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Decoding silence in free recall
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1Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
2Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA

3Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo
113-8656, Japan

(Received 12 January 2022; accepted 16 May 2022; published 1 August 2022)

This article is part of the Physical Review Research collection titled Physics of Neuroscience.

In experiments on free recall from lists of items, not all memory retrievals are necessarily reported. Previous
studies investigated unreported retrievals by attempting to induce their externalization. We show that, without any
intervention, their statistics may be directly estimated through a model-free analysis of inter-response times—
the silent intervals between recalls. A delay attributable to unreported recalls emerges in three situations: if
the final item was already recalled (“silent recency effect”); if the item that, within the list, follows the latest
recalled item was already recalled (“silent contiguity effect”); and in sequential recalls within high-performing
trials (“sequential slowdown”). We endeavor to model all these effects through a stochastic process where the
discarding of recalled items without reporting (“bouncing”) occurs either if they are repetitious or, in strategically
organized trials, if they are not sequential. Based on our findings, we propose various approaches to further
probing the submerged dynamics of memory retrieval. This article is part of the Physical Review Research
collection titled Physics of Neuroscience.
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I. INTRODUCTION

Human memory recall has come to be increasingly re-
garded as a multilayered process, driven by the interplay of
free association and higher cognitive operations [1–5]. Var-
ious neuroimaging tools are being deployed to study what
has been termed postretrieval mechanisms, a set of mecha-
nisms aimed at monitoring and evaluating retrieved memories
[6–10]. Evidence points toward a wide-ranging involvement
in the top-down control of memory recall by prefrontal
[11,12], frontal [13], and parietal [14] areas. Ventrolateral
prefrontal cortex (VLPFC), in particular, has been argued
to implement a postretrieval selection process [10] that is
stronger if task-irrelevant representations are dominant; elec-
trodes implanted in VLPFC [5] were observed to increase
their activity a few hundred milliseconds after the onset of
the recall stage, consistent with a top-down postretrieval feed-
back. The general breadth and organization of postretrieval
processes, however, remain unknown.

An ideal setting for addressing the question is the exper-
imental paradigm known as free recall [15–19], which has
provided insight into all facets of human episodic memory
for over a century [20,21]. Free-recall experiments include a
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presentation stage and a recall stage; the former consists in
the presentation of a list of items (often words), and the latter
consists in the recall of those items (usually reported verbally
by subjects) with no constraint on the ordering. The aim is
to maximize performance, defined as the number of distinct
items recalled correctly. (For a comprehensive description of
both experiments and theories, see Ref. [22].)

On the basis of existent modeling approaches, results on
free recall that have accumulated in the literature may be
subsumed under two classes: results that have been conven-
tionally modeled without invoking postretrieval mechanisms;
and results that are, more or less implicitly, understood to
originate in postretrieval feedback.

Within the former group, the most studied effects con-
cern the serial position of recalled items, i.e., their order
within the list presented. The recency and primacy effects [16]
are the preferential tendency to recall items from the begin-
ning and the end of the list, respectively. The difference in
serial position between two consecutively recalled items is
called “serial-position lag,” and the lag-recency or contiguity
effect [23] is a bias toward small lags, i.e., the tendency to
recall contiguously items that are contiguous within the list
[24,25]. The additional tendency to recall in forward order
(“forward asymmetry”) makes lag L = +1 the most frequent
transition, which we will refer to as “sequential” [26]. All
these results have been conventionally modeled without as-
suming any postretrieval mechanism [22].

In parallel, there is a body of work showing evidence for
postretrieval mechanisms such as, notably, repetition avoid-
ance. Repetition avoidance is indirectly evidenced by various
experimental facts. For example, in serial recall, where items
must be recalled in their order, fewer intrusions (words
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reported erroneously but not belonging to the lists) were found
to correlate with better recall of the final item [27]; this was
attributed to the fact that recall of the final item is boosted by
repetition avoidance and becomes harder if fewer items are
blocked as repetitious. More detailed descriptions of repeti-
tion avoidance were worked out with other models [28,29].
Since it is difficult to examine all possible models, it would be
desirable to develop model-free approaches to extract infor-
mation on unreported events from ordinary free-recall data.

Another topic that has been the focus of a large amount
of attention is retrieval properties (such as recall strategies)
not at the level of individual recalls but observed consistently
within individual trials. This includes chunking, i.e., retrieving
consecutive items in one group, and serializing, i.e., retriev-
ing items in their serial order [1,4,30,31]. Such strategies
are mostly consistent within a trial and considered to be a
characteristic of trials rather than recalls. They were shown
to be effective in boosting performance but are implemented
by a minority of subjects and even by those only in a fraction
of trials [30]. In fact, they are often developed and refined
over the length of an experimental session as each subject
learns from his performance in previous trials [32]. While
some recall strategies are related to chunking, it has long
since been known that a particularly advantageous strategy
consists in waiving the freedom perk of free recall by seri-
alizing [30,31,33]. Sticking to such strategies should involve
discarding any retrieval that does not fit the prescribed recall
sequence.

One approach to unraveling the histories of unreported
recalls consists in directly demanding that subjects externalize
them. This type of interventionism was attempted as early as
with the “unedited recall” experiments of Ref. [34], where
subjects were instructed to express all items that came across
their mind. Such experiments suggest that there are more
items recalled than reported; moreover, they have provided
further support to the idea that termination is predominantly
triggered by repetition [35]. Although such an experimen-
tal procedure was shown to yield results coherent with the
“edited” (i.e., regular) version of free recall [36] and was con-
sequently proposed as a method to explore age dependence
[37], memory capacity [38], and intrusions [29], self-reporting
obviously involves physical bounds on the time resolution
and, potentially, biases created by the additional instruction
[39]. Whether or not such data offer an exact representation
of thought processes taking place during ordinary free recall
is also a question.

Here, we sidestep both the caveats of the externalization
paradigm and, in our opening foray, the problem of selecting
a model. We focus instead on the model-free analysis of one
specific behavioral observable—the time that elapses between
consecutive recalls, also known as the inter-recall interval or
IRI [40–43].

