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Generation and manipulation of single photons are at the heart of photon-based quantum information pro-
cessing. An ensemble of quantum emitters (QEs) as a versatile light-matter interface are very promising for
quantum technology such as quantum storage and repeater. However, it is commonly believed that many QEs are
unable to create photon blockade and generate single photons with high purity due to the multiexcitation effect.
Here, we show efficient photon blockade and single-photon generation with a few to ten QEs by suppressing
multiexcitation with a detuned auxiliary cavity. Because the auxiliary cavity induces a strong dipole-dipole
interaction among the QEs, these QEs can be treated as a two-level superatom. By coupling this superatom
to another collecting cavity, efficient photon blockade with a high transmission is obtained. With the same setup,
single-photon emission can also be achieved with yield and purity larger than 90% simultaneously even in the
bad-cavity limit. Our method may open up a simple route to generate and manipulate single photons on demand.
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I. INTRODUCTION

The high-quality single-photon source plays a crucial role
in quantum information processing such as secure quantum
key distribution [1,2], quantum networking [3–5], and quan-
tum computation [6–9]. Single photons have been generated
from various platforms [10], including parametric driven non-
linear media [11–14] and single trapped quantum emitters
(QEs) [15–28]. A single photon is heralded by detection of a
scattered photon from an atomic ensemble after a single exci-
tation is written in with a small success probability [29,30].
A modest photon blockade (PB) effect using an ensemble
of atoms is predicted but associates with a vanishing low
transmission [31]. The weak PB effect in an atomic ensemble
is also proposed for lasing [32]. The PB effect based on the
Kerr nonlinearity in atoms is also exploited to turn a heralded
single-photon source to near-deterministic and thus surpasses
the purity-yield limitation [33].

Cavity quantum electrodynamics (cQED) systems with a
single QE have demonstrated the capability of achieving the
PB effect in the strong coupling regime [15–18,31] and gener-
ating single photons with high yield. Nevertheless, realization
of the strong coupling between a single QE and an optical
cavity is extremely challenging in experiment. In compar-
ison, trapping many atoms or few in a cavity can greatly
simplify experimental implementation [34–36]. Despite this
advantage, multiexcitation of atomic ensemble prevents one
from realizing the strong PB and single-photon emission.
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Emission and reabsorption of virtual photons between two
atoms separate at a deep subwavelength distance causes the
dipole-dipole interaction (DDI) [37–41]. For a very small
distance, the near-field resonant DDI is paramount over re-
laxation process but typically difficult to achieve.

The DDI in atomic arrays has been extensively studied to
induce the PB effect and generate single photons [42,43], es-
pecially in two-qubit cases [44–46]. However, the DDI needs
to be stronger than the Dicke-state dissipation [38], which
linearly increases with the atom number [37,38,47]. More
importantly, the strongest virtual-photon-mediated DDI equal
to the relaxation rate of the Dicke state has so far only been
observed in two superconducting artificial atoms [48]. It is
equally challenging as conducting a single-QE cQED system
to achieve strong virtual-photon-mediated DDI. In contrast, a
strong DDI among QEs can be induced with an optical cavity
[41,49,50].

Rydberg atoms prepared via two-photon transitions can
be used to circumvent the challenge in achieving a strong
DDI. The strong dipolar interaction between Rydberg atoms
induces shift of atomic energy levels and thus prevents mul-
tiexcitation of Rydberg atoms, giving rise to the so-called
Rydberg blockade [51]. Rydberg blockade means that the one
excited Rydberg atom prevents the neighboring atoms from
excitation. As long as the Rydberg atoms reside within the
blockade radius, the Rydberg blockade happens. The blockade
effect increases with N owing to the cooperativity. This is
an important advantage of single-photon generation utilizing
Rydberg gases. Because of the weak multiphoton transition
in Rydberg atoms, the coupling between an optical cavity and
Rydberg atoms is typically small. Thus, to achieve an efficient
photon collection and a strong PB with Rydberg atoms, the
strong coupling of Rydberg atoms and an optical cavity needs
to be developed.

To overcome the aforementioned challenges in the PB,
we propose another approach to achieve the PB effect and
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FIG. 1. (a) Schematics of our cQED system. The ith QEs (σi)
couples to the auxiliary and one-side collecting cavities a and c
with the coupling strengths gi and hi, respectively. A weak coherent
light �0 is used to pump the QEs emitting photons. The emitted
photon couples out the collecting cavity with a rate κex. (b) Level
diagram of the equivalent superatom with a cavity-induces anhar-
monicity 2U .

single-photon emission via the cavity-induced DDI among
many two-level QEs.

The layout of this paper is as follows. In Sec. II we in-
troduce the proposed scheme for realizing photon blockade
and single-photon generation with multiple emitters in optical
cavity QED system. In Sec. III we introduce the quantum
trajectory method in detail, including the conditioned evolu-
tion of the quantum state and stochastic quantum jumps. In
Sec. IV we discuss the photon blockade effect in our scheme,
presenting both its advantages and limitations. In Sec. V we
present results for single-photon generation. We numerically
simulate Hanbury-Brown-Twiss experiment and discuss the
effect of inhomogeneous broadening. An experimental imple-
mentation via cold 87Rb atoms is proposed and analyzed in
Sec. VI, with a brief conclusion and outlook on our paper in
Sec. VII

II. SYSTEM AND MODEL

The schematic of our system is depicted in Fig. 1(a). N
two-level QEs couples to an auxiliary cavity mode a with
resonance frequency ωa and to a collecting cavity mode c
with resonance frequency ωc. The coupling strengths between
the jth QE and the cavity mode a (c) is g j (h j). We assume
that these QEs have identical transition frequency ωb and
relaxation rate γ . The auxiliary cavity decays at a rate κa.
The decay of the collecting cavity includes two contributions:
the intrinsic decay κi and the extrinsic one κex, yielding the
total decay rate κc = κi + κex. The treatment dividing the to-
tal decay into the intrinsic and extrinsic parts is useful for
discussing the escape efficiency ηesc = κex/κc [33,52]. The
escape efficiency is an important parameter to evaluate the
performance of single-photon generation. The QEs are di-
rectly pumped with a coherent field �0 = √

2γ P/h̄ωp, which
is related to the input power P, the driving frequency ωp

and the atomic relaxation rate γ . In the following we adopt
natural units with h̄ = 1. We consider the two-level system
with ground state |g〉 j and excited state |e〉 j for the jth QE.
We introduce σ±

j as respectively the raising and lowering
operators acting on the jth QE.

