recall performance gradually increases for
the first four daily sessions before saturating, accompanied by
developing a more structured recall, in particular, exhibiting
either chaining (recalling groups of words in the original or-
der) or chunking (recalling groups of consecutively presented
words one after another before switching to another group).
We therefore considered each daily session separately for the
analysis of the average and variance of the number of words
recalled. The average performance over the days is shown in
Fig. 3(a), and the variance versus mean results for each day are
shown in Fig. 3(b), overlaid on the relevant range of possible
values of m1 and σ 2 as predicted by the model. Remarkably,
the results for the first session are very close to the right upper
corner of the relevant range, compatible with the model if all
the participants remember all 16 words at each trial (M = L),
which appears reasonable for such short lists when experi-
ments are performed by students in the laboratory. In other
words, given that the average recall performance is the max-
imal possible for L = 16 according to the theoretical Eq. (1),
the model correctly predicts both the mean and the variance of
the performance across all trials on the first day without any
tuning. For subsequent days, the average performance exceeds
the maximal one predicted by the model, which we believe is
explained by various deviations from the fully random recall
assumed in the model, as analyzed in Ref. [25]. For compar-
ison, the naive binomial model predicts the variance that is
significantly smaller than the observed one.

We also considered an additional, smaller data set obtained
in the same laboratory with 38 older participants (61–85 years
old) performing the same experiments [26]). Unsurprisingly,
older participants recall fewer words on average, consistent
with the wide literature on the effects of aging on memory
(see, e.g., Ref. [27]). Since recognition experiments were not
performed on old participants for lists of the same length, we
cannot directly estimate the average number of words they
remember after presentation. Computing the variance is thus
the only way to compare the data to the model. Indeed, we
see that the variance of recall performance of these older
participants lies within the region compatible with the model,
in fact, quite close to the lower bound, indicating that recall in
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FIG. 4. Variance versus mean of recall performance. Relation
between mean (m1, x axis) and variance (var, y axis) for the number of
recalled items obtained in Naim et al. [13] are shown. Experimental
results for each presentation length (L) are shown in separate panel.
Green curve corresponds to theoretical lower bound described by
Eq. (7), and black line corresponds to L-dependent upper bound
described by Eqs. (9). Blue circles correspond to lists of words with
the presentation speed 1.5 s per word; orange circles correspond to
random lists of words with the presentation speed 1 s per word;
and orange circles correspond lists of short sentences representing
well-known facts.

old participants is governed by the same search algorithm as
in younger participants.

We then reanalyzed the results presented in our pre-
vious publication [13]. In that study, groups of partici-
pants performed recall and recognition experiments under
identical presentation conditions chosen from the set of
18 conditions, namely, seven list lengths of nouns (L =
8, 16, 32, 64, 128, 256) presented at two speeds 1 s per word
and 1.5 s per word and four lists of general facts with four
lengths (L = 8, 16, 32, 64) presented at 3 s per fact. Each
participant performed one recall trial of a particular list and
one recognition trial for another list of the same type (words or
facts, length and presentation speed). In the recognition trial,
one item from the list was paired with a novel item and the
participant was requested to report which one of them was
taken from the presented list (two-alternative forced choice
protocol). Only one recognition trial per list was employed
to prevent a well-known effect of response interference (see

Ref. [28]). For each experimental condition, the average (over
the corresponding group of participants) number of items that
were encoded in memory after the presentation (M) was then
estimated from the number of correct recognition answers
using Eq. (2), but the procedure did not allow estimation of
M for each individual participant. Here we reanalyzed this
data and calculated the mean and the variance of the number
of recalled items across participants for each experimental
condition. In Fig. 4, we present these results separately for
each list length. As we can see, all data points lie in the ap-
propriate regions between lower and upper limits of variance
calculated above, i.e., the data is compatible with the model.
We then used both measures to independently estimate, for
each condition, (i) the average number of items in memory
after the presentation (〈M〉) and (ii) the distribution of the
number of recalled items, P(R). The difficulty of this estima-
tion lies in the fact that we have no way to know how M is
distributed across trials (participants). We therefore assume
that distribution of M for each condition is given by the
Gaussian distribution truncated between 0 and L:

