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Motivated by the significantly improved scalability of optically trapped neutral-atom systems, extensive efforts
have been devoted in recent years to quantum-state engineering in Rydberg-atom ensembles. Here we investigate
the problem of engineering generalized (“twisted”) W states, as well as Greenberger-Horne-Zeilinger (GHZ)
states, in the strongly interacting regime of a neutral-atom system. We assume that each atom in the envisioned
system initially resides in its ground state and is subject to several external laser pulses that are close to being
resonant with the same internal atomic transition. In particular, in the special case of a three-atom system
(Rydberg-atom trimer) we determine configurations of field alignments and atomic positions that enable the
realization of chiral W states—a special type of twisted three-qubit W states of interest for implementing
noiseless-subsystem qubit encoding. Using chiral W states as an example we also address the problem of
deterministically converting twisted W states into their GHZ counterparts in the same three-atom system,
thus significantly generalizing recent works that involve only ordinary W states. We show that starting from
twisted—rather than ordinary—W states is equivalent to renormalizing downward the relevant Rabi frequencies.
While this leads to somewhat longer state-conversion times, we also demonstrate that those times are at least two

orders of magnitude shorter than typical lifetimes of relevant Rydberg states.
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I. INTRODUCTION

Maximally entangled multiqubit states are of special in-
terest for quantum-information processing (QIP) [1]. Two
particularly prominent classes of such states are W [2] and
Greenberger-Horne-Zeilinger (GHZ) [3] states, for which it
is known that they cannot be transformed into each other
through local operations and classical communication (LOCC
inequivalence [1]). Owing to their proven usefulness in
various QIP protocols [4-7], several different schemes for
the preparation of W [8-18] and GHZ states [19-23] in
various physical platforms have been proposed in recent
years.

One of the currently most promising platforms for
QIP is based on ensembles of neutral atoms in Rydberg
states [24,25]. The scalability of these systems, confined
in arrays of individual optical-dipole microtraps (tweezers),
has improved significantly in recent years [26-31]. This de-
velopment has been interwoven with other important feats,
such as high-fidelity state preparation/readout and accu-
rate realization of quantum logic gates [32,33]. As a result,
neutral-atom-based platforms currently allow for controlled
quantum dynamics of more than 100 qubits, with the prospect
of reliable QIP with even much larger qubit systems [34-36]
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deemed to be realistic in the not too distant future [37]. This
has, in turn, reinvigorated research interest in quantum-state
engineering in this class of atomic systems [16,38—45].

An ordinary (prototype) N-qubit W state [46] is an equal
superposition of all N-qubit basis states with exactly one qubit
in their “up” state, and all the remaining ones in their “down”
state. In systems with a periodic spatial arrangement (i.e., a
lattice) [47] of qubits, it makes sense to consider generalized
W states, which represent linear combinations of the same N-
qubit basis states but with a constant phase difference between
contributions corresponding to adjacent lattice sites. This
phase difference corresponds to a quasimomentum from the
Brillouin zone of the underlying lattice. The physical meaning
of such states—which in the following will be referred to as
twisted W states—becomes fully transparent upon switching
from spin-1/2 to spinless-fermion degrees of freedom using
the Jordan-Wigner transformation [48]. Namely, these states
are equivalent to Bloch states of spinless-fermion excitations.

Aside from realizing W [13] and GHZ states [41], inter-
conversion between those states is another relevant problem of
quantum-state engineering. This problem was first addressed
in the context of a photonic system [49], where such intercon-
version can be carried out only in a nondeterministic fashion.
In recent years, the same problem was investigated in a sys-
tem of three equidistant Rydberg atoms with van der Waals
type interaction, which are at the same time acted upon by
several external laser fields [44,45]. This last system was first
studied [44] using the method of shortcuts to adiabaticity [50],
more precisely Lewis-Riesenfeld invariants [51], followed by
an alternative treatment [45] that made use of a dynamical-
symmetry-based approach [52].
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In this paper, we consider the system of three neutral
atoms in the Rydberg-blockade (RB) regime [53-56], inter-
acting with external laser fields, with our research objective
being twofold. We first present a deterministic prepara-
tion scheme for chiral W states, a special class of twisted
three-qubit W states that are of relevance for implementing
noiseless-subsystem qubit encoding [14,57]. We then address
the problem of deterministically converting twisted W states
into their GHZ counterparts via different intermediate states.
Both of these dynamical generation schemes rely heavily on
relative alignments of the laser fields involved and precise
positioning of the atoms, these ingredients being within reach
of current technology [58-61]. Furthermore, we show that
even without such an experimental precision a conversion
of a twisted W state is still possible. A strong laser driving
field, which introduces light shifts, can determine the spe-
cific twisted states participating in a conversion scheme. The
scheme also makes use of additional weaker fields, which
address the lifted degeneracies of internal energy levels of the
Rydberg trimer.

Our principal result in the context of the state-conversion
problem—relative to previous studies of this problem [44,45]
that concentrated only on ordinary W states—is that starting
from twisted W states is equivalent to renormalizing down-
ward the relevant Rabi frequencies of external laser pulses.
This renormalization, which depends only on the relative
alignment between the laser fields used, leads to somewhat
longer state-conversion times (for the same laser-pulse energy
used) than in the case with ordinary W states. However, we
also demonstrate that the latter times are at least two orders
of magnitude shorter than the typical lifetimes of relevant
Rydberg states.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the neutral-atom system under consid-
eration and briefly describe its interaction with external laser
fields. In Sec. III, we introduce several classes of entangled
multiqubit states of interest for the present work (W, GHZ,
and Dicke states) and the notation to be used throughout
the paper. Section IV is devoted to the derivation of effec-
tive Hamiltonians of the system that serve as the point of
departure for the state-engineering schemes discussed in the
present work. In Sec. V, we provide a discussion of specific
alignments of laser fields and relative atom positions that
are required for the generation of twisted W states from the
atomic-ensemble ground state via 7 pulses of a single laser
field resonant with the Rydberg transition. In particular, we
describe in detail a preparation scheme for chiral W states in a
Rydberg trimer. In Sec. VI, we present two different schemes
for the conversion of twisted W states into GHZ states, which
are respectively based on degenerate Dicke manifolds of states
and lifted degeneracies. We conclude, with a summary of the
obtained results and a short survey of possible directions for
future investigation, in Sec. VII. For the sake of completeness,
some relevant mathematical details are presented in detail in
Appendixes A and B.

II. SYSTEM AND ATOM-FIELD INTERACTION

We consider a system that consists of N identical neutral
atoms (e.g., of ¥ Rb) located at positions determined by the

vectors x, (n=1,2,...,N). Anticipating the use of exter-
nal laser pulses that are all close to being resonant with the
same internal atomic transition—namely, the one between
the ground state |g), (with energy E,) and a highly excited
Rydberg state |r), (energy E,)—the atoms can be treated as
effective two-level systems with the atomic frequency wy =
(E, — E;)/h as resonance frequency. In the following, we will
treat E, as the origin of the energy scale, i.e., set E, = 0.
In the QIP context, each atom in this system represents a
gr-type qubit [37], where the atomic states |g), and |r), play
the role of the logical “down” (|0),) and “up” (|1),) states of
the nth qubit, respectively. Recalling that the typical energy
splitting of gr-type qubits is in the range between 900 and
1500 THz [37], manipulations of such qubits require either an
ultraviolet laser or a combination of visible and infrared lasers
in a ladder configuration.

We also assume that the atoms are pairwise coupled
through off-resonant dipole-dipole (van der Waals) interac-
tion. In the special case of equidistant atoms—the physical
situation of primary relevance in the remainder of the present
work—the magnitude V,; = Cg/ dgq of this interaction (where
d, is the distance between atoms p and g and Cg the van der
Waals interaction constant) is the same for all pairs of atoms,
and we denote V,, = V. For N = 3, the case of equidistant
atoms corresponds to their arrangement in the form of an
equilateral triangle [for a pictorial illustration, see Fig. 1(a)],
while for N = 4 they are located at the vertices of a regular
tetrahedron.

Importantly, our envisioned system is also assumed to be
in the RB regime [53-56], which is equivalent to demand-
ing that the interaction-induced energy shift V far exceeds
the Fourier-limited width of all the utilized laser pulses (i.e.,
|V |Tine/h > 1, where Tiy is the pulse duration). Thus, the
state-preparation and conversion schemes to be presented in
what follows are applicable in the regime of primary interest
for QIP, as the phenomenon of RB provides the conditional
logic that enables neutral-atom quantum computing [62]. The
suitability of our envisioned system for quantum-state en-
gineering is further underscored by its reliance on gr-type
qubits, which—owing to their straightforward initialization,
manipulation, and measurements—represent the preferred
neutral-atom qubit type for fast, high-fidelity entangling op-
erations [37].

The total Hamiltonian of the system at hand is given
by H = Hy + Hp + Hjy, where Hy describes the atomic en-
semble, Hr the free external fields, and H,, the atom-field
interaction. The form of these three contributions to the total
system Hamiltonian will be discussed in detail in the follow-
ing.

The Hamiltonian of the atomic ensemble is given by

N N
Hy =Y haoa|r (rl + Y VIR, ) (rlp(rl. (D)
n=1

rP<q

The energy eigenvalues of the atomic ensemble are given by
E, =ahwy + V(g), where a < N is the number of atoms in
the excited state. The energy level E, has a degeneracy of (’;’ )
and the energy gap between adjacent excitation subspaces is
given by AE, = E, — E,_| = hwy + V(a — 1). In particular,
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FIG. 1. (a) Schematic illustration of a Rydberg-atom trimer (N =
3). The three Rydberg atoms, located at the positions specified by the
vectors x,, (n = 1, 2, 3), form an equilateral triangle. The ground and
Rydberg states of each atom are denoted by |g) and |r), respectively,
while V stands for the magnitude of their pairwise van der Waals
interaction. (b) Energy-level scheme of a Rydberg-atom trimer. The
origin of the energy scale is chosen such that E, = 0. We are consid-
ering long interaction times T, i.e., |E, — E,|T/h > 1, |[VIT /L > 1,
and large electronic excitation energies, i.e., |E, — Eo| > [V|.

the energy-level scheme in the Rydberg-trimer case (N = 3)
is pictorially illustrated in Fig. 1(b).