During the recall stage of a typical free-recall trial, the first
few recalled items are reported rather quickly; in contrast, to-
wards the end of the trial the IRIs drastically increase [44,45].
Many features of this growth were shown to be reproduced
by a pure-death process, in which items are sampled with
replacement from a pool of listed items [45–47]. Crucially,
in that model it is assumed that only items that have not been
reported so far are admissible, and thus, when the other items

(a) (b)

FIG. 1. Two features of free recall. (a) Paucity of observed output
repetitions as compared with chance level (for details of chance level
estimation, see Fig. S2). (b) Fraction of sequential recalls in a trial
as a function of trial performance (i.e., number of recalled items).
The mean curve is shown, while the standard error of the mean is too
small to plot. The red arrow highlights the presence of an inflection
point, where the slope starts to increase.

are drawn, they are simply discarded. Because towards the end
of a trial there are many previously recalled (hence nonad-
missible) items, many samples have to be drawn on average,
and thus IRIs increase. Although the pure-death model is very
simplistic, its structure suggests that a form of postretrieval
editing takes place during the recall phase and that only some
of the sampled (retrieved) items are reported.

We will argue that a careful but straightforward analysis of
both the history of reported recalls and the recorded IRIs can
allow us to uncover hidden retrievals that are suppressed by
the participants. We will then buttress our model-free analysis
of data by means of a toy model chosen for its simplicity
and capability to explain simultaneously different types of
unreported recalls.

II. TWO FREE-RECALL PHENOMENA

The data we considered, collected by the Computational
Memory Laboratory at the University of Pennsylvania, con-
cern experiments performed with lists of N = 16 words (see
Appendix A). The data set displayed standard serial-position
effects (with recency and primacy emerging as in Fig. S1 of
the Supplemental Material [48]).

We begin by pointing out two general facts in the data.
(a) Although repetitions are not expressly forbidden and

are duly recorded by the experimenter, the number of
repetition-free trials is remarkably large. This statement can
be made precise by adopting as chance level a basic Markov
model of transitions among reported recalls [49] equipped
with a sink state for termination (calculation of the chance
level is fully detailed in the caption of Fig. S2). We thus
find that the number of repetition-free trials is about twice
the chance level [Fig. 1(a)]. This fact agrees with previous
inquiries (see Introduction) and indicates that subjects have
a spontaneous tendency toward not reporting twice the same
recall (see Fig. S2 for a more detailed comparison of the
repetition statistics to chance level in the data).

(b) We define “trial sequentiality” as the fraction of sequen-
tial recalls in the trial. Trial sequentiality is a peculiar function
of trial performance; as shown in Fig. 1(b), not only does
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FIG. 2. Schematic depiction of bouncing. Intervention over the
free-association process by “bouncing” simultaneously explains
paucity of observed repetitions and higher sequentiality of high-
performance trials. Here, a five-item list is presented in two separate
trials leading to an instance of repetition bouncing (a) or one of
strategic bouncing (b). During the presentation stage of free recall
[(a1) and (b1)] a subject is presented visually or orally with a list
of L items (here, L = 5 words). Memories of exposure to each of
the items are stored in such a way that mental transitions among
memories have unequal probabilities represented in (a2) and (b2) by
the shades of gray of the arrows. During the recall stage (a3), the
subject instantiates a mental trajectory through those memories [(a3)
and (b3)]. Nothing prevents the sequence of retrieved memories from
containing an unlimited number of repetitions [as, for example, in
(a3) and (a4)], but the output is devoid of repetitions (a5), posing the
problem of whether some retrievals are discarded. In addition, a ten-
dency toward sequentiality in high-performing trials is also observed
(b5), posing the problem of whether nonsequential transitions have
been actively avoided [as when stepping back from “toy” to “sun” in
(b3) and (b4)].

higher trial sequentiality correspond to higher performance
but also this increasing curve appears to accelerate at an in-
flection point midperformance.

If one reaches for the simplest explanations by postretrieval
processes, those two seemingly unrelated facts appear to share
some key features.

(i) In both phenomena, the extra mechanism at work with
free association can be described as the avoidance of op-
tions in principle provided by free association—repetitious
retrievals [fact (a)] and nonsequential retrievals [fact (b)].

(ii) While the avoidance has different motives in the two
cases and could be implemented in different brain areas, it
may be assumed to operate in a de facto similar way, with
each free association move being allowed or disallowed by a
dedicated module depending on whether the retrieval meets a
specific criterion (novelty or sequentiality).

These empirical observations lead to our working hypoth-
esis, illustrated in Fig. 2. To denote the active avoidance of
free-association recalls, we use hereinafter the word “bounc-
ing.” We distinguish two forms of bouncing: firstly, the
avoidance of recalls that would yield repetition (cf. Introduc-
tion), which we call “repetition bouncing”, and, secondly, the
avoidance of recalls that would not obey a sequential ordering.
We refer to this latter type as “strategic” bouncing because it

is known that a bias toward sequentiality boosts performance
[33] and, as will be seen below, it is observed selectively in
high-performance trials.

In the rest of this paper, we report on our testing of the
bouncing hypothesis from two complementary fronts—data
mining and mathematical modeling. On the side of data min-
ing, we exploit the large size of the data set to tease out
information not explicitly reported by individual subjects,
with the aim of uncovering what has not been verbally out-
putted. On the side of modeling, we articulate the above
intuitions as a streamlined theory that represents free recall
without bouncing as a Markov process and bouncing as a
non-Markovian add-on, and compare predictions of the theory
with observed features of the data.

III. MODEL-FREE ANALYSIS OF RECALL DELAYS

If a mechanism exists by which the free-association pro-
cess is corrected, unwinded, or rebooted, given that this
prevents the outputting of some retrieved items, it will not
leave direct traces within the record of recalled items. Yet,
it may produce temporal delays in recall transitions where the
process is activated. In Fig. 2(a), for example, the word “sun”
will be recalled more slowly because first the word “zoo” was
retrieved and discarded. A natural approach is thus to hunt for
traces of those delays in the recorded IRIs. To do so, the first
obligatory step is an a priori analysis of the main potential
confounders.

Following convention [22], we will call the ordered posi-
tion of an item within the sequence of recalls reported during
the recall stage the “output position.” It can be a positive
number if counted from the beginning of the recall process or
a negative number if counted from the end (number of extant
recalls to the end of the trial). For example, in the trial of
Fig. 2(a), the word “ash” has output position = +2 or = −3.
If trials with different performance are included, there is no
fixed correspondence between positive and negative counting
of outputs. It was shown in Ref. [45] that the distribution
of IRIs is characterized by negative output position. This is
indeed apparent in the data set under consideration, where
dependence on the negative output position alone explains
about 20% of the variance (Fig. S3). Note that the time in-
terval from the onset of the recall stage to the first recall at
output position = +1 is not an IRI but will be included for
convenience among the IRIs and this does not qualitatively
change our results.