In the rotating frame defined by a unitary transfor-
mation U1 = exp{iωa(a†a + c†c + 1

2

∑N
j=1 σ z

j )t}, the system

Hamiltonian reads (h̄ = 1)

H = �cac†c + 1

2
�ba

N∑
j=1

σ z
j

+
N∑

j=1

(g ja
†σ−

j + g∗
jσ

+
j a) +

N∑
j=1

(h jc
†σ−

j + h∗
jσ

+
j c) (1)

+ i�0

(
N∑

j=1

σ+
j ei(ωp−ωa )t −

N∑
j=1

σ−
j e−i(ωp−ωa )t

)

with �ca = ωc − ωa and �ba = ωb − ωa. This Hamiltonian
is an extension of Dicke and Tavis-Cumming model [53,54].
We assume that the auxiliary cavity mode a and the QEs
are largely detuned so that the mode a is unexcited, i.e.,
〈a†a〉 ≈ 0.

To adiabatically eliminate the largely detuned cavity mode
a, we apply the Schrieffer-Wolff transformation U = eS with
S = −∑

j (g ja†σ−
j − g∗

jσ
+
j a)/�ba to the many-body quan-

tum system and keep terms up to the second order. [55,56].
This approximation is valid as long as �ba � |g| [40,57]. The
Hamiltonian in Eq. (1) becomes

H ′ = �cac†c + 1

2
�ba

N∑
j=1

σ z
j

+ 1

�ba

(
N∑

k=1

gkσ
†
k

N∑
j=1

g∗
jσ j

)
+

N∑
j=1

(h jc
†σ−

j + h∗
jσ

+
j c)

(2)

+ i�0

(
N∑

j=1

σ
†
j ei(ωp−ωa )t −

N∑
j=1

σ je
−i(ωp−ωa )t

)
.

The third term means the cavity-induced DDI
[40,41,49,58,59]. To verify the validity of the adiabatic
approximation, we have numerically calculated 〈a†a〉 and
g2(0) versus the detuning �ba/g. The result is shown in
Fig. 5 in Appendix A. The adiabatic condition is satisfied
for the parameters considered here. To further simplify this
model, we assume the cavity-QE couplings are identical, i.e.,
g j = gk = g and h j = hk = h. The effect of inhomogeneous
coupling will be discussed later. With this treatment, we
can define the collective spin operators Sz = 1

2

∑
j σ

z
j ,

S+ = ∑
j σ

+
j and S− = ∑

j σ
−
j . The Hamiltonian changes to

H = �cac†c + �baSz + |g|2
2�ba

(S+S− + S−S+)

+ h(c†S− + S+c)

+ i�0(S+ei(ωp−ωa )t − S−e−i(ωp−ωa )t ). (3)

With using the Holstein-Primakoff (H-P) transformation Sz =
b†b − N/2, S+ = b†

√
N − b†b, S− = √

N − b†bb [60–62],
the QE ensemble can be modeled as a bosonic mode b. In
the following, we have used S+ ≈ b†

√
N and S− ≈ √

Nb.
This approximation is only valid when the excitation number
〈b†b〉 is low (see Appendix A). We further apply the uni-
tary transformation U2 = exp{i(ωp − ωa)(c†c + b†b)t} to the
mode b and obtain the Hamiltonian in this new rotating frame
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eventually reading as

H̃ = �̃cc†c + �̃bb†b + U (b†b)2 + h′(b†c + bc†)

+ i�(b† − b), (4)

with the detunings �̃c = ωc − ωp and �̃b = �bp + |g|2(N −
1)/�ba, and the collective driving � = √

N�0. The third term
describes the collective nonlinear photon-photon interaction
of the mode b resulting from the DDI among the QEs. The
anharmonicity U = |g|2/�ba describes the collective nonlin-
earity strength. The modes c and b couple with a strength
h′ = √

Nh. The last term indicates the coherent driving of the
mode b.

Note that the DDI causes an excitation-dependent energy
shift δE = U (b†b)2 to the mode b, see Fig. 1(b). Once the
first excitation is loaded in the mode b, loading the second
excitation needs an external energy 2U . For the anharmonicity
2U > γ , the excitation of high Fock states |n � 2〉 in mode b
are greatly suppressed. We can treat the anharmonic cavity
mode b as a two-level “superatom” only including the ground
and first-excited states |0〉 and |1〉 [63], see Fig. 1(b). Thus,
we attain a cQED system with a single superatom.