The atomic ensemble is subject to multiple plane-wave
laser fields with respective wave vectors k; and frequencies
w; (j=0,1,...,J). The fields are quantized using creation
and annihilation operators a; and a;, such that the free-field
Hamiltonian is given by

J
Hp = Zha)ja';aj, 2
j=0

where for the sake of convenience the ground-state energies
hw;/2 of all modes are omitted. We treat the interaction
between laser pulses and the atomic ensemble in the dipole
and rotating-wave approximations (RWA), with the corre-
sponding coupling strengths being denoted by d;. All laser
fields are assumed to resemble classical fields. Hence, they
can be described as coherent field states [63] of high mean
photon numbers M;, such that the coupling constants de-
fine (resonant) Rabi frequencies ; = \/M; d;/h. Here d; =

—i,/ha)j/(ZeoV) (r|d - €;]g), where € is the vacuum dielectric

constant, V is the quantization volume of the field modes, €;
is the polarization unit vector of mode j (orthogonal to its
propagation direction), and d is the atomic dipole operator.

The atom-field interaction in this system is described by
the Hamiltonian

N J
Hi =) Y (I@hu(ridiale™™ ™ + He), 3)

n=1 j=l1

where the site-dependent phases k; - x,, result from evaluating
the mode function for plane waves at the distinct atom posi-
tions. This Hamiltonian can be recast in the form

N J

Hiy = Y ) (UK)Igwirld;ajU k) +Hel )

n=1 j=1

by introducing the transformation

N
U k) = Q)€™ 7)1 (] + 18), (8]). )

n=1

In the following, the transformation U (k) will be used re-
peatedly in order to simplify the description of the system
under consideration. For the sake of brevity, we will just use
k to parametrize this transformation, because the atoms are
assumed to be located at fixed positions.

III. RELEVANT MULTIQUBIT STATES

In what follows, we introduce several classes of entangled
multiqubit states of interest in the remainder of this work. In
Sec. Il A, we discuss generalized W states, together with their
GHZ counterparts. We also briefly introduce Dicke states and
their twisted counterparts that play an auxiliary role in our
further discussion. In Sec. III B, we specialize to the three-
qubit systems, introducing first the chiral W states, and then
explaining their connection to specific twisted W states in the
system under consideration (Rydberg trimer). The notation
used will be the one appropriate for gr-type Rydberg-atom
qubits [64], with {|g), |r)} being the relevant computational
basis of a single qubit.

A. Generalized N-qubit W, GHZ, and Dicke states

The most general W -type states, not necessarily maximally
entangled, represent linear combinations of states in which
exactly one qubit is in the state |r), with all the remaining
ones being in the state |g) (i.e., all states corresponding to
Hamming-weight-1 bit strings). They are given by

1 N
Wy(Aq, ..., Ax)) = ﬁ;An|g...rn...g), (6)

where A = 221:1 |A,|> and A, are N arbitrary complex num-
bers, with at least two of them being unequal to zero. In
the special case with |A,| = I/W (n=1,...,N), one can
substitute A, = ' / /N and recast the last states in the form

1L
|WN<¢1,...,¢N)>=ﬁ;e’%...rﬂ...g» @)
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Here the phases ¢y, ..., ¢y are defined modulo 27, and as
usual the state |Wy) is defined up to a global phase. In
particular, the special case ¢ = --- = @y = 0 of the latter
maximally-entangled states are the most often used, “ordi-
nary” W states

Wy) = f Z 18- Ta-.-8). ®)

The most notable property of W states is that they are the
most robust ones to particle loss among all N-qubit states [46].
The entanglement inherent to W states is fundamentally dif-
ferent than that of GHZ states

|IGHZy) = L(|rr. LT
V2

no matter whether one considers pairwise or distributed en-
tanglement. For instance, in the N = 3 case, the W state are
characterized by a strong pairwise entanglement (as quanti-
fied by the corresponding concurrences) while the essential
three-way entanglement (as quantified by the 3-tangle) van-
ishes [65]. On the other hand, its GHZ counterpart has
maximal essential three-way entanglement, while pairwise
entanglements vanish [66].

In the case of a periodic spatial arrangement (lattice) of
qubits, it is pertinent to introduce the “twisted” W states as a
special case of the states in Eq. (7) where ¢, = k - x,,, with k
being a quasimomentum from the Brillouin zone correspond-
ing to the underlying lattice of qubits with positions x,,. Those
states are given by

)+ e¥lgg. .. gg)), ©)

Wy (k) = fZe'kx"|g -8). (10)

n=1

For instance, if qubits form a regular one-dimensional lat-
tice, then the quasimomentum, expressed in units of the
inverse lattice period, belongs to (—m, w]. The special sig-
nificance of the state in Eq. (10) rests on the notion that
using Jordan-Wigner transformation from pseudospin-1/2 to
spinless fermion (or hardcore boson) degrees of freedom [48],
this state is mapped onto a bare-excitation Bloch state
with quasimomentum k. In particular, the ordinary W state
with ¢ = ¢y = - - - = gy = 0—the special case of Eq. (10)
with k - x, = O—corresponds to the k = 0 Bloch state.

To describe all possible N-qubit states, we consider dif-
ferent numbers a of excited qubits. A generic state in the
subspace of states with a excitations can be parameterized as
{n1, ..., n,}), where the atoms enumerated with ny, ..., n,
are in the excited state while the remaining ones are in the
ground state. The Dicke state

o=(1)

represents the equal superposition of all states |{n;, ..., n,})
spanning that subspace, where the sum in the last equa-
tion runs over all (IZ ) combinations of a atoms out of N.

In a completely analogous way as in the case of W states,
one can introduce twisting, i.e., k-dependent relative phases
between different N-qubit basis states with equal excitation

N

D, ndd) (1)

np<..<ng

number a. These phases are captured by the unitary trans-
formation of Eq. (5), which maps the Dicke states into their
twisted counterparts

|DY (k)) = Z R X |(ny, L ng)). (12)

( n<..<ng

Obviously, twisted W states are a special case (a = 1) of
twisted Dicke states, i.e., [Wy(k)) = [DY (k)).

B. Chiral three-qubit W states

Given that all of our numerical calculations in the follow-
ing will pertain to the N = 3 case, it is prudent to devote
special attention to three-qubit systems and introduce a special
notation that allows one to conveniently denote the three-qubit
states. For this purpose, we introduce the self-adjoint chirality
operator [67]

X = €aBy 014028073 (13)
\/— Z Y V.

a.B.y

Here the indices «, B, and y run over x, y, and z, with €4,
being the totally antisymmetric Levi-Civita symbol defined in
terms of these indices. o, is a Pauli operator acting on qubit
n (n =1, 2, 3). Orthonormal eigenstates |,,) of this chirality
operator are explicitly given by

1Z00) = Igg8).  1210) = (Irgg) + lgre) + Iggr))/+/3.

014) = (w*|rgg) + grg) + wlger))/v/3 .

151-) = (wlrge) + Igrg) + w*|ggr))/v/3 .

1220) = (Igrr) + rgr) + |rrg))/v/3.,

824) = (w*|grr) + |rgr) + wlrrg))/v/3 .

02-) = (wlgrr) + |rgr) + w*|rrg))/~/3.  |t30) = |rr2,4)

with w = exp(2mi/3) [14]. They constitute a basis of the state
space of three qubits. The quantum number a =0, ..., 3 de-
notes the number of qubits in the |r) state (i.e., the Hamming
weight of the corresponding bit string), and the additional
quantum number s = 0, £ identifies the eigenstates uniquely.
Among these eight basis states there are three W states, i.e.,
states corresponding to Hamming-weight-1 bit strings (a =
1)—the ordinary W state |¢19) = |W3(k = 0)) and two chiral
W states |¢;+) and |£;_). The mutual orthogonality of these
three W states is thus a consequence of the fact that they be-
long to three different eigensubspaces of the chirality operator
[cf. Eq. (13)].

It is important at this point to establish a connection
between the two chiral W states and the general twisted
three-qubit states [as defined by Eq. (10)], which is of in-
terest for our treatment of the Rydberg-atom system under
consideration. Our assumed spatial arrangement of three
neutral-atom qubits in the form of an equilateral triangle
[cf. Fig. 1(a)], which implies that these three qubits are
symmetrically positioned on a circle, is equivalent to an
array (i.e., a one-dimensional lattice) of three qubits with
periodic boundary conditions imposed. In particular, it is
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straightforward to verify that the state |{;4) is—up to an ir-
relevant global phase—equivalent to the twisted state |Ws(k =
27 /3)) of a three-qubit array that corresponds to the quasimo-
mentum k = 27 /3 (expressed in units of the inverse lattice
spacing). Similarly, [¢1_) is equivalent to the twisted state
|W3(k = —2m /3)). Having established the correspondence
between the two chiral states and the twisted W states of a
one-dimensional array of three qubits, we will in the following
use |¢14) and |¢—) as our primary examples for the latter class
of generalized three-qubit W states.

IV. EFFECTIVE HAMILTONIANS

In what follows, we describe the derivation of effective
system Hamiltonians that constitute the basis for designing
various state-engineering schemes in the present work. These
effective Hamiltonians, which are derived with reference to
twisted (rather than ordinary) W states, constitute a general-
ization of the effective four-level Hamiltonian that was first
presented in Ref. [44]. In particular, we first treat the case of
resonant laser fields (Sec. IV A), followed by a discussion of
the off-resonant ones (Sec. IV B).