Upon subgrouping all recall events by their negative output
position, we compare events occurring before and after the
item in a given serial position has been recalled [Fig. 3(a)]. Af-
ter recall of an item, its repetitious retrieval becomes possible.
If such a retrieval comes to mind, it would be associated with
a positive time delay. In other words, systematic bouncing
against the item in a given serial position will be expected to
make the postrecall IRI larger than the prerecall IRI for every
output position (see Appendix B for details of the analyses).
This turns out to be true for the last item in the list regardless
of the output position [Figs. 3(a) and 3(b)]. If the final item has
already been recalled, all else being equal, a delay is found to
occur in the recall process.
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(a)

(b)

FIG. 3. Empirical evidence for a higher-order “silent recency
effect” in free recall. (a) Difference between mean IRIs when sub-
sampling on the basis of whether the item with a given serial position
on the list has already been recalled or not. A histogram was made of
the IRIs excluding recalls of the item with the given serial position
also when it is not yet recalled. The serial position concerned is
shown on the x axis, and plot markers encode the significance as
defined by a Mann-Whitney U -test P value lower than 10−3 (star,
significant; circle, nonsignificant). (b) Histogram (hist.) of the IRIs
for recalls of items other than the final one, plotted separately for
each output position and for the two conditions where the final item
has already been recalled or not. The scale of the IRIs is logarithmic.
The P value from the Mann-Whitney U test is encoded as follows:
circle, P > P∗ = 10−3; one star, P∗ = 10−3 > P > 10−4; two stars,
10−4 > P. A previously occurring recall of the final item is statisti-
cally associated with a delay in the recall of other items. Subjects are
seen to rush for the final output because of the imposed time-out.

The fact that the final item appears to be a preferential
bouncing target is a nontrivial manifestation of the recency
effect (cf. Introduction). The delay associated with potential
repetition of the final item can thus be thought of as a “silent
recency effect”; the quantitative strength of memory depends
on serial position, and given that the attraction of the most
recent memory from the list is the strongest, it stays such even
after that memory has been recalled. Therefore subsequent
recalls are slowed down through reversions to that item. The
absence of a corresponding silent primacy, on the other hand,
is an unexpected finding. It may be related to the observation
that recency typically appears earlier than primacy in the
recall process [Fig. S1(b)] as the early recall of an item makes
it more likely to be bounced afterwards.

A similar analysis can be performed by comparing the
conditions in which the retrieval transition with a given serial-
position lag would pass the repetition screening or not. The
mean IRI in these two conditions can again be compared,
to check for a delay associated with the possible discard of
such retrievals (technical aspects in Appendix B). A consid-
eration that can guide expectations on the outcome is that, as
mentioned in the Introduction, the most likely lag to occur is

(a)

(b)

FIG. 4. Empirical evidence for a “silent contiguity effect.”
(a) Difference between mean IRIs when subsampling on the basis
of whether the item situated at a certain fixed lag from the last recall
has already been recalled or not. The lag position concerned is shown
on the x axis, and plot markers encode significance as defined by
a Mann-Whitney U-test P value lower than 10−3 (star, significant;
circle, nonsignificant). (b) Histogram of the IRIs for recalls of items
other than the sequential one (i.e., the one that was presented right
after the latest recalled item) shown separately for each output posi-
tion and for the two conditions where the sequential item has already
been recalled or not. The scale of the IRIs is logarithmic. The P
value from the Mann-Whitney U test is encoded as follows: circle,
P > P∗ = 10−3; one star, P∗ > P > 10−4; two stars, 10−4 > P. A
previously occurring recall of the sequential item is statistically as-
sociated with a delay in the recall of other items.

L = +1 (sequential recalls). If this type of transition remains
the most probable one also when it can cause bouncing (i.e.,
when it would yield an item already recalled), we expect it to
be associated with the largest delay.

The conjectures are confirmed by inspection of the data
(Fig. 4). Thus we find that another silent serial-position effect
is the predominance of delays associated with the potential
discarding of sequential retrievals (“silent contiguity effect”).

IV. A MINIMAL MODEL

To further test the bouncing hypothesis as applied to repe-
tition avoidance, it is necessary to rely on forward models that
describe it in a predictive fashion.

Models of free recall have covered a spectrum ranging
from dual-store memory search models [3,50] to powerful
theories of temporal context dependence [51]. It is not our
ambition to provide a wide-ranging model of top-down con-
trol or in any way revise what is known from existing models
of recall (see Introduction); because our focus is entirely on
the concept of bouncing, we rely on the most drastic simplifi-
cation compatible with the general features of free recall.
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The three assumptions we make to simplify the problem
are the following [see Fig. 2(a)]:

(i) In the absence of any bouncing, the reported recall
process would be identical to the retrieval process, and both
would be a Markov chain in the space of the list items.

(ii) In the presence of bouncing, the retrieval process can
hit an undesired memory item and bounce back to the previ-
ously recalled item, and this step does not affect the sequence
of reported items.

(iii) Every repetition bounce entails a probability q of ter-
minating the process, and we will refer to the parameter q as
impatience.

Thus the only parameters are the Markov transition matrix
and the impatience q (one additional parameter will be intro-
duced later when we study strategic bouncing).

We have explored alternative assumptions for both the
termination mechanism (static sink states, abrupt termination
thresholds) and the non-Markovian add-on (one example is
analyzed in detail in Appendix E), and they have proven less
predictive than the model we are presenting.

The non-Markovian contribution from bouncing against a
recalled item is, in this framework, of a peculiarly simple type;
namely, the transition probability to a given item becomes
zero after that item has been recalled and stays zero up to
the end of the recall process. This non-Markovianity can be
described as a progressive masking of the transition matrix.
Let π̂ be the naked transition matrix (i.e., the zero-diagonal
Markov transition matrix of the bounce-free model) with ma-
trix elements π (y|x) determining the transition probability
from item x to item y and, for any set S of serial positions,
let π (S|x) ≡ ∑

y∈S π (y|x).
Further naming N the length of the presented lists, T the

number of trials in the sample, mα the performance of trial
α measured by the number of distinct reported items, and xα

k
the serial position of the kth recall in the trial, and using the
notation where xα

i: j is the set of serial positions recalled in be-
tween output positions i and j, both included, the normalized
log likelihood of the bouncing model is

L[π̂ , q] = ln q + 1

T

T∑
α=1

ln π
(
xα

1:mα−1|xα
mα

) + 1

T

T∑
α=1

mα−1∑
n=1

ln π
(
xα

n+1|xα
n

) − 1

T

T∑
α=1

mα∑
n=1

ln
[
1 − (1 − q)π

(
xα

1:n−1|xα
n

)]

(for the derivation, see Appendix C). Fitting the data set
with this likelihood (Appendix D) yields an impatience pa-
rameter q ≈ 0.1 and a transition matrix that encapsulates all
known serial-position effects including some degree of pri-
macy [Fig. S4(a)]. The number of bounces underlying every
recall event can then be calculated by simulating the model
with these parameters [for sample trials, see Fig. S4(b)].