In our system, the QEs are off resonance from the cavity
mode a. Owing to the anti-Purcell effect [64], a large QE-
cavity detuning can suppress the decay of the N-QE collective
states to 
 = Nκag2/(κ2

a + �2
ba) = NγC/(1 + �2

ba/κ
2
a ) with

the cooperativity C = g2/γ κa [41,49,58,59,65]. We obtain the
ratio of the collective nonlinearity to the decay

U/
 = 1

N

(
κa

�ba
+ �ba

κa

)
. (5)

This relation shows that a large nonlinearity U appears when
κa � �ba. Thus, even if the auxiliary cavity is in the bad-
cavity limit κa � g, a strong PB effect is available. This is
the first key result of our cavity-QED protocol. Notice that
for practical implementation, κa should not be too large and
the single emitter dissipation rate γ is a small value. Thus,
we choose a trade-off value 
 = γ . This protocol provides
an advantage over previous PB schemes relying on the good-
cavity limit in the optical regime. Driving the superatom with
a coherent light field, we can, in principle, deterministically
generate single photons because the anharmonicity causes the
PB effect suppressing multiexcitation during photon emission.
This is the second main discovery of this paper. Note that
the ratio U/
 is inversely proportional to N . As a result, the
single-photon purity and yield decrease almost linearly as N
increases. Nevertheless, the performance is still usable for up
to ten atoms.

III. SIMULATION METHOD

The PB and photon emission can be investigated by solving
the quantum master equation of density matrix ρ(t ),

ρ̇ = −i[H̃ , ρ] +
∑
j=1,2

[
CjρC†

j − 1

2
C†

j Cjρ − 1

2
ρC†

j Cj

]
, (6)

where the collapse operators C1 = √
κcc and C2 = √


b re-
spectively describe the annihilation of the modes c and b. The

feasibility of all applied parameter values will be discussed in
the implementation part.

To numerically solve Eq. (6), we apply Monte Carlo quan-
tum trajectory method [66–70]. The workflow of the quantum
trajectory method is as follows. Supposing our state vector
|ψ (t )〉 evolves from t to t + δt , a quantum trajectory evolves
this ket vector according to the nonunitary Schrödinger equa-
tion

i
d

dt
|ψ (t )〉 = He|ψ (t )〉, (7)

where He = H − i
∑

j C†
j Cj is the effective non-Hermitian

Hamiltonian and j = 1, 2 labels the collapse operators. In our
system, the specified Hamiltonian He is given by

He = H̃ − iκcc†c − iγ b†b

= (�̃c − iκ )c†c + (�̃b − iγ )b†b + U (b†b†bb) (8)

+ h′(c†b + b†c) + i�(b† − b).

This evolution is augmented by quantum jumps
at random times with probabilities δp = ∑

j δp j =∑
j〈ψ (t )|C†

j Cj |ψ (t )〉δt . If no jump occurs, the state vector

evolves as |ψ (t + δt )〉 = exp(−iHeδt )|ψ (t )〉/(1 − δp)
1
2 . If

one jump occurs, the non-Hermitian time evolution described
by Eq. (7) is terminated and the corresponding wavefunction
is projected and renormalized to

|ψ (t + δt )〉 = Cj |ψ (t )〉√
δp j/δt

. (9)

Then, the new state vector continues to evolve with He until it
meets the next stochastic quantum jump or the simulation time
finishes. This single stochastic evolution of the state vector
is called one quantum trajectory. Note that the evolution of
the quantum system is conditioned on event without detecting
photons. The statistical averages of many quantum trajectories
recover the solution of the master equation (6).

Unlike the quantum master equation, the quantum trajec-
tory method is specially useful for studying the statistical
properties of photons outside a cavity, characterizing a real
detection process. The stochastic quantum jumps describe the
situation that, e.g., one photon-emission event, is detected by
a detector. While the non-Hermitian evolution described by
Eq. (7) corresponds to the modification of the system state
vector with a no-detection event. Therefore, the time evolu-
tion of each stochastic quantum trajectory can be completely
reconstructed by an outside observer.

IV. PHOTON BLOCKADE WITH MULTIPLE EMITTERS

The PB effect means that emitting one photon in the
cavity prohibits emission of following photons due to the
system anharmonicity in energy. It can be characterized by
the equal-time second-order correlation function g(2)(0) ≡
〈c†2c2〉/〈c†c〉2. The PB happens when g(2)(0) < 1. It only
requires that the single-photon nonlinearity U is larger than
the linewidth of mode b in our system, rather than the
cavity mode as the conventional PB scheme. The trans-
mission is also an important feature for the PB promising
applications and is evaluated as T = γ κex〈c†c〉/�2 here.
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To confirm the superatom picture discussed previously, we
first derive a closed form of g(2)(0). We consider the decay
terms of the QEs and the collecting cavity in the effective
Hamiltonian equation (8). A general state takes the form
|ψ (t )〉 = ∑2

n=0 Cn1,n2 (t )|n1, n2〉, where n1 and n2 are respec-
tively the collecting cavity photon number and the mode
b excitation, and Cn1,n2 the probability amplitude of state
|n1, n2〉. Under the weak driving approximation (� 
 γ ), we
truncate both modes up to state |n = 2〉 although the mode b
can be treated as a two-level superatom for large U . In this
case, we can include the influence of the weakly excited states
|2〉. Then the time-dependent Schrödinger equation i ˙|ψ (t )〉 =
He|ψ (t )〉 can be expanded as

iĊ00 = (�̃c − iκ )C00,

iĊ10 = (�̃c − iκ )C10 + h′C01,

iĊ01 = (�̃b − iγ )C01 + h′C10 + �C00,

iĊ20 = 2(�̃c − iκ )C20 +
√

2h′C11, (10)

iĊ02 = 2(�̃b − iγ )C02 + 2UC02 +
√

2h′C11 +
√

2�C01,

iĊ11 = (�̃b + �̃c − i(κ + γ ))C11

+
√

2h′(C20 + C02) + �C10.