To realize different state-preparation and conversion
schemes in the neutral-atom system under consideration, we
derive different effective Hamiltonians using the resolvent
formalism (see, e.g., Ref. [68]). The effective Hamiltonian can
most generally be written in the form

Her = Z PE<H+HQEm

Eeo(Hy)

QEH)PE ., (15)

where the sum runs over the whole energy spectrum o (Hy)
of the noninteracting part Hy = H4 + Hp of the total Hamil-
tonian of the system. This equation is a direct consequence
of the general relation for the resolvent G(E) of the Hamil-
tonian H, i.e., G(E) = (E — H)~' and of the definition of
the effective Hamiltonian Hes in terms of the orthogonal
projection operators Pz and Qp = 1 — Pg, i.e., PeG(E)Pg =
(E — Her)"'Pg. Thus, the effective Hamiltonian H.; de-
scribes the dynamics inside the subspace of the Hilbert space
only, which is characterized by the projection operator Pg.
By choosing the orthogonal projection operators Pr and Qg
appropriately, effective Hamiltonians can be determined sys-
tematically within a perturbative framework so that secular
terms are avoided in the time evolution. If a single mode is
considered, the (unperturbed) energy eigenvalues are E)' =
E, + mhw, where a is the number of excited atoms and m is
the photon number of this mode, and the projection operators
of Eq. (15) project onto the corresponding (degenerate) en-
ergy subspaces. For a perturbative approach to first order, the
denominator of the resolvent of Eq. (15) can be approximated
by the unperturbed Hamiltonian.

The concrete form of the projectors Pg depends on the
considered fields. We discuss two distinct cases—off-resonant
and resonant laser fields. The crucial difference between them
is that off-resonant laser fields do not introduce additional
energy degeneracies, i.e., EJ' = E;’,’/ if and only if the two
atomic-excitation numbers are the same (a = a’) and the two
photon numbers as well (m = m’). As long as degeneracies
due to different fields are well separated, we can split up the

sum over all fields in the system Hamiltonian H and treat
each field separately. By tracing out the field’s degrees of
freedom, we will derive effective Hamiltonians describing the
dynamics of the atomic ensemble via corrections to the atomic
ensemble Hamiltonian Hy. In the following, we will discuss
the two cases of a single laser field separately. The resulting
effective Hamiltonians and their combinations will then be
used in Secs. V and VI for state preparation and conversion
schemes, respectively.

A. Off-resonant laser field

We first consider a single off-resonant laser field (enu-
merated with j = 0) with wave vector k¢, assuming that its
detuning Ay = wp — w4 = wg — (E, — Eg)/h is much larger
in absolute value than the corresponding Rabi frequency €,
Le. [Agl > [S0].

Because the field is assumed to be off-resonant, the de-
generate energy subspaces are completely determined by the
number of excitations in the atomic ensemble a and the num-
ber of laser-field excitations, i.e., the number of photons m.
The projectors onto a subspace of energy £/ is given by

N

D0 Hmend) ({n, - nad] ® o) (mol.

ny<...<ng

P =
(16)

A detailed derivation of the effective Hamiltonian [cf.
Eq. (15)] is relegated to Appendix A 1. Here we only state
the resulting corrections to the Hamiltonian H4 of the atomic
ensemble, which are obtained by assuming a coherent field
state of high mean photon number M|, and tracing out the field
degrees of freedom. To succinctly write down these correc-
tions, we make use of the operator

N
Hdo(N) = D~ (1= 80y [Py, (81 @ 1), (17)

ny,ny

which transforms every state into an equal (not necessarily
normalized) superposition of all other states connected to it
via precisely one excitation and one de-excitation at different
atoms. In other words, speaking in terms of bit strings with
g = 0and r = 1, this operator connects all bit strings of equal
Hamming weight but with a Hamming distance (Hd) of two.

The lowest order corrections to the atomic ensemble
Hamiltonian are captured by

U (ko) Hdy(NU (ko) + N — a
hA() —aV

N
HY' (ko) =Y h2|szo|2pa[
a=0

_ Ulko) Hd2(N)U " (ko) + a] 18

Ay — (@ — 1)V

such that the effective Hamiltonian of the atomic ensemble is
given by Hegr = Hy + H, Istf(ko). In the last equation

N

Do) (s nddl (19)

ny<...<ng

P, =
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stands for the projector onto the subspace of a excitations,
while the effect of the site-dependent phase shifts is captured
by the unitary-transformation operators U (k¢) [cf. Eq. (5)].

It is important to note that fora =0, 1, N — 1, N the cor-
responding terms in the Hamiltonian of Eq. (18) can further
be simplified using the following identities:

PyHd,y(N)Py = Py Hdy(N)Py = 0,
P Hd>(N)P; = N|DY)(DY| — Py,
Py_1 Hdy(N)Py_; = N|Dy_,(DN_,| — Pv-1. (20)

For Rydberg trimers (N = 3), all terms of Hd, reduce to
one of the above special cases and we obtain

H" (ko) = 3s0lggg) (ggg| — 3sa|rrr)(rrr|
+ (=350 + 351)| D] (ko))(D; (ko)

+ (=351 + 352)|D3 (ko)) D3 (ko)| + 51 (P, — Py),
21

where s, = i%|Q|?/(hAg — aV ) is a shorthand for the energy
shifts. Hence, the off-resonant laser field just shifts the energy
levels of the atomic ensemble, but up to first order does not
contribute any off-diagonal elements. This result does not
include jump operators between different levels. They would
appear in higher order terms of the resolvent expansion, but
are not considered here. Therefore, we neglect small oscilla-
tory behavior in the level populations of the atomic ensemble
of the order of max{[sa/(h|520|)]2;0 <a <N —1}. Due to
the induced energy shifts, the effective Hamiltonian lifts the
energy degeneracies of the subspaces with @ = 1,2 excita-
tions, such that |Df (k)) and |D%(k)) differ in energy from the
corresponding orthogonal states of the same total excitation
number a. A suitable eigenbasis of this effective Hamiltonian
are the |{,) states in Eqgs. (14). The energy shifts can be set
to drive specific transitions by choosing appropriate detunings
of additional fields as will be discussed in Sec. VI B below.

B. Resonant laser fields

If a field (enumerated j = a) is in resonance with a specific
transition a <> a — 1 of the atomic ensemble, the subspaces
P and P:’jl+1 become energetically degenerate. By equating

the energies E* and Ea’"jfl, one obtains the condition

A, = Ti(we — wp) = (a — 1)V, (22)

where w, is the frequency of the laser field. Given this de-
generacy, the last two subspaces have to be jointly considered
within the framework of the resolvent formalism. Assuming
the field to be classical, i.e., in a coherent state of high mean
photon number M,, and tracing over the degrees of freedom
of the field, we obtain an effective Hamiltonian for the atomic
system alone. If we further assume that V > h|Q,|, we can
neglect all terms scaling with |/i2,|?/V, thus leaving—apart
from Hjy—just parts containing the subspace ladder operator

N N
o = D D I@uwlrlin, . nah(fnr, . nadl (23)

n<..<n, n=1

and its Hermitian conjugate. This results in the effective
Hamiltonian Hy + Hy~“"!, where

HE" " k) = R U ko)o, Ut (k) +Hee,  (24)

In the last equation, whose detailed derivation is presented in
Appendix A 2, the effect of the site-dependent phase shifts
is once again encoded into the unitary transformation U (k,).
The special case a = 1 corresponds to the well-known effect
of enhanced Rabi oscillations [37] and leads to a simple prepa-
ration scheme for twisted W states, as discussed in Sec. V
below.

Combining N laser fields with detunings A, = (a — 1)V
witha € {1, ..., N}, such that every laser field is in resonance
with one specific transition between eigenstates of the atomic
Hamiltonian Hy4, we can construct an effective Hamiltonian
connecting stepwise all N + 1 degenerate energy levels of the
atomic ensemble. The corrections added to Hy in this case are

N
Hy({ka}) = Y [RQLU (kj)o, U (ky) + Hel, (25

a=1

where {k,} = {k;,...,ky} and each laser field j =1,...,N
connects the subspace of @’ = j — 1 and a = j excitations like
a step on a ladder (L). These fields in general have different
corresponding wave vectors k,, thus introducing different site-
dependent phase shifts. Because in general U (k) # U (ky+1),
these fields do not necessarily form a ladder Hamiltonian of
N + 1 states. To what extent the steps match is described by
the overlaps

-1 N
DY (k)| DY (kay 1)) = (N> ¢t ~hay Ky
(D7 tea) | DY o)) = Z

(26)
Overlaps smaller than unity result in offsets. One way to
deal with the latter is to control laser alignments and set
precise atom positions, such that special atomic ensemble
states with their specific relative phase are selected in the
effective Hamiltonian. The easiest case is to avoid phase dif-
ferences between different atom positions in the first place.
If all laser fields are properly aligned such that k, -x, =0
mod 27 for all combinations of a, n = 1, ..., N, the effective
Hamiltonian is characterized by perfect overlaps and connects
all N + 1 different |DY) states succeedingly. The possibility to
select different states for the state conversion is discussed in
Sec. VI A. Alternatively, such a strong off-resonant field can
be used to lift some of the degeneracies in H4. The energy
shifts introduced by this field (j = 0) can be used to select
certain parts of the Hamiltonian dynamics by a fine detuning
of the ladder fields j =1, ..., J. Such compensation of un-
wanted terms will be carried out for the Rydberg-trimer case
in Sec. VIB.

V. PREPARATION OF CHIRAL W STATES

In this section, we present a state-preparation scheme for
twisted W states for the Rydberg system under consideration
by making use of the effective Hamiltonian for a single reso-
nant laser field derived in Sec. IV B. It includes the preparation
of the chiral states |{;+) and |£;—) as special cases.
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FIG. 2. Schematic drawing of the orientation of the laser field
and the atomic plane for the N = 3 case. The atoms form an equi-
lateral triangle with interatomic distance d. The orientation of a
plane-wave laser field with wave vector k is defined through the
angles ¥ and ¢.

With a single laser field resonant to the Rydberg transition,
i.e., A} = 0, we immediately recognize enhanced Rabi oscil-
lations in Eq. (24), because

HY='(k)/h = Qi/Nlg... (DY k)| +He.  (27)

describes the well-known effect of collective Rabi en-
hancement, with Qy = /N, [37]. This effect was first
experimentally observed in Ref. [56] and more recently dis-
cussed, for example, in Ref. [69]. Due to the site-dependent
phases, the oscillations appear between the ground state and
the twisted W state | DY (k)).

Regarding the total number of excitations, the differ-
ent twisted W states are indistinguishable. With the atomic
ground state |g...g) as initial state, and assuming control of
the alignment of the resonant laser field, it is straightforward
to prepare a specific class of twisted W states by applying
a laser pulse such that half a Rabi oscillation with Rabi fre-
quency Q2 is carried out. We explicitly determine the phases
in the Rydberg-trimer case (N = 3), because it is straightfor-
ward to implement them on purely geometrical grounds.