P(M ) ∼ eα(M−μ)2

0 � M � L. (10)

The rationale for this choice is that the truncated Gaussian dis-
tribution has a maximal entropy over all distributions bounded
in a region, for fixed mean and variance [29]. Moreover, the
truncated Gaussian distribution, by varying α and μ in the
range of −∞ to +∞, gives the whole range of distributions
from a single delta function at the intermediate value of M
to the sum of two delta functions at M = 0 and M = L,
corresponding to the lower and the upper bound of the vari-
ance given the mean. We therefore find the parameters of the
truncated Gaussian distribution of M that results in the best
fit to both moments of R measured in our experiments (see

0 0.5 1
fraction of remembered items

data

0

0.2

0.4

0.6

0.8

1

fr
ac

ti
o

n
 o

f 
re

m
em

b
er

ed
 it

em
s

m
o

d
el

(a)

w1.5

w1

facts

0 0.5 1
fraction of remembered items

data

0

0.2

0.4

0.6

0.8

1

fr
ac

ti
o

n
 o

f 
re

m
em

b
er

ed
 it

em
s

m
o

d
el

(b)

FIG. 5. Number of remembered items. Comparison between the
number of remembered items M estimated in recognition experiment
(x axis [13]) and using only recall data for the same experimental
condition (y axis). (a) M along y axis is computed as the average
of the inferred distribution of M from the mean and the variance of
recall (see details in Appendix C). (b) Same as (a) but M is assumed
to be the same for all trials for a given condition. Both: As in Fig. 4,
blue circles correspond to random lists of words with presentation
speed 1.5 s per word; orange circles correspond to random lists
of words with presentation speed 1 s per word and orange circles
correspond to lists of short sentences representing well-known facts.
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TABLE I. Kolmogorov-Smirnov test for estimated recall distributions. P values for two sample Kolmogorov-Smirnov tests are presented
for each condition in Naim et al. [13] experiments.

Based on two-moment estimation Based on first moment estimation

L 1.5 s per noun 1 s per noun Short sentences L 1.5 s per noun 1 s per noun Short sentences

8 0.927 0.635 0.715 8 0.007 0.007 0.017
16 0.997 1.000 0.389 16 0.196 0.364 0.001
32 0.343 0.942 0.996 32 0.005 0.796 0.436
64 0.997 0.046 0.938 64 0.341 0.408 0.691
128 0.999 0.768 128 0.528 0.020
256 0.981 1.000 256 0.379 0.044
512 0.466 0.647 512 0.407 0.038

Appendix C). We emphasize that this procedure only uses the
results of the recall experiment. We then calculated the aver-
age value of M from this distribution and compared it to the
same value estimated independently with recognition experi-
ments (see Ref. [13]). As we see from Fig. 5(a), two estimates
are quite close for all experimental conditions. Moreover,
we found that the distributions of recalls are similar to the
experimentally obtained ones (see Table I for Kolmogorov-
Smirnov statistics and Fig. 6 for examples; other comparisons
are shown in Appendix C). It is important to note that in these
estimates, recall variance plays an important role; if neglected,
simply assuming that all participants remembered the same

number of items M (such that m1 ≈
√

3π
2 M), theoretical pre-

dictions for 〈M〉 (=M in this case) and P(R) are less accurate
(compare Figs. 5(a) and 5(b) and left and right parts of Ta-
ble I). In summary, we demonstrate with the above analysis
that the model accounts well for the whole distribution of
recall performance for all experimental conditions of Ref. [13]
and not only for the average performance.