The second-order correlation function approximates to

g(2)(0) =
∑

n n(n − 1)Pn( ∑
n nPn

)2 ≈ 2P2

(P1 + 2P2)2
, (11)

where P1 and P2 are the single- and two-photon populations
in photon wavefunctions. Because P1 � P2 under a weak
pump, g(2)(0) can be further simplified to g(2)(0) ≈ 2P2/P2

1 ≈
2|C2,0|2/|C1,0|4. Then we can solve the Schrödinger equation
i|ψ̇ (t )〉 = He|ψ (t )〉 under a continuous wave (cw) driving
and get an analytical expression for probability amplitude in
steady state [71]. The coefficients C1,0 and C2,0 can be solved
according to Eq. (10) as

C10 = h′�
(�̃c − iκ )(�̃b − iγ ) − h′2 ,

(12)

C20 = D1h′�C10

�̃b + �̃c − i(κ + γ ) − D2h′2 ,

where D1 = 1/(�̃c − iκ ) − 1/(�̃b + U − iγ ) and D2 =
1/(�̃c − iκ ) + 1/(�̃b + U − iγ ). On resonance, the function
g(2)(0) eventually is given by

g(2)(0) = α1(h′2 + κcγ )2

α2h′4 + α3h′2 + α4
, (13)

where α1 = U 2 + (κc − γ )2, α2 = U 2 + (κc + γ )2, α3 = 1
2

κc(κc + γ )(U 2 + γ 2 + 4κcγ ), α4 = κ2
c (U 2 + γ 2)(κc + γ )2.

In the limit of very large U , the correlation function reduces
to

g(2)(0) = (h′2 + κcγ )2

h′4 + 0.5κ2
c h′2 + κ4

c

. (14)

It is the correlation function of a cQED system embedded with
a two-level QE. Taking {κc, γ , h′, N}/κi = {61, 0.4, 2.0, 5} in

FIG. 2. (a) Equal-time second-order correlation function g2(0)
and (b) transmission spectrum vs the coupling strengths g and
h′. (c) The g2(0) and (d) transmission spectrum vs the de-
tuning �̃c. Other parameters are {N, κex, γ , h′, g, �ba, �}/κi =
{5, 60, 0.4, 2.0, 46, 150, 0.16}.

the above equation, g(2)(0) reaches 3 × 10−5. This clearly
shows that higher levels |n � 2〉 are barely excited and only
single photons can be emitted.

To study the full quantum dynamics of our system, we
numerically solve Eq. (6) with the QuTiP quantum optics
package [72] and truncate both modes c and b to Fock state
|5〉. To provide an evaluation on performance in practical case,
we take κi to normalizing other parameters related to energy
or frequency in numerical simulations. The collecting cavity
is set to be resonant with the |0〉 ↔ |1〉 transition of the mode
b, i.e., �̃c = �̃b. We use a large extrinsic dissipation of the
collecting cavity mode that κex = 60κi to guarantee a high
escape efficiency ηesc = κex/κc [33,52]. We show the function
g(2)(0) versus the coupling strengths g and h′ in Fig. 2(a).
It can be seen that g(2)(0) decreased monotonically with g
because the nonlinearity U of the superatom is proportional
to |g|2. Moreover, g(2)(0) increases with h′. This is because
a large h′ results in higher level excitation of the superatom
and thus multiphoton emission. The dependence of g(2)(0) on
g and h′ is consistent with our analytical results. Note that we
obtain the ratio P2/P1 = 2 × 10−3 for N = 5, implying neg-
ligible multiphoton excitations in mode b. These numerical
results strongly support that many QEs can be modeled as a
two-level superatom.

033083-4



PHOTON BLOCKADE AND SINGLE-PHOTON GENERATION … PHYSICAL REVIEW RESEARCH 4, 033083 (2022)

Here, the collection cavity plays an important role in im-
proving the transmission of single photons in photon blockade
and the yield in single-photon generation. Without the col-
lection cavity, the transmission will be vanishingly small as
usual. On the other hand, the single-photon yield will also
reduce to a small value, because the QEs very likely emits
single photons into environment. Thus, we use this collection
cavity to improve the performance of photon blockade and
single-photon generation.

It can be seen from Fig. 2(a) that the function g(2)(0)
can be improved from 1 to almost 0 as g (corresponding
to U ) increasing. In the limit of a large nonlinearity, our
model simplifies to a cQED system consisting of a two-level
superatom and a single collection cavity. When h′/κc → 0,
corresponding to the bad-cavity limit of the collection cavity,
equation (13) reduces to

g(2)(0) = (U 2 + (κc − γ )2)γ 2

[(U 2 + γ 2)(κc + γ )2]
. (15)

We can achieve a strong photon blockade effect. However, if
the coupling of the QEs and the cavity mode c is weak, i.e., for
a small h′, it can be seen from Fig. 2(b) that the transmission
of the single-photon state vanishes as many previous schemes.
Thus, one of the main advantages of our photon-blockade
protocol losses. Therefore, we choose a tradeoff value of the
ratio h′/κc ∼ 2.0 for achieving high yield and purity simulta-
neously, see Fig. 2(b).

The cavity-induced DDI allows us to achieve a strong PB
effect and high transmission simultaneously. As shown in
Figs. 2(b) and 2(c), we obtain g2(0) = 1 × 10−3 correspond-
ing to a single-photon purity of 99.9% and a peak transmission
of 0.68 for N = 5 when the cw coherent pump is near res-
onance with the collecting cavity, i.e., �̃c ≈ 0.. When more
QEs are embedded in the cavity, e.g., N = 100 or 200, the pu-
rity and the transmission reduce. This can be understood from
Eq. (4). The nonlinearity U is independent of N . But Loading
more QEs enhances the coupling h′ = √

Nh and � = √
N�0.