If the three atoms are positioned such that they form an
equilateral triangle of interatomic distance d, their positions
relative to the center of mass can be described via the ra-
dial coordinate r = d/~/3 and three azimuthal angles with
relations ¢ — @y =4 /3 and @3 — @, =27 /3. The site-
dependent phases of the laser field are given by

wy d

kyox, == 75 Sin D cos(px = on) (28)
where ¥J; is the angle between the propagation direction of
the laser field and the atomic plane, while ¢y is the azimuthal
angle describing the projection onto this plane [cf. Fig. 2].
Because we treat the interaction in the RWA, the resonance
frequency is always much higher than the absolute values
of the detunings, i.e., |A;|/w4 < 1, and thus the phases are
solely determined by the propagation direction, i.e., ¥ and
¢« and the interatomic distance d (for a schematic illustration
of the laser orientation with respect to the atomic plane, see

Fig. 2).
Since Zn cos(¢r — ¢,) = 0, we can only describe sym-
metric twisting in this setup where )  k-x, =0. For
example, we can choose the interatomic distance to be twice

w/4 /2
9y = arcsin [®/(27)]
FIG. 3. Fidelity Fjw (@) = [(W(®)|¢15)] (s = 0, &) of the twisted
W state |W(d)) corresponding to the chiral basis states |¢j9) =
[W5(k = 0)) (solid line), |¢;) (dashed line), and |¢;_) (dotted line)
as the target states, for different polar angles ©#; = arcsin(® /27 ) and
azimuthal angle ¢, — ¢, = 7 /2. The vertical dotted lines indicate the
configurations required for the preparation of the two chiral states.

the resonance wavelength (i.e., d = 4mwc/w,) and the rela-
tive polar angle ¢y — @ = /2, such that cos(¢y — ¢,) =
—/3/2,0, +/3/2. With this setup, the whole range of relative
phases k - (x13 —x2) = FP with 0 < @ < 27 is achievable
by tilting the laser field accordingly with respect to the atomic
plane such that 0 < ¥ < /2 and ¥ = arcsin[®/(27)]. In
the envisioned scheme, half a Rabi oscillation drives the
ground state |ggg) into the symmetrically twisted W state

1 . .
W(®)) = —=(e " |rge) + lgrg) + ¢ ®lggr)).  (29)

/3

In particular, the two chiral states |{;4+) and |{;—) can be
realized by tilting the propagation direction of the laser field
such that ¥ = arcsin(1/3) and ¥ = arcsin(2/3), respec-
tively (note that the corresponding values of & are 2w /3
and —2m /3). This is illustrated in Fig. 3, which shows the
fidelities [(W (®)|¢15)| of the state |W(®)) corresponding to
the ordinary W state (s = 0) and the two chiral states (s = %)
dependent on the polar angle ¥ = arcsin[®/(27)] of the
laser field. Figure 4 shows an example of a time evolution
for the preparation of a twisted W state from the ground state
|ggg) via a  pulse.

The fact that the external field only allows the generation of
a W state with one specific twisted relative phase [represented
by @ in Eq. (29)] can be seen as a selection rule. Namely,
this twisted phase has to match the one characterizing the
field itself. In other words, the field only connects the ground
state—for which the analog of this twisted phase is zero—to
one particular (field-specific) W state.

Given that the states |{19) = |Ws), |¢14), and |¢_) form an
orthonormal basis of the a = 1 subspace of the total three-
atom (qubit) Hilbert space, a combination of three laser fields
with these specific alignments could drive the ground state
toward an arbitrary linear superposition of these states. In
other words, with three laser fields, the preparation of an
arbitrary twisted W state of three qubits is possible, since all
three orthogonal transitions are addressed.
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— (1))
lg99)

[a—

0 0.5
t/T

FIG. 4. Typical time evolution of fidelities Fy ) = [(¥ (t)| V)]
(W) = |ggg), |¥(T))) corresponding to a m pulse with Q =
n/(2«/§T), where T is the conversion time and | (T")) = [W;(ky))
the resulting twisted W state. The time evolution corresponds to the
N = 3 Hamiltonian [cf. Eq. (37) in Sec. VI A] and randomly chosen
phases k; - x,,, with V/h = 3000/T and 2, = Q3 = 0.

One specific application of chiral W states in QIP pertains
to implementing noiseless-subsystem (NSS) qubit encod-
ing [57]. NSS encoding is one of the well-known encoding
schemes for logical qubits that are inherently robust to noise
and constitute an alternative to active error correction. This
type of encoding represents a three-qubit generalization of
a two-qubit decoherence-free subspace (DFS) encoding [70].
While the latter is robust against global o, dephasing, NSS
encoding is insensitive to any global Pauli operator [57].
In particular, a dissipative preparation of chiral W states
in a trapped-ion system, along with the implementation of
noiseless-subsystem encoding, has quite recently been re-
ported [14]. On the other hand, the preparation of such states
and the implementation of NSS encoding with neutral atoms
in Rydberg states has never been reported before, and thus the
scheme proposed here may serve as the basis for an experi-
mental realization.

VI. CONVERSIONS FROM TWISTED W TO GHZ STATES

Having considered the generation of special types of
twisted W states in the system at hand, we now turn our atten-
tion to the conversion of W states into their GHZ counterparts.
While the creation of W-type states, characterized by a single
excitation that is shared by all the atoms in an ensemble,
represents the hallmark of the RB regime [37], any realiza-
tion of a GHZ state with strongly interacting Rydberg atoms
can be viewed as an antiblockade-type phenomenon [71].
While Rydberg antiblockade for two or more atoms can result
from different scenarios, in the strongly interacting regime
(JV| = 10 k2|, where 2 is the relevant Rabi frequency of
the external laser) it entails a dispersive interaction with the
specific value of the detuning A of the external laser from the
relevant internal transition (ZA = V/2 in the two-atom case;
AA = (N —1)V/N in the general case [71]). Our scheme
for realizing GHZ states, which involves multiple lasers
with differing detunings, is far more complicated than this

conventional scenario. Yet, because it results in a finite proba-
bality to have a state with more than one atom simultaneously
excited to the Rydberg state in the strongly interacting regime
it can be considered as a generalized form of the Rydberg
antiblockade.

The structure of the ladder Hamiltonian in Eq. (25) is such
that it only connects adjacent energy levels of the atomic
ensemble. However, due to the existence of nontrivial offsets,
the dynamics inherent to this Hamiltonian are not necessarily
enclosed within a subspace of N + 1 states. In the following,
we discuss two approaches whereby one can ensure subspace-
enclosed dynamics by selecting one state for each excitation
number a. In these cases, the system can be described by an
effective Hamiltonian connecting adjacent levels, thus inher-
iting the already existing solutions for systems described by
Hamiltonians of that type. In all the following cases, this is
accomplished through a readjustment of Rabi frequencies. In
what follows, we will either make use of a simple m pulse
to drive half a Rabi oscillation, or an adaption of a more
complicated pulse scheme that was utilized for conversions
between W and GHZ states in Ref. [45].

In Sec. VI A below, we discuss a scheme where the align-
ments of the laser fields and the positioning of the atoms are
adjusted to ensure a subspace-enclosed dynamics of N + 1
states via selection rules as in the state-preparation scheme of
Sec. V. By contrast, in Sec. VIB we consider an alternative
scheme in which an additional laser field lifts some of the
degeneracies and the states that participate in the dynamics
are singled out via fine detunings of the remaining laser fields
and the attendant hierarchies of timescales. This last scheme
is then discussed in a broader context in Sec. VIC, where
we also demonstrate its soundness by showing that typical
state-conversion times are much shorter than the relevant
Rydberg-state lifetimes.

A. Conversion schemes involving degenerate
Dicke manifolds of states

In contrast to the preparation scheme in Sec. V, the pres-
ence of several laser fields complicates the situation as they
have, in principle, different propagation directions (i.e., dif-
ferent wave vectors k;). Equation (25) can in this case be
written as

U (ky)Hy ({ka)U (k)
N
= > QU (ks — k), Uk, — ki) +He.  (30)

a=1

The alignment of the laser field resonant to the Rydberg tran-
sition (A; = 0) sets a reference frame insofar that it is the
only one connecting the remaining levels to the ground state.
Any state conversion scheme naturally starts with all atoms
in the ground state or is preceded by a preparation scheme
of the kind proposed in Sec. V. Because of that, and without
loss of generality, we set the twisting induced by the first laser
as the reference one; i.e., we set ki -x, =0 mod 2. This
transforms all wave vectors k; to k; — k. If all laser fields
are properly aligned such that (k; —k;)-x, =0 mod 27w,
we can split up the ath rising operator into a parallel and
orthogonal part with respect to |DY) such that the dynamics
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of |DY) states decouples from their orthogonal counterparts:

N
Hy/h=> " Qi[JaN —a+ 1)|D)_,)(DY|
a=1

+ o, (P, — |DY)YDY])] + H.e. 31)

Now with P, = YN |DN)(DY| we project onto the subspace
just containing the N + 1 different |[DY) states. Hence, we
calculate PpH)Pp and get

N
HY“/h="Y"Qi/aN —a+1)|DY \DY| +He. (32)
a=1

The resulting effective Hamiltonian is a matching ladder of
Dicke states (DL); hence, it connects stepwise all N + 1 en-
ergy levels, such that any state conversion involving adjacent
energy levels that are connected via Rabi frequencies can
be carried out. For example, pulses not overlapping in time,
which induce Rabi half-oscillations corresponding to adjacent
transitions would drive the system from the ground- to the
highest excited state. Alternative schemes with temporally
overlapping pulses are also possible.

We now discuss some special cases of Eq. (32). For N = 3
we obtain

HP"/h = /391 1889)(D}| + 225 |D})(D3 |
+ /3| D3)(rrr| + Hec. (33)
Similarly, for N = 4 we have
HPY/h = 27 |geg2) (D] + v/623|D1)(D3]
+ V62| D3)\DS| + 29| D3)(rrrr| + Hee.  (34)

These are the same effective Hamiltonians as used in
Refs. [44,45] for W-to-GHZ state conversion. However, it is
important to point out that a strong off-resonant laser field, as
it was utilized in this previous studies, is not a prerequisite for
obtaining these effective Hamiltonians, as long as the state of
the atomic ensemble fulfills Pp |y (¢)) = [y (¢)) for all times ¢
during the conversion process. This can be achieved by prop-
erly aligning all laser fields as discussed above. With other
alignments, effective Hamiltonians which include orthogonal
chiral states can be designed exploiting selection rules and the
additional twisting induced by the laser fields. We will carry
this out explicitly for the Rydberg-trimer case (N = 3).