To test the model, we assume for simplicity that the IRI
is proportional to the bouncing count. We first compare the
mean of relevant variables characterizing a recall event. The

(a)

(c) (d)

(b)

FIG. 5. Comparison between mean IRIs and the mean number of
unreported retrievals of the model. The result of averaging is shown
for fixed values of the recall event’s output position (a), the serial
position of the recalled item (b), and the serial-position lag from the
preceding recall (c). In (d), a scatterplot of the values shown in (a)–
(c) is presented.

dependence on negative output position, retrieved serial posi-
tion, and the recall lag are all qualitatively recovered (Fig. 5).

We then test for the silent serial-position effects along the
same lines followed for real data (Figs. 3 and 4), with the only
difference that instead of measuring a mean temporal delay
between two conditions, we now measure a difference in the
mean number of bounces occurring within a recall event. We
report that all main phenomenological features of silent serial-
position effects, discussed above, are found in our pseudodata,
both as concerns silent recency [Figs. 6(a) and 6(b)] and silent
contiguity [Figs. 6(c) and 6(d)].

V. MODEL-FREE ANALYSIS OF SEQUENTIAL
SLOWDOWN

We turn then to the distinctive shape of the sequentiality-
performance curve [Fig. 1(b)]. We hypothesized that it
might emerge if a partial discarding of nonsequential re-
trievals allows the implementation, in some trials, of a more
markedly sequential recall strategy associated with higher
performances—yielding the upturn of the curve for high-
performing trials. [This interpretation would also justify the
related fact that the output position of the final item becomes
bimodally distributed for high-performing trials (Fig. S5),
where the peak around the first output could be related to the
recency effect and the peak around the final output could be re-
lated to the sequential strategy.] If that were the case, it should
also leave traces in the statistics of the IRIs. Namely, we would
expect that, at least among high performers, recalls performed
by strategizing would be slower than those performed without
strategizing.

To differentiate between strategic and nonstrategic trials,
we can use the fact that the former have by construction a
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(a)

(b) (d)

(c)

FIG. 6. Silent serial-position effects emerging from the bouncing model. (a) Selective variations in the mean bouncing counts estimated
from model simulations. The mean number of bounces within a recall event has been averaged in the two subsamples of recalls where the list
item in a given serial position is or is not bounceable, and the difference between the two means is plotted as a function of the serial position.
Values on the x axis refer to the item by the bounceability of which subsamples are discriminated. (b) Bouncing-count histograms displayed
side by side refer to recall events where the final item in the list is or is not bounceable. Corresponding mean curves show the mean bouncing
increment after recall of the final item (“silent recency effect”). (c) Selective variations in the mean bouncing count per recall estimated from
model simulations. The mean number of bounces within a recall event has been averaged in the two subsamples of recall events where a
given lag does or does not lead to a bounceable item, and the difference between the two means is plotted as a function of the given lag.
(d) Bouncing-count histograms displayed side by side refer to recall events where the sequential candidate for recall is or is not bounceable.
Corresponding mean curves show the mean bouncing increment when the sequential item was already recalled (“silent contiguity effect”).

higher trial sequentiality. An obvious approach is to separate
each given sample of trials in the submedian and supramedian
subsamples according to its distribution of trial sequential-
ities, and test whether recalls are faster in the submedian
subsample.

We take into account three confounders. First, the depen-
dence of the IRI on the negative output position can again
play the role of a strong confounder. Second, since sequen-
tial strategies are used to achieve higher performances (see
Introduction), the effect we are seeking may only be present
in the more high-performing trials. We must thus proceed
by considering separately event sets defined both by a given
output position and by their occurring in trials with given
performance. The third confounder is the difference in IRIs
for sequential and nonsequential recalls within each trial. In-
deed, sequential recalls are mostly faster than nonsequential
ones across different performance levels and output positions
[Fig. S6(a)].

For every condition defined by trial performance and
output position, we consider thus the distribution of trial se-
quentiality among trials with that performance that contains a
sequential recall in that output position [Fig. 7(a)]. We then
split the sample by the median value of trial sequentiality
and compare the IRIs of recall events in the two subsam-
ples [Fig. 7(b)]. We only compare sequential recall events
because highly sequential trials contain few nonsequential
recalls. Thresholding out all sample pairs that do not pass a
significance test, we calculate the sign of the delay associated
with higher trial sequentiality. (Results are qualitatively un-

varied whether we partition using a median computed over
the sequentialities of all trials in a performance group or com-
puted separately over those associated with sequential events
at each given output position.)

We thus find the following [see Fig. 7(c)].
(i) In all cases where our significance requirement is met,

the delay is positive, meaning that sequential recalls that oc-
curred in sequentially biased trials have taken longer. In the
following we refer to this phenomenon as sequential slow-
down.

(ii) Strikingly, the phenomenon is concentrated in the high-
performance regime. This is in fact just where it is to be found
if the sequential slowdown is due to the implementation of
recall strategies.

We will focus on the hypothesis that the slow sequen-
tial recalls are due to a subselection of the retrievals (for
the problem with alternative explanations, see Discussion)
or, equivalently, these delays are punctuated by the active
rejection of what nonsequential retrievals are provided by free
association, which is what we termed strategic bouncing.