The inferred distributions of M shown in Fig. 6 are quite
wide, indicating that the number of items in memory after
presentation of the list is very different for different people
(trials). Since each participant performs only one recognition
task (with one presentation of a correct item versus lure), we
cannot know how much of this variability is due to different
acquisition abilities of different people and how much is due

to different lists and other factors like attention, etc. Moreover,
we don’t believe that our estimation of distributions of M
is very reliable because the effect of P(M ) on mean and
variance of recall performance is not very strong. To illustrate
this issue, we simulated recall performance for L = 256 for
four different distributions of M of constant mean, from a
single delta function, corresponding to the lowest bound for
the variance of recall, to a sum of two delta functions at
M = 0 and M = L, corresponding to the upper bound of the
variance. Results are shown in Fig. 7. One can see that the
recall distribution corresponding to the flat distribution of M is
not very different from the one corresponding to a single delta-
function distribution of M; nevertheless, as we showed above,
inferred distributions of M agree better with recognition
experiments.

III. DISCUSSION

Given that human memory is a complex multistage pro-
cess, it is remarkable that some aspects of it can be described
by universal analytical expression like Eq. (1). In the current
contribution, we showed that statistics of free recall of ran-
domly assembled lists of words is faithfully described by the
model introduced in Ref. [13], giving further support to the
hypothesized search process based on long-term representa-
tions of memory items. Moreover, going beyond the average
recall performance and analyzing the variance allowed us to
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FIG. 6. Top two rows: Comparison between distributions of the number of words recalled for the data and simulated by the model for
L = 32. Bottom row: Estimated distribution for the number of remembered words.
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FIG. 7. Sensitivity of the distribution of R to changes of parame-
ters of truncated Gaussian distribution of M. (a) Four distributions of
M are shown with mean of 128 and increasing variance, from a single
delta-function (magenta) to two delta functions at M = 0 and M =
L = 256 (blue). (b) Distributions of R corresponding to distributions
of M shown in (a), obtained in simulations. (c) Mean and variance
of R for distributions of M from (a), overlaid on the lower and upper
bounds of recall variance. (d) Mean and standard deviation of R as a
function of variance in M [numerically computed using distributions
shown in (a)]. All four distributions of M were computed using
truncated Gaussian ansatz of Eq. (10) with parameters μ = 128 and
α = −0.305176, 0, 0.00305176, 30.5176 for magenta, red, yellow,
and blue distributions, correspondingly.

estimate the number of memory items that were stored in
memory immediately prior to recall that agreed well with in-
dependent estimates from recognition experiments. This result
supports the assumption made in Ref. [13] that recognition
experiments can indeed be used to estimate the number of
memory items that are candidates for recall following the
acquisition. Other models assume that each item presented
during acquisition remains in memory to a certain extent and
recognition is based on the strength of a familiarity signal for
a given item (see, e.g., Ref. [30]). Whether these models can
account for the relation between the results of recognition and
recall experiments presented in Ref. [13] is an open issue for
future studies.

In addition to our experimental results obtained with
MTurk, we analyzed the data set from the laboratory of
Kahana obtained in the laboratory conditions, with young

participants (students) performing multiple recall experiments
with lists of 16 words over the course of several daily ses-
sions [22]. As we showed previously in Ref. [25], recall
performance averaged across participants exhibited a steady
improvement for the first four days before reaching a steady
level. Interestingly, we observed that performance on the first
day was well fit to the model predictions in terms of both
moments, if participants kept all 16 words in memory imme-
diately after presentation. Unfortunately, this prediction of the
analysis cannot be directly verified because participants of this
study did not perform recognition experiments on individual
lists of 16 words. We also considered recall statistics for the
small group of 38 older participants collected by Kahana
laboratory and presented in Ref. [26]. Unsurprisingly, old
participants recalled fewer words on average than young ones
(6.34 vs 8.7). The variance of the number of recalled words for
these participants was well within the region compatible with
our model. It therefore appears that recall in old participants
follows the same process as in younger ones but with fewer
words that remain in memory after presentation. This tentative
conclusion contradicts previous observations that recognition
performance of older people is not different from younger
ones [31]. In the more recent experiments in Kahana lab-
oratory [32], 38 old participants, whose recall performance
we analyzed above, on average exhibited poorer recognition
performance compared to their younger peers when tested at
the end of the recall session with all the words presented on the
same day (16 lists with 256 words in total), in particular, they
more often indicated new words as old (false alarms), with no
observable difference in correct identifications. The authors
applied their previously introduced Temporal Context Model
2 (TCM2) to these data to search for differences between
old and young participants. TCM2 is a rather complex model
characterized by multiple processes with a correspondingly
large number of parameters, and the best account for the
results requires changing six of them, in particular, corre-
sponding to the interaction between representations of words
and contexts. Given these controversies, we believe that more
careful studies of recognition with old participants are war-
ranted.