In the basis of |¢,) states [cf. Egs. (14)], we can recast
Eq. (30) in the form

Hy (ka})/ i = 23/3 1g88) (1ol
+ Q43U (k3) 620) rrr|U” )
+ €5 U(k2)[21¢10) (G20l — 18140 {52+
— 161-)(62- 11U (k2) + H.c. (395)
Atom positions and laser-field alignment chosen such that

Uk)|ti+) = 1¢10), Uko)|ox) = Uk3)|b0)  (36)

would single out a —[&10)(&2—| (—|¢10) {$2+]) transition oper-
ator in the Hamiltonian in the upper-sign (lower-sign) case.
If the initial state lies in the subspace spanned by the four

A
3B, + 3V m
:-'::Qg Qs
’ \C2—>;., |G20) A |C2+)
% 2 Qs
1 \ 4
E, +
[SESERY VST5Y NTee)
Ql o
3E, =0 - Y _ v
lggg)

FIG. 5. Energies of the atomic ensemble with N = 3 correspond-
ing to the states |{,) [cf. Egs. (14)]. The solid arrows indicate
transitions driven in the case when all laser fields are aligned such
that (k; —k;) - x, = 0, while the dotted ones indicate those corre-
sponding to the choice of laser-field alignments described by the
upper-sign case of Eq. (36). Here E, = 0 is chosen as origin for the
energy scale.

states {|ggg), IW), |&2-)(|&2+)), [rrr)} the unitary time evo-
Iution of the atomic ensemble is enclosed in this subspace.
State conversion schemes where the underlying Hamiltonian
connects adjacent levels can easily adapted by adjusting the
Rabi frequencies. Effective Hamiltonians including different
states of the a = 2 subspace are indicated in the level scheme
of Fig. 5.

To illustrate the differences in the effective Hamiltonian
with respect to the alignments, the evolution of the initial state
| (t = 0)) = |W) is calculated numerically [72-75] based on
the interaction Hamiltonian

3

3
Hi ) =Y Y (e ®= =801, (¢] + H.c.)

j=1 n=1

+ Y Viglrr) g (rr (37)

p=<q

with constant Rabi frequencies €2; realizing W to GHZ con-
version via |{2).

In the case when all laser fields are aligned, the values of
the Rabi frequencies are TyS2; = 1.22/+/3, T2, = 1.42/2,
and TpQ23 = 2.35/ /3, where Ty is the conversion time. These
specific values of the constant Rabi frequencies are deter-
mined in Ref. [45] and are based on the observation that under
the assumption of real-valued Rabi frequencies state conver-
sion in a four-level system is characterized by the dynamical
symmetry su(2) @ su(2) = so(4). Therefore, it can effectively
be described in the form of two pseudospin-1/2 degrees of
freedom. The fact that only terms connecting adjacent exci-
tation subspaces (a — 1 <> a <> a + 1) appear in the effective
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via [Ca-)

0.5
t/Ty

FIG. 6. Time dependence of target-state fidelities Fguzy =
J{GHZ|o()|GHZ) [cf. Eq. (39)] for the W-to-GHZ state conver-
sions via two different intermediate states [{y) and |¢._), both
shown for VT, /ii = 3000. The solid lines correspond to the unitary
dynamics where o(t) = | (¢))(¥(¢)|. The dotted lines correspond
to the open-system dynamics with the dephasing and spontaneous-
decay rates I' =y =0.1/T,.. The two conversion pathways are
adjusted such that their respective total laser-pulse energy consump-
tions are mutually equal.

Hamiltonian introduces constraints to the full dynamics of the
two pseudospins.

For the conversion between W and GHZ states via |{,_)
[cf. the upper-sign case of Eq. (36)] to be carried out in
the same time 7j, the second Rabi frequency would have
to be doubled. In order to be able to compare the two
conversion paths, we adjust all Rabi frequencies such that
the total laser-pulse energy over the corresponding conversion
time is the same in both cases. The total laser-pulse energy is
given by

;3
A(t):/o DI Par'. (38)
j=1

(The time dependence of the Rabi frequencies is introduced
here only for later convenience.) Both schemes allow one
to carry out the desired state conversion, but the conversion
via the achiral state is faster under the assumption of equal
laser-pulse energy consumption. In both schemes, only one of
the a = 2 states acts as intermediate state in the conversion
process while the other such states are never occupied. The
target state in both cases is

IGHZ) = 1(Iggg) + e "V'|rrr)), (39)

where the time-dependent relative phases account for the
energy shift arising due to the constant energy difference
between levels in Eq. (37).

The results obtained in numerical calculations, which
correspond to V,, =V and V/h =3000/T, in both cases
(where T, is the conversion time in the upper-sign case),
are shown in Fig. 6. What can be inferred from these re-
sults is that—while both conversion schemes realize the target
state—the scheme that makes use of |¢yg) as intermediate
state requires a significantly shorter time than the one where

|¢2—) plays the analogous role. For the sake of complete-
ness, it is should be stressed that yet another state-conversion
pathway—equivalent to the second one—that makes use of
|2+ ) as its intermediate state, is also possible [lower-sign case
of Eq. (36)].

In realistic experimental setups spontaneous decay of the
Rydberg state and dephasing, caused, e.g., by atomic mo-
tion [76], limit the lifetime and the accuracy of the proposed
state-conversion schemes. To take such effects into account,
we characterize the corresponding open-system dynamics
within the framework of the Lindblad master equation [77].
In this framework, the dynamics of the density operator o(¢)
is governed by the equation

do ' 2.1 .
i %[Hl(t), o)1+ ; 5([Q(I)Lz, L1+ [Lio(t), L),

(40)

where the two relevant Lindblad operators are given by

3 3
Li=vT Y 1@umirl, L= 7 Y (12hmgl = 1r)u (D
n=1 n=1

(41
Here L; describes spontaneous decay from the Rydberg to the
ground state of an atom with decay rate I', while L, describes
the dephasing of these states with the rate . We solved the
last Lindblad master equation numerically [72-75], choosing
rather high rates I' = y = 0.1/T,.. Needless to say, the target-
state fidelity [cf. Fig. 6] in the open-system scenario is smaller
than those found in the closed-system treatment. The obtained
results for the fidelity speak in favor of using the faster con-
version path, as the debilitating effects of spontaneous decay
and dephasing are weaker for that path.

The preparation of chiral states discussed in Sec. V and
the state-conversion scheme presented here, rely heavily on
setting the site-dependent phases k; - x,,. Therefore, it is nec-
essary to control the orientation of each laser field relative to
the atomic plane and the position of the atoms to a precision
of the order of the laser wavelength. Owing to the recent
advances in manipulation and control of cold neutral atoms
in optical tweezers [59-61], this last requirement is within
experimental reach.

To describe the influence of fluctuations in the atomic
positions on the conversion scheme, we consider random vari-
ations of atomic positions. These variations affect not only the
phases k; - x,,, but also the interatomic potentials V,,;, because
they cause the arrangement of atoms to deviate from the
original equilateral triangle. To differentiate these two effects,
it is prudent to concentrate on the faster conversion scheme
via |£p0). Because in this case all laser fields are aligned, we
havek; - x, =kj - x,. As already discussed above, k; - x,, sets
the reference phase. Hence, if we neglect a misalignment of
laser fields, the conversion scheme via |¢yg) is not affected
by the random phases. No further matching conditions as in
Eq. (36) have to be fulfilled. Furthermore, due to the scaling of
Vpg = Cs /d6q, the influence of varying interaction potentials
Vpq can be expected to dominate over small variations in the
phase-matching conditions.

In order to quantify the effect of the deviation from its orig-
inal value V = Cg/d® at interatomic distance d, we computed
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FIG. 7. Mean values of the GHZ-state fidelity F,guz and their
corresponding standard deviations o (shaded area) corresponding to
the W-to-GHZ state conversion via |{), computed from a sample
of S = 500 results, for varying standard deviation o, of the inter-
atomic distance. The error bars show the standard error og /\/E of
the mean fidelity. The parameter values used are V/h = 30.86/T;
and d = 40Xy, where Tj is the state-conversion time and A is the
resonance wavelength.

the different interatomic potentials V,, = Vd®/d$, according
to randomly sampled atomic positions. We introduce ran-
dom errors for each of the spatial coordinates of the three
atoms. Accordingly, x, — x, + €, differs for all atoms n
(n=1,2,3). In each realization, the nine components of
the three error vectors €, were independently drawn from a
standard normal distribution of standard deviation o result-
ing in varying distances d,, and, accordingly, three different
Vpq per realization. We then numerically computed the time
evolution according to Eq. (37), where random positioning
error vectors €, were drawn componentwise from a standard
normal distribution with o € [0, 0.1A¢], where Ag is the reso-
nance wavelength, and sample size S = 500. This numerical
evaluation was repeated for different choices of the standard
deviation o resulting in different standard deviations o; =

\V (dpy — dpg)? of all 3S different values of d,, per sample

(where d ,, is the mean of all 3S d,, per sample). The param-
eter values used in these calculations were V/i = 30.86/7,
where Ty is the conversion time, and d = 40,.

Figure 7 shows the obtained mean values of the GHZ-state
fidelity Figuzy = [(GHZ|v(Tp))| and its corresponding stan-

dard deviation o = \/(F\GHZ) - F|GHZ) )2 for different values
of o4 att = T for the W-to-GHZ state conversion via |Zz). It
can be inferred from the obtained results that the mean values
of the fidelity are above 0.9 for the whole range of considered
values of o. The chosen simulation parameters were assumed
to have values characteristic of alkali atoms most often used
in optical-tweezer experiments, with the principal quantum
number n = 50 and the interatomic distance d = 4 um [25].
This speaks in favor of the experimental feasibility of the
proposed state-conversion scheme.