VI. SEQUENTIAL SLOWDOWN IN THE BOUNCING
MODEL

With model parameters coming from the abovementioned
fit, we only add into the model a finite probability s (“strate-
gicity”) of bouncing back from a retrieved item if it is
nonsequential. We are not necessarily assuming a common
mechanism for strategic bouncing and repetition bouncing
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(a)

(b)

(c)

FIG. 7. “Sequential slowdown” in free-recall data. For each per-
formance level, we list all trials that perform a sequential report at
a given output position and study how its IRI changes in highly
sequential trials. The sequentiality value associated with each trial is
simply the fraction of sequential recalls in the trial. (a) The histogram
of this quantity for output position 8 and trial performance 15 is
further subdivided for the sake of the analysis into the set of trials
above and below its median. (b) The corresponding distribution of
IRIs in the two subsamples, with vertical lines with green and red
colors indicating the respective mean values. (c) Sign of the differ-
ence in the mean values whenever the difference is significant by a
Mann-Whitney test with threshold P∗ = 10−3. Sequentially biased
trials are characterized by a slowdown of their sequential recalls,
specifically in high-performing trials. Squares on the grid are colored
as follows: white if data are not available from both subgroups (as is
the case here because output position K does not exist for trials with
performance < K); yellow if the Mann-Whitney P value between the
two corresponding subsamples is larger than P∗ = 10−3; blue if the
P > P∗ and the difference is positive, i.e., the supramedian trials per-
form significantly slower than sequential recalls; and brown for the
opposite occurrence, which would be submedian trials performing
significantly slower on sequential recalls, but strikingly, this is never
observed.

(the fact that strategic bouncing happens only in a minority
of trials may point to the opposite) but only that the basic
retrieval rejection step can also be described as a bounce.
A priority needs to be established between the two types
of bounce; we assume that subjects who are actively im-
plementing a sequential strategy check first for sequentiality
and then for repetitiousness and do not associate any impa-
tience increment with strategic bounces. This proves to be
the sensible choice from the requirement that the performance
should increase as a function of strategicity [Fig. 8(a)] despite
repetition bouncing (Fig. S1).

The analysis of sequential slowdown in data suggests that
this increase in performance should come at the price of a
slowdown in individual recalls, measured by the number of
bounces. We test this statement on simulations of the model
and find that indeed it holds true for simulated recalls with any
possible value of their negative output position [Fig. 8(b)].

We then move on to replicating the results of data analysis
for the dependence of trial sequentiality on performance that
was presented at the outset [Fig. 1(b)]. Rather than aiming

(a)

(c) (d)

(b)

FIG. 8. Simulations of the bouncing model with strategizing. We
simulated the model by adding in a given probability of strategic
bouncing (i.e., the probability of rejecting a nonsequential retrieval),
which we termed “strategicity.” (a) Increasing strategicity also in-
creases performance, coherently with the theory. (b) Increasing
strategicity slows up the process, which agrees with the slowdown of
sequential recall in highly sequential trials seen in the data. (c) The
introduction of strategic bouncing leads to the emergence of the
inflection point (red arrow). The features of real data that were shown
in Fig. 1(b) are recovered here by merging a dominant population
without strategicity, s = 0 (5 × 105 trials corresponding to the blue
curve) with a smaller one having strategicity, s = 0.5 (5 × 103 trials).
(d) Here, for each joint condition of performance and output position,
sequential recalls are sampled above and below the median value of
trial sequentiality. The mean difference in bouncing count proves
to be always positive and increases in the area where sequential
slowdown was detected in the data [compare Fig. 7(d)].

at numerical accuracy, we seek to understand the shape of
the curve, namely, its inflection in midperformance, followed
by a drastic rise for larger performances. First we note that
repetition bounces alone do not explain this feature [Fig. 8(c)].
We then simulate a mixture of two populations, a dominant
one without strategicity, s = 0 (5 × 105 trials), and a smaller
one with strategicity, s = 0.5 (5 × 103 trials). When plotting
the sequentiality of simulated trials versus their performance,
we find that even such a small percentage of strategic trials is
sufficient to inflect the curve [Fig. 8(c)].

Finally, we agnostically interrogate the mixed-set pseu-
dodata model for the signatures of strategic slowdown we
encountered in Fig. 7(c). We subsample recall events by the
output position and trial performance characterizing them; for
each joint condition, we use the sequentiality values of the
relevant trials to subdivide the sample in a supramedian and
submedian group and compute the bouncing increment, i.e.,
the difference between their mean bouncing counts.

This difference proves to be always positive [Fig. 8(d)],
signifying a delay in time as found in real data. In Fig. 7(c), we
also showed that the time delay found in real data grows into
significance in the high-performance region. The modeling
result is in agreement with real data because whenever the
data show a statistically significant difference in IRIs, the
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corresponding subsample of the model-generated pseudodata
features relatively high values of the bouncing increment. This
result supports the notion that sequential slowdown is due to
strategic bouncing [Fig. 8(d)].

VII. DISCUSSION

Free-recall experiments are an essential behavioral probe
in the study of human memory. In this paper, we undertook
the rigorous mining of a large data set to uncover a number
of features: (i) The number of repetitions observed in these
experiments is vastly smaller than a basic expectation given
by chance Markovian transitions; (ii) recalls are delayed if the
final item has already been recalled (“silent recency effect”);
(iii) recalls are delayed if sequential recall would yield a rep-
etition (“silent contiguity effect”); (iv) the overall abundance
of sequential recalls in the trials has a distinctively inflected
shape when regarded as a function of trial performance; and
(v) a slowdown in certain recall events is associated with the
overall prevalence of sequential recalls in high-performing
trials (“strategic sequential slowdown”).

In addition to reporting on the above, we proceeded to
suggest a unifying explanation coherent with the current body
of knowledge on free recall (see Introduction) and based
on the notion that free-association retrievals are sometimes
“bounced,” i.e., discarded. In a majority of cases this happens
because they are repetitious (repetition bouncing) and in a mi-
nority because they are not sequential (strategic bouncing). To
test the validity of our explanation, we used a minimal model
with trajectories driven by heterogeneous transition probabili-
ties and reset by bouncing. Bouncing of repetitious transitions
occurs systematically for repetitious retrievals and adds to the
“impatience” that, probabilistically, leads to termination of
a recall trial; strategic bouncing of nonsequential transitions
occurs in high-performing trials with a fixed probability. Upon
fitting on the data and using the number of bounces as a proxy
for the inter-recall time intervals (IRIs), the model was shown
to qualitatively account for all the above features of free recall.