To conclude, we believe that considering statistics of
memory performance, in particular, higher moments of the
distribution of performance measures, is a fruitful approach
to test various models against the data. The relation between
first and second moments in our previously performed exper-
iments is compatible with the free recall model of Ref. [13]
but other experimental conditions, in particular when delays
are introduced between acquisition and recall or when older
participants are involved, should be more carefully studied in
future experiments.

ACKNOWLEDGMENTS

We would like to thank Drs. Michael Kahana and Nicolas
Lenner for helpful discussions that triggered this study. This
research has received funding from the European Union’s
Horizon 2020 Framework Programme for Research and In-
novation under the Specific Grant Agreement No. 785907
(Human Brain Project SGA2); EU-M-GATE 765549, Is-

033090-7



MIKHAIL KATKOV AND MISHA TSODYKS PHYSICAL REVIEW RESEARCH 4, 033090 (2022)

data - 53 participants, L= 8, 1.5 sec per words 

0 5 10 15 20
0

0.1

0.2

0 5 10 15 20
number of words recallled

0

0.1

0.2

p
ro

b
al

ili
ty

0 1 2 3 4 5 6 7 8
number of words remembered

0

0.2

0.4

data - 33 participants, L= 8, 1 second per word

0 5 10 15 20
0

0.2

0.4

0 5 10 15 20
number of words recallled

0

0.1

0.2

p
ro

b
al

ili
ty

0 1 2 3 4 5 6 7 8
number of words remembered

0

0.1

0.2

data - 73 participants, L= 8, simple sentences

0 5 10 15 20
0

0.1

0.2

0 5 10 15 20
number of words recallled

0

0.1

0.2

p
ro

b
al

ili
ty

0 1 2 3 4 5 6 7 8
number of words remembered

0

0.1

0.2

FIG. 8. Top two rows: Comparison between distributions of the number of words recalled for the data and simulated by the model for
L = 8. Bottom row: Estimated distribution for the number of remembered words.
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APPENDIX A: DERIVATION OF THE UPPER BOUND OF
THE VARIANCE OF THE NUMBER OF RECALLED

WORDS

Here we consider the maximal value for the second mo-
ment of the number of recalled items given the first moment,
for lists of length L. The corresponding expression is given by
the equation

m2 =
∫ L

0
dMP(M )m2(M ), (A1)

where P(M ) is the probability density function (pdf) for the
number of items in memory and m2(M ) is the second moment
of the number of recalled items for fixed value of M [i.e.,
when P(x) = δ(x − M )]. We are interested in finding P(M )
that maximizes this expression, given the constraint on the
first moment:

m1 =
∫ L

0
dMP(M )m1(M ). (A2)

Additional constraint should guarantee the normalization con-
dition,

∫ L
0 dMP(M ) = 1. Since the expressions for the second

moment (that is being maximized) and both constraints are
linear functionals of P(M ), it is easy to demonstrate that at
the maximum, the function P(M ) has to be zero everywhere
except for a discrete set of points, i.e., given by a sum of delta
functions. We can then show that for our form of functions
m1(M ) and m2(M ) the maximum is achieved for P(M ) =
(1 − c)δ(M ) + cδ(M − L), i.e., sum of delta functions at two
extreme values of M. To prove that this is indeed the case, con-
sider adding a third delta function at the intermediate value of
M: P(M ) = (1 − c − c1)δ(M ) + cδ(M − L) + c1δ(M − M1),
where 0 < M1 < L. Substituting this ansatz to Eq. (A1) and
taking into account the constraint for the first moment from
Eq. (A2) results in the following expression for the second
moment as a function of c1:

m2 = m1
m2(L)

m1(L)
+ c1m1(M1)