In addition to the already presented conversion scheme,
we discuss an alternative approach in Sec. VIB. That ap-
proach makes use of an additional laser field to set energy

shifts in the atomic Hamiltonian. This singles out a specific
twisted W state determined by the site-dependent phases of
this strong driving field. In turn, this allows one to address
specific atomic states via fine detunings §; of the other laser
fields (j =1, 2, 3).

B. Conversion schemes involving lifted degeneracies

The effective Hamiltonians derived for state-conversion
tasks in Sec. VI A depend on proper relative alignment of the
resonant laser fields involved and precise positioning of the
Rydberg atoms. Misalignment or errors in the positioning of
the atoms result in unwanted phase shifts. We can use a com-
bination of nearly resonant fields (enumerated by j = 1, 2, 3)
and an additional stronger field (j = 0), where the latter sets
energy shifts such that it lifts some of the degeneracies of
Hj. Fine detunings §; added onto the detunings A; can then
address specific transitions. This procedure is inspired by
the derivation of the effective Hamiltonian in Ref. [44] but
realizes a generalized version including relative twisting.

Again, we explicitly calculate it for the Rydberg trimer
case N =3. The corrections to H, in this case are
given by

HM = HO (ko) + HE((k,)). 42)

It is the combination of the off-resonant case from Eq. (21)
and the ladder Hamiltonian Eq. (25) for N = 3 being

Hy (tka}) /1 = {Q’f@ggng?(k])!
+ Q3 (3|Df(k2))(D§(k2)|

3
— 0 (ka) Y | € gg)lr) el <rr|)

n=1
+«/§Q§}D;(k3))(rrr|d>*(k3):| +Hec. (43)

with ®(k) = e X% The overlaps of twisted states corre-
sponding to different fields are

1
(D} k)| D} (k) = 3 Dok

oiks—k2)- Y0 %,
3

with 0 < X = Zi:, e®*n < 3 which describes the amount
of relative twisting between two different twisted states of the
same excitation number. If there are no relative phase differ-
ences, X,k —> 3. If Yk, =0, both laser fields address
orthogonal states and the effective Hamiltonian would split
in several unconnected dynamics. However, as long as the
overlaps do not vanish, we can compensate for it by driving
transitions with higher Rabi frequencies.

To show that, we transform the effective Hamiltonian to
an interaction picture with respect to the stronger off-resonant
laser field with Rabi frequency € > Q; (j = 1, 2, 3). Since

(D3 (k)| D3 (K3)) = kst (44)
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[Hy, HY(ko)] = 0, Hy is not affected by this transformation,
and we evaluate the remaining parts as

eiH;ff(ko)t/hHSL({ku})e—iH;’ff(ko)t/h/h

3
= U (ko)e™"/" Y [QEU (ko — ko)o, U (ka — ko)

a=1
+ Hele BT (k) (45)

where H°" without wave-vector argument stands for the op-
erator without any twisting. Now we can introduce small fine
detunings §; to the resonant fields such that the total detunings
are A“"al Aj+38;. If |§;] < |Agl, V/h, the fine detunings
do not change the calculatlon of the effective Hamiltonians
as discussed in Sec. IV B and Appendix A2, since §; never
contributes significantly.

However, in an interaction picture with respect to Hy =
Hj + Hp the Rabi frequencies are shifted Q; — Q je’i‘sf’
(associated with the atomic rising operator) due to the fine
detunings being part of the time dependencies of the field op-
erators. Now these fine detunings can be used to compensate
the oscillatory behavior of one term per laser field appearing
in Eq. (45). Unwanted terms will still oscillate with differ-
ent residual frequencies wg. However, if min{|wg|} > T7!,
where {|wg|} is the set of all the relevant residual frequencies
and T is the conversion time in question, we can ignore all
terms with nonvanishing exponents in Eq. (45). By choosing

81 = (—=6sg +4s1)/h, 8 = (3sop — 8s1 + 3s52)/h,
83 = (4s) — 6s2)/h, (46)

with s, = i2|Q0)2/(hAg — aV) (a =0, 1,2), we obtain the
following twisted-ladder (TL) Hamiltonian:

AT /h = /39 | "°"“||ggg><D%(ko>|

+ /395 [Z4, k3||D3(k0)>(rrr|

M D} ko))(D3ko)| + Hee. (A7)

+ 22,
Here, in order to ensure that Rabi frequencies are real valued,
we included additional phases into the redefined atomic states

i9(Zky—k,

|ggg) = e )|ggg),

|D3 (ko)) = =¥ F-42)| D3 (ko).
|;;;> — ei[ﬁﬂ():kosz)—(ﬂ(szh )+ko- Y0 X ] \rrr), (48)

where ¢(z) is the argument of the complex number z. The
driven transitions are indicated in Fig. 8. A more detailed
derivation of the twisted-ladder Hamiltonian can be found in
Appendix B.

The result is a Hamiltonian connecting twisted states with
adjacent numbers of excitations. The twisting is solely deter-
mined by the site-dependent phases of the strong laser field
(j = 0). Choosing other fine detunings §; would result in
different residual frequencies and other effective Hamiltoni-
ans, e.g., including chiral states [relative to U (ko)|¢10)]. Yet,
because the chiral states are still energetically degenerate with

A 55 A frrr)
3E, + 3V
As Q3
Y (D2 (ko))
5 A
2BV (ko)) o+ (o))
YA Qo
D3 (k
. _'X' D3 (ko))
|¢1— (ko)) 01 [C14 (ko))
A1 Oy
3B, =0 4
Y l999)

FIG. 8. Energy-level scheme corresponding to the Hamiltonian
H, + Hy(ko) for Rydberg trimers. E, is chosen as origin of the
energy scale. The arrows indicate the transitions driven by laser fields
with detunings A; + §; as determined by Eq. (46) [cf. Eq. (47)].

respect to H{"(ko), the effective Hamiltonian would be of
higher dimension. If all k, - x, — 0, i.e., without any twisting,
this final result reproduces the effective Hamiltonian as dis-
cussed in Ref. [44]. However, here we derived a generalized
version which includes relative twisting due to the different
laser fields. The smaller the specific |X,—,| becomes, the
higher the corresponding Rabi frequency €2, has to be for
a specific conversion to be possible in a given time frame.
Those adjustments are only possible as long as all | X, _x, | are
not too small, because with increasing Rabi frequencies the
perturbative treatment eventually breaks down. Alternatively,
the conversion time has to be increased accordingly which
allows the Rabi frequencies to remain sufficiently small.

With the effective Hamiltonian (47) we can consider the
preparation of twisted W states as in Sec. V, but now the
amount of twisting is solely determined by the stronger
off-resonant field (j = 0). With 2, = Q3 =0 we have an
effective Hamiltonian of Eq. (47) describing Rabi oscillations
between |ggg) and |D?(k0)) with effective Rabi frequency

= \/§§2| | 2 (k,—k,)|/3. Therefore, under the assumptions of
equal laser-pulse energy consumption [cf. Eq. (38)] the con-
version time increases as T = 9Ty /| Xk —k, |2, where Tj is the
reference conversion time without any relative twisting. Fur-
thermore, the constant laser fields from Ref. [45] as already
used in the last subsection implement a state conversion from
twisted |W (ky)) = |D? (ko)) to the GHZ state

1~ o =
|GHZ (ko)) ﬁ(lggg> +e¥lrrr)), (49)

if Rabi frequencies are adjusted by 3/| 2, ¢, | fora =1, 2, 3,
respectively.
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1 Ya), 2 3Tke—ky| =3
E;O-5' ";‘ "?-t""i E ...... a=20
04 '_". ___/kx\_g a =1
LTor, P Sk, | =2|770 =2
25054 ¥ N e i
= : s Yl
0 L et .
1 -(CT.."’ E HEkakﬂ =1
0.5 p 4 Do Y
-~ "n . b “":‘-‘ ~'
0 J _——h—-‘?""‘.?;‘)_( ~~~___
0 To Tos 1
t/To.7s

FIG. 9. Expectation values (P,) = (Y (t)|P,|¥ (¢)) for the atomic
excitation number a over the conversion time for a conversion
scheme |ggg) 7o |D?(k0)) sy GHZ state for different amounts
of relative twisting corresponding to |Zk0,kj| =3,2,1 [(a)—(0)].
T0,05.0.75 is the respective conversion time under the assumption of
equal laser-pulse energy consumption [cf. Eq. (38)].

To illustrate the discussed adjustments, we give an example
combining preparation of the twisted state |D? (ko)) from the
ground state, followed by its conversion into a GHZ state
for different amounts of relative twisting. The laser fields
j =1,2,3 are all aligned with the same polar angles 9 (cf.
Fig. 2) and azimuthal angle ¢;. We compare three different
alignments labeled via s = 3 sin(J;) = 0, 0.5, 0.75, such that
| Zko—k;| = 3,2, 1. The first part is executed via a 7 pulse
of the field j = 1 and the second one via the constant Rabi
frequencies as mentioned before. The & pulse is set to take a
quarter of the total respective conversion time 7. All values
of Rabi frequencies (j = 1, 2, 3) are adjusted such that the
total laser-pulse energy consumption is the same in all cases
[cf. Eq. (38)]. We numerically evaluate [72—75] the dynamics
governed by the interaction Hamiltonian

Hi(t) = H{" (ko)

3 3
+ 33 10,0 0 ), (0] + Hel] - (50)

j=1 n=1

with initial state | (r = 0)) = |ggg) and the time dependen-
cies of ;(¢) chosen in the form of step functions, such that
they equal the respective constant values at all times. Here
we disregard the fast dynamics due to H4 and the strong laser
field with Rabi frequency €2 and detuning A, because we
are only interested in the slower dynamics introduced by the
three fields j = 1, 2, 3.