The minimal model accounts in one breath for repetition
bouncing and strategic bounding, and may account also for
a gradual release from repetition avoidance [52–54] by addi-
tionally incorporating what is known about its dependence on
cognitive rather than physical time [55]. However, the features
we uncovered by our model-free analysis of data should be
simultaneously recoverable from a variety of models, such
as the stochastic model of Ref. [56] and the generally valid
framework of the context maintenance and retrieval model of
Refs. [2,29]. All of the effects highlighted here can be ex-
plained on the basis of quantitative differences in the effective
memory strength of different items; they do not require or
rule out qualitative differences, such as the final item possibly
being recalled from working memory, which may be faster
than associative recall involving other sources.

Our work underscores the importance of unreported re-
trievals in determining behavioral observables of memory
experiments. It is indeed easy to see that alternative ex-
planations would run into several problems. For example,
one might hypothesize that the strategy at play in certain
high-performing trials consists merely in waiting longer be-
fore surrendering even if no new memory is being retrieved.

This would predict a slowdown preferentially happening at
later output positions, where surrendering is most prominent.
However, such an explanation can be ruled out because the
sequential slowdown is observed at a wide range of output
positions [Fig. 7(c)].

In experiments where subjects are instructed to recall items
not belonging to a specified category or items not beginning
with certain letters [8], other types of bouncing might take
place, but their detection can be attempted by the very means
we have introduced.

Measurements performed in free recall are not limited
to behavioral observables. A parallel study of unreported
retrievals could be attempted through the decoding of suit-
able neurophysiological data. The timing and magnitude of
postretrieval effects such as those already observed in elec-
trocorticography (ECoG) of prefrontal cortex [5] could be
compared with the timing and quantity of the bounces inferred
by an analysis of behavioral data.

The issue of whether bouncing is consciously perceived by
the participants is more delicate and could be partly addressed
in the future through comparisons with externalized free recall
[34,36,37] with separate controls for the accuracy and consis-
tency of self-reporting.

Data used in this paper were generously made available at
the University of Pennsylvania and can be downloaded from
[57]. The PYTHON/PYTORCH library we developed to process
free-recall data sets is available upon request.
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APPENDIX A: ARCHIVAL DATA

We base our analysis on a publicly available data set,
collected as part of the Penn Electrophysiology of Encoding
and Retrieval Study at the University of Pennsylvania (for
a full account, see Ref. [43]). The data were acquired from
consenting human subjects in compliance with the University
of Pennsylvania’s Institutional Review Board protocol.

Participants were given 75 s to attempt to recall aloud any
of the presented items. Because of the limited amount of time,
quantities pertaining to the first negative output position are
indeed somewhat affected by the final rush to recall.

In our analysis, all trials (27 198 in total) were used. In
the minority of trials containing some repetition [Fig. S2(a)],
repetitions were ignored for the main analyses. Intrusions
from outside the presented lists were all removed at the outset.

APPENDIX B: MODEL-FREE ANALYSES

We classified all recalls into the prerecall group or postre-
call group with respect to a target item. The target item was
characterized either by its serial position (Fig. 3) or by its
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serial-position lag with respect to the latest item recalled (in
which case the serial position of the target item varies from
event to event; Fig. 4). Recall events are then classed as
“postrecall” if they occur when the target item has already
been recalled within the trial, and they are classed as “prere-
call” if they occur at a moment of the trial when the target item
has not yet been recalled.

As discussed in the main text, we aim at finding evidence of
whether the target item may be retrieved and unreported dur-
ing the recall events. Thus we are interested in the difference
between the IRIs in the prerecall and postrecall conditions.

Moreover, we studied whether the above changes in the
IRIs were output position dependent because IRIs are known
to systematically increase with output positions. For this pur-
pose, for each target item, we also divided recalls by their
negative output positions and tested whether the IRI distribu-
tions of the prerecall and postrecall groups were significantly
different at each output position. We checked whether the IRIs
of the pre- and postrecall groups were statistically different
using the Mann-Whitney U test because the IRI distributions
were highly non-Gaussian.

To make the analysis of IRIs rigorous, we took the follow-
ing precautions.

(i) We broke down the sampling of recall events by neg-
ative rather than positive output position to account for the
character of the output position dependence highlighted in
Fig. S3.

(ii) Events where the target item is reported should in
principle be classed as prerecall, because it was not recalled
yet while the recall process occurred. However, we excluded
these events from the prerecall condition. Note that reported
recalls of the target item could never figure in the postrecall
sample for that target. Therefore including such events in the
prerecall sample could unbalance the two comparison of the
two groups.

(iii) In the case of unreported retrievals with a fixed lag,
we count out all conditions where the lag would not yield an
item within the list (due to the finite list length), as that makes
recall unavailable rather than bounceable.

In all the subsample comparisons of the IRIs, we system-
atically filtered out information by testing for significance
the difference between the IRIs in each pair of subsamples.
Since the distribution of IRIs in any given subsample is highly
non-Gaussian [see, e.g., Fig. 3(a)], rather than using a t test we
adopted a Mann-Whitney U test [58].

For example, Fig. S6(a) should be strictly understood as
stating that if we pool trials regardless of their sequentiality,
the statement that sequential recalls are faster withstands a
significance test with few exceptions on the triangular grid
spanned by performance and output position values.

The P-value threshold we chose at the outset was P∗ =
10−3 and has been uniformly applied to all the analyses.

APPENDIX C: BOUNCING MODEL

In the bouncing model as set up in the main text, upon
retrieving a repetitious item, the process reverts to the latest
previously retrieved item and makes a new “try” from there.
Here, we formalize the concept mathematically, writing down
the log likelihood for the model.

Let us label the items by their serial position x = 1, . . . , N ,
where N is the length of the memorized list. The first re-
called item of every trial is picked according to a distribution
p1(x) = ρinit (x) which plays the role of an initial condition.
The second item has probability p2(x) = ∑

x1
π (x|x1)p1(x1),

where π (y|x) is the naked transition matrix. This matrix is
assumed diagonal-free, so π (x1|x1) = 0, and no repetition can
occur in the second recall.

At the third recall, for every previous history (x1, x2), there
is a finite probability π (x1|x2) of ending up in a repetition. If
this happens, the trajectory goes back to x2 without outputting
either retrieval, which we refer to as a “bounce.” In other
words, there is a set J of undesired retrievals that contains
in this case only item x1 (J = {x1}).