As a result, the PB effect becomes weaker. In stark contrast to
previous paper [31], our scheme can achieve a strong PB and
a large transmission simultaneously.

V. SINGLE-PHOTON EMISSION

By exciting the two-level superatom with a π pulse, we
expect single-photon emission with high purity and yield si-
multaneously. We define the single-photon yield here as the
probability of emitting a single photon after the system is
driven by a π -area pump pulse. For our cQED system with
a large U , after the superatom emits a single photon, it has to
be excited again before emitting a subsequent photon. In this
case, the possibility of multiphoton emissions is negligible
and g(2)(0) ≈ 0 is obtainable.

To simulate photon emission in real experiments, we
numerically solve Eq. (6) with the Monte Carlo quantum
trajectory method provided by the QuTiP Python package
[72]. This method allows us to calculate the probability of
k-photon emissions denoted as P′

k (k = 1, 2). Obviously, P′
1

FIG. 3. Results of single photon emission with emitters.
(a) Sweeping of detuning �̃c vs two-photon correlation function.
g2(0) reaches its minimum near resonance �̃c = 0. (b) HBT sim-
ulation of photon emission with 5000 quantum trajectories. N = 5
in (a) and (b). (c) g2(0) versus the number of QEs. (d) Single- and
two-photon emission probability P1 and P2 vs N . Other parameters
are {κex, γ , h′, g, �ba, �}/κi = {60, 0.4, 2.0, 46, 150, 2.4}.

is the single-photon yield. This Monte Carlo method also
enables us to evaluate the quantum statistics such as g(2) of
photon wave functions outside the collecting cavity by simu-
lating the Hanbury-Brown-Twiss (HBT) experiment [33,72].

The correlation function g(2)(0) versus the detuning �̃c

is shown in Fig. 3(a). When the π -pulse driving is on reso-
nance, i.e., �̃c = 0, the function g(2)(0) is optimal and reaches
g(2)(0) = 0.09, corresponding to a purity >90%. The associ-
ating yield P1 is also high, about 93%.

The time-delayed photon counts outside the collecting
cavity can provide realistic photon statistics of fields in exper-
imental observation. Simulation of HBT experiment presents
the photon counts as a function of time delay, as shown
in Fig. 3(b). Here, we numerically simulate the practical
HBT experiment using two single-photon detectors to char-
acterizing the single-photon nature for the following reasons.
Firstly, the standard HBT scheme enables us to measure the
quantum correlation between incident photons, while only a
single detector cannot. Secondly, the HBT protocol does not
require high photon-number-resolved detectors and is easy
to implement experimentally. Another reason is, we aim to
demonstrate a numerical method to simulate practical HBT
experiment based on quantum trajectory. This method enables
us to directly evaluate single-photon properties escaping off
the optical cavity. This is an advantage over traditional simula-
tion method calculating the in-cavity photons based on density
matrix. (For more information, see Appendix C.) To do sim-
ulation, we divide the external decay of the collecting cavity
into two collapse channels with equal rates κe1 = κe2 = 30κi

playing the role of a 50 : 50 beam splitter. These two channels
are denoted as D1 for time trigger and D2 for stop. We input
nine rectangle driving pulses with duration τp = 0.25γ −1 and
interval �τ = 5γ −1 corresponding to a repetition rate 0.2γ .
This interval is long enough such that the collecting cavity can
completely emit a photon outside. The emitted single-photon
wavefunction is approximately a pulse exponentially decaying
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FIG. 4. Single-photon yield and purity vs (a) inhomogeneous
broadening of the coupling strength and (b) emitter frequencies.
The coupling strengths gj and hj in (a) are normally distributed
around mean of ḡ/κi = 46 and h̄′/κi = 2.0. The frequencies of
emitters in (b) are also normally distributed with mean �̄ba =
150κi. Other parameters are {N, κex/κi, γ /κi, �ba/κi, �/κi} =
{5, 60, 0.4, 150, 2.4}.

with rate γ . If D1 receives one photon within the ith inter-
val, followed by another “click” on D2 within the (i + k)th

interval, we consider this event as one count at τ = k�τ . If
the followed photon emission is still in the same detector, the
count continues. As shown in Fig. 3(b), at zero time delay
τ = 0, we obtain 49 two-photon events over 5000 quantum
trajectories, corresponding to g(2)(0) = 0.10 ± 0.02 [73]. This
value of g(2)(0) is consistent with Fig. 3(a). This photon count
simulation reflects photon statistics in real HBT experimental
observation.

The yield and purity decrease as the number of QEs
N increases, see Figs. 3(c) and 3(d), because the PB ef-
fect weakens. Increasing the number of QEs enhances the
collective coupling strength h′ = √

Nh and the collective
driving � = √

N�0. However, the nonlinearity U of the su-
peratom remains unchanged. As a result, the multiphoton
excitation increases. By fitting numerical results, we find
the linear dependence of the purity and the yield on N :
P1 = −0.0034N + 0.96 and P2 = 0.00175N + 0.057 for N �
200, leading to g(2)(0) = (0.0035N + 0.114)/(0.0001N +
1.074)2 ∼ 0.003N + 0.099 (see dashed lines). These results
imply that our system with N up to ten is well suitable for a
single-photon source.

Note that a large coupling rate h′ will cause Rabi oscillation
between the superatom and the collection cavity mode. This
may reduce the purity of the single photon and cause time-bin
single photons [74].