For definiteness, we set Qy = —0.03A( and 7iA,/V =
—0.7. The negative detuning A, with respect to the Rydberg
transition ensures that the field is even more detuned with
respect to transitions involving the RB, and hence |so| >
[si| > |s2| with Ty so/h = —1247 where Tj in the considered
conversion time in the case without relative twisting. The
relation between detuning and the interaction energy shift
V ensures that all residual frequencies satisfy the condition
min{|wg|}To > 600. The obtained numerical results are pre-
sented in Fig. 9. Similar to the atomic Hamiltonian H4 which

is not considered here, the first-order correction H3°ff(k0)
and the relative twisting give rise to phases [cf. Egs. (48)].
Since we are not interested in such relative phases, we just
show expectation values (¥ (¢)|P,|¥(¢)). As was to be ex-
pected, the population is transferred to the one-excitation
subspace (a = 1) via the m pulse and the ensuing conversion
scheme leads to a GHZ state, such that (Y (T;)|Po|v (T)) =
(Y (TP (Ty)) = 0.5. The required conversion time be-
comes significantly longer for a larger relative twisting, i.e.,
for smaller | Zg, ;|-

With this approach by an additional laser field, the refer-
ence frame of the twisted states participating in the effective
dynamics can be set by the alignment of the strong field (j =
0). Furthermore, even if—for experimental reasons—perfect
alignment of the other fields or perfect positioning of the
atoms is not possible, this can be partially compensated for by
an adjustment of the Rabi frequencies. This speaks in favor of
the flexibility of the proposed scheme.

To summarize, within the proposed state-conversion
scheme, suitable combinations of interatomic distances and
laser orientations allow control of site-dependent phases. This
opens up the possibility to address different states during the
conversion process, with only a slight adjustment of the Rabi
frequencies of external lasers. It should be emphasized that,
while a strong field is not necessary for our scheme, such a
field can still be used for selecting—in combination with fine
detunings addressing lifted degeneracies—twisted states that
participate in the laser-controlled dynamics.

C. Timescale hierarchies and conversion times

Various schemes for generating entanglement in quantum
systems can be divided into those based on controlled dis-
sipation [78,79] and those that are governed by timescale
hierarchies [80]. Our state-conversion scheme in Sec. VIB
belongs to the latter group of schemes, which generically
entail the application of a strong “dressing drive” at rate G
simultaneously with other interactions that are characterized
by rates g;. The linchpin of such schemes is that the dress-
ing drive creates resonances that are resolved by the other
drives in the limit g; <« G, and the corresponding hierarchy
of timescales g;l > G~ is what protects the entangled target
state.

It is important to stress that for all schemes based on
timescale hierarchies the steady-state entanglement fidelity
only asymptotically approaches unity upon increasing the
relative strength G/max{g;} of the dressing drive. At the
same time, timescale hierarchies limit the entanglement-
generation speed, because the other interactions g; populating
the entangled target state must be driven slowly compared to
experimentally achievable rates for G.

To demonstrate the soundness of our proposed state-
conversion scheme, it is important to show that despite
the limitations imposed by the aforementioned timescale
hierarchies our characteristic state-conversion times are sig-
nificantly shorter than the relevant Rydberg-state lifetimes.
The latter scale as 7, o n°, where n is the principal quantum
number, so that for n ~ 50 one has 7, ~ 100 us [24]. In
particular, the hierarchy of timescales in the system at hand
dictates the following inequalities for the pulse duration Ty,
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the Rabi frequencies g;, the spontaneous decay rate « /n> of
the nth Rydberg state with « denoting a typical spontaneous
decay rate of an energetically low-lying bound state, and the
Stark-induced level shift G (all expressed in frequency units):

K/’ < T < lgil < |G| < Ey/(hn). (51)

Here Ej/(fin’) is the frequency corresponding to the level
spacing between Rydberg states n and n 4+ 1, with Ej/h =
10'% s~! being its counterpart corresponding to the ionization
energy E; &~ 13, 6 eV of the hydrogen atom, and x = 10 5!
(note that « is seven orders of magnitude smaller than Ej/h
due to fik /E; being proportional to the third power of the
fine-structure constant o ~ 1/137).

The last conditions can be fulfilled, for example, for a Ry-
dberg state with n = 50 by choosing the relevant parameters
such that |G| = 10'°/125 s~ and |g;| = 10%/125 s~!. This
further yields

125 x 10710 « 125 x 1078 s < T < 125 x 107% 5. (52)

Because the difference between spontaneous-decay rates
and typical optical transition frequencies always involves a
factor of @ & 1077, these last conditions imply that the char-
acteristic state-conversion times in the system at hand are
much smaller than the typical Rydberg-state lifetimes even if
the rates g; and G differ by a factor of 100. Therefore, typical
conversion times in a neutral Rydberg-atom system are of the
order of microseconds.

VII. SUMMARY AND CONCLUSIONS

To summarize, in this paper we addressed the problem of
dynamical state generation (i.e., state preparation and con-
version) in the Rydberg-blockade regime of a neutral-atom
system in which the atomic ensemble is subject to multi-
ple external laser fields. We presented a preparation scheme
for twisted W states, which assumes precise control over
the alignment of resonant laser fields and the positioning of

J

atoms. We illustrated this scheme in the special case of three-
qubit chiral W states, a special type of W states of importance
for implementing noiseless-subsystem qubit encoding [57].
In addition, we showed that conversions from twisted W to
GHZ states are possible by adopting already known pulse
schemes for ordinary W states. We further showed, that even
if such a precision in positioning of the atoms is not pos-
sible, a state conversion starting from twisted W states is
still possible. It involves a downward renormalization of the
relevant Rabi frequencies. Thus, somewhat higher laser-pulse
energies are required to carry out the desired state conversion
within the same time frame. We demonstrated the soundness
of our state-conversion scheme by showing that the typi-
cal state-conversion times are much smaller than relevant
Rydberg-state lifetimes.

Several possible directions of future work can be envi-
sioned. First, while all the examples of state engineering in
the present work pertained to a three-atom (qubit) system,
the preparation of general twisted W states in lattice-periodic
systems is of utmost importance in the area of analog quantum
simulation [81,82]. Namely, owing to their known connec-
tion with single-excitation Bloch states, such states represent
the desired states of analog simulators [83—86] prior to per-
forming interaction quenches of various types [87]. Second,
while our proposed state-conversion scheme is characterized
by timescale hierarchies, it would be instructive to devise its
counterparts based on controlled dissipation [78,79]. Last but
not least, the state preparation scheme proposed here can be
extended to other classes of generalized W states, different
from the twisted ones. For instance, an interesting W-type
state was proposed in the past for applications in quantum
teleportation and superdense coding [S]. However, this state
has never been realized with Rydberg-atom-based qubits.
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APPENDIX A: DERIVATION OF THE EFFECTIVE HAMILTONIANS
1. Off-resonant field

In what follows, we provide a detailed derivation of the effective Hamiltonian for a field (enumerated by j = 0), which is far

from resonance to any transition in Hy.

With the projectors P discussed at the beginning of Sec. IV A, we have P""H;y, P/ =0and >, Zg:o P'HP)

that the first-order effective Hamiltonian is

ett —HO+ZZPm tha E

m=0 a=0

= Hy, such

Q"l lnth

Al
QmH o (AD)

where Q7' = 1 — PI". Furthermore, since the interaction Hamiltonian Hi,, connects only atomic subspaces which differ by one

excitation, we obtain

m m
P a HimQa

and we can write down the corresponding terms of the effective Hamiltonian in Eq. (A1) as

n n
Pu intQa Ea — QmH()Qm
a a

O, HinP}' = P;"Him< T

= P'Hin P + P Hy P (A2)
Pm-H m—ll
a+ m
Hin P (A3)
1 1 nt
F - ELEp—El ) ’

033087-14



DYNAMICAL GENERATION OF CHIRAL W AND ... PHYSICAL REVIEW RESEARCH 4, 033087 (2022)

The energy differences in the denominators are given by

F1 Ao+ (‘7)Y = —hAg + (a— DV
E" —E" — i(Fo + wp) +V a)-(“ ) = 0 ! A4
@~ Fai = MEFox o) [(2 2 +hAg — ()V = hrg — aV (ad)

with Ag = w — wy. Since [P)', U(k) ® 1r] = 0, we can compensate the site-dependent phases via the unitary transformation
U (ko) and have to introduce them back into the equation at the end. By setting P" ; = P ,, = P"<0 = 0 we can write down the
general term

C (ko)
= U (ko)P} Hini P25 Hinc Py U (Ko )
N N
=U k)P Hue Y Hnns oD (s gt} @ [mo 1) m £ 1 (Z di|8)ww (rlaj + H.c.>P;"
<. <Nz =1

N N
=U k)P Hi Yy Y [(L=xfh) o )dovmE T, na D g} U} @ Im £ D (m 1 — 1

{ni,...,
n'=1n;<..<ngx

_____ nm}do«/m 14+ 1{n, .. ngm D, oo ngm )\ (0 @ Im £ 1) (m £ 14 1|]P(:", (A5)
where we used the characteristic function ( Xj_.,ﬁ‘ =1 if A C B and 0 otherwise) to encode the annihilation effect of the atomic
rising and lowering operators. Calculating the action of Hj, from the left results in four terms for each combination of
((ny,...,n9),n,n).

Since P)" projects onto the subspace containing m photons and a atomic excitations only one term per case, i.€., per sign &,
survives, resulting in

ldolP(m+ D) Y0 (1= xn o ). na—t} U {n))

Y oo (L= i) s ma U
C;'N(ko) — Z 5 v {n} =1 {ni,..., na-1} ® |m) (m| (A6)
w1 S X e \ ()

N 7
S X e b\ )

Reintroducing the site-dependent phases and dividing the resulting expression into diagonal elements that commute with
U (ko) ® 1 and appear a times, and off-diagonal ones which do not commute with U(ky) ® 1 and appear just once, we
obtain

|do|*(m + 1)P,[U (ko) Hda(N)U T (ko) + alPu ® |m) (ml,

) } (A7)
|doPmP,[U (ko) Hdy (VYU (ko) + (N — @)1y & ) m].

+1
PgnHimPg;l HintP,;n = {

Here we used the operator Hd,, as defined in Sec. IV A, to write down all off-diagonal elements. Thus, the effective Hamiltonian
in this case reads

N oo 5
0 | Ulko) Hdy(N)U (ko) + N — a U (ko) Hdy(N)U (ko) +aT ,,
i = o+ 32 ol R R — e p ST TR )

a=0 m=0

Assuming a coherent state of high mean photon number M and tracing over the field degrees of freedom, we derive the atomic
ensemble Hamiltonian of Eq. (18) with Rabi frequency Q% = |do|*My/ 2.