If an infinite number of bounces is allowed, the transition
from the retrieval of x2 to the next is governed by a matrix
�0(x|x2; J ) defined as

�0(y|x; J ) = π (y|x)1[y /∈ J]∑
y/∈J π (y|x)

, (C1)

where 1[X ] = 1 if statement X is true, and 0 otherwise.
In other words, the transition matrix is defined with the

target items in the bounceable set masked away, and every
other element is normalized so the columns sum to unity.
Notice the special case �0(y|x; ∅) = π (y|x).

This is, however, only correct if any number of bounces is
allowed; in practice, it is realistic that the subject will give up
after a certain number of bounces. Every repetition bounce
is thus associated with a fixed surrender probability q we
call “impatience” (although different modelings of impatience
may also be devised).

Call Jn = [x1, x2, . . . , xn−1] the (unordered) set of all items
recalled up to time n. The probability pn+1(y) of item y being
the (n + 1)th recall is given by

�(y|xn; Jn) = �0(y|xn; Jn)[1 − sq(xn; Jn)], (C2)

where sq(x; J ) is the probability of surrendering, i.e., terminat-
ing the process, during the recall step starting out from recall
of item x, given that the bounceable set is J .

At each step the process has three possibilities: recalling,
bouncing, or surrendering. Recall happens if a new word is
retrieved before surrendering; surrendering occurs with proba-
bility q whenever a repetitious word is retrieved; and bouncing
occurs with probability 1 − q when a repetitious word is re-
trieved, returning the process to the latest recalled item.

Calling the three corresponding probabilities s, b, and r, we
clearly have

sq(x, J ) + bq(x, J ) + rq(x, J ) = 1. (C3)

For a single retrieval step, their elemental values are

s(1)
q (x, J ) = π (J|x)q, (C4)

b(1)
q (x, J ) = π (J|x)(1 − q), (C5)

r (1)
q (x, J ) = π (J̄|x), (C6)

where J̄ is the allowed set, i.e., the complement of J , and
we used the notation π (S|x) = ∑

y∈S π (y|x) for an arbitrary
subset S of the N list items.
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With a potentially infinite number of steps we must write

sq(x; J ) =
∞∑

n=0

(
b(1)

q (x, J )
)n

s(1)(x, J )q

=
∞∑

n=0

[π (J|x)(1 − q)]nπ (J|x)q. (C7)

Merging Eqs. (C2) and (C7), we arrive at

�(y|x; J ) = �0(y|x; J )

[
1 −

∞∑
n=0

[π (J|x)(1 − q)]nπ (J|x)q

]
.

(C8)
We can now merge in Eq. (C1) to eliminate �0, obtaining

�(y|x; J ) = π (y|x) 1[y /∈ J]

1 − (1 − q)π (J|x)
, ∀y 	= 0, (C9)

where we made it explicit that this does not provide the proba-
bility of transition to silence, which can be described in terms
of an effective sink state ysink ≡ 0.

The only missing ingredient is now the equivalent of the
probabilities (C9) for the case of transitions to the sink state.
Transitions from the sink state have probability 1 of staying
there and are therefore not problematic:

�(y|0; J ) = 1[y = 0]. (C10)

As for the eventuality of recall termination (transition from
a list item to the sink), it corresponds to a probability

�(0|x; J ) = π (J|x)q

1 − (1 − q)π (J|x)
. (C11)

The normalized log likelihood is a function of the scalar
parameter q and of the matrix parameter π̂ and can be written
as

L[π̂ , q, 
λ] = 1

T

T∑
α=1

L
[
xα

1:N ; π̂ , q
]
, (C12)

where T is the number of trials and we used the notation

xα
1:N = {xα

1 , . . . , xα
N }

(note that in this convention the last item is also included).
The one-trial log likelihood appearing in Eq. (C12) is de-

fined as

L[x1:N ; π̂ , q] =
N−1∑
n=1

ln �(xn+1|xn; x1:n−1) (C13)

with � computed according to Eqs. (C9)–(C11) for the given
point in the (π̂ , q) parameter space.

Calling mα the number of words recalled in the αth trial,
we can merge the above formulas into

L[x1:N ; π̂ , q] =
mα−1∑
n=1

ln
π (xn+1|xn)

1 − (1 − q)π (x1:n−1|xn)

+ ln
π (x1:mα−1|xmα

)q

1 − (1 − q)π (x1:mα−1|xmα
)
, (C14)

from which, separating the arguments of the logarithms,

L[x1:N ; π̂ , q] = ln q + ln π (x1:mα−1|xmα
) (C15)

+
mα−1∑
n=1

ln π (xn+1|xn) −
mα∑

n=1

ln[1 − (1 − q)π (x1:n−1|xn)].

To account for the column-wise normalization of the
stochastic matrix �, instead of using Lagrange multipliers,
we opt for adding a degree of freedom by writing π (y|x) =
u(y|x)/u(all|x) in terms of non-negative auxiliary variables
u(y|x) defined for x 	= y without any normalization constraint,
and with

u(all|x) =
N∑

y=1

u(y|x); (C16)

the û matrix can be assumed to have a zero diagonal.
In terms of the matrix û, the one-trial log likelihood (C13)

becomes

L[x1:N ; û, q] = ln q + ln u(x1:mα−1|xmα
) +

mα−1∑
n=1

ln u(xn+1|xn) −
mα∑

n=1

ln[u(all|xn) − (1 − q)u(x1:n−1|xn)]. (C17)

The corresponding q component of the log likelihood’s gradient is

Dq[û, q] = ∂

∂q
L = 1

q
− 1

T

T∑
α=1

mα∑
n=1

u
(
xα

1:n−1

∣∣xα
n

)
u
(
all

∣∣xα
n

) − (1 − q)u
(
xα

1:n−1

∣∣xα
n

) . (C18)

As for the u derivatives, we have

Du
yx[û, q] = ∂

∂uyx
L = − 1

T

∑
(α,k):
xα

k =x

1

u(all|x) − (1 − q)u
(
xα

1:k−1

∣∣x)

+ 1

T

∑
(α,k,l ):

xα
k =x,xα

l =y

[
1(k = mα )

u
(
xα

1:mα−1

∣∣x) + 1(l = k + 1)

u(y|x)
+ (1 − q)1(k > l )

u(all|x) − (1 − q)u
(
xα

1:k−1

∣∣x)
]
. (C19)
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As a sanity check for this last formula, one can isolate
the contribution from trials where xα

N = x and find that it is
exactly zero, as it should be because no transitions to the sink
are observed from the last recalled item in perfect-recall trials
(mα = N), and therefore the likelihood for such trials is not
affected by the uyxN parameter for any y.