The nonuniform amplitude distribution of the cavity field at
different QE position may cause inhomogeneous broadening
of the QE-cavity coupling. Here we investigate the depen-
dence of single-photon yield and purity on the broadening of
the coupling strengths g j and h j . To do so, we replace the
Hamiltonian H̃ in the master equation with the many-body
Hamiltonian given by Eq. (2) and solve the master equation.
Limited by available computation resource, we consider a
cQED system with N = 10. We assume that the randomly
distributed couplings {g j} and {h j} have the same normal
distribution with a standard derivation σg,h. Their mean values
are ḡ = 46κi and h̄′ = 2.0κi, respectively. The dependencies
of the purity and the yield on σg,h are shown in Fig. 4. As
intuitive expectation, the purity and the yield decreases with
the deviation σg,h. Nevertheless, we still can attain the purity
and the yield larger than 90% [P1 > 0.9, g2(0) < 0.1] when

σg,h < 0.08. The coupling deviation has a small effect on
single-photon emission in this case. As σg,h further increases,
the quality of the emitted single photon quickly deteriorates to
useless. Thus, to obtain a high-quality single-photon source,
we need to trap the many QEs in the cavities with a subwave-
length size or an array of QEs separate by integer number of
wavelengths to guarantee σg,h < 0.08 [34,42,75].

Our protocol can be extended to solid QEs like NV centers
in a diamond in cryogenic environment. NV centers located
on different sites in a diamond may experience randomized
effective potentials and strain, leading to inhomogeneous en-
ergy level splitting [76–80]. To evaluate the influence of the
inhomogeneous broadening in resonance frequency of QEs on
the purity and yield, we numerically solve the master equa-
tion with Hamiltonian equation (2) for N = 10. To do so, we
assume a normal distribution of the detuning �ba with mean
value �̄ba = 150κi and standard deviation σ�ba . The results for
the purity and yield are shown in Fig. 4(b). It can be seen that
the purity and yield decrease with the increasing of σ�ba . In
comparison with the inhomogeneity of the coupling strengths,
the performance of single-photon generation is strongly de-
pendent on the broadening of the QE resonance frequency.
To guarantee a usable performance of P1 > 0.9, g2(0) < 0.1,
the standard variance σ�ba of the frequency broadening of the
solid QEs needs to be smaller than 4%, equivalently ∼15
times of the decay rate of NV centers. It is worth noting that
this decay rate of NV centers can be narrowed by applying
a small in-plane magnetic field [81]. Therefore, our protocol
has the potential to be implemented on a solid-state platform.

VI. EXPERIMENTAL IMPLEMENTATION

Our scheme can be implemented by trapping many atoms
in two Fabry-Perot cavities [5,57,82,83]. For the collecting
cavity, we assume that the mirror M1 is coated with 99.85%
antireflection layer and the mirror M2 has a relatively low
reflectivity 90.5% as an output port [84,85]. We take this
cavity length to be 5 mm. In this case, the intrinsic (extrinsic)
decay rate κi (κex) of the collecting cavity can be calculated
as 2π × 7.2 MHz (2π × 450 MHz). The escape efficiency
can reach ηesc = 98.4%. Many 87Rb atoms is used to create
the nonlinearity. We can use the D1 lines |52S1/2, F = 2〉 →
|52P1/2, F ′ = 2〉 with decay rate γ = 2π × 3 MHz and tran-
sition wavelength λ = 780.2 nm. The auxiliary cavity can be
a fiber Fabry-Perot cavity. The optimal mode volume for the
fiber Fabry-Perot cavity can be down to 5.5λ3 [86], leading to
the atom-cavity coupling strength up to g = 2π × 2.2 GHz.
We choose the cavity length of 25 μm and obtain g = 2π ×
325 MHz. It is reasonable to choose the coupling between
atoms and the collecting cavity to be h′ = 2π × 15 MHz for
N = 5. The auxiliary cavity can be a “bad” cavity with both
mirrors having low reflectivity of 77%, yielding a decay rate
of κa ≈ 198 GHz and a quality factor Q ≈ 1200. Then, we
obtain the single-photon yield of P1 = 93% and the purity
of 90%. If a π -area driving pulse train with repeating rate
∼3.7 MHz is applied to the QEs, we can near determin-
istically generate single photons with a rate of 3.4 MHz.
Our scheme can also be realized on a chip by using pho-
tonic crystal cavities embedded with quantum dots [57,87].
The intrinsic dissipation of the self-assembled InAs/GaAs is
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γ = 2π × 0.1 GHz [88]. In this setup, the ratio of the non-
linearity U to the quantum dot dissipation can be improved.
Thus, we can expect a single-photon source with higher yield
and purity and repetition rate of 125 MHz can be attained in
such chip-compatible system.

VII. CONCLUSIONS

We have proposed a near-deterministic single-photon
source with many QEs. Our scheme uses a largely detuned
auxiliary cavity to induce a strong DDI in the QEs and thus
create an effective cQED system with a single two-level su-
peratom. With this system, we achieve the strong PB effect
and obtain single-photon emission with high purity and yield.
Our scheme paves the way for exploiting many QEs for
single-photon source and may greatly simplify photon-based
quantum information processing.
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APPENDIX A: DERIVATION OF EFFECTIVE
HAMILTONIAN

The original Hamiltonian of our system is

H = ωcc†c + ωaa†a + 1

2
ωa

∑
j

σ z
j +

∑
j

(g ja
†σ−

j + g∗
jσ

+
j a)

+
∑

j

(h jc
†σ−

j + h∗
jσ

+
j c) + i�0

×
(∑

j

σ
†
j eiωpt −

∑
j

σ je
−iωpt

)
, (A1)

where c(c†) is the collecting cavity mode, the a(a†) is the
auxiliary cavity mode and σ±

j is the transition operator of
the jth emitter. The last two terms represent couplings be-
tween the quantum emitters and the two cavities. In the
rotating frame defined by a unitary transformation U1 =
exp (iωa(c†c + a†a + 1