(
m2(M1)

m1(M1)
− m2(L)

m1(L)

)
. (A3)

Given the above form for the moments, the ratio of the second
and first moments, m2(M )

m1(M ) is an increasing function of M, hence
the last term in brackets in this equation is negative and the
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FIG. 9. Top two rows: Comparison between distributions of the number of words recalled for the data and simulated by the model for
L = 16. Bottom row: Estimated distribution for the number of remembered words.
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data - 86 participants, L= 64, 1.5 sec per words 
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FIG. 10. Top two rows: Comparison between distributions of the number of words recalled for the data and simulated by the model for
L = 64. Bottom row: Estimated distribution for the number of remembered words.

maximum of the second moment, and hence the variance, is
obtained for c1 = 0, resulting in Eqs. (9) of the main text.

APPENDIX B: SIMULATION OF MOMENTS FOR
SYMMETRIC RANDOM MATRIX

To obtain first and second moments of recall performance
for fixed M, m1(M ), and m2(M ), we simulated 105 trials of
the free recall model [13] for each list length M from 4 to
512 using software provided in Ref. [24]. To obtain the upper
bound, we used Eqs. (9).

APPENDIX C: RECALL DISTRIBUTIONS

Figure 8–13 show the comparison between distributions for
the number of recalled items obtained in Ref. [13] and simu-
lated ones. In these simulations, instead of assuming that all
participants remember the same number of items, we assumed
that there is a distribution of the number of items participants
remember before recall. Since we have no additional informa-
tion, we used truncated Gaussian distributions as a maximum

entropy distribution with mean and variance constrained. In
particular, this class of distributions can describe the case
where all participants remember the same number of items
as a limiting case.

The truncated Gaussian has two free parameters to fit,
as seen from Eq. (10). We optimized the squared difference
between m1 and m2 measured in Ref. [13] and obtained in
simulations with much larger weight assigned for m1 than m2

differences (see below). More specifically, we proceeded in
iterations, where around 25 iterations were sufficient to find
the optimal values of μ and α, with errors defined by finite
sampling. Each iteration consisted of drawing 20 random sam-
ples of μ and α, normally distributed, with each sample having
different standard deviations. More specifically, for samples
k = 1..20, standard deviations were 10−k/4. For each set of
μ and σ , we simulated 106 recall trials. For each trial, we
drew the number of items available for recall Mi, i = 1..106

from the truncated Gaussian with the current parameters.
Then we simulated recall for this Mi using our model from
Refs. [8,13,24] to obtain the number of recalled items Ri. Once
all Ri were collected, we computed m1 and m2. The score was

data - 73 participants, L= 128, 1.5 sec per words 
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FIG. 11. Top two rows: Comparison between distributions of the number of words recalled for the data and simulated by the model for
L = 128. Bottom row: Estimated distribution for the number of remembered words.
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data - 81 participants, L= 256, 1.5 sec per words 
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FIG. 12. Top two rows: Comparison between distributions of the number of words recalled for the data and simulated by the model for
L = 256. Bottom row: Estimated distribution for the number of remembered words.

computed as 109(m1,d − m1,s)2 + (m2,d − m2,s)2, where m◦,d
are moments obtained in experiment, and m◦,s are moments
obtained form simulations. Then the set of parameters pro-
viding the smallest score was chosen for the next iteration.
Having large weight on m1 difference practically fixes m1 to
its experimental value. Despite the fact that we only optimized
for two moments, the overall distributions are very similar

for optimal values, such that the Kolmogorov-Smirnov test
could not reject the SM hypothesis (at 5% threshold) for all
18 cases except one (L = 64, presentation speed 1s per word).
In Figs. 8 to 13, in the middle rows, subsamples of the same
size as data were randomly selected from the sample used to
compute the Kolmogorov-Smirnov test, to visualize data, and
simulation distributions.

data - 75 participants, L= 512, 1.5 sec per words 
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FIG. 13. Top two rows: Comparison between distributions of the number of words recalled for the data and simulated by the model for
L = 512. Bottom row: Estimated distribution for the number of remembered words.
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