During the numerical search for an optimum, it is conve-
nient to remove the lower bounds at zero from the elements of
û and the [0,1] bounds from q. We do so by mapping both sets
of variables to the full real axes. For the sake of convenience
we used the transformation

s = log

(
1

q
− 1

)
, v = log(u), (C20)

so that the gradient becomes

Ds[v̂, s] = es

(1 + es)2
Dq

[
exp(v̂),

1

1 + es

]
, (C21)

Dv
yx[v̂, s] = exp[v(y|x)] Du

yx

[
exp(v̂),

1

1 + es

]
, (C22)

or in terms of the physical variables,

Ds = −q(1 − q)Ds
yx[û, q], (C23)

Dv
yx = u(y|x) Du

yx[û, q]. (C24)

APPENDIX D: SIMULATIONS AND FITTING

To run simulations of the bouncing model with and without
strategicity, we extract the normalized histogram of the full
data set at output position = 1 and use it as our initial con-
dition. Simulation of 105 trials takes minutes on an ordinary
laptop.

To fit the model, we write down the gradient equa-
tions (C23) and (C24) and search for the minimum from a
random initial condition using the limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm for bound constraints
(L-BFGS-B algorithm) [59]. This converges in < 102 itera-
tions to the matrix shown in Fig. S4(a) and to the optimal
impatience q ≈ 0.1.

Notice that sequentiality partially comes from the Markov
transition probabilities and partially from strategicity. Our fo-
cus is not to achieve the best quantitative model but to explain
how the strategicity sequentializes only high-performance
trials, which yields a major difference between the two mech-
anisms of increasing sequentiality. For simplicity we used all
trials to fit transition probabilities, which in principle may
overestimate nonstrategic sequentiality.

Fitting and simulations based on an alternative “skipping
model” are described in Appendix E.

APPENDIX E: THE SKIPPING MODEL

An alternative model through which one may attempt to
reproduce the silent serial-position effects is what we will
refer to as the skipping model, where the Markovian retrieval
process is not interfered with by the higher-order process that
merely censors the reporting of repetitious retrievals.

A repetitious retrieval is thus not discarded as in the bounc-
ing model, but adopted as the starting point for the next

transition (which will be described as a “skip” rather than as a
“bounce”; see Fig. S7).

As in the bouncing model, an N × N Markov transition
matrix π is defined such that πxy is the probability of re-
trieving word x after retrieving word y. We assume again that
this probability is independent of the time step throughout
the retrieval process. We also include among the states of the
Markov chain a sink state accounting for termination.

The transition from the nth to the (n + 1)th recall is gov-
erned by a “recall propagator” T{x1,...,xn}, defined as a matrix
that depends parametrically on the potentially repetitious
(hence unreportable) set of serial positions {x1, . . . , xn}, which
is the set of words recalled up to that moment.

In other words, for any set of serial positions S, we are
defining the matrix TS such that [TS]xy is the probability of
recalling x after recalling y, given that the items in the set S
cannot be reported, having already been recalled (though they
can be retrieved). Since recalls do not happen at all retrieval
events, skipping repetitious retrievals, for x ∈ S or y /∈ S we
have [TS]xy = 0 [Fig. S8(a)].

Since the data set samples transitions driven by the TS

matrix, the π matrix can be obtained via maximizing the
likelihood of the TS matrix given the data set. Unfortunately,
even if infinite skips are allowed in a single recall event and
no sink state is included, a closed formula such as Eq. (C1) is
not available for TS . Although a Dyson-like summation can
be performed for this propagator, when computing the log
likelihood on data, implementing it leads to a combinatorial
blowup of the number of possible paths.

Thus, while the retrieval process in the skipping model is
simpler than in the bouncing model (because it stays com-
pletely Markovian), the fitting is much less straightforward.

On the other hand, once the π matrix is given, the T
matrix can always be calculated iteratively. In order to practi-
cally estimate the π matrix, we exploited the fact by making
an extra assumption and putting an upper limit nmax on the
possible number of bounces. We were thus able to build a
recurrent neural network (RNN)-style computational graph as
illustrated in Fig. S8(b).

For any set of serial positions S, let us define the matrix DS

such that

[DS]yz =
∑
x∈S

δyxδxz.

Given a certain source item x and a repetitious set S + x =
S ∪ x, the T matrix can be calculated as

TS =
nmax∑
n=0

DS̄ π (DS+x π )n, (E1)

where S̄ is the allowed output set and S + x is the unreportable
(i.e., repetitious) set; x, which is the source, is included in the
unreportable set.

πDS̄ is here a skip-connect indicating the end of a bounce
when an element recalled is in the reportable set. This graph
now also allows transitions from x to itself, a hitch that can
be solved by masking out diagonal elements of the π matrix.
Even without masking, however, the diagonal elements of the
π matrix vanish after fitting the data.
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We implement the computational graph with PYTORCH.
The negative log-likelihood loss function between the cal-
culated source-to-target log probabilities with the current π

matrix and observed target sample is used as the loss func-
tion. A certain batch number of unreportable sets and reported
targets is randomly picked from the data set to carry out a
stochastic-gradient-descent parameter update of the π matrix.

Let us call xα
m the serial position of the word recalled in the

mth recall of trial α. Call b the size of minibatches. Each mini-
batch selection consists of a set 
α of b random trial indices αk

and of a set 
m of corresponding random output positions mk .
Here, k = 1, . . . , b, and for each k, 1 � αk � NT (NT being
the number of trials) and 1 � mk � L (L being the list length).

The loss function for a particular batch is then

L(π ; 
α, 
k) = −〈
log

[
T{xαk

1 ,...,x
αk
mk −1}

]
x

αk
mk+1,x

αk
mk

〉
k=1,...,b,

where the average is used instead of a sum to keep the values
of the loss function numerically low even with many batches.
It takes approximately tens of minutes to obtain convergence
on a conventional laptop.

The resulting matrix parameter π , shown in Fig. S8(c),
can be used to simulate the model starting from the empiri-
cally observed initial condition. Both the silent recency effect
and the silent contiguity effect are successfully reproduced
(Fig. S9).

However, an additional “silent primacy effect” (where past
recall of the first item in the list engenders a delay in sub-
sequent recalls) emerges nearly as conspicuously as silent
recency (Fig. 6). This is compatible with the existence of a
corresponding primacy effect in reported recall frequencies
[16] but is not compatible with the data (Fig. 3).
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