2ωa
∑

j σ
z
j )t ), the Hamiltonian reads

H ′ = U1HU −1
1 + i

∂U1

∂t
U †

1

= �cac†c + 1

2
�ba

∑
j

σ z
j +

∑
j

(g ja
†σ−

j + g∗
jσ

+
j a)

+
∑

j

(h jc
†σ−

j + h∗
jσ

+
j c)

+ i�0

(∑
j

σ
†
j ei(ωp−ωa )t −

∑
j

σ je
−i(ωp−ωa )t

)
. (A2)

Here, �ca = ωc − ωa and �ba = ωb − ωa. Then we apply
the transformation U2 = eS to Hamiltonian of Eq. (2), where
S = 1

�

∑
j (g ja†σ−

j − g∗
jσ

+
j a). It can be clearly seen that only

the second and third terms of Eq. (2) change under this
transformation, so we denote H ′

1 ≡ 1
2�ba

∑
j σ

z
j and V ′

1 ≡∑
j (g ja†σ−

j + g∗
jσ

+
j a) for simplicity. Substituting the BCH

formula,

eABe−A = B + [A, B] + 1
2! [A, [A, B]] + · · · , (A3)

into Eq. (2), we have

[
S, H ′

1

] = −1

2

∑
j

(
g ja

†[σ−
j , σ z

j

] − g∗
j

[
σ+

j , σ z
j

]
a
)

= −
∑

j

(g ja
†σ−

j + g∗
jσ

+
j a) = −V ′

1 . (A4)

This condition implies that our transformation resembles
Schrieffer-Wolff transformation in condensed matter system.
The transformed term H ′

1 + V ′
1 becomes

e+S (H ′
1 + V ′

1 )e−S = H ′
1 + 1

2
[S,V ′

1]

= 1

2
�ba

∑
j

σ z
j − 1

2�ba

∑
k

∑
j

[gka†σ−
k − g∗

kσ
+
k a, g ja

†σ−
j + g∗

jσ j‘
+a] (A5)

= 1

2
�ba

∑
j

σ z
j + 1

2�ba

(∑
j

g∗
jσ

+
j

∑
k

gkσ
−
k +

∑
j

g jσ
−
j

∑
k

g∗
kσ

+
k

)
+ |g|2

�ba

∑
j

a†aσ z
j .

We truncate the transformed Hamiltonian up to second order and then get

H ′′ = �cac†c + 1

2
�ba

∑
j

σ z
j + 1

2�ba

(∑
j

g∗
jσ

+
j

∑
k

gkσ
−
k +

∑
j

g jσ
−
j

∑
k

g∗
kσ

+
k

)

+ |g|2
�ba

∑
j

a†aσ z
j +

∑
j

(h jc
†σ−

j + h∗
jσ

+
j c) + i�0

(∑
j

σ
†
j ei(ωp−ωa )t −

∑
j

σ je
−i(ωp−ωa )t

)
. (A6)
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FIG. 5. The calculation of mean excitation 〈a†a〉 (a) and g(2)(0) (b) function vs detuning �ba/g. The excitation of mode a decreases
exponentially with large �ba/g. The g(2)(0) function experience a drastic drop with �ba/g < 2 and slowly increases afterwards.

Here, the auxiliary cavity and the QEs are off resonance, i.e.,
�ba � |g|, so that the mode a is barely excited, i.e., 〈a†a〉 ≈ 0.
In this case, the stark-shift related term |g|2

�ba

∑
j a†aσ z

j can be
neglected for simplicity. Introducing the collective spin oper-
ator S+ = ∑

j σ
+
j , S− = ∑

j σ
−
j , Sz = 1

2

∑
j σ

z
j , we obtain

the Hamiltonian H ′′

H ′′ = �cac†c + �baSz + |g|2
2�ba

(S+S− + S−S+)

+ h(c†S− + S+c) + i�0(S+ei(ωp−ωa )t − S−e−i(ωp−ωa )t ).
(A7)

Under the Holstein-Primakoff transformation Sz = b†b −
N
2 , S+ = b†

√
N − b†b, S− = √

N − b†bb, the Hamiltonian
becomes

H = �cac†c +
(

�ba + N
|g|2
�ba

)
b†b + |g|2

�ba
b†b†bb

+ h(c†
√

N − b†bb + b†
√

N − b†bc) (A8)

+ i�0(b†
√

N − b†bei(ωp−ωa )t −
√

N − b†bbe−i(ωp−ωa )t ).

We assume that S+ = b†
√

N − b†b ≈ √
Nb†, S− =√

N − b†bb ≈ √
Nb for large N . Then the Hamiltonian

can be simplified to

H = �cpc†c +
(

�bp + |g|2
�ba

(N − 1)

)
b†b + |g|2

�ba
(b†b)2

+ h′(b†c + bc†) + i�(b† − b)
(A9)

= �̃cc†c + �̃bb†b + U (b†b)2 + h′(b†c + c†b)

+ i�(b† − b),

where the detunings �̃c = ωc − ωp and �̃b = �bp +
|g|2(N − 1)/�ba. The collective coupling strength is
h′ = √

Nh and the collective driving is � = √
N�0. We

obtain the Hamiltonian given by Eq. (3) in the main text.
Below, we validate the adiabatic elimination of the auxil-

iary cavity mode. Using the original Hamiltonian equation (1),
we investigate the dependence of the mean excitation number
〈a†a〉 on the detuning �ba, as shown in Fig. 5(a). The exci-
tation of cavity mode a decreases exponentially and drops to
a vanishing small value 2 × 10−4 at �ba/g = 3. Thus, it is

reasonable to adiabatically eliminate the auxiliary cavity by
considering it in its quantum ground state [40,57].