2. Resonant field

In what follows, we present a detailed derivation of the effective Hamiltonian for a field which is resonant with one of the
transitions in Hy.
As discussed in Sec. IV B, we have to join the two subspaces resonantly connected by the laser field. Hence,
Pm,m+1 — P:1 + P:lrn_ﬁl =1 — Qm,m+1 (A9)

a,a—1 a,a—1 >

which joins the terms containing P and P‘:"_Jrll in the effective Hamiltonian. For this resonance projector, we have [cf. Eq. (15)]

Pm,m+1HPm,m+l — Pm,1n+1H0Pm,m+l + (P;qumPfjil + H.C.), (AlO)

a,a—1 a,a—1 a,a—1 a,a—1
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where in comparison to the other nonresonance projectors an additional term appears, which contains Hj,.. Compensating for the
site-dependent phases, this term can be written down as

CM = U (k)P Hin P U (k)

a,a—1

N N N
_ {ni,..., ng} {n} / i
= > Mmncomdd) Y0 dem Ty A=l D) ® ImYm 1
ny<..<ng n’l<...<n(’171 n=1

N N
=dV/m+T1 Y Y Ml DL ) ® mm 1
ny<..<n,_, n=1
=da\/m+laatl®|m)(m+l|. (Al11)

Here, we have introduced the rising operator of the atomic subspace with a — 1 excitations, connecting this subspace to its
counterpart with a excitations. We can define a lowering operator in an equivalent fashion. These two operators are given by

N

N
G[;: Z Z'g)nn<r|{nlv~~-9na})({n11""na}| :(O‘a-t])-rs

ny<..<ng n=1

N N
of = Y Y Pl ) na = () (A12)

n<..<ng, n=1

and act on the states |DaN ) according to

o |DY)= V(N —a)a+ 1)|D),,), o, |DY)=aWN —a+ 1)|D),). (A13)

In addition, for the second part of the effective Hamiltonian we have to compute

1 1
m,m+1 m,m+1 __ pmm+1py m,m-+1 m,m+1 yy. m,m+1
a,a—1 Em m’m+1H m,m+1 Qa,a—] HPa,a—l - Pa,a—l HlmQa,a—l Em m’m+]H m,m+1 Qa,a—l HlmPa,a—l
a Qa,a—l Qa,a—] a Qa,a—l OQa,a—l

m,m—+1 m,m+1
Pa,a—l Q

m—1 m+2
_ pmyy. a+1 . pm m+1 gy a—2 . pm+1
=P, HlmelmPa + P77 Hmt—EmH — g2 HinP}
a a+1 a—1 a—2

(Al4)

With an index shifta — a — 1 and m — m + 1 to match the second term, we can use the results pertaining to the off-resonant
field in Appendix A 1. For all other projectors with @’ # a, a — 1, we can also use the results corresponding to the off-resonant
case, because for other transitions the resonance condition is not fulfilled. Putting everything together yields

o0 da 2
U (ka)Hg ™" U ka) = Ho+ ) [uwm T o, @ m+ 1)m| + He) — | V' " (Hd (V) + (N — )P
m=0
|dal*(m +2) .
— T(Hdz(N) +a— 1P
N
Hd, (N N —d Hd, (N !
+ Y g p(mie N ), gy BEOEE ) (A15)
pa T =0 hA, —a'V WA, — (@ — 1)V

By further assuming that V > 1|Q,| for all fields, we can ignore all terms scaling with |d,|?/V and only the first line contributes.
Tracing out the field degrees of freedom and assuming a coherent field state results in the effective Hamiltonian as given by
Eq. (24).

APPENDIX B: DETAILED DERIVATION OF THE TWISTED-LADDER HAMILTONIAN

In the following, we provide detailed derivation of the twisted-ladder Hamiltonian in Eq. (47) starting from Eq. (45).
We can evaluate the three terms (a = 1, 2, 3) of Eq. (45) separately using the well-known operator identity
=1
—A _ o
Bet =) —IA Bl (B1)
m=0

where [A, B],, is a shorthand for the repeated commutator of A and B with m appearances of the operator A. This is relatively
straightforward for a = 1, 2, 3. For the sake of brevity, we omit the argument k, — k( of U (k, — k), because in each a term the
argument is the same. We reinstate this argument at the end of the derivation.
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We first evaluate
[H, Uoy U™ = Bso — s)U o7 U + (s0 — 51) ko 4,07 » (B2)
where s, = /1*|Q|?/(liAg — aV) are the energy shifts introduced by H" and H°" = H{T(k = 0). We can see that the com-

mutator partially reproduces the operator and adds an additional term w1thout twisting. Therefore, we can write down the mth
commutator using a triangular matrix as

iHO R ot _iH R (ll/fl) off (it/h) m itA, /i
MY G Ute mX; [H*, Uo U‘]m—mg(:) o v - (ATer) = vy - (¢"M/7ey) (B3)

. T . . . . .
withe; = (1 0) being a unit vector of appropriate dimension and

U(T]_UT> ( 350 — 81 0 )
v > A= B4
: ( oy : (S0 — 1) Zkg—k, 650 — 451 (B4)

with eigenvalues o (A1) = {359 — 51, 659 — 4s1}. Similarly, for a = 3 we obtain
[H", Uoy UT] = (=51 + 352)U 03 U' + 05 (—s1 + $2) Zky ks (BS)

and the analogous expression with a matrix exponential and

Uoj; U’ —s1 + 35 0
"= ( o5 ) A = <(—S1 +52)8k-k,  —4s1+ 652 (B6)

with eigenvalues o (A3) = {—s; + 352, —4s1 + 652}. The case a = 2 is more complicatg:d and we will compute the commutator
for a more general case involving the unitary transformations U’ = U (k") and U" = U (k) for different wave vectors. This will
be helpful later on for defining the matrix A,. We calculate

3
[H", U'oy U] = [H"ff, 3D} D3 k)| — D(—k) Y KT gg) r),, (gl <rr|]

n=1
=251U'0; U" + 3% (—so + 51)|DF(0))D3 (k)| + 3%k (51 — 52)(—k)| D} (K))(D3(0)|

+ 3Dk )(so — 51)|DFO)D3(K' + k)| + 3P(—k)(—s) + 2)| D} (k' + k))(D; (B7)

with ®(k) = ¢* X1 % Since all but the self-reproducing part (first line on the right-hand side) contains at least one generalized
D?’z state (either ket or bra) with k = 0, the next commutator will accumulate terms of the form |D? 0)) (Dg(O)l. Omitting the
argument k = 0 in the following, we can write down the transformed a = 2 part similar as the other ones by using k' =k,
resulting in an analogous matrix exponential equation with

Uch’U+ |
DDA )| 0
e |, o],
- 1 = £
|DY)(D3 k)] 0
(D} D3| 0
L2502
251 0 0 0 0 0
3%k(—so + 51) —3s0 + 559 0 0 0 0
A — 3O(—k)Zk(s1 — $2) 0 551 — 35, 0 0
2= 3D (k)(so — 51) 0 0 —350 + 551 0 0
3D(—k)(—s1 + 52) 0 0 0 551 — 38, 0
0 S(—h)Zp(s) —52)  Bp(—=so+s1) DP(=2k)Zoi(sy —s2)  Zop(—s0 +51) —3s59+ 8s1 — 35,

(B3)

and substitute k = k, — ky. The corresponding eigenvalues are {25, —3sg + 551, 551 — 352, —3s0 + 851 — 3s52}. Given that in
the three equations for a = 1,2, 3 only the transformed unit vectors are of interest, we can write the transformed ladder
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Hamiltonian [cf. Eq. (45)] in the form

U (ko)e™™ /" U ™ (ko) HE (kU (ko )e™ "' U (ko )

3
= U (ko) [Z Qv (ea/le) 4 H.c.:|UT(k0)

a=1

|ggg) (D} k)|

*

3 —
N ﬁm(wz(ks)xrrr@( ko)> (

|D§(ko))(rrrlq>(—ko)
3|D} (ko)) D3 (k2))|
| D} (ko)) D3 (k2) |
| IDIE))D3 ko)
+Q
?| |D}ko))(D3 2k — ko)
|D?(2k2 — ko))(Dg(ko)l

el‘?(3$07.§‘])/ﬁ
- l(lggg)(D?(ko)|> ' <(eil(6xo—4s|)/h _ eil(3xo—S|)/h)Eko_kl/3>

eit(—s1+3sg)/ﬁ )

(eit(—451+652)/h — eil(_sl+332)/h)2k0,k3/3

o121/l

(eit(—3‘vo+5x| )/h _ eiz2s1/h)2k2_k0

(e =32/h _ pit21/My5y 4 (ko — k2))
(_eit(—3so+551)/h + eitzyl/h)(b(kz — k())
(210 — it G =30/ (k) — ky)

|D} (ko))(D3 (ko) n(ky — ko)
3
— Q3" D(—ky) Y e |gg) ), (8l (7| | + Hec. (B9)
n=1
with
2% & . . ) )
nk) = Tk[eztlvl/h — I 3s0HSs)/h it (Ssi=3s2)/h 4 ezt(—3s0+8s1—3s2)/h]' (B10)

From the last equation, we can identify one relevant term per field (j = 1, 2, 3) and compensate the exponential time dependence

via fine detunings. Choosing

81 = (—6so + 4s1)/h,

8 = (3sp — 8s1 + 3s2)/h,

83 = (4s; — 6s2)/h (B11)

results in the effective Hamiltonian in which terms oscillating with nonvanishing residual frequencies are neglected (cf.

Sec. VIB). The set of residual frequencies {wg} is given by

—3s0 + 51 — hdy = 359 — 359,

—2S1 — ﬁ82 = —3S() + 6S1 — 3S2, 3S0 — 5S1 — h(Sz = 35‘1 — 3S2, —5S1 + 3S2 — h82 = —3S() + 3S2,

s1 — 35y — hid3 = —3s1 + 352,

(B12)

where each equation corresponds to one residual energy Ziwg and each line corresponds to one value of a (a = 1, 2, 3).
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cate of Figure 6 and has been replaced with the correct figure.
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