We also study the g2(0) function versus detuning �ba, see
Fig. 5(b). It first drops to a minimal value quickly as the detun-
ing increases. This indicates the collection cavity a is barely
excited and the auxiliary cavity-atoms system can be treated
as a single superatom. The function g2(0) linearly increases
afterwards. This is because the nonlinearity U = |g|2/�ba de-
creases. These results also confirm the validity of the adiabatic
elimination.

APPENDIX B: COMPARISON BETWEEN ANALYTICAL
AND NUMERICAL RESULTS OF g(2)(0)

The analytical expression of correlation function on reso-
nance condition, i.e., �̃c = �̃b = 0, is expressed as

g(2)(0) = α1(h′2 + κγ )2

α2h′4 + α3h′2 + α4
, (B1)

where α1 = U 2 + (κ − γ )2, α2 = U 2 + (κ + γ )2, α3 = 1
2κ

(U 2 + γ 2 + 4κγ )(κ + γ ), α4 = κ2(U 2 + γ 2)(κ + γ )2. As
can be seen in Figs. 6(a) and 6(b), our analytical results
fit well with the quantum trajectory simulation for small
h′ and large U . The correlation function g(2)(0) increases
monotonically with h′ and decreases with U . However, when
h′ is stronger, the analytical results deviate from numerical
results. This is because the superatom is more probable to be
excited to higher energy levels due to strong Rabi oscillation
between the collecting cavity and the superatom. This result is
not established as well when U/
 is not large enough. In both
cases, the superatom can no longer be treated as a two-level
system and the weak-pump approximation C00 � C10 � C20

is not valid anymore.

APPENDIX C: QUANTUM TRAJECTORY SIMULATION
OF THE HBT EXPERIMENT

Quantum trajectory (QT) method provides an effective
manner to simulate the photon statistics of the output field.
This photon statistics is hard to simulate by directly solving
the master equation of the system. The detailed discussion on
the QT have been provided by Ref. [66] and Appendix seven
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FIG. 6. Comparison between analytical and numerical results. The analytical results are plotted with Eq. (B1) and the numerical results
are obtained by solving the master equation (4) in the main text. (a) g(2)(0) as a function of U . (b) g(2)(0) as a function of h′. Our analytical
results fit well with numerical result when h′ is small and U is large. The parameters discussed in the main text (h′ = 2.0κi, U = 14.1κi) lies
exactly in this region. Outside this region, the deviation becomes large. The other parameters are consistent with the main text.

of Ref. [33]. Here we only emphasize some key points. In the
QT, if a single photon escapes from the cavity within a small
time interval δτ , then the state of the system will undergo a
jump. After the jump, the system continues to evolve accord-
ing to the Schrödinger equation.

This calculated system state as a function of time is called a
quantum trajectory. We assume that there is a photon detector
outside the collecting cavity that has the ability to tell whether
or not a photon has been emitted. Therefore, in each QT sim-
ulation, the number of jumps of the system state corresponds
to the number of photon events detected by the out-of-cavity
detector. The desired density matrix as a function of time may
be calculated by averaging over many simulated trajectories.

In our system, different cases of the quantum trajectories
are plotted in Figs. 7(a)–7(c). In Fig. 7(a), no jump occurs,
indicating that this state is the vacuum state. In Fig. 7(b), one
jump occurs, which is the sign of single-photon emission from
the cavity at time ti. In Fig. 7(c), two jumps occur, which
imply two-photon emission event subsequently happening at
t j and tk . The moment of photon-emission event and the
channels they emit through are recorded in QT simulation
[72]. The average photon number outside the cavity over 1000
trajectories is shown in Fig. 7(d). The photon fully escapes
after γ t = 3.

In the HBT simulation, we first set two dissipation channels
with collapse rates κe1 = κe2 = κex/2. These two channels

FIG. 7. Simulation of the output photons with one π pulse in our system, where the x axis represents the photon decay time in the cavity
and the ordinate represents the average number of photons in the cavity. [(a),(b),(c)] Single-trajectory photon number for zero-, one-, and
two-photon quantum jumps occurring within one pulse, respectively. (d) Average of over 1000 trajectories in the simulation.
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FIG. 8. Simulation of the output photons in the HBT simulation for nine input pulses with duration τ0 ≈ 0.25γ −1 and an interval �τ =
5γ −1. (a) Photon numbers in a single trajectory. (b) Photon numbers averaged over 5000 trajectories.

serve as a 50 : 50 beam splitter. We input nine rectangular
pulses with duration τ0 ≈ 0.25γ −1. Each pulse is separated
by an interval �τ = 5γ −1 to ensure no overlap (“wrong”)
counting. One of the trajectory in the simulation is shown
in Fig. 8(a). We can see that each of the pulse only “jumps”
once. It indicates that nine single photons are emitted from
the cavity in this trial. Figure 8(b) is the average of 5000
trajectories. After QT simulations are done, a set of lists
are given. These lists record the time and channels for the
photon-emission events in each QT [72]. We then sort out
this set of results and divide them into two groups, labeling
as D1 and D2. For example, D1[x] contains all the moments

of the photon emission through the channel κe1 in the xth

quantum trajectory. Then we can apply the counting pro-
cedure described in the main text in each trajectory. That
is to say, we search the first incident photon in D1[x] and
mark it as the “start” of one counting procedure. If D1[x] re-
ceives one photon within the ith interval, followed by another
“click” on D2[x] within the (i + k)th interval, we consider
this event as one count in τ = k�τ . If the followed photon
emission is still in the same detector, the count continues.
After summing over all the counts in each trajectory, we get
the distribution result shown in the Fig. 3(b) of the main
text